blob: 53e38373c8e2e6261aa68c8e48d4f6e0c394e7d9 [file] [log] [blame]
// Copyright 2019 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/objects/backing-store.h"
#include <cstring>
#include "src/base/platform/wrappers.h"
#include "src/execution/isolate.h"
#include "src/handles/global-handles.h"
#include "src/logging/counters.h"
#include "src/trap-handler/trap-handler.h"
#include "src/wasm/wasm-constants.h"
#include "src/wasm/wasm-engine.h"
#include "src/wasm/wasm-limits.h"
#include "src/wasm/wasm-objects-inl.h"
#define TRACE_BS(...) \
do { \
if (FLAG_trace_backing_store) PrintF(__VA_ARGS__); \
} while (false)
namespace v8 {
namespace internal {
namespace {
#if V8_TARGET_ARCH_MIPS64
// MIPS64 has a user space of 2^40 bytes on most processors,
// address space limits needs to be smaller.
constexpr size_t kAddressSpaceLimit = 0x8000000000L; // 512 GiB
#elif V8_TARGET_ARCH_64_BIT
constexpr size_t kAddressSpaceLimit = 0x10100000000L; // 1 TiB + 4 GiB
#else
constexpr size_t kAddressSpaceLimit = 0xC0000000; // 3 GiB
#endif
constexpr uint64_t kNegativeGuardSize = uint64_t{2} * GB;
#if V8_TARGET_ARCH_64_BIT
constexpr uint64_t kFullGuardSize = uint64_t{10} * GB;
#endif
std::atomic<uint64_t> reserved_address_space_{0};
// Allocation results are reported to UMA
//
// See wasm_memory_allocation_result in counters.h
enum class AllocationStatus {
kSuccess, // Succeeded on the first try
kSuccessAfterRetry, // Succeeded after garbage collection
kAddressSpaceLimitReachedFailure, // Failed because Wasm is at its address
// space limit
kOtherFailure // Failed for an unknown reason
};
base::AddressRegion GetReservedRegion(bool has_guard_regions,
void* buffer_start,
size_t byte_capacity) {
#if V8_TARGET_ARCH_64_BIT
if (has_guard_regions) {
// Guard regions always look like this:
// |xxx(2GiB)xxx|.......(4GiB)..xxxxx|xxxxxx(4GiB)xxxxxx|
// ^ buffer_start
// ^ byte_length
// ^ negative guard region ^ positive guard region
Address start = reinterpret_cast<Address>(buffer_start);
DCHECK_EQ(8, sizeof(size_t)); // only use on 64-bit
DCHECK_EQ(0, start % AllocatePageSize());
return base::AddressRegion(start - kNegativeGuardSize,
static_cast<size_t>(kFullGuardSize));
}
#endif
DCHECK(!has_guard_regions);
return base::AddressRegion(reinterpret_cast<Address>(buffer_start),
byte_capacity);
}
size_t GetReservationSize(bool has_guard_regions, size_t byte_capacity) {
#if V8_TARGET_ARCH_64_BIT
if (has_guard_regions) return kFullGuardSize;
#else
DCHECK(!has_guard_regions);
#endif
return byte_capacity;
}
void RecordStatus(Isolate* isolate, AllocationStatus status) {
isolate->counters()->wasm_memory_allocation_result()->AddSample(
static_cast<int>(status));
}
inline void DebugCheckZero(void* start, size_t byte_length) {
#if DEBUG
// Double check memory is zero-initialized. Despite being DEBUG-only,
// this function is somewhat optimized for the benefit of test suite
// execution times (some tests allocate several gigabytes).
const byte* bytes = reinterpret_cast<const byte*>(start);
const size_t kBaseCase = 32;
for (size_t i = 0; i < kBaseCase && i < byte_length; i++) {
DCHECK_EQ(0, bytes[i]);
}
// Having checked the first kBaseCase bytes to be zero, we can now use
// {memcmp} to compare the range against itself shifted by that amount,
// thereby inductively checking the remaining bytes.
