blob: ef4c10b8de5d369de5014d7c62d386d709fedf98 [file] [log] [blame]
//===-- sanitizer_allocator_test.cc ---------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer/AddressSanitizer runtime.
// Tests for sanitizer_allocator.h.
//
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_allocator.h"
#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_test_utils.h"
#include "sanitizer_pthread_wrappers.h"
#include "gtest/gtest.h"
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <vector>
#include <random>
#include <set>
using namespace __sanitizer;
// Too slow for debug build
#if !SANITIZER_DEBUG
#if SANITIZER_CAN_USE_ALLOCATOR64
#if SANITIZER_WINDOWS
// On Windows 64-bit there is no easy way to find a large enough fixed address
// space that is always available. Thus, a dynamically allocated address space
// is used instead (i.e. ~(uptr)0).
static const uptr kAllocatorSpace = ~(uptr)0;
static const uptr kAllocatorSize = 0x8000000000ULL; // 500G
static const u64 kAddressSpaceSize = 1ULL << 47;
typedef DefaultSizeClassMap SizeClassMap;
#elif SANITIZER_ANDROID && defined(__aarch64__)
static const uptr kAllocatorSpace = 0x3000000000ULL;
static const uptr kAllocatorSize = 0x2000000000ULL;
static const u64 kAddressSpaceSize = 1ULL << 39;
typedef VeryCompactSizeClassMap SizeClassMap;
#else
static const uptr kAllocatorSpace = 0x700000000000ULL;
static const uptr kAllocatorSize = 0x010000000000ULL; // 1T.
static const u64 kAddressSpaceSize = 1ULL << 47;
typedef DefaultSizeClassMap SizeClassMap;
#endif
struct AP64 { // Allocator Params. Short name for shorter demangled names..
static const uptr kSpaceBeg = kAllocatorSpace;
static const uptr kSpaceSize = kAllocatorSize;
static const uptr kMetadataSize = 16;
typedef ::SizeClassMap SizeClassMap;
typedef NoOpMapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
};
struct AP64Dyn {
static const uptr kSpaceBeg = ~(uptr)0;
static const uptr kSpaceSize = kAllocatorSize;
static const uptr kMetadataSize = 16;
typedef ::SizeClassMap SizeClassMap;
typedef NoOpMapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
};
struct AP64Compact {
static const uptr kSpaceBeg = ~(uptr)0;
static const uptr kSpaceSize = kAllocatorSize;
static const uptr kMetadataSize = 16;
typedef CompactSizeClassMap SizeClassMap;
typedef NoOpMapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
};
struct AP64VeryCompact {
static const uptr kSpaceBeg = ~(uptr)0;
static const uptr kSpaceSize = 1ULL << 37;
static const uptr kMetadataSize = 16;
typedef VeryCompactSizeClassMap SizeClassMap;
typedef NoOpMapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
};
typedef SizeClassAllocator64<AP64> Allocator64;
typedef SizeClassAllocator64<AP64Dyn> Allocator64Dynamic;
typedef SizeClassAllocator64<AP64Compact> Allocator64Compact;
typedef SizeClassAllocator64<AP64VeryCompact> Allocator64VeryCompact;
#elif defined(__mips64)
static const u64 kAddressSpaceSize = 1ULL << 40;
#elif defined(__aarch64__)
static const u64 kAddressSpaceSize = 1ULL << 39;
#elif defined(__s390x__)
static const u64 kAddressSpaceSize = 1ULL << 53;
#elif defined(__s390__)
static const u64 kAddressSpaceSize = 1ULL << 31;
#else
static const u64 kAddressSpaceSize = 1ULL << 32;
#endif
static const uptr kRegionSizeLog = FIRST_32_SECOND_64(20, 24);
static const uptr kFlatByteMapSize = kAddressSpaceSize >> kRegionSizeLog;
struct AP32Compact {
static const uptr kSpaceBeg = 0;
static const u64 kSpaceSize = kAddressSpaceSize;
static const uptr kMetadataSize = 16;
typedef CompactSizeClassMap SizeClassMap;
static const uptr kRegionSizeLog = ::kRegionSizeLog;
typedef FlatByteMap<kFlatByteMapSize> ByteMap;
typedef NoOpMapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
};
typedef SizeClassAllocator32<AP32Compact> Allocator32Compact;
template <class SizeClassMap>
void TestSizeClassMap() {
typedef SizeClassMap SCMap;
SCMap::Print();
SCMap::Validate();
}
TEST(SanitizerCommon, DefaultSizeClassMap) {
TestSizeClassMap<DefaultSizeClassMap>();
}
TEST(SanitizerCommon, CompactSizeClassMap) {
TestSizeClassMap<CompactSizeClassMap>();
}
TEST(SanitizerCommon, VeryCompactSizeClassMap) {
TestSizeClassMap<VeryCompactSizeClassMap>();
}
TEST(SanitizerCommon, InternalSizeClassMap) {
TestSizeClassMap<InternalSizeClassMap>();
}
template <class Allocator>
void TestSizeClassAllocator() {
Allocator *a = new Allocator;
a->Init(kReleaseToOSIntervalNever);
SizeClassAllocatorLocalCache<Allocator> cache;
memset(&cache, 0, sizeof(cache));
cache.Init(0);
static const uptr sizes[] = {
1, 16, 30, 40, 100, 1000, 10000,
50000, 60000, 100000, 120000, 300000, 500000, 1000000, 2000000
};
std::vector<void *> allocated;
uptr last_total_allocated = 0;
for (int i = 0; i < 3; i++) {
// Allocate a bunch of chunks.
for (uptr s = 0; s < ARRAY_SIZE(sizes); s++) {
uptr size = sizes[s];
if (!a->CanAllocate(size, 1)) continue;
// printf("s = %ld\n", size);
uptr n_iter = std::max((uptr)6, 4000000 / size);
// fprintf(stderr, "size: %ld iter: %ld\n", size, n_iter);
for (uptr i = 0; i < n_iter; i++) {
uptr class_id0 = Allocator::SizeClassMapT::ClassID(size);
char *x = (char*)cache.Allocate(a, class_id0);
x[0] = 0;
x[size - 1] = 0;
x[size / 2] = 0;
allocated.push_back(x);
CHECK_EQ(x, a->GetBlockBegin(x));
CHECK_EQ(x, a->GetBlockBegin(x + size - 1));
CHECK(a->PointerIsMine(x));
CHECK(a->PointerIsMine(x + size - 1));
CHECK(a->PointerIsMine(x + size / 2));
CHECK_GE(a->GetActuallyAllocatedSize(x), size);
uptr class_id = a->GetSizeClass(x);
CHECK_EQ(class_id, Allocator::SizeClassMapT::ClassID(size));
uptr *metadata = reinterpret_cast<uptr*>(a->GetMetaData(x));
metadata[0] = reinterpret_cast<uptr>(x) + 1;
metadata[1] = 0xABCD;
}
}
// Deallocate all.
