blob: 2ec657e94ab06c12b8c40412b5d8b55698ac9641 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/basictypes.h"
#include "base/file_util.h"
#include "base/string_util.h"
#include "base/stringprintf.h"
#include "base/third_party/dynamic_annotations/dynamic_annotations.h"
#include "base/threading/platform_thread.h"
#include "base/threading/thread_restrictions.h"
#include "net/base/io_buffer.h"
#include "net/base/net_errors.h"
#include "net/base/test_completion_callback.h"
#include "net/disk_cache/backend_impl.h"
#include "net/disk_cache/cache_util.h"
#include "net/disk_cache/disk_cache_test_base.h"
#include "net/disk_cache/disk_cache_test_util.h"
#include "net/disk_cache/entry_impl.h"
#include "net/disk_cache/histogram_macros.h"
#include "net/disk_cache/mapped_file.h"
#include "net/disk_cache/mem_backend_impl.h"
#include "testing/gtest/include/gtest/gtest.h"
#if defined(OS_WIN)
#include "base/win/scoped_handle.h"
#endif
using base::Time;
// Tests that can run with different types of caches.
class DiskCacheBackendTest : public DiskCacheTestWithCache {
protected:
void BackendBasics();
void BackendKeying();
void BackendShutdownWithPendingFileIO(bool fast);
void BackendShutdownWithPendingIO(bool fast);
void BackendShutdownWithPendingCreate(bool fast);
void BackendSetSize();
void BackendLoad();
void BackendChain();
void BackendValidEntry();
void BackendInvalidEntry();
void BackendInvalidEntryRead();
void BackendInvalidEntryWithLoad();
void BackendTrimInvalidEntry();
void BackendTrimInvalidEntry2();
void BackendEnumerations();
void BackendEnumerations2();
void BackendInvalidEntryEnumeration();
void BackendFixEnumerators();
void BackendDoomRecent();
void BackendDoomBetween();
void BackendTransaction(const std::string& name, int num_entries, bool load);
void BackendRecoverInsert();
void BackendRecoverRemove();
void BackendRecoverWithEviction();
void BackendInvalidEntry2();
void BackendInvalidEntry3();
void BackendInvalidEntry7();
void BackendInvalidEntry8();
void BackendInvalidEntry9(bool eviction);
void BackendInvalidEntry10(bool eviction);
void BackendInvalidEntry11(bool eviction);
void BackendTrimInvalidEntry12();
void BackendDoomAll();
void BackendDoomAll2();
void BackendInvalidRankings();
void BackendInvalidRankings2();
void BackendDisable();
void BackendDisable2();
void BackendDisable3();
void BackendDisable4();
};
void DiskCacheBackendTest::BackendBasics() {
InitCache();
disk_cache::Entry *entry1 = NULL, *entry2 = NULL;
EXPECT_NE(net::OK, OpenEntry("the first key", &entry1));
ASSERT_EQ(net::OK, CreateEntry("the first key", &entry1));
ASSERT_TRUE(NULL != entry1);
entry1->Close();
entry1 = NULL;
ASSERT_EQ(net::OK, OpenEntry("the first key", &entry1));
ASSERT_TRUE(NULL != entry1);
entry1->Close();
entry1 = NULL;
EXPECT_NE(net::OK, CreateEntry("the first key", &entry1));
ASSERT_EQ(net::OK, OpenEntry("the first key", &entry1));
EXPECT_NE(net::OK, OpenEntry("some other key", &entry2));
ASSERT_EQ(net::OK, CreateEntry("some other key", &entry2));
ASSERT_TRUE(NULL != entry1);
ASSERT_TRUE(NULL != entry2);
EXPECT_EQ(2, cache_->GetEntryCount());
disk_cache::Entry* entry3 = NULL;
ASSERT_EQ(net::OK, OpenEntry("some other key", &entry3));
ASSERT_TRUE(NULL != entry3);
EXPECT_TRUE(entry2 == entry3);
EXPECT_EQ(2, cache_->GetEntryCount());
EXPECT_EQ(net::OK, DoomEntry("some other key"));
EXPECT_EQ(1, cache_->GetEntryCount());
entry1->Close();
entry2->Close();