if (byte_length > kBaseCase) {
DCHECK_EQ(0, memcmp(bytes, bytes + kBaseCase, byte_length - kBaseCase));
}
#endif
}
} // namespace
bool BackingStore::ReserveAddressSpace(uint64_t num_bytes) {
uint64_t reservation_limit = kAddressSpaceLimit;
uint64_t old_count = reserved_address_space_.load(std::memory_order_relaxed);
while (true) {
if (old_count > reservation_limit) return false;
if (reservation_limit - old_count < num_bytes) return false;
if (reserved_address_space_.compare_exchange_weak(
old_count, old_count + num_bytes, std::memory_order_acq_rel)) {
return true;
}
}
}
void BackingStore::ReleaseReservation(uint64_t num_bytes) {
uint64_t old_reserved = reserved_address_space_.fetch_sub(num_bytes);
USE(old_reserved);
DCHECK_LE(num_bytes, old_reserved);
}
// The backing store for a Wasm shared memory remembers all the isolates
// with which it has been shared.
struct SharedWasmMemoryData {
std::vector<Isolate*> isolates_;
};
void BackingStore::Clear() {
buffer_start_ = nullptr;
byte_length_ = 0;
has_guard_regions_ = false;
if (holds_shared_ptr_to_allocator_) {
type_specific_data_.v8_api_array_buffer_allocator_shared
.std::shared_ptr<v8::ArrayBuffer::Allocator>::~shared_ptr();
holds_shared_ptr_to_allocator_ = false;
}
type_specific_data_.v8_api_array_buffer_allocator = nullptr;
}
BackingStore::~BackingStore() {
GlobalBackingStoreRegistry::Unregister(this);
if (buffer_start_ == nullptr) {
Clear();
return;
}
if (is_wasm_memory_) {
DCHECK(free_on_destruct_);
DCHECK(!custom_deleter_);
size_t reservation_size =
GetReservationSize(has_guard_regions_, byte_capacity_);
TRACE_BS(
"BSw:free bs=%p mem=%p (length=%zu, capacity=%zu, reservation=%zu)\n",
this, buffer_start_, byte_length(), byte_capacity_, reservation_size);
if (is_shared_) {
// Deallocate the list of attached memory objects.
SharedWasmMemoryData* shared_data = get_shared_wasm_memory_data();
delete shared_data;
type_specific_data_.shared_wasm_memory_data = nullptr;
}
// Wasm memories are always allocated through the page allocator.
auto region =
GetReservedRegion(has_guard_regions_, buffer_start_, byte_capacity_);
bool pages_were_freed =
region.size() == 0 /* no need to free any pages */ ||
FreePages(GetPlatformPageAllocator(),
reinterpret_cast<void*>(region.begin()), region.size());
CHECK(pages_were_freed);
BackingStore::ReleaseReservation(reservation_size);
Clear();
return;
}
if (custom_deleter_) {
DCHECK(free_on_destruct_);
TRACE_BS("BS:custom deleter bs=%p mem=%p (length=%zu, capacity=%zu)\n",
this, buffer_start_, byte_length(), byte_capacity_);
type_specific_data_.deleter.callback(buffer_start_, byte_length_,
type_specific_data_.deleter.data);
Clear();
return;
}
if (free_on_destruct_) {
// JSArrayBuffer backing store. Deallocate through the embedder's allocator.
auto allocator = get_v8_api_array_buffer_allocator();
TRACE_BS("BS:free bs=%p mem=%p (length=%zu, capacity=%zu)\n", this,
buffer_start_, byte_length(), byte_capacity_);
allocator->Free(buffer_start_, byte_length_);
}
Clear();
}
// Allocate a backing store using the array buffer allocator from the embedder.