for (uptr i = 0; i < allocated.size(); i++) {
void *x = allocated[i];
uptr *metadata = reinterpret_cast<uptr*>(a->GetMetaData(x));
CHECK_EQ(metadata[0], reinterpret_cast<uptr>(x) + 1);
CHECK_EQ(metadata[1], 0xABCD);
cache.Deallocate(a, a->GetSizeClass(x), x);
}
allocated.clear();
uptr total_allocated = a->TotalMemoryUsed();
if (last_total_allocated == 0)
last_total_allocated = total_allocated;
CHECK_EQ(last_total_allocated, total_allocated);
}
// Check that GetBlockBegin never crashes.
for (uptr x = 0, step = kAddressSpaceSize / 100000;
x < kAddressSpaceSize - step; x += step)
if (a->PointerIsMine(reinterpret_cast<void *>(x)))
Ident(a->GetBlockBegin(reinterpret_cast<void *>(x)));
a->TestOnlyUnmap();
delete a;
}
#if SANITIZER_CAN_USE_ALLOCATOR64
// These tests can fail on Windows if memory is somewhat full and lit happens
// to run them all at the same time. FIXME: Make them not flaky and reenable.
#if !SANITIZER_WINDOWS
TEST(SanitizerCommon, SizeClassAllocator64) {
TestSizeClassAllocator<Allocator64>();
}
TEST(SanitizerCommon, SizeClassAllocator64Dynamic) {
TestSizeClassAllocator<Allocator64Dynamic>();
}
#if !SANITIZER_ANDROID
TEST(SanitizerCommon, SizeClassAllocator64Compact) {
TestSizeClassAllocator<Allocator64Compact>();
}
#endif
TEST(SanitizerCommon, SizeClassAllocator64VeryCompact) {
TestSizeClassAllocator<Allocator64VeryCompact>();
}
#endif
#endif
TEST(SanitizerCommon, SizeClassAllocator32Compact) {
TestSizeClassAllocator<Allocator32Compact>();
}
struct AP32SeparateBatches {
static const uptr kSpaceBeg = 0;
static const u64 kSpaceSize = kAddressSpaceSize;
static const uptr kMetadataSize = 16;
typedef DefaultSizeClassMap SizeClassMap;
static const uptr kRegionSizeLog = ::kRegionSizeLog;
typedef FlatByteMap<kFlatByteMapSize> ByteMap;
typedef NoOpMapUnmapCallback MapUnmapCallback;
static const uptr kFlags =
SizeClassAllocator32FlagMasks::kUseSeparateSizeClassForBatch;
};
typedef SizeClassAllocator32<AP32SeparateBatches> Allocator32SeparateBatches;
TEST(SanitizerCommon, SizeClassAllocator32SeparateBatches) {
TestSizeClassAllocator<Allocator32SeparateBatches>();
}
template <class Allocator>
void SizeClassAllocatorMetadataStress() {
Allocator *a = new Allocator;
a->Init(kReleaseToOSIntervalNever);
SizeClassAllocatorLocalCache<Allocator> cache;
memset(&cache, 0, sizeof(cache));
cache.Init(0);
const uptr kNumAllocs = 1 << 13;
void *allocated[kNumAllocs];
void *meta[kNumAllocs];
for (uptr i = 0; i < kNumAllocs; i++) {
void *x = cache.Allocate(a, 1 + i % (Allocator::kNumClasses - 1));
allocated[i] = x;
meta[i] = a->GetMetaData(x);
}
// Get Metadata kNumAllocs^2 times.
for (uptr i = 0; i < kNumAllocs * kNumAllocs; i++) {
uptr idx = i % kNumAllocs;
void *m = a->GetMetaData(allocated[idx]);
EXPECT_EQ(m, meta[idx]);
}
for (uptr i = 0; i < kNumAllocs; i++) {
cache.Deallocate(a, 1 + i % (Allocator::kNumClasses - 1), allocated[i]);
}
a->TestOnlyUnmap();
delete a;
}
#if SANITIZER_CAN_USE_ALLOCATOR64
// These tests can fail on Windows if memory is somewhat full and lit happens
// to run them all at the same time. FIXME: Make them not flaky and reenable.
#if !SANITIZER_WINDOWS
TEST(SanitizerCommon, SizeClassAllocator64MetadataStress) {
SizeClassAllocatorMetadataStress<Allocator64>();
}
TEST(SanitizerCommon, SizeClassAllocator64DynamicMetadataStress) {
SizeClassAllocatorMetadataStress<Allocator64Dynamic>();
}
#if !SANITIZER_ANDROID
TEST(SanitizerCommon, SizeClassAllocator64CompactMetadataStress) {
SizeClassAllocatorMetadataStress<Allocator64Compact>();
}
#endif
#endif
#endif // SANITIZER_CAN_USE_ALLOCATOR64
TEST(SanitizerCommon, SizeClassAllocator32CompactMetadataStress) {
SizeClassAllocatorMetadataStress<Allocator32Compact>();
}
template <class Allocator>
void SizeClassAllocatorGetBlockBeginStress(u64 TotalSize) {
Allocator *a = new Allocator;
a->Init(kReleaseToOSIntervalNever);
SizeClassAllocatorLocalCache<Allocator> cache;
memset(&cache, 0, sizeof(cache));
cache.Init(0);
uptr max_size_class = Allocator::SizeClassMapT::kLargestClassID;
uptr size = Allocator::SizeClassMapT::Size(max_size_class);
// Make sure we correctly compute GetBlockBegin() w/o overflow.
for (size_t i = 0; i <= TotalSize / size; i++) {
void *x = cache.Allocate(a, max_size_class);
void *beg = a->GetBlockBegin(x);
// if ((i & (i - 1)) == 0)
// fprintf(stderr, "[%zd] %p %p\n", i, x, beg);
EXPECT_EQ(x, beg);
}
a->TestOnlyUnmap();
delete a;
}
#if SANITIZER_CAN_USE_ALLOCATOR64
// These tests can fail on Windows if memory is somewhat full and lit happens
// to run them all at the same time. FIXME: Make them not flaky and reenable.