entry3->Close();
EXPECT_EQ(net::OK, DoomEntry("the first key"));
EXPECT_EQ(0, cache_->GetEntryCount());
ASSERT_EQ(net::OK, CreateEntry("the first key", &entry1));
ASSERT_EQ(net::OK, CreateEntry("some other key", &entry2));
entry1->Doom();
entry1->Close();
EXPECT_EQ(net::OK, DoomEntry("some other key"));
EXPECT_EQ(0, cache_->GetEntryCount());
entry2->Close();
}
TEST_F(DiskCacheBackendTest, Basics) {
BackendBasics();
}
TEST_F(DiskCacheBackendTest, NewEvictionBasics) {
SetNewEviction();
BackendBasics();
}
TEST_F(DiskCacheBackendTest, MemoryOnlyBasics) {
SetMemoryOnlyMode();
BackendBasics();
}
TEST_F(DiskCacheBackendTest, AppCacheBasics) {
SetCacheType(net::APP_CACHE);
BackendBasics();
}
void DiskCacheBackendTest::BackendKeying() {
InitCache();
const char* kName1 = "the first key";
const char* kName2 = "the first Key";
disk_cache::Entry *entry1, *entry2;
ASSERT_EQ(net::OK, CreateEntry(kName1, &entry1));
ASSERT_EQ(net::OK, CreateEntry(kName2, &entry2));
EXPECT_TRUE(entry1 != entry2) << "Case sensitive";
entry2->Close();
char buffer[30];
base::strlcpy(buffer, kName1, arraysize(buffer));
ASSERT_EQ(net::OK, OpenEntry(buffer, &entry2));
EXPECT_TRUE(entry1 == entry2);
entry2->Close();
base::strlcpy(buffer + 1, kName1, arraysize(buffer) - 1);
ASSERT_EQ(net::OK, OpenEntry(buffer + 1, &entry2));
EXPECT_TRUE(entry1 == entry2);
entry2->Close();
base::strlcpy(buffer + 3, kName1, arraysize(buffer) - 3);
ASSERT_EQ(net::OK, OpenEntry(buffer + 3, &entry2));
EXPECT_TRUE(entry1 == entry2);
entry2->Close();
// Now verify long keys.
char buffer2[20000];
memset(buffer2, 's', sizeof(buffer2));
buffer2[1023] = '\0';
ASSERT_EQ(net::OK, CreateEntry(buffer2, &entry2)) << "key on block file";
entry2->Close();
buffer2[1023] = 'g';
buffer2[19999] = '\0';
ASSERT_EQ(net::OK, CreateEntry(buffer2, &entry2)) << "key on external file";
entry2->Close();
entry1->Close();
}
TEST_F(DiskCacheBackendTest, Keying) {
BackendKeying();
}
TEST_F(DiskCacheBackendTest, NewEvictionKeying) {
SetNewEviction();
BackendKeying();
}
TEST_F(DiskCacheBackendTest, MemoryOnlyKeying) {
SetMemoryOnlyMode();
BackendKeying();
}
TEST_F(DiskCacheBackendTest, AppCacheKeying) {
SetCacheType(net::APP_CACHE);
BackendKeying();
}
TEST_F(DiskCacheTest, CreateBackend) {
net::TestCompletionCallback cb;
{
ASSERT_TRUE(CleanupCacheDir());
base::Thread cache_thread("CacheThread");
ASSERT_TRUE(cache_thread.StartWithOptions(
base::Thread::Options(MessageLoop::TYPE_IO, 0)));
// Test the private factory methods.
disk_cache::Backend* cache = NULL;
int rv = disk_cache::BackendImpl::CreateBackend(
cache_path_, false, 0, net::DISK_CACHE, disk_cache::kNoRandom,
cache_thread.message_loop_proxy(), NULL, &cache, cb.callback());
ASSERT_EQ(net::OK, cb.GetResult(rv));
ASSERT_TRUE(cache);
delete cache;
cache = disk_cache::MemBackendImpl::CreateBackend(0, NULL);
ASSERT_TRUE(cache);
delete cache;
cache = NULL;
// Now test the public API.
rv = disk_cache::CreateCacheBackend(net::DISK_CACHE, cache_path_, 0, false,
cache_thread.message_loop_proxy(),
NULL, &cache, cb.callback());
ASSERT_EQ(net::OK, cb.GetResult(rv));
ASSERT_TRUE(cache);
delete cache;
cache = NULL;
rv = disk_cache::CreateCacheBackend(net::MEMORY_CACHE, FilePath(), 0, false,
NULL, NULL, &cache, cb.callback());
ASSERT_EQ(net::OK, cb.GetResult(rv));
ASSERT_TRUE(cache);
delete cache;
}
MessageLoop::current()->RunUntilIdle();
}
// Testst that re-creating the cache performs the expected cleanup.