std::unique_ptr<BackingStore> BackingStore::Allocate(
Isolate* isolate, size_t byte_length, SharedFlag shared,
InitializedFlag initialized) {
void* buffer_start = nullptr;
auto allocator = isolate->array_buffer_allocator();
CHECK_NOT_NULL(allocator);
if (byte_length != 0) {
auto counters = isolate->counters();
int mb_length = static_cast<int>(byte_length / MB);
if (mb_length > 0) {
counters->array_buffer_big_allocations()->AddSample(mb_length);
}
if (shared == SharedFlag::kShared) {
counters->shared_array_allocations()->AddSample(mb_length);
}
auto allocate_buffer = [allocator, initialized](size_t byte_length) {
if (initialized == InitializedFlag::kUninitialized) {
return allocator->AllocateUninitialized(byte_length);
}
void* buffer_start = allocator->Allocate(byte_length);
if (buffer_start) {
// TODO(wasm): node does not implement the zero-initialization API.
// Reenable this debug check when node does implement it properly.
constexpr bool
kDebugCheckZeroDisabledDueToNodeNotImplementingZeroInitAPI = true;
if ((!(kDebugCheckZeroDisabledDueToNodeNotImplementingZeroInitAPI)) &&
!FLAG_mock_arraybuffer_allocator) {
DebugCheckZero(buffer_start, byte_length);
}
}
return buffer_start;
};
buffer_start = isolate->heap()->AllocateExternalBackingStore(
allocate_buffer, byte_length);
if (buffer_start == nullptr) {
// Allocation failed.
counters->array_buffer_new_size_failures()->AddSample(mb_length);
return {};
}
}
auto result = new BackingStore(buffer_start, // start
byte_length, // length
byte_length, // capacity
shared, // shared
false, // is_wasm_memory
true, // free_on_destruct
false, // has_guard_regions
false, // custom_deleter
false); // empty_deleter
TRACE_BS("BS:alloc bs=%p mem=%p (length=%zu)\n", result,
result->buffer_start(), byte_length);
result->SetAllocatorFromIsolate(isolate);
return std::unique_ptr<BackingStore>(result);
}
// Trying to allocate 4 GiB on a 32-bit platform is guaranteed to fail.
// We don't lower the official max_mem_pages() limit because that would be
// observable upon instantiation; this way the effective limit on 32-bit
// platforms is defined by the allocator.
constexpr size_t kPlatformMaxPages =
std::numeric_limits<size_t>::max() / wasm::kWasmPageSize;
void BackingStore::SetAllocatorFromIsolate(Isolate* isolate) {
if (auto allocator_shared = isolate->array_buffer_allocator_shared()) {
holds_shared_ptr_to_allocator_ = true;
new (&type_specific_data_.v8_api_array_buffer_allocator_shared)
std::shared_ptr<v8::ArrayBuffer::Allocator>(
std::move(allocator_shared));
} else {
type_specific_data_.v8_api_array_buffer_allocator =
isolate->array_buffer_allocator();
}
}
// Allocate a backing store for a Wasm memory. Always use the page allocator
// and add guard regions.
std::unique_ptr<BackingStore> BackingStore::TryAllocateWasmMemory(
Isolate* isolate, size_t initial_pages, size_t maximum_pages,
SharedFlag shared) {
// Cannot reserve 0 pages on some OSes.
if (maximum_pages == 0) maximum_pages = 1;
TRACE_BS("BSw:try %zu pages, %zu max\n", initial_pages, maximum_pages);
bool guards = trap_handler::IsTrapHandlerEnabled();
// For accounting purposes, whether a GC was necessary.
bool did_retry = false;
// A helper to try running a function up to 3 times, executing a GC
// if the first and second attempts failed.
auto gc_retry = [&](const std::function<bool()>& fn) {
for (int i = 0; i < 3; i++) {
if (fn()) return true;
// Collect garbage and retry.
did_retry = true;
// TODO(wasm): try Heap::EagerlyFreeExternalMemory() first?
isolate->heap()->MemoryPressureNotification(
MemoryPressureLevel::kCritical, true);
}
return false;
};
// Compute size of reserved memory.
size_t engine_max_pages = wasm::max_mem_pages();
maximum_pages = std::min(engine_max_pages, maximum_pages);
// If the platform doesn't support so many pages, attempting to allocate
// is guaranteed to fail, so we don't even try.
if (maximum_pages > kPlatformMaxPages) return {};
CHECK_LE(maximum_pages,
std::numeric_limits<size_t>::max() / wasm::kWasmPageSize);
size_t byte_capacity = maximum_pages * wasm::kWasmPageSize;
size_t reservation_size = GetReservationSize(guards, byte_capacity);
//--------------------------------------------------------------------------
// 1. Enforce maximum address space reservation per engine.