#if !SANITIZER_WINDOWS
TEST(SanitizerCommon, SizeClassAllocator64GetBlockBegin) {
SizeClassAllocatorGetBlockBeginStress<Allocator64>(
1ULL << (SANITIZER_ANDROID ? 31 : 33));
}
TEST(SanitizerCommon, SizeClassAllocator64DynamicGetBlockBegin) {
SizeClassAllocatorGetBlockBeginStress<Allocator64Dynamic>(
1ULL << (SANITIZER_ANDROID ? 31 : 33));
}
#if !SANITIZER_ANDROID
TEST(SanitizerCommon, SizeClassAllocator64CompactGetBlockBegin) {
SizeClassAllocatorGetBlockBeginStress<Allocator64Compact>(1ULL << 33);
}
#endif
TEST(SanitizerCommon, SizeClassAllocator64VeryCompactGetBlockBegin) {
// Does not have > 4Gb for each class.
SizeClassAllocatorGetBlockBeginStress<Allocator64VeryCompact>(1ULL << 31);
}
TEST(SanitizerCommon, SizeClassAllocator32CompactGetBlockBegin) {
SizeClassAllocatorGetBlockBeginStress<Allocator32Compact>(1ULL << 33);
}
#endif
#endif // SANITIZER_CAN_USE_ALLOCATOR64
struct TestMapUnmapCallback {
static int map_count, unmap_count;
void OnMap(uptr p, uptr size) const { map_count++; }
void OnUnmap(uptr p, uptr size) const { unmap_count++; }
};
int TestMapUnmapCallback::map_count;
int TestMapUnmapCallback::unmap_count;
#if SANITIZER_CAN_USE_ALLOCATOR64
// These tests can fail on Windows if memory is somewhat full and lit happens
// to run them all at the same time. FIXME: Make them not flaky and reenable.
#if !SANITIZER_WINDOWS
struct AP64WithCallback {
static const uptr kSpaceBeg = kAllocatorSpace;
static const uptr kSpaceSize = kAllocatorSize;
static const uptr kMetadataSize = 16;
typedef ::SizeClassMap SizeClassMap;
typedef TestMapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
};
TEST(SanitizerCommon, SizeClassAllocator64MapUnmapCallback) {
TestMapUnmapCallback::map_count = 0;
TestMapUnmapCallback::unmap_count = 0;
typedef SizeClassAllocator64<AP64WithCallback> Allocator64WithCallBack;
Allocator64WithCallBack *a = new Allocator64WithCallBack;
a->Init(kReleaseToOSIntervalNever);
EXPECT_EQ(TestMapUnmapCallback::map_count, 1); // Allocator state.
SizeClassAllocatorLocalCache<Allocator64WithCallBack> cache;
memset(&cache, 0, sizeof(cache));
cache.Init(0);
AllocatorStats stats;
stats.Init();
const size_t kNumChunks = 128;
uint32_t chunks[kNumChunks];
a->GetFromAllocator(&stats, 30, chunks, kNumChunks);
// State + alloc + metadata + freearray.
EXPECT_EQ(TestMapUnmapCallback::map_count, 4);
a->TestOnlyUnmap();
EXPECT_EQ(TestMapUnmapCallback::unmap_count, 1); // The whole thing.
delete a;
}
#endif
#endif
struct AP32WithCallback {
static const uptr kSpaceBeg = 0;
static const u64 kSpaceSize = kAddressSpaceSize;
static const uptr kMetadataSize = 16;
typedef CompactSizeClassMap SizeClassMap;
static const uptr kRegionSizeLog = ::kRegionSizeLog;
typedef FlatByteMap<kFlatByteMapSize> ByteMap;
typedef TestMapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
};
TEST(SanitizerCommon, SizeClassAllocator32MapUnmapCallback) {
TestMapUnmapCallback::map_count = 0;
TestMapUnmapCallback::unmap_count = 0;
typedef SizeClassAllocator32<AP32WithCallback> Allocator32WithCallBack;
Allocator32WithCallBack *a = new Allocator32WithCallBack;
a->Init(kReleaseToOSIntervalNever);
EXPECT_EQ(TestMapUnmapCallback::map_count, 0);
SizeClassAllocatorLocalCache<Allocator32WithCallBack> cache;
memset(&cache, 0, sizeof(cache));
cache.Init(0);
AllocatorStats stats;
stats.Init();
a->AllocateBatch(&stats, &cache, 32);
EXPECT_EQ(TestMapUnmapCallback::map_count, 1);
a->TestOnlyUnmap();
EXPECT_EQ(TestMapUnmapCallback::unmap_count, 1);
delete a;
// fprintf(stderr, "Map: %d Unmap: %d\n",
// TestMapUnmapCallback::map_count,
// TestMapUnmapCallback::unmap_count);
}
TEST(SanitizerCommon, LargeMmapAllocatorMapUnmapCallback) {
TestMapUnmapCallback::map_count = 0;
TestMapUnmapCallback::unmap_count = 0;
LargeMmapAllocator<TestMapUnmapCallback> a;
a.Init();
AllocatorStats stats;
stats.Init();
void *x = a.Allocate(&stats, 1 << 20, 1);
EXPECT_EQ(TestMapUnmapCallback::map_count, 1);
a.Deallocate(&stats, x);
EXPECT_EQ(TestMapUnmapCallback::unmap_count, 1);
}
// Don't test OOM conditions on Win64 because it causes other tests on the same
// machine to OOM.
#if SANITIZER_CAN_USE_ALLOCATOR64 && !SANITIZER_WINDOWS64 && !SANITIZER_ANDROID
TEST(SanitizerCommon, SizeClassAllocator64Overflow) {
Allocator64 a;
a.Init(kReleaseToOSIntervalNever);
SizeClassAllocatorLocalCache<Allocator64> cache;
memset(&cache, 0, sizeof(cache));
cache.Init(0);
AllocatorStats stats;
stats.Init();
const size_t kNumChunks = 128;
uint32_t chunks[kNumChunks];
bool allocation_failed = false;
for (int i = 0; i < 1000000; i++) {
if (!a.GetFromAllocator(&stats, 52, chunks, kNumChunks)) {
allocation_failed = true;
break;
}
}
EXPECT_EQ(allocation_failed, true);
a.TestOnlyUnmap();
}
#endif
TEST(SanitizerCommon, LargeMmapAllocator) {
LargeMmapAllocator<NoOpMapUnmapCallback> a;
a.Init();
AllocatorStats stats;
stats.Init();
static const int kNumAllocs = 1000;
char *allocated[kNumAllocs];
static const uptr size = 4000;
// Allocate some.
for (int i = 0; i < kNumAllocs; i++) {
allocated[i] = (char *)a.Allocate(&stats, size, 1);
CHECK(a.PointerIsMine(allocated[i]));
}
// Deallocate all.
