|  | // Copyright 2013 the V8 project authors. All rights reserved. | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are | 
|  | // met: | 
|  | // | 
|  | //     * Redistributions of source code must retain the above copyright | 
|  | //       notice, this list of conditions and the following disclaimer. | 
|  | //     * Redistributions in binary form must reproduce the above | 
|  | //       copyright notice, this list of conditions and the following | 
|  | //       disclaimer in the documentation and/or other materials provided | 
|  | //       with the distribution. | 
|  | //     * Neither the name of Google Inc. nor the names of its | 
|  | //       contributors may be used to endorse or promote products derived | 
|  | //       from this software without specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|  | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|  | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  |  | 
|  | // TODO(3468): we rely on a precise Math.exp. | 
|  | // Flags: --no-fast-math | 
|  |  | 
|  | [Math.sinh, Math.cosh, Math.tanh, Math.asinh, Math.acosh, Math.atanh]. | 
|  | forEach(function(fun) { | 
|  | assertTrue(isNaN(fun(NaN))); | 
|  | assertTrue(isNaN(fun("abc"))); | 
|  | assertTrue(isNaN(fun({}))); | 
|  | assertEquals(fun(0), fun([])); | 
|  | assertTrue(isNaN(fun([1, 1]))); | 
|  | assertEquals(fun(1.11), fun({ toString: function() { return "1.11"; } })); | 
|  | assertEquals(fun(-3.1), fun({ toString: function() { return -3.1; } })); | 
|  | assertEquals(fun(-1.1), fun({ valueOf: function() { return "-1.1"; } })); | 
|  | assertEquals(fun(3.11), fun({ valueOf: function() { return 3.11; } })); | 
|  | }); | 
|  |  | 
|  |  | 
|  | function test_id(fun, rev, value) { | 
|  | assertEqualsDelta(1, rev(fun(value))/value, 1E-7); | 
|  | } | 
|  |  | 
|  | [Math.PI, 2, 5, 1E-5, 0.3].forEach(function(x) { | 
|  | test_id(Math.sinh, Math.asinh, x); | 
|  | test_id(Math.sinh, Math.asinh, -x); | 
|  | test_id(Math.cosh, Math.acosh, x); | 
|  | test_id(Math.tanh, Math.atanh, x); | 
|  | test_id(Math.tanh, Math.atanh, -x); | 
|  | }); | 
|  |  | 
|  |  | 
|  | [Math.sinh, Math.asinh, Math.tanh, Math.atanh].forEach(function(fun) { | 
|  | assertEquals("-Infinity", String(1/fun(-0))); | 
|  | assertEquals("Infinity", String(1/fun(0))); | 
|  | }); | 
|  |  | 
|  |  | 
|  | [Math.sinh, Math.asinh].forEach(function(fun) { | 
|  | assertEquals("-Infinity", String(fun(-Infinity))); | 
|  | assertEquals("Infinity", String(fun(Infinity))); | 
|  | assertEquals("-Infinity", String(fun("-Infinity"))); | 
|  | assertEquals("Infinity", String(fun("Infinity"))); | 
|  | }); | 
|  |  | 
|  |  | 
|  | assertEquals(Infinity, Math.cosh(-Infinity)); | 
|  | assertEquals(Infinity, Math.cosh(Infinity)); | 
|  | assertEquals(Infinity, Math.cosh("-Infinity")); | 
|  | assertEquals(Infinity, Math.cosh("Infinity")); | 
|  |  | 
|  |  | 
|  | assertEquals(-Infinity, Math.atanh(-1)); | 
|  | assertEquals(Infinity, Math.atanh(1)); | 
|  |  | 