//--------------------------------------------------------------------------
auto reserve_memory_space = [&] {
return BackingStore::ReserveAddressSpace(reservation_size);
};
if (!gc_retry(reserve_memory_space)) {
// Crash on out-of-memory if the correctness fuzzer is running.
if (FLAG_correctness_fuzzer_suppressions) {
FATAL("could not allocate wasm memory backing store");
}
RecordStatus(isolate, AllocationStatus::kAddressSpaceLimitReachedFailure);
TRACE_BS("BSw:try failed to reserve address space (size %zu)\n",
reservation_size);
return {};
}
//--------------------------------------------------------------------------
// 2. Allocate pages (inaccessible by default).
//--------------------------------------------------------------------------
void* allocation_base = nullptr;
auto allocate_pages = [&] {
allocation_base =
AllocatePages(GetPlatformPageAllocator(), nullptr, reservation_size,
wasm::kWasmPageSize, PageAllocator::kNoAccess);
return allocation_base != nullptr;
};
if (!gc_retry(allocate_pages)) {
// Page allocator could not reserve enough pages.
BackingStore::ReleaseReservation(reservation_size);
RecordStatus(isolate, AllocationStatus::kOtherFailure);
TRACE_BS("BSw:try failed to allocate pages\n");
return {};
}
// Get a pointer to the start of the buffer, skipping negative guard region
// if necessary.
byte* buffer_start = reinterpret_cast<byte*>(allocation_base) +
(guards ? kNegativeGuardSize : 0);
//--------------------------------------------------------------------------
// 3. Commit the initial pages (allow read/write).
//--------------------------------------------------------------------------
size_t byte_length = initial_pages * wasm::kWasmPageSize;
auto commit_memory = [&] {
return byte_length == 0 ||
SetPermissions(GetPlatformPageAllocator(), buffer_start, byte_length,
PageAllocator::kReadWrite);
};
if (!gc_retry(commit_memory)) {
TRACE_BS("BSw:try failed to set permissions (%p, %zu)\n", buffer_start,
byte_length);
// SetPermissions put us over the process memory limit.
V8::FatalProcessOutOfMemory(nullptr, "BackingStore::AllocateWasmMemory()");
}
DebugCheckZero(buffer_start, byte_length); // touch the bytes.
RecordStatus(isolate, did_retry ? AllocationStatus::kSuccessAfterRetry
: AllocationStatus::kSuccess);
auto result = new BackingStore(buffer_start, // start
byte_length, // length
byte_capacity, // capacity
shared, // shared
true, // is_wasm_memory
true, // free_on_destruct
guards, // has_guard_regions
false, // custom_deleter
false); // empty_deleter
TRACE_BS(
"BSw:alloc bs=%p mem=%p (length=%zu, capacity=%zu, reservation=%zu)\n",
result, result->buffer_start(), byte_length, byte_capacity,
reservation_size);
// Shared Wasm memories need an anchor for the memory object list.
if (shared == SharedFlag::kShared) {
result->type_specific_data_.shared_wasm_memory_data =
new SharedWasmMemoryData();
}
return std::unique_ptr<BackingStore>(result);
}
// Allocate a backing store for a Wasm memory. Always use the page allocator
// and add guard regions.
std::unique_ptr<BackingStore> BackingStore::AllocateWasmMemory(
Isolate* isolate, size_t initial_pages, size_t maximum_pages,
SharedFlag shared) {
// Wasm pages must be a multiple of the allocation page size.