CHECK_GT(a.TotalMemoryUsed(), size * kNumAllocs);
for (int i = 0; i < kNumAllocs; i++) {
char *p = allocated[i];
CHECK(a.PointerIsMine(p));
a.Deallocate(&stats, p);
}
// Check that non left.
CHECK_EQ(a.TotalMemoryUsed(), 0);
// Allocate some more, also add metadata.
for (int i = 0; i < kNumAllocs; i++) {
char *x = (char *)a.Allocate(&stats, size, 1);
CHECK_GE(a.GetActuallyAllocatedSize(x), size);
uptr *meta = reinterpret_cast<uptr*>(a.GetMetaData(x));
*meta = i;
allocated[i] = x;
}
for (int i = 0; i < kNumAllocs * kNumAllocs; i++) {
char *p = allocated[i % kNumAllocs];
CHECK(a.PointerIsMine(p));
CHECK(a.PointerIsMine(p + 2000));
}
CHECK_GT(a.TotalMemoryUsed(), size * kNumAllocs);
// Deallocate all in reverse order.
for (int i = 0; i < kNumAllocs; i++) {
int idx = kNumAllocs - i - 1;
char *p = allocated[idx];
uptr *meta = reinterpret_cast<uptr*>(a.GetMetaData(p));
CHECK_EQ(*meta, idx);
CHECK(a.PointerIsMine(p));
a.Deallocate(&stats, p);
}
CHECK_EQ(a.TotalMemoryUsed(), 0);
// Test alignments. Test with 512MB alignment on x64 non-Windows machines.
// Windows doesn't overcommit, and many machines do not have 51.2GB of swap.
uptr max_alignment =
(SANITIZER_WORDSIZE == 64 && !SANITIZER_WINDOWS) ? (1 << 28) : (1 << 24);
for (uptr alignment = 8; alignment <= max_alignment; alignment *= 2) {
const uptr kNumAlignedAllocs = 100;
for (uptr i = 0; i < kNumAlignedAllocs; i++) {
uptr size = ((i % 10) + 1) * 4096;
char *p = allocated[i] = (char *)a.Allocate(&stats, size, alignment);
CHECK_EQ(p, a.GetBlockBegin(p));
CHECK_EQ(p, a.GetBlockBegin(p + size - 1));
CHECK_EQ(p, a.GetBlockBegin(p + size / 2));
CHECK_EQ(0, (uptr)allocated[i] % alignment);
p[0] = p[size - 1] = 0;
}
for (uptr i = 0; i < kNumAlignedAllocs; i++) {
a.Deallocate(&stats, allocated[i]);
}
}
// Regression test for boundary condition in GetBlockBegin().
uptr page_size = GetPageSizeCached();
char *p = (char *)a.Allocate(&stats, page_size, 1);
CHECK_EQ(p, a.GetBlockBegin(p));
CHECK_EQ(p, (char *)a.GetBlockBegin(p + page_size - 1));
CHECK_NE(p, (char *)a.GetBlockBegin(p + page_size));
a.Deallocate(&stats, p);
}
template
<class PrimaryAllocator, class SecondaryAllocator, class AllocatorCache>
void TestCombinedAllocator() {
typedef
CombinedAllocator<PrimaryAllocator, AllocatorCache, SecondaryAllocator>
Allocator;
Allocator *a = new Allocator;
a->Init(kReleaseToOSIntervalNever);
std::mt19937 r;
AllocatorCache cache;
memset(&cache, 0, sizeof(cache));
a->InitCache(&cache);
EXPECT_EQ(a->Allocate(&cache, -1, 1), (void*)0);
EXPECT_EQ(a->Allocate(&cache, -1, 1024), (void*)0);
EXPECT_EQ(a->Allocate(&cache, (uptr)-1 - 1024, 1), (void*)0);
EXPECT_EQ(a->Allocate(&cache, (uptr)-1 - 1024, 1024), (void*)0);
EXPECT_EQ(a->Allocate(&cache, (uptr)-1 - 1023, 1024), (void*)0);
EXPECT_EQ(a->Allocate(&cache, -1, 1), (void*)0);
const uptr kNumAllocs = 100000;
const uptr kNumIter = 10;
for (uptr iter = 0; iter < kNumIter; iter++) {
std::vector<void*> allocated;
for (uptr i = 0; i < kNumAllocs; i++) {
uptr size = (i % (1 << 14)) + 1;
if ((i % 1024) == 0)
size = 1 << (10 + (i % 14));
void *x = a->Allocate(&cache, size, 1);
uptr *meta = reinterpret_cast<uptr*>(a->GetMetaData(x));
CHECK_EQ(*meta, 0);
*meta = size;
allocated.push_back(x);
}
std::shuffle(allocated.begin(), allocated.end(), r);
for (uptr i = 0; i < kNumAllocs; i++) {
void *x = allocated[i];
uptr *meta = reinterpret_cast<uptr*>(a->GetMetaData(x));
CHECK_NE(*meta, 0);
CHECK(a->PointerIsMine(x));
*meta = 0;
a->Deallocate(&cache, x);
}
allocated.clear();
a->SwallowCache(&cache);
}
a->DestroyCache(&cache);
a->TestOnlyUnmap();
}
#if SANITIZER_CAN_USE_ALLOCATOR64
TEST(SanitizerCommon, CombinedAllocator64) {
TestCombinedAllocator<Allocator64,
LargeMmapAllocator<>,
SizeClassAllocatorLocalCache<Allocator64> > ();
}
TEST(SanitizerCommon, CombinedAllocator64Dynamic) {
TestCombinedAllocator<Allocator64Dynamic,
LargeMmapAllocator<>,
SizeClassAllocatorLocalCache<Allocator64Dynamic> > ();
}
#if !SANITIZER_ANDROID
TEST(SanitizerCommon, CombinedAllocator64Compact) {
TestCombinedAllocator<Allocator64Compact,
LargeMmapAllocator<>,
SizeClassAllocatorLocalCache<Allocator64Compact> > ();
}
#endif
TEST(SanitizerCommon, CombinedAllocator64VeryCompact) {
TestCombinedAllocator<Allocator64VeryCompact,
LargeMmapAllocator<>,
SizeClassAllocatorLocalCache<Allocator64VeryCompact> > ();
}
#endif
TEST(SanitizerCommon, CombinedAllocator32Compact) {
TestCombinedAllocator<Allocator32Compact,
LargeMmapAllocator<>,
SizeClassAllocatorLocalCache<Allocator32Compact> > ();
}
template <class AllocatorCache>
void TestSizeClassAllocatorLocalCache() {
AllocatorCache cache;
typedef typename AllocatorCache::Allocator Allocator;
Allocator *a = new Allocator();
a->Init(kReleaseToOSIntervalNever);
memset(&cache, 0, sizeof(cache));
cache.Init(0);
const uptr kNumAllocs = 10000;
const int kNumIter = 100;
uptr saved_total = 0;
for (int class_id = 1; class_id <= 5; class_id++) {
for (int it = 0; it < kNumIter; it++) {
void *allocated[kNumAllocs];
for (uptr i = 0; i < kNumAllocs; i++) {
allocated[i] = cache.Allocate(a, class_id);
}
for (uptr i = 0; i < kNumAllocs; i++) {
cache.Deallocate(a, class_id, allocated[i]);
}
cache.Drain(a);
uptr total_allocated = a->TotalMemoryUsed();
if (it)
CHECK_EQ(saved_total, total_allocated);
saved_total = total_allocated;
}
}
a->TestOnlyUnmap();
delete a;
}
#if SANITIZER_CAN_USE_ALLOCATOR64
// These tests can fail on Windows if memory is somewhat full and lit happens
// to run them all at the same time. FIXME: Make them not flaky and reenable.