|  | // Math.atanh(x) is NaN for |x| > 1 and NaN | 
|  | [1.000000000001, Math.PI, 10000000, 2, Infinity, NaN].forEach(function(x) { | 
|  | assertTrue(isNaN(Math.atanh(-x))); | 
|  | assertTrue(isNaN(Math.atanh(x))); | 
|  | }); | 
|  |  | 
|  |  | 
|  | assertEquals(0, Math.sinh(0)); | 
|  | assertEquals(-Infinity, 1/Math.sinh(-0)); | 
|  | assertEquals(1, Math.tanh(Infinity)); | 
|  | assertEquals(-1, Math.tanh(-Infinity)); | 
|  | assertEquals(1, Math.cosh(0)); | 
|  | assertEquals(1, Math.cosh(-0)); | 
|  |  | 
|  | assertEquals(0, Math.acosh(1)); | 
|  | assertEquals("Infinity", String(Math.acosh(Infinity))); | 
|  |  | 
|  | // Math.acosh(x) is NaN for x < 1 | 
|  | [0.99999999999, 0.2, -1000, 0, -0].forEach(function(x) { | 
|  | assertTrue(isNaN(Math.acosh(x))); | 
|  | }); | 
|  |  | 
|  |  | 
|  | // Some random samples. | 
|  | assertEqualsDelta(74.20321057778875, Math.sinh(5), 1E-12); | 
|  | assertEqualsDelta(-74.20321057778875, Math.sinh(-5), 1E-12); | 
|  |  | 
|  | assertEqualsDelta(1.1276259652063807, Math.cosh(0.5), 1E-12); | 
|  | assertEqualsDelta(74.20994852478785, Math.cosh(5), 1E-12); | 
|  | assertEqualsDelta(1.1276259652063807, Math.cosh(-0.5), 1E-12); | 
|  | assertEqualsDelta(74.20994852478785, Math.cosh(-5), 1E-12); | 
|  |  | 
|  | assertEqualsDelta(0.4621171572600, Math.tanh(0.5), 1E-12); | 
|  | assertEqualsDelta(0.9999092042625, Math.tanh(5), 1E-12); | 
|  | assertEqualsDelta(-0.4621171572600, Math.tanh(-0.5), 1E-12); | 
|  | assertEqualsDelta(-0.9999092042625, Math.tanh(-5), 1E-12); | 
|  |  | 
|  | assertEqualsDelta(0.4812118250596, Math.asinh(0.5), 1E-12); | 
|  | assertEqualsDelta(2.3124383412727, Math.asinh(5), 1E-12); | 
|  | assertEqualsDelta(-0.4812118250596, Math.asinh(-0.5), 1E-12); | 
|  | assertEqualsDelta(-2.3124383412727, Math.asinh(-5), 1E-12); | 
|  |  | 
|  | assertEqualsDelta(0.9624236501192, Math.acosh(1.5), 1E-12); | 
|  | assertEqualsDelta(2.2924316695612, Math.acosh(5), 1E-12); | 
|  | assertEqualsDelta(0.4435682543851, Math.acosh(1.1), 1E-12); | 
|  | assertEqualsDelta(1.3169578969248, Math.acosh(2), 1E-12); | 
|  |  | 
|  | assertEqualsDelta(0.5493061443341, Math.atanh(0.5), 1E-12); | 
|  | assertEqualsDelta(0.1003353477311, Math.atanh(0.1), 1E-12); | 
|  | assertEqualsDelta(-0.5493061443341, Math.atanh(-0.5), 1E-12); | 
|  | assertEqualsDelta(-0.1003353477311, Math.atanh(-0.1), 1E-12); | 
|  |  | 
|  | [0, 1E-50, 1E-10, 1E10, 1E50, 1E100, 1E150].forEach(function(x) { | 
|  | assertEqualsDelta(Math.asinh(x), -Math.asinh(-x), 1E-12); | 
|  | }); | 
|  |  | 
|  | [1-(1E-16), 0, 1E-10, 1E-50].forEach(function(x) { | 
|  | assertEqualsDelta(Math.atanh(x), -Math.atanh(-x), 1E-12); | 
|  | }); | 
|  |  | 
|  |  | 
|  | // Implementation-specific tests for sinh. | 
|  | // Case |x| < 2^-28 | 
|  | assertEquals(Math.pow(2, -29), Math.sinh(Math.pow(2, -29))); | 
|  | assertEquals(-Math.pow(2, -29), Math.sinh(-Math.pow(2, -29))); | 
|  | // Case |x| < 1 | 
|  | assertEquals(0.5210953054937474, Math.sinh(0.5)); | 
|  | assertEquals(-0.5210953054937474, Math.sinh(-0.5)); | 