DCHECK_EQ(0, wasm::kWasmPageSize % AllocatePageSize());
// Enforce engine limitation on the maximum number of pages.
if (initial_pages > wasm::kV8MaxWasmMemoryPages) return nullptr;
if (initial_pages > kPlatformMaxPages) return nullptr;
auto backing_store =
TryAllocateWasmMemory(isolate, initial_pages, maximum_pages, shared);
if (maximum_pages == initial_pages) {
// If initial pages, and maximum are equal, nothing more to do return early.
return backing_store;
}
// Retry with smaller maximum pages at each retry.
const int kAllocationTries = 3;
auto delta = (maximum_pages - initial_pages) / (kAllocationTries + 1);
size_t sizes[] = {maximum_pages - delta, maximum_pages - 2 * delta,
maximum_pages - 3 * delta, initial_pages};
for (size_t i = 0; i < arraysize(sizes) && !backing_store; i++) {
backing_store =
TryAllocateWasmMemory(isolate, initial_pages, sizes[i], shared);
}
return backing_store;
}
std::unique_ptr<BackingStore> BackingStore::CopyWasmMemory(Isolate* isolate,
size_t new_pages) {
// Note that we could allocate uninitialized to save initialization cost here,
// but since Wasm memories are allocated by the page allocator, the zeroing
// cost is already built-in.
// TODO(titzer): should we use a suitable maximum here?
auto new_backing_store = BackingStore::AllocateWasmMemory(
isolate, new_pages, new_pages,
is_shared() ? SharedFlag::kShared : SharedFlag::kNotShared);
if (!new_backing_store ||
new_backing_store->has_guard_regions() != has_guard_regions_) {
return {};
}
if (byte_length_ > 0) {
// If the allocation was successful, then the new buffer must be at least
// as big as the old one.
DCHECK_GE(new_pages * wasm::kWasmPageSize, byte_length_);
memcpy(new_backing_store->buffer_start(), buffer_start_,
byte_length_);
}
return new_backing_store;
}
// Try to grow the size of a wasm memory in place, without realloc + copy.
base::Optional<size_t> BackingStore::GrowWasmMemoryInPlace(Isolate* isolate,
size_t delta_pages,
size_t max_pages) {
// This function grows wasm memory by
// * changing the permissions of additional {delta_pages} pages to kReadWrite;
// * increment {byte_length_};
//
// As this code is executed concurrently, the following steps are executed:
// 1) Read the current value of {byte_length_};
// 2) Change the permission of all pages from {buffer_start_} to
// {byte_length_} + {delta_pages} * {page_size} to kReadWrite;
// * This operation may be executed racefully. The OS takes care of
// synchronization.
// 3) Try to update {byte_length_} with a compare_exchange;
// 4) Repeat 1) to 3) until the compare_exchange in 3) succeeds;
//
// The result of this function is the {byte_length_} before growing in pages.
// The result of this function appears like the result of an RMW-update on
// {byte_length_}, i.e. two concurrent calls to this function will result in
// different return values if {delta_pages} != 0.
//
// Invariants:
// * Permissions are always set incrementally, i.e. for any page {b} with
// kReadWrite permission, all pages between the first page {a} and page {b}
// also have kReadWrite permission.
// * {byte_length_} is always lower or equal than the amount of memory with
// permissions set to kReadWrite;
// * This is guaranteed by incrementing {byte_length_} with a
// compare_exchange after changing the permissions.
// * This invariant is the reason why we cannot use a fetch_add.
DCHECK(is_wasm_memory_);
max_pages = std::min(max_pages, byte_capacity_ / wasm::kWasmPageSize);
// Do a compare-exchange loop, because we also need to adjust page
// permissions. Note that multiple racing grows both try to set page
// permissions for the entire range (to be RW), so the operating system
// should deal with that raciness. We know we succeeded when we can
// compare/swap the old length with the new length.
size_t old_length = byte_length_.load(std::memory_order_relaxed);
if (delta_pages == 0)
return {old_length / wasm::kWasmPageSize}; // degenerate grow.
if (delta_pages > max_pages) return {}; // would never work.