#if !SANITIZER_WINDOWS
TEST(SanitizerCommon, SizeClassAllocator64LocalCache) {
TestSizeClassAllocatorLocalCache<
SizeClassAllocatorLocalCache<Allocator64> >();
}
TEST(SanitizerCommon, SizeClassAllocator64DynamicLocalCache) {
TestSizeClassAllocatorLocalCache<
SizeClassAllocatorLocalCache<Allocator64Dynamic> >();
}
#if !SANITIZER_ANDROID
TEST(SanitizerCommon, SizeClassAllocator64CompactLocalCache) {
TestSizeClassAllocatorLocalCache<
SizeClassAllocatorLocalCache<Allocator64Compact> >();
}
#endif
TEST(SanitizerCommon, SizeClassAllocator64VeryCompactLocalCache) {
TestSizeClassAllocatorLocalCache<
SizeClassAllocatorLocalCache<Allocator64VeryCompact> >();
}
#endif
#endif
TEST(SanitizerCommon, SizeClassAllocator32CompactLocalCache) {
TestSizeClassAllocatorLocalCache<
SizeClassAllocatorLocalCache<Allocator32Compact> >();
}
#if SANITIZER_CAN_USE_ALLOCATOR64
typedef SizeClassAllocatorLocalCache<Allocator64> AllocatorCache;
static AllocatorCache static_allocator_cache;
void *AllocatorLeakTestWorker(void *arg) {
typedef AllocatorCache::Allocator Allocator;
Allocator *a = (Allocator*)(arg);
static_allocator_cache.Allocate(a, 10);
static_allocator_cache.Drain(a);
return 0;
}
TEST(SanitizerCommon, AllocatorLeakTest) {
typedef AllocatorCache::Allocator Allocator;
Allocator a;
a.Init(kReleaseToOSIntervalNever);
uptr total_used_memory = 0;
for (int i = 0; i < 100; i++) {
pthread_t t;
PTHREAD_CREATE(&t, 0, AllocatorLeakTestWorker, &a);
PTHREAD_JOIN(t, 0);
if (i == 0)
total_used_memory = a.TotalMemoryUsed();
EXPECT_EQ(a.TotalMemoryUsed(), total_used_memory);
}
a.TestOnlyUnmap();
}
// Struct which is allocated to pass info to new threads. The new thread frees
// it.
struct NewThreadParams {
AllocatorCache *thread_cache;
AllocatorCache::Allocator *allocator;
uptr class_id;
};
// Called in a new thread. Just frees its argument.
static void *DeallocNewThreadWorker(void *arg) {
NewThreadParams *params = reinterpret_cast<NewThreadParams*>(arg);
params->thread_cache->Deallocate(params->allocator, params->class_id, params);
return NULL;
}
// The allocator cache is supposed to be POD and zero initialized. We should be
// able to call Deallocate on a zeroed cache, and it will self-initialize.
TEST(Allocator, AllocatorCacheDeallocNewThread) {
AllocatorCache::Allocator allocator;
allocator.Init(kReleaseToOSIntervalNever);
AllocatorCache main_cache;
AllocatorCache child_cache;
memset(&main_cache, 0, sizeof(main_cache));
memset(&child_cache, 0, sizeof(child_cache));
uptr class_id = DefaultSizeClassMap::ClassID(sizeof(NewThreadParams));
NewThreadParams *params = reinterpret_cast<NewThreadParams*>(
main_cache.Allocate(&allocator, class_id));
params->thread_cache = &child_cache;
params->allocator = &allocator;
params->class_id = class_id;
pthread_t t;
PTHREAD_CREATE(&t, 0, DeallocNewThreadWorker, params);
PTHREAD_JOIN(t, 0);
allocator.TestOnlyUnmap();
}
#endif
TEST(Allocator, Basic) {
char *p = (char*)InternalAlloc(10);
EXPECT_NE(p, (char*)0);
char *p2 = (char*)InternalAlloc(20);
EXPECT_NE(p2, (char*)0);
EXPECT_NE(p2, p);
InternalFree(p);
InternalFree(p2);
}
TEST(Allocator, Stress) {
const int kCount = 1000;
char *ptrs[kCount];
unsigned rnd = 42;
for (int i = 0; i < kCount; i++) {
uptr sz = my_rand_r(&rnd) % 1000;
char *p = (char*)InternalAlloc(sz);
EXPECT_NE(p, (char*)0);
ptrs[i] = p;
}
for (int i = 0; i < kCount; i++) {
InternalFree(ptrs[i]);
}
}
TEST(Allocator, LargeAlloc) {
void *p = InternalAlloc(10 << 20);
InternalFree(p);
}
TEST(Allocator, ScopedBuffer) {
const int kSize = 512;
{
InternalMmapVector<int> int_buf(kSize);
EXPECT_EQ((uptr)kSize, int_buf.size()); // NOLINT
}
InternalMmapVector<char> char_buf(kSize);
EXPECT_EQ((uptr)kSize, char_buf.size()); // NOLINT
internal_memset(char_buf.data(), 'c', kSize);
for (int i = 0; i < kSize; i++) {
EXPECT_EQ('c', char_buf[i]);
}
}
void IterationTestCallback(uptr chunk, void *arg) {
reinterpret_cast<std::set<uptr> *>(arg)->insert(chunk);
}
template <class Allocator>
void TestSizeClassAllocatorIteration() {
Allocator *a = new Allocator;
a->Init(kReleaseToOSIntervalNever);
SizeClassAllocatorLocalCache<Allocator> cache;
memset(&cache, 0, sizeof(cache));
cache.Init(0);
static const uptr sizes[] = {1, 16, 30, 40, 100, 1000, 10000,
50000, 60000, 100000, 120000, 300000, 500000, 1000000, 2000000};
std::vector<void *> allocated;
// Allocate a bunch of chunks.