TEST_F(DiskCacheBackendTest, CreateBackend_MissingFile) {
ASSERT_TRUE(CopyTestCache("bad_entry"));
FilePath filename = cache_path_.AppendASCII("data_1");
file_util::Delete(filename, false);
DisableFirstCleanup();
SetForceCreation();
bool prev = base::ThreadRestrictions::SetIOAllowed(false);
InitCache();
base::ThreadRestrictions::SetIOAllowed(prev);
}
TEST_F(DiskCacheBackendTest, ExternalFiles) {
InitCache();
// First, let's create a file on the folder.
FilePath filename = cache_path_.AppendASCII("f_000001");
const int kSize = 50;
scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize));
CacheTestFillBuffer(buffer1->data(), kSize, false);
ASSERT_EQ(kSize, file_util::WriteFile(filename, buffer1->data(), kSize));
// Now let's create a file with the cache.
disk_cache::Entry* entry;
ASSERT_EQ(net::OK, CreateEntry("key", &entry));
ASSERT_EQ(0, WriteData(entry, 0, 20000, buffer1, 0, false));
entry->Close();
// And verify that the first file is still there.
scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize));
ASSERT_EQ(kSize, file_util::ReadFile(filename, buffer2->data(), kSize));
EXPECT_EQ(0, memcmp(buffer1->data(), buffer2->data(), kSize));
}
// Tests that we deal with file-level pending operations at destruction time.
void DiskCacheBackendTest::BackendShutdownWithPendingFileIO(bool fast) {
net::TestCompletionCallback cb;
int rv;
{
ASSERT_TRUE(CleanupCacheDir());
base::Thread cache_thread("CacheThread");
ASSERT_TRUE(cache_thread.StartWithOptions(
base::Thread::Options(MessageLoop::TYPE_IO, 0)));
disk_cache::Backend* cache;
uint32 flags = disk_cache::kNoBuffering;
if (!fast)
flags |= disk_cache::kNoRandom;
rv = disk_cache::BackendImpl::CreateBackend(
cache_path_, false, 0, net::DISK_CACHE, flags,
base::MessageLoopProxy::current(), NULL,
&cache, cb.callback());
ASSERT_EQ(net::OK, cb.GetResult(rv));
disk_cache::EntryImpl* entry;
rv = cache->CreateEntry(
"some key", reinterpret_cast<disk_cache::Entry**>(&entry),
cb.callback());
ASSERT_EQ(net::OK, cb.GetResult(rv));
const int kSize = 25000;
scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize));
CacheTestFillBuffer(buffer->data(), kSize, false);
for (int i = 0; i < 10 * 1024 * 1024; i += 64 * 1024) {
// We are using the current thread as the cache thread because we want to
// be able to call directly this method to make sure that the OS (instead
// of us switching thread) is returning IO pending.
rv = entry->WriteDataImpl(0, i, buffer, kSize, cb.callback(), false);
if (rv == net::ERR_IO_PENDING)
break;
EXPECT_EQ(kSize, rv);
}
// Don't call Close() to avoid going through the queue or we'll deadlock
// waiting for the operation to finish.
entry->Release();
// The cache destructor will see one pending operation here.
delete cache;
if (rv == net::ERR_IO_PENDING) {
if (fast)
EXPECT_FALSE(cb.have_result());
else
EXPECT_TRUE(cb.have_result());
}
}
MessageLoop::current()->RunUntilIdle();
#if defined(OS_WIN)
// Wait for the actual operation to complete, or we'll keep a file handle that
// may cause issues later. Note that on Posix systems even though this test
// uses a single thread, the actual IO is posted to a worker thread and the
// cache destructor breaks the link to reach cb when the operation completes.
rv = cb.GetResult(rv);
#endif
}
TEST_F(DiskCacheBackendTest, ShutdownWithPendingFileIO) {
BackendShutdownWithPendingFileIO(false);
}
// We'll be leaking from this test.
TEST_F(DiskCacheBackendTest, ShutdownWithPendingFileIO_Fast) {
// The integrity test sets kNoRandom so there's a version mismatch if we don't
// force new eviction.