size_t new_length = 0;
while (true) {
size_t current_pages = old_length / wasm::kWasmPageSize;
// Check if we have exceed the supplied maximum.
if (current_pages > (max_pages - delta_pages)) return {};
new_length = (current_pages + delta_pages) * wasm::kWasmPageSize;
// Try to adjust the permissions on the memory.
if (!i::SetPermissions(GetPlatformPageAllocator(), buffer_start_,
new_length, PageAllocator::kReadWrite)) {
return {};
}
if (byte_length_.compare_exchange_weak(old_length, new_length,
std::memory_order_acq_rel)) {
// Successfully updated both the length and permissions.
break;
}
}
if (!is_shared_ && free_on_destruct_) {
// Only do per-isolate accounting for non-shared backing stores.
reinterpret_cast<v8::Isolate*>(isolate)
->AdjustAmountOfExternalAllocatedMemory(new_length - old_length);
}
return {old_length / wasm::kWasmPageSize};
}
void BackingStore::AttachSharedWasmMemoryObject(
Isolate* isolate, Handle<WasmMemoryObject> memory_object) {
DCHECK(is_wasm_memory_);
DCHECK(is_shared_);
// We need to take the global registry lock for this operation.
GlobalBackingStoreRegistry::AddSharedWasmMemoryObject(isolate, this,
memory_object);
}
void BackingStore::BroadcastSharedWasmMemoryGrow(
Isolate* isolate, std::shared_ptr<BackingStore> backing_store) {
GlobalBackingStoreRegistry::BroadcastSharedWasmMemoryGrow(isolate,
backing_store);
}
void BackingStore::RemoveSharedWasmMemoryObjects(Isolate* isolate) {
GlobalBackingStoreRegistry::Purge(isolate);
}
void BackingStore::UpdateSharedWasmMemoryObjects(Isolate* isolate) {
GlobalBackingStoreRegistry::UpdateSharedWasmMemoryObjects(isolate);
}
std::unique_ptr<BackingStore> BackingStore::WrapAllocation(
Isolate* isolate, void* allocation_base, size_t allocation_length,
SharedFlag shared, bool free_on_destruct) {
auto result = new BackingStore(allocation_base, // start
allocation_length, // length
allocation_length, // capacity
shared, // shared
false, // is_wasm_memory
free_on_destruct, // free_on_destruct
false, // has_guard_regions
false, // custom_deleter
false); // empty_deleter
result->SetAllocatorFromIsolate(isolate);
TRACE_BS("BS:wrap bs=%p mem=%p (length=%zu)\n", result,
result->buffer_start(), result->byte_length());
return std::unique_ptr<BackingStore>(result);
}
std::unique_ptr<BackingStore> BackingStore::WrapAllocation(
void* allocation_base, size_t allocation_length,
v8::BackingStore::DeleterCallback deleter, void* deleter_data,
SharedFlag shared) {
bool is_empty_deleter = (deleter == v8::BackingStore::EmptyDeleter);
auto result = new BackingStore(allocation_base, // start
allocation_length, // length
allocation_length, // capacity
shared, // shared
false, // is_wasm_memory
true, // free_on_destruct
false, // has_guard_regions
true, // custom_deleter
is_empty_deleter); // empty_deleter
result->type_specific_data_.deleter = {deleter, deleter_data};
TRACE_BS("BS:wrap bs=%p mem=%p (length=%zu)\n", result,
result->buffer_start(), result->byte_length());
return std::unique_ptr<BackingStore>(result);
}
std::unique_ptr<BackingStore> BackingStore::EmptyBackingStore(
SharedFlag shared) {
auto result = new BackingStore(nullptr, // start
0, // length
0, // capacity
shared, // shared
false, // is_wasm_memory
true, // free_on_destruct
false, // has_guard_regions
false, // custom_deleter
false); // empty_deleter
return std::unique_ptr<BackingStore>(result);
}
bool BackingStore::Reallocate(Isolate* isolate, size_t new_byte_length) {
CHECK(!is_wasm_memory_ && !custom_deleter_ && !globally_registered_ &&