for (uptr s = 0; s < ARRAY_SIZE(sizes); s++) {
uptr size = sizes[s];
if (!a->CanAllocate(size, 1)) continue;
// printf("s = %ld\n", size);
uptr n_iter = std::max((uptr)6, 80000 / size);
// fprintf(stderr, "size: %ld iter: %ld\n", size, n_iter);
for (uptr j = 0; j < n_iter; j++) {
uptr class_id0 = Allocator::SizeClassMapT::ClassID(size);
void *x = cache.Allocate(a, class_id0);
allocated.push_back(x);
}
}
std::set<uptr> reported_chunks;
a->ForceLock();
a->ForEachChunk(IterationTestCallback, &reported_chunks);
a->ForceUnlock();
for (uptr i = 0; i < allocated.size(); i++) {
// Don't use EXPECT_NE. Reporting the first mismatch is enough.
ASSERT_NE(reported_chunks.find(reinterpret_cast<uptr>(allocated[i])),
reported_chunks.end());
}
a->TestOnlyUnmap();
delete a;
}
#if SANITIZER_CAN_USE_ALLOCATOR64
// These tests can fail on Windows if memory is somewhat full and lit happens
// to run them all at the same time. FIXME: Make them not flaky and reenable.
#if !SANITIZER_WINDOWS
TEST(SanitizerCommon, SizeClassAllocator64Iteration) {
TestSizeClassAllocatorIteration<Allocator64>();
}
TEST(SanitizerCommon, SizeClassAllocator64DynamicIteration) {
TestSizeClassAllocatorIteration<Allocator64Dynamic>();
}
#endif
#endif
TEST(SanitizerCommon, SizeClassAllocator32Iteration) {
TestSizeClassAllocatorIteration<Allocator32Compact>();
}
TEST(SanitizerCommon, LargeMmapAllocatorIteration) {
LargeMmapAllocator<NoOpMapUnmapCallback> a;
a.Init();
AllocatorStats stats;
stats.Init();
static const uptr kNumAllocs = 1000;
char *allocated[kNumAllocs];
static const uptr size = 40;
// Allocate some.
for (uptr i = 0; i < kNumAllocs; i++)
allocated[i] = (char *)a.Allocate(&stats, size, 1);
std::set<uptr> reported_chunks;
a.ForceLock();
a.ForEachChunk(IterationTestCallback, &reported_chunks);
a.ForceUnlock();
for (uptr i = 0; i < kNumAllocs; i++) {
// Don't use EXPECT_NE. Reporting the first mismatch is enough.
ASSERT_NE(reported_chunks.find(reinterpret_cast<uptr>(allocated[i])),
reported_chunks.end());
}
for (uptr i = 0; i < kNumAllocs; i++)
a.Deallocate(&stats, allocated[i]);
}
TEST(SanitizerCommon, LargeMmapAllocatorBlockBegin) {
LargeMmapAllocator<NoOpMapUnmapCallback> a;
a.Init();
AllocatorStats stats;
stats.Init();
static const uptr kNumAllocs = 1024;
static const uptr kNumExpectedFalseLookups = 10000000;
char *allocated[kNumAllocs];
static const uptr size = 4096;
// Allocate some.
for (uptr i = 0; i < kNumAllocs; i++) {
allocated[i] = (char *)a.Allocate(&stats, size, 1);
}
a.ForceLock();
for (uptr i = 0; i < kNumAllocs * kNumAllocs; i++) {
// if ((i & (i - 1)) == 0) fprintf(stderr, "[%zd]\n", i);
char *p1 = allocated[i % kNumAllocs];
EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1));
EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1 + size / 2));
EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1 + size - 1));
EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1 - 100));
}
for (uptr i = 0; i < kNumExpectedFalseLookups; i++) {
void *p = reinterpret_cast<void *>(i % 1024);
EXPECT_EQ((void *)0, a.GetBlockBeginFastLocked(p));
p = reinterpret_cast<void *>(~0L - (i % 1024));
EXPECT_EQ((void *)0, a.GetBlockBeginFastLocked(p));
}
a.ForceUnlock();
for (uptr i = 0; i < kNumAllocs; i++)
a.Deallocate(&stats, allocated[i]);
}
// Don't test OOM conditions on Win64 because it causes other tests on the same
// machine to OOM.
#if SANITIZER_CAN_USE_ALLOCATOR64 && !SANITIZER_WINDOWS64 && !SANITIZER_ANDROID
typedef SizeClassMap<3, 4, 8, 63, 128, 16> SpecialSizeClassMap;
struct AP64_SpecialSizeClassMap {
static const uptr kSpaceBeg = kAllocatorSpace;
static const uptr kSpaceSize = kAllocatorSize;
static const uptr kMetadataSize = 0;
typedef SpecialSizeClassMap SizeClassMap;
typedef NoOpMapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
};
// Regression test for out-of-memory condition in PopulateFreeList().
TEST(SanitizerCommon, SizeClassAllocator64PopulateFreeListOOM) {
// In a world where regions are small and chunks are huge...
typedef SizeClassAllocator64<AP64_SpecialSizeClassMap> SpecialAllocator64;
const uptr kRegionSize =
kAllocatorSize / SpecialSizeClassMap::kNumClassesRounded;
SpecialAllocator64 *a = new SpecialAllocator64;
a->Init(kReleaseToOSIntervalNever);
SizeClassAllocatorLocalCache<SpecialAllocator64> cache;
memset(&cache, 0, sizeof(cache));
cache.Init(0);
// ...one man is on a mission to overflow a region with a series of
// successive allocations.