SetNewEviction();
BackendShutdownWithPendingFileIO(true);
}
// Tests that we deal with background-thread pending operations.
void DiskCacheBackendTest::BackendShutdownWithPendingIO(bool fast) {
net::TestCompletionCallback cb;
{
ASSERT_TRUE(CleanupCacheDir());
base::Thread cache_thread("CacheThread");
ASSERT_TRUE(cache_thread.StartWithOptions(
base::Thread::Options(MessageLoop::TYPE_IO, 0)));
disk_cache::Backend* cache;
uint32 flags = disk_cache::kNoBuffering;
if (!fast)
flags |= disk_cache::kNoRandom;
int rv = disk_cache::BackendImpl::CreateBackend(
cache_path_, false, 0, net::DISK_CACHE, flags,
cache_thread.message_loop_proxy(), NULL, &cache, cb.callback());
ASSERT_EQ(net::OK, cb.GetResult(rv));
disk_cache::Entry* entry;
rv = cache->CreateEntry("some key", &entry, cb.callback());
ASSERT_EQ(net::OK, cb.GetResult(rv));
entry->Close();
// The cache destructor will see one pending operation here.
delete cache;
}
MessageLoop::current()->RunUntilIdle();
}
TEST_F(DiskCacheBackendTest, ShutdownWithPendingIO) {
BackendShutdownWithPendingIO(false);
}
// We'll be leaking from this test.
TEST_F(DiskCacheBackendTest, ShutdownWithPendingIO_Fast) {
// The integrity test sets kNoRandom so there's a version mismatch if we don't
// force new eviction.
SetNewEviction();
BackendShutdownWithPendingIO(true);
}
// Tests that we deal with create-type pending operations.
void DiskCacheBackendTest::BackendShutdownWithPendingCreate(bool fast) {
net::TestCompletionCallback cb;
{
ASSERT_TRUE(CleanupCacheDir());
base::Thread cache_thread("CacheThread");
ASSERT_TRUE(cache_thread.StartWithOptions(
base::Thread::Options(MessageLoop::TYPE_IO, 0)));
disk_cache::Backend* cache;
disk_cache::BackendFlags flags =
fast ? disk_cache::kNone : disk_cache::kNoRandom;
int rv = disk_cache::BackendImpl::CreateBackend(
cache_path_, false, 0, net::DISK_CACHE, flags,
cache_thread.message_loop_proxy(), NULL, &cache, cb.callback());
ASSERT_EQ(net::OK, cb.GetResult(rv));
disk_cache::Entry* entry;
rv = cache->CreateEntry("some key", &entry, cb.callback());
ASSERT_EQ(net::ERR_IO_PENDING, rv);
delete cache;
EXPECT_FALSE(cb.have_result());
}
MessageLoop::current()->RunUntilIdle();
}
TEST_F(DiskCacheBackendTest, ShutdownWithPendingCreate) {
BackendShutdownWithPendingCreate(false);
}
// We'll be leaking an entry from this test.
TEST_F(DiskCacheBackendTest, ShutdownWithPendingCreate_Fast) {
// The integrity test sets kNoRandom so there's a version mismatch if we don't
// force new eviction.
SetNewEviction();
BackendShutdownWithPendingCreate(true);
}
TEST_F(DiskCacheTest, TruncatedIndex) {
ASSERT_TRUE(CleanupCacheDir());
FilePath index = cache_path_.AppendASCII("index");
ASSERT_EQ(5, file_util::WriteFile(index, "hello", 5));
base::Thread cache_thread("CacheThread");
ASSERT_TRUE(cache_thread.StartWithOptions(
base::Thread::Options(MessageLoop::TYPE_IO, 0)));
net::TestCompletionCallback cb;
disk_cache::Backend* backend = NULL;
int rv = disk_cache::BackendImpl::CreateBackend(
cache_path_, false, 0, net::DISK_CACHE, disk_cache::kNone,
cache_thread.message_loop_proxy(), NULL, &backend, cb.callback());
ASSERT_NE(net::OK, cb.GetResult(rv));
ASSERT_TRUE(backend == NULL);
delete backend;
}
void DiskCacheBackendTest::BackendSetSize() {
SetDirectMode();
const int cache_size = 0x10000; // 64 kB
SetMaxSize(cache_size);
InitCache();
std::string first("some key");
std::string second("something else");
disk_cache::Entry* entry;
ASSERT_EQ(net::OK, CreateEntry(first, &entry));
scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(cache_size));
memset(buffer->data(), 0, cache_size);
EXPECT_EQ(cache_size / 10, WriteData(entry, 0, 0, buffer, cache_size / 10,
false)) << "normal file";
EXPECT_EQ(net::ERR_FAILED, WriteData(entry, 1, 0, buffer, cache_size / 5,
false)) << "file size above the limit";
// By doubling the total size, we make this file cacheable.