free_on_destruct_);
auto allocator = get_v8_api_array_buffer_allocator();
CHECK_EQ(isolate->array_buffer_allocator(), allocator);
CHECK_EQ(byte_length_, byte_capacity_);
void* new_start =
allocator->Reallocate(buffer_start_, byte_length_, new_byte_length);
if (!new_start) return false;
buffer_start_ = new_start;
byte_capacity_ = new_byte_length;
byte_length_ = new_byte_length;
return true;
}
v8::ArrayBuffer::Allocator* BackingStore::get_v8_api_array_buffer_allocator() {
CHECK(!is_wasm_memory_);
auto array_buffer_allocator =
holds_shared_ptr_to_allocator_
? type_specific_data_.v8_api_array_buffer_allocator_shared.get()
: type_specific_data_.v8_api_array_buffer_allocator;
CHECK_NOT_NULL(array_buffer_allocator);
return array_buffer_allocator;
}
SharedWasmMemoryData* BackingStore::get_shared_wasm_memory_data() {
CHECK(is_wasm_memory_ && is_shared_);
auto shared_wasm_memory_data = type_specific_data_.shared_wasm_memory_data;
CHECK(shared_wasm_memory_data);
return shared_wasm_memory_data;
}
namespace {
// Implementation details of GlobalBackingStoreRegistry.
struct GlobalBackingStoreRegistryImpl {
GlobalBackingStoreRegistryImpl() = default;
base::Mutex mutex_;
std::unordered_map<const void*, std::weak_ptr<BackingStore>> map_;
};
base::LazyInstance<GlobalBackingStoreRegistryImpl>::type global_registry_impl_ =
LAZY_INSTANCE_INITIALIZER;
inline GlobalBackingStoreRegistryImpl* impl() {
return global_registry_impl_.Pointer();
}
} // namespace
void GlobalBackingStoreRegistry::Register(
std::shared_ptr<BackingStore> backing_store) {
if (!backing_store || !backing_store->buffer_start()) return;
if (!backing_store->free_on_destruct()) {
// If the backing store buffer is managed by the embedder,
// then we don't have to guarantee that there is single unique
// BackingStore per buffer_start() because the destructor of
// of the BackingStore will be a no-op in that case.
// All Wasm memory has to be registered.
CHECK(!backing_store->is_wasm_memory());
return;
}
base::MutexGuard scope_lock(&impl()->mutex_);
if (backing_store->globally_registered_) return;
TRACE_BS("BS:reg bs=%p mem=%p (length=%zu, capacity=%zu)\n",
backing_store.get(), backing_store->buffer_start(),
backing_store->byte_length(), backing_store->byte_capacity());
std::weak_ptr<BackingStore> weak = backing_store;
auto result = impl()->map_.insert({backing_store->buffer_start(), weak});
CHECK(result.second);
backing_store->globally_registered_ = true;
}
void GlobalBackingStoreRegistry::Unregister(BackingStore* backing_store) {
if (!backing_store->globally_registered_) return;
DCHECK_NOT_NULL(backing_store->buffer_start());
base::MutexGuard scope_lock(&impl()->mutex_);
const auto& result = impl()->map_.find(backing_store->buffer_start());
if (result != impl()->map_.end()) {
DCHECK(!result->second.lock());
impl()->map_.erase(result);
}
backing_store->globally_registered_ = false;
}
std::shared_ptr<BackingStore> GlobalBackingStoreRegistry::Lookup(
void* buffer_start, size_t length) {
base::MutexGuard scope_lock(&impl()->mutex_);
TRACE_BS("BS:lookup mem=%p (%zu bytes)\n", buffer_start, length);
const auto& result = impl()->map_.find(buffer_start);
if (result == impl()->map_.end()) {
return std::shared_ptr<BackingStore>();
}
auto backing_store = result->second.lock();
CHECK_EQ(buffer_start, backing_store->buffer_start());
if (backing_store->is_wasm_memory()) {
// Grow calls to shared WebAssembly threads can be triggered from different
// workers, length equality cannot be guaranteed here.