const uptr kClassID = 107;
const uptr kAllocationSize = SpecialSizeClassMap::Size(kClassID);
ASSERT_LT(2 * kAllocationSize, kRegionSize);
ASSERT_GT(3 * kAllocationSize, kRegionSize);
EXPECT_NE(cache.Allocate(a, kClassID), nullptr);
EXPECT_NE(cache.Allocate(a, kClassID), nullptr);
EXPECT_EQ(cache.Allocate(a, kClassID), nullptr);
const uptr Class2 = 100;
const uptr Size2 = SpecialSizeClassMap::Size(Class2);
ASSERT_EQ(Size2 * 8, kRegionSize);
char *p[7];
for (int i = 0; i < 7; i++) {
p[i] = (char*)cache.Allocate(a, Class2);
EXPECT_NE(p[i], nullptr);
fprintf(stderr, "p[%d] %p s = %lx\n", i, (void*)p[i], Size2);
p[i][Size2 - 1] = 42;
if (i) ASSERT_LT(p[i - 1], p[i]);
}
EXPECT_EQ(cache.Allocate(a, Class2), nullptr);
cache.Deallocate(a, Class2, p[0]);
cache.Drain(a);
ASSERT_EQ(p[6][Size2 - 1], 42);
a->TestOnlyUnmap();
delete a;
}
#endif
#if SANITIZER_CAN_USE_ALLOCATOR64
class NoMemoryMapper {
public:
uptr last_request_buffer_size;
NoMemoryMapper() : last_request_buffer_size(0) {}
uptr MapPackedCounterArrayBuffer(uptr buffer_size) {
last_request_buffer_size = buffer_size;
return 0;
}
void UnmapPackedCounterArrayBuffer(uptr buffer, uptr buffer_size) {}
};
class RedZoneMemoryMapper {
public:
RedZoneMemoryMapper() {
const auto page_size = GetPageSize();
buffer = MmapOrDie(3ULL * page_size, "");
MprotectNoAccess(reinterpret_cast<uptr>(buffer), page_size);
MprotectNoAccess(reinterpret_cast<uptr>(buffer) + page_size * 2, page_size);
}
~RedZoneMemoryMapper() {
UnmapOrDie(buffer, 3 * GetPageSize());
}
uptr MapPackedCounterArrayBuffer(uptr buffer_size) {
const auto page_size = GetPageSize();
CHECK_EQ(buffer_size, page_size);
memset(reinterpret_cast<void*>(reinterpret_cast<uptr>(buffer) + page_size),
0, page_size);
return reinterpret_cast<uptr>(buffer) + page_size;
}
void UnmapPackedCounterArrayBuffer(uptr buffer, uptr buffer_size) {}
private:
void *buffer;
};
TEST(SanitizerCommon, SizeClassAllocator64PackedCounterArray) {
NoMemoryMapper no_memory_mapper;
typedef Allocator64::PackedCounterArray<NoMemoryMapper>
NoMemoryPackedCounterArray;
for (int i = 0; i < 64; i++) {
// Various valid counter's max values packed into one word.
NoMemoryPackedCounterArray counters_2n(1, 1ULL << i, &no_memory_mapper);
EXPECT_EQ(8ULL, no_memory_mapper.last_request_buffer_size);
// Check the "all bit set" values too.
NoMemoryPackedCounterArray counters_2n1_1(1, ~0ULL >> i, &no_memory_mapper);
EXPECT_EQ(8ULL, no_memory_mapper.last_request_buffer_size);
// Verify the packing ratio, the counter is expected to be packed into the
// closest power of 2 bits.
NoMemoryPackedCounterArray counters(64, 1ULL << i, &no_memory_mapper);
EXPECT_EQ(8ULL * RoundUpToPowerOfTwo(i + 1),
no_memory_mapper.last_request_buffer_size);
}
RedZoneMemoryMapper memory_mapper;
typedef Allocator64::PackedCounterArray<RedZoneMemoryMapper>
RedZonePackedCounterArray;
// Go through 1, 2, 4, 8, .. 64 bits per counter.
for (int i = 0; i < 7; i++) {
// Make sure counters request one memory page for the buffer.
const u64 kNumCounters = (GetPageSize() / 8) * (64 >> i);
RedZonePackedCounterArray counters(kNumCounters,
1ULL << ((1 << i) - 1),
&memory_mapper);
counters.Inc(0);
for (u64 c = 1; c < kNumCounters - 1; c++) {
ASSERT_EQ(0ULL, counters.Get(c));
counters.Inc(c);
ASSERT_EQ(1ULL, counters.Get(c - 1));
}
ASSERT_EQ(0ULL, counters.Get(kNumCounters - 1));
counters.Inc(kNumCounters - 1);
if (i > 0) {
counters.IncRange(0, kNumCounters - 1);
for (u64 c = 0; c < kNumCounters; c++)
ASSERT_EQ(2ULL, counters.Get(c));
}
}
}
class RangeRecorder {
public:
std::string reported_pages;
RangeRecorder()
: page_size_scaled_log(
Log2(GetPageSizeCached() >> Allocator64::kCompactPtrScale)),
last_page_reported(0) {}
void ReleasePageRangeToOS(u32 from, u32 to) {
from >>= page_size_scaled_log;
to >>= page_size_scaled_log;
ASSERT_LT(from, to);
if (!reported_pages.empty())
ASSERT_LT(last_page_reported, from);
reported_pages.append(from - last_page_reported, '.');
reported_pages.append(to - from, 'x');
last_page_reported = to;
}
private:
const uptr page_size_scaled_log;
u32 last_page_reported;
};
TEST(SanitizerCommon, SizeClassAllocator64FreePagesRangeTracker) {
typedef Allocator64::FreePagesRangeTracker<RangeRecorder> RangeTracker;
// 'x' denotes a page to be released, '.' denotes a page to be kept around.
const char* test_cases[] = {
"",
".",
"x",
"........",
"xxxxxxxxxxx",
"..............xxxxx",
"xxxxxxxxxxxxxxxxxx.....",
"......xxxxxxxx........",
"xxx..........xxxxxxxxxxxxxxx",
"......xxxx....xxxx........",
"xxx..........xxxxxxxx....xxxxxxx",
"x.x.x.x.x.x.x.x.x.x.x.x.",
".x.x.x.x.x.x.x.x.x.x.x.x",
".x.x.x.x.x.x.x.x.x.x.x.x.",
"x.x.x.x.x.x.x.x.x.x.x.x.x",
};
for (auto test_case : test_cases) {
RangeRecorder range_recorder;
RangeTracker tracker(&range_recorder);
for (int i = 0; test_case[i] != 0; i++)
tracker.NextPage(test_case[i] == 'x');
tracker.Done();
// Strip trailing '.'-pages before comparing the results as they are not
// going to be reported to range_recorder anyway.