SetMaxSize(cache_size * 2);
EXPECT_EQ(cache_size / 5, WriteData(entry, 1, 0, buffer, cache_size / 5,
false));
// Let's fill up the cache!.
SetMaxSize(cache_size * 10);
EXPECT_EQ(cache_size * 3 / 4, WriteData(entry, 0, 0, buffer,
cache_size * 3 / 4, false));
entry->Close();
FlushQueueForTest();
SetMaxSize(cache_size);
// The cache is 95% full.
ASSERT_EQ(net::OK, CreateEntry(second, &entry));
EXPECT_EQ(cache_size / 10, WriteData(entry, 0, 0, buffer, cache_size / 10,
false));
disk_cache::Entry* entry2;
ASSERT_EQ(net::OK, CreateEntry("an extra key", &entry2));
EXPECT_EQ(cache_size / 10, WriteData(entry2, 0, 0, buffer, cache_size / 10,
false));
entry2->Close(); // This will trigger the cache trim.
EXPECT_NE(net::OK, OpenEntry(first, &entry2));
FlushQueueForTest(); // Make sure that we are done trimming the cache.
FlushQueueForTest(); // We may have posted two tasks to evict stuff.
entry->Close();
ASSERT_EQ(net::OK, OpenEntry(second, &entry));
EXPECT_EQ(cache_size / 10, entry->GetDataSize(0));
entry->Close();
}
TEST_F(DiskCacheBackendTest, SetSize) {
BackendSetSize();
}
TEST_F(DiskCacheBackendTest, NewEvictionSetSize) {
SetNewEviction();
BackendSetSize();
}
TEST_F(DiskCacheBackendTest, MemoryOnlySetSize) {
SetMemoryOnlyMode();
BackendSetSize();
}
void DiskCacheBackendTest::BackendLoad() {
InitCache();
int seed = static_cast<int>(Time::Now().ToInternalValue());
srand(seed);
disk_cache::Entry* entries[100];
for (int i = 0; i < 100; i++) {
std::string key = GenerateKey(true);
ASSERT_EQ(net::OK, CreateEntry(key, &entries[i]));
}
EXPECT_EQ(100, cache_->GetEntryCount());
for (int i = 0; i < 100; i++) {
int source1 = rand() % 100;
int source2 = rand() % 100;
disk_cache::Entry* temp = entries[source1];
entries[source1] = entries[source2];
entries[source2] = temp;
}
for (int i = 0; i < 100; i++) {
disk_cache::Entry* entry;
ASSERT_EQ(net::OK, OpenEntry(entries[i]->GetKey(), &entry));
EXPECT_TRUE(entry == entries[i]);
entry->Close();
entries[i]->Doom();
entries[i]->Close();
}
FlushQueueForTest();
EXPECT_EQ(0, cache_->GetEntryCount());
}
TEST_F(DiskCacheBackendTest, Load) {
// Work with a tiny index table (16 entries)
SetMask(0xf);
SetMaxSize(0x100000);
BackendLoad();
}
TEST_F(DiskCacheBackendTest, NewEvictionLoad) {
SetNewEviction();
// Work with a tiny index table (16 entries)
SetMask(0xf);
SetMaxSize(0x100000);
BackendLoad();
}
TEST_F(DiskCacheBackendTest, MemoryOnlyLoad) {
// Work with a tiny index table (16 entries)
SetMaxSize(0x100000);
SetMemoryOnlyMode();
BackendLoad();
}
TEST_F(DiskCacheBackendTest, AppCacheLoad) {
SetCacheType(net::APP_CACHE);
// Work with a tiny index table (16 entries)
SetMask(0xf);
SetMaxSize(0x100000);
BackendLoad();
}
// Tests the chaining of an entry to the current head.
void DiskCacheBackendTest::BackendChain() {
SetMask(0x1); // 2-entry table.
SetMaxSize(0x3000); // 12 kB.