CHECK_LE(length, backing_store->byte_length());
} else {
CHECK_EQ(length, backing_store->byte_length());
}
return backing_store;
}
void GlobalBackingStoreRegistry::Purge(Isolate* isolate) {
// We need to keep a reference to all backing stores that are inspected
// in the purging loop below. Otherwise, we might get a deadlock
// if the temporary backing store reference created in the loop is
// the last reference. In that case the destructor of the backing store
// may try to take the &impl()->mutex_ in order to unregister itself.
std::vector<std::shared_ptr<BackingStore>> prevent_destruction_under_lock;
base::MutexGuard scope_lock(&impl()->mutex_);
// Purge all entries in the map that refer to the given isolate.
for (auto& entry : impl()->map_) {
auto backing_store = entry.second.lock();
prevent_destruction_under_lock.emplace_back(backing_store);
if (!backing_store) continue; // skip entries where weak ptr is null
if (!backing_store->is_wasm_memory()) continue; // skip non-wasm memory
if (!backing_store->is_shared()) continue; // skip non-shared memory
SharedWasmMemoryData* shared_data =
backing_store->get_shared_wasm_memory_data();
// Remove this isolate from the isolates list.
auto& isolates = shared_data->isolates_;
for (size_t i = 0; i < isolates.size(); i++) {
if (isolates[i] == isolate) isolates[i] = nullptr;
}
}
}
void GlobalBackingStoreRegistry::AddSharedWasmMemoryObject(
Isolate* isolate, BackingStore* backing_store,
Handle<WasmMemoryObject> memory_object) {
// Add to the weak array list of shared memory objects in the isolate.
isolate->AddSharedWasmMemory(memory_object);
// Add the isolate to the list of isolates sharing this backing store.
base::MutexGuard scope_lock(&impl()->mutex_);
SharedWasmMemoryData* shared_data =
backing_store->get_shared_wasm_memory_data();
auto& isolates = shared_data->isolates_;
int free_entry = -1;
for (size_t i = 0; i < isolates.size(); i++) {
if (isolates[i] == isolate) return;
if (isolates[i] == nullptr) free_entry = static_cast<int>(i);
}
if (free_entry >= 0)
isolates[free_entry] = isolate;
else
isolates.push_back(isolate);
}
void GlobalBackingStoreRegistry::BroadcastSharedWasmMemoryGrow(
Isolate* isolate, std::shared_ptr<BackingStore> backing_store) {
{
// The global lock protects the list of isolates per backing store.
base::MutexGuard scope_lock(&impl()->mutex_);
SharedWasmMemoryData* shared_data =
backing_store->get_shared_wasm_memory_data();
for (Isolate* other : shared_data->isolates_) {
if (other && other != isolate) {
other->stack_guard()->RequestGrowSharedMemory();
}
}
}
// Update memory objects in this isolate.
UpdateSharedWasmMemoryObjects(isolate);
}
void GlobalBackingStoreRegistry::UpdateSharedWasmMemoryObjects(
Isolate* isolate) {
HandleScope scope(isolate);
Handle<WeakArrayList> shared_wasm_memories =
isolate->factory()->shared_wasm_memories();
for (int i = 0; i < shared_wasm_memories->length(); i++) {
HeapObject obj;
if (!shared_wasm_memories->Get(i).GetHeapObject(&obj)) continue;
Handle<WasmMemoryObject> memory_object(WasmMemoryObject::cast(obj),
isolate);
Handle<JSArrayBuffer> old_buffer(memory_object->array_buffer(), isolate);
std::shared_ptr<BackingStore> backing_store = old_buffer->GetBackingStore();
Handle<JSArrayBuffer> new_buffer =
isolate->factory()->NewJSSharedArrayBuffer(std::move(backing_store));
memory_object->update_instances(isolate, new_buffer);
}
}
} // namespace internal
} // namespace v8
#undef TRACE_BS