const char* last_x = strrchr(test_case, 'x');
std::string expected(
test_case,
last_x == nullptr ? 0 : (last_x - test_case + 1));
EXPECT_STREQ(expected.c_str(), range_recorder.reported_pages.c_str());
}
}
class ReleasedPagesTrackingMemoryMapper {
public:
std::set<u32> reported_pages;
uptr MapPackedCounterArrayBuffer(uptr buffer_size) {
reported_pages.clear();
return reinterpret_cast<uptr>(calloc(1, buffer_size));
}
void UnmapPackedCounterArrayBuffer(uptr buffer, uptr buffer_size) {
free(reinterpret_cast<void*>(buffer));
}
void ReleasePageRangeToOS(u32 from, u32 to) {
uptr page_size_scaled =
GetPageSizeCached() >> Allocator64::kCompactPtrScale;
for (u32 i = from; i < to; i += page_size_scaled)
reported_pages.insert(i);
}
};
template <class Allocator>
void TestReleaseFreeMemoryToOS() {
ReleasedPagesTrackingMemoryMapper memory_mapper;
const uptr kAllocatedPagesCount = 1024;
const uptr page_size = GetPageSizeCached();
const uptr page_size_scaled = page_size >> Allocator::kCompactPtrScale;
std::mt19937 r;
uint32_t rnd_state = 42;
for (uptr class_id = 1; class_id <= Allocator::SizeClassMapT::kLargestClassID;
class_id++) {
const uptr chunk_size = Allocator::SizeClassMapT::Size(class_id);
const uptr chunk_size_scaled = chunk_size >> Allocator::kCompactPtrScale;
const uptr max_chunks =
kAllocatedPagesCount * GetPageSizeCached() / chunk_size;
// Generate the random free list.
std::vector<u32> free_array;
bool in_free_range = false;
uptr current_range_end = 0;
for (uptr i = 0; i < max_chunks; i++) {
if (i == current_range_end) {
in_free_range = (my_rand_r(&rnd_state) & 1U) == 1;
current_range_end += my_rand_r(&rnd_state) % 100 + 1;
}
if (in_free_range)
free_array.push_back(i * chunk_size_scaled);
}
if (free_array.empty())
continue;
// Shuffle free_list to verify that ReleaseFreeMemoryToOS does not depend on
// the list ordering.
std::shuffle(free_array.begin(), free_array.end(), r);
Allocator::ReleaseFreeMemoryToOS(&free_array[0], free_array.size(),
chunk_size, kAllocatedPagesCount,
&memory_mapper);
// Verify that there are no released pages touched by used chunks and all
// ranges of free chunks big enough to contain the entire memory pages had
// these pages released.
uptr verified_released_pages = 0;
std::set<u32> free_chunks(free_array.begin(), free_array.end());
u32 current_chunk = 0;
in_free_range = false;
u32 current_free_range_start = 0;
for (uptr i = 0; i <= max_chunks; i++) {
bool is_free_chunk = free_chunks.find(current_chunk) != free_chunks.end();
if (is_free_chunk) {
if (!in_free_range) {
in_free_range = true;
current_free_range_start = current_chunk;
}
} else {
// Verify that this used chunk does not touch any released page.
for (uptr i_page = current_chunk / page_size_scaled;
i_page <= (current_chunk + chunk_size_scaled - 1) /
page_size_scaled;
i_page++) {
bool page_released =
memory_mapper.reported_pages.find(i_page * page_size_scaled) !=
memory_mapper.reported_pages.end();
ASSERT_EQ(false, page_released);
}
if (in_free_range) {
in_free_range = false;
// Verify that all entire memory pages covered by this range of free
// chunks were released.
u32 page = RoundUpTo(current_free_range_start, page_size_scaled);
while (page + page_size_scaled <= current_chunk) {
bool page_released =
memory_mapper.reported_pages.find(page) !=
memory_mapper.reported_pages.end();
ASSERT_EQ(true, page_released);
verified_released_pages++;
page += page_size_scaled;
}
}
}
current_chunk += chunk_size_scaled;
}
ASSERT_EQ(memory_mapper.reported_pages.size(), verified_released_pages);
}
}
TEST(SanitizerCommon, SizeClassAllocator64ReleaseFreeMemoryToOS) {
TestReleaseFreeMemoryToOS<Allocator64>();
}
#if !SANITIZER_ANDROID
TEST(SanitizerCommon, SizeClassAllocator64CompactReleaseFreeMemoryToOS) {
TestReleaseFreeMemoryToOS<Allocator64Compact>();
}
TEST(SanitizerCommon, SizeClassAllocator64VeryCompactReleaseFreeMemoryToOS) {
TestReleaseFreeMemoryToOS<Allocator64VeryCompact>();
}
#endif // !SANITIZER_ANDROID
#endif // SANITIZER_CAN_USE_ALLOCATOR64
TEST(SanitizerCommon, TwoLevelByteMap) {
const u64 kSize1 = 1 << 6, kSize2 = 1 << 12;
const u64 n = kSize1 * kSize2;
TwoLevelByteMap<kSize1, kSize2> m;
m.Init();
for (u64 i = 0; i < n; i += 7) {
m.set(i, (i % 100) + 1);
}
for (u64 j = 0; j < n; j++) {
if (j % 7)
EXPECT_EQ(m[j], 0);
else
EXPECT_EQ(m[j], (j % 100) + 1);
}
m.TestOnlyUnmap();
}
typedef TwoLevelByteMap<1 << 12, 1 << 13, TestMapUnmapCallback> TestByteMap;
struct TestByteMapParam {
TestByteMap *m;
size_t shard;
size_t num_shards;
};
void *TwoLevelByteMapUserThread(void *param) {
TestByteMapParam *p = (TestByteMapParam*)param;
for (size_t i = p->shard; i < p->m->size(); i += p->num_shards) {
size_t val = (i % 100) + 1;
p->m->set(i, val);
EXPECT_EQ((*p->m)[i], val);
}
return 0;
}
TEST(SanitizerCommon, ThreadedTwoLevelByteMap) {
TestByteMap m;
m.Init();
TestMapUnmapCallback::map_count = 0;
TestMapUnmapCallback::unmap_count = 0;
static const int kNumThreads = 4;
pthread_t t[kNumThreads];
TestByteMapParam p[kNumThreads];
for (int i = 0; i < kNumThreads; i++) {
p[i].m = &m;
p[i].shard = i;
p[i].num_shards = kNumThreads;
PTHREAD_CREATE(&t[i], 0, TwoLevelByteMapUserThread, &p[i]);
}
for (int i = 0; i < kNumThreads; i++) {
PTHREAD_JOIN(t[i], 0);
}
EXPECT_EQ((uptr)TestMapUnmapCallback::map_count, m.size1());
EXPECT_EQ((uptr)TestMapUnmapCallback::unmap_count, 0UL);
m.TestOnlyUnmap();
EXPECT_EQ((uptr)TestMapUnmapCallback::map_count, m.size1());
EXPECT_EQ((uptr)TestMapUnmapCallback::unmap_count, m.size1());
}
#endif // #if !SANITIZER_DEBUG