InitCache();
disk_cache::Entry* entry;
ASSERT_EQ(net::OK, CreateEntry("The first key", &entry));
entry->Close();
ASSERT_EQ(net::OK, CreateEntry("The Second key", &entry));
entry->Close();
}
TEST_F(DiskCacheBackendTest, Chain) {
BackendChain();
}
TEST_F(DiskCacheBackendTest, NewEvictionChain) {
SetNewEviction();
BackendChain();
}
TEST_F(DiskCacheBackendTest, AppCacheChain) {
SetCacheType(net::APP_CACHE);
BackendChain();
}
TEST_F(DiskCacheBackendTest, NewEvictionTrim) {
SetNewEviction();
SetDirectMode();
InitCache();
disk_cache::Entry* entry;
for (int i = 0; i < 100; i++) {
std::string name(StringPrintf("Key %d", i));
ASSERT_EQ(net::OK, CreateEntry(name, &entry));
entry->Close();
if (i < 90) {
// Entries 0 to 89 are in list 1; 90 to 99 are in list 0.
ASSERT_EQ(net::OK, OpenEntry(name, &entry));
entry->Close();
}
}
// The first eviction must come from list 1 (10% limit), the second must come
// from list 0.
TrimForTest(false);
EXPECT_NE(net::OK, OpenEntry("Key 0", &entry));
TrimForTest(false);
EXPECT_NE(net::OK, OpenEntry("Key 90", &entry));
// Double check that we still have the list tails.
ASSERT_EQ(net::OK, OpenEntry("Key 1", &entry));
entry->Close();
ASSERT_EQ(net::OK, OpenEntry("Key 91", &entry));
entry->Close();
}
// Before looking for invalid entries, let's check a valid entry.
void DiskCacheBackendTest::BackendValidEntry() {
SetDirectMode();
InitCache();
std::string key("Some key");
disk_cache::Entry* entry;
ASSERT_EQ(net::OK, CreateEntry(key, &entry));
const int kSize = 50;
scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize));
memset(buffer1->data(), 0, kSize);
base::strlcpy(buffer1->data(), "And the data to save", kSize);
EXPECT_EQ(kSize, WriteData(entry, 0, 0, buffer1, kSize, false));
entry->Close();
SimulateCrash();
ASSERT_EQ(net::OK, OpenEntry(key, &entry));
scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize));
memset(buffer2->data(), 0, kSize);
EXPECT_EQ(kSize, ReadData(entry, 0, 0, buffer2, kSize));
entry->Close();
EXPECT_STREQ(buffer1->data(), buffer2->data());
}
TEST_F(DiskCacheBackendTest, ValidEntry) {
BackendValidEntry();
}
TEST_F(DiskCacheBackendTest, NewEvictionValidEntry) {
SetNewEviction();
BackendValidEntry();
}
// The same logic of the previous test (ValidEntry), but this time force the
// entry to be invalid, simulating a crash in the middle.
// We'll be leaking memory from this test.
void DiskCacheBackendTest::BackendInvalidEntry() {
// Use the implementation directly... we need to simulate a crash.
SetDirectMode();
InitCache();
std::string key("Some key");
disk_cache::Entry* entry;
ASSERT_EQ(net::OK, CreateEntry(key, &entry));
const int kSize = 50;
scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize));
memset(buffer->data(), 0, kSize);
base::strlcpy(buffer->data(), "And the data to save", kSize);
EXPECT_EQ(kSize, WriteData(entry, 0, 0, buffer, kSize, false));
SimulateCrash();
EXPECT_NE(net::OK, OpenEntry(key, &entry));
EXPECT_EQ(0, cache_->GetEntryCount());
}
// This and the other intentionally leaky tests below are excluded from
// valgrind runs by naming them in the files
// net/data/valgrind/net_unittests.gtest.txt
// The scripts tools/valgrind/chrome_tests.sh
// read those files and pass the appropriate --gtest_filter to net_unittests.
TEST_F(DiskCacheBackendTest, InvalidEntry) {
BackendInvalidEntry();
}
// We'll be leaking memory from this test.
TEST_F(DiskCacheBackendTest, NewEvictionInvalidEntry) {
SetNewEviction();
BackendInvalidEntry();
}
// We'll be leaking memory from this test.
TEST_F(DiskCacheBackendTest, AppCacheInvalidEntry) {
SetCacheType(net::APP_CACHE);
BackendInvalidEntry();
}
// Almost the same test, but this time crash the cache after reading an entry.