|  | // sinh(10*log(2)) = 1048575/2048, case |x| < 22 | 
|  | assertEquals(1048575/2048, Math.sinh(10*Math.LN2)); | 
|  | assertEquals(-1048575/2048, Math.sinh(-10*Math.LN2)); | 
|  | // Case |x| < 22 | 
|  | assertEquals(11013.232874703393, Math.sinh(10)); | 
|  | assertEquals(-11013.232874703393, Math.sinh(-10)); | 
|  | // Case |x| in [22, log(maxdouble)] | 
|  | assertEquals(2.1474836479999983e9, Math.sinh(32*Math.LN2)); | 
|  | assertEquals(-2.1474836479999983e9, Math.sinh(-32*Math.LN2)); | 
|  | // Case |x| in [22, log(maxdouble)] | 
|  | assertEquals(1.3440585709080678e43, Math.sinh(100)); | 
|  | assertEquals(-1.3440585709080678e43, Math.sinh(-100)); | 
|  | // No overflow, case |x| in [log(maxdouble), threshold] | 
|  | assertEquals(1.7976931348621744e308, Math.sinh(710.4758600739439)); | 
|  | assertEquals(-1.7976931348621744e308, Math.sinh(-710.4758600739439)); | 
|  | // Overflow, case |x| > threshold | 
|  | assertEquals(Infinity, Math.sinh(710.475860073944)); | 
|  | assertEquals(-Infinity, Math.sinh(-710.475860073944)); | 
|  | assertEquals(Infinity, Math.sinh(1000)); | 
|  | assertEquals(-Infinity, Math.sinh(-1000)); | 
|  |  | 
|  | // Implementation-specific tests for cosh. | 
|  | // Case |x| < 2^-55 | 
|  | assertEquals(1, Math.cosh(Math.pow(2, -56))); | 
|  | assertEquals(1, Math.cosh(-Math.pow(2, -56))); | 
|  | // Case |x| < 1/2*log(2). cosh(Math.LN2/4) = (sqrt(2)+1)/2^(5/4) | 
|  | assertEquals(1.0150517651282178, Math.cosh(Math.LN2/4)); | 
|  | assertEquals(1.0150517651282178, Math.cosh(-Math.LN2/4)); | 
|  | // Case 1/2*log(2) < |x| < 22. cosh(10*Math.LN2) = 1048577/2048 | 
|  | assertEquals(512.00048828125, Math.cosh(10*Math.LN2)); | 
|  | assertEquals(512.00048828125, Math.cosh(-10*Math.LN2)); | 
|  | // Case 22 <= |x| < log(maxdouble) | 
|  | assertEquals(2.1474836479999983e9, Math.cosh(32*Math.LN2)); | 
|  | assertEquals(2.1474836479999983e9, Math.cosh(-32*Math.LN2)); | 
|  | // Case log(maxdouble) <= |x| <= overflowthreshold | 
|  | assertEquals(1.7976931348621744e308, Math.cosh(710.4758600739439)); | 
|  | assertEquals(1.7976931348621744e308, Math.cosh(-710.4758600739439)); | 
|  | // Overflow. | 
|  | assertEquals(Infinity, Math.cosh(710.475860073944)); | 
|  | assertEquals(Infinity, Math.cosh(-710.475860073944)); | 
|  |  | 
|  | // Implementation-specific tests for tanh. | 
|  | // Case |x| < 2^-55 | 
|  | var two_56 = Math.pow(2, -56); | 
|  | assertEquals(two_56, Math.tanh(two_56)); | 
|  | assertEquals(-two_56, Math.tanh(-two_56)); | 
|  | // Case |x| < 1 | 
|  | assertEquals(0.6, Math.tanh(Math.LN2)); | 
|  | assertEquals(-0.6, Math.tanh(-Math.LN2)); | 
|  | // Case  1 < |x| < 22 | 
|  | assertEquals(15/17, Math.tanh(2 * Math.LN2)); | 
|  | assertEquals(-15/17, Math.tanh(-2 * Math.LN2)); | 
|  | // Case |x| > 22 | 
|  | assertEquals(1, Math.tanh(100)); | 
|  | assertEquals(-1, Math.tanh(-100)); | 
|  | // Test against overflow | 
|  | assertEquals(1, Math.tanh(1e300)); | 
|  | assertEquals(-1, Math.tanh(-1e300)); |