// We'll be leaking memory from this test.
void DiskCacheBackendTest::BackendInvalidEntryRead() {
// Use the implementation directly... we need to simulate a crash.
SetDirectMode();
InitCache();
std::string key("Some key");
disk_cache::Entry* entry;
ASSERT_EQ(net::OK, CreateEntry(key, &entry));
const int kSize = 50;
scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize));
memset(buffer->data(), 0, kSize);
base::strlcpy(buffer->data(), "And the data to save", kSize);
EXPECT_EQ(kSize, WriteData(entry, 0, 0, buffer, kSize, false));
entry->Close();
ASSERT_EQ(net::OK, OpenEntry(key, &entry));
EXPECT_EQ(kSize, ReadData(entry, 0, 0, buffer, kSize));
SimulateCrash();
if (type_ == net::APP_CACHE) {
// Reading an entry and crashing should not make it dirty.
ASSERT_EQ(net::OK, OpenEntry(key, &entry));
EXPECT_EQ(1, cache_->GetEntryCount());
entry->Close();
} else {
EXPECT_NE(net::OK, OpenEntry(key, &entry));
EXPECT_EQ(0, cache_->GetEntryCount());
}
}
// We'll be leaking memory from this test.
TEST_F(DiskCacheBackendTest, InvalidEntryRead) {
BackendInvalidEntryRead();
}
// We'll be leaking memory from this test.
TEST_F(DiskCacheBackendTest, NewEvictionInvalidEntryRead) {
SetNewEviction();
BackendInvalidEntryRead();
}
// We'll be leaking memory from this test.
TEST_F(DiskCacheBackendTest, AppCacheInvalidEntryRead) {
SetCacheType(net::APP_CACHE);
BackendInvalidEntryRead();
}
// We'll be leaking memory from this test.
void DiskCacheBackendTest::BackendInvalidEntryWithLoad() {
// Work with a tiny index table (16 entries)
SetMask(0xf);
SetMaxSize(0x100000);
InitCache();
int seed = static_cast<int>(Time::Now().ToInternalValue());
srand(seed);
const int kNumEntries = 100;
disk_cache::Entry* entries[kNumEntries];
for (int i = 0; i < kNumEntries; i++) {
std::string key = GenerateKey(true);
ASSERT_EQ(net::OK, CreateEntry(key, &entries[i]));
}
EXPECT_EQ(kNumEntries, cache_->GetEntryCount());
for (int i = 0; i < kNumEntries; i++) {
int source1 = rand() % kNumEntries;
int source2 = rand() % kNumEntries;
disk_cache::Entry* temp = entries[source1];
entries[source1] = entries[source2];
entries[source2] = temp;
}
std::string keys[kNumEntries];
for (int i = 0; i < kNumEntries; i++) {
keys[i] = entries[i]->GetKey();
if (i < kNumEntries / 2)
entries[i]->Close();
}
SimulateCrash();
for (int i = kNumEntries / 2; i < kNumEntries; i++) {
disk_cache::Entry* entry;
EXPECT_NE(net::OK, OpenEntry(keys[i], &entry));
}
for (int i = 0; i < kNumEntries / 2; i++) {
disk_cache::Entry* entry;
ASSERT_EQ(net::OK, OpenEntry(keys[i], &entry));
entry->Close();
}
EXPECT_EQ(kNumEntries / 2, cache_->GetEntryCount());
}
// We'll be leaking memory from this test.
TEST_F(DiskCacheBackendTest, InvalidEntryWithLoad) {
BackendInvalidEntryWithLoad();
}
// We'll be leaking memory from this test.
TEST_F(DiskCacheBackendTest, NewEvictionInvalidEntryWithLoad) {
SetNewEviction();
BackendInvalidEntryWithLoad();
}
// We'll be leaking memory from this test.
TEST_F(DiskCacheBackendTest, AppCacheInvalidEntryWithLoad) {
SetCacheType(net::APP_CACHE);
BackendInvalidEntryWithLoad();
}
// We'll be leaking memory from this test.
void DiskCacheBackendTest::BackendTrimInvalidEntry() {
// Use the implementation directly... we need to simulate a crash.
SetDirectMode();
const int kSize = 0x3000; // 12 kB
SetMaxSize(kSize * 10);
InitCache();
std::string first("some key");
std::string second("something else");
disk_cache::Entry* entry;
ASSERT_EQ(net::OK, CreateEntry(first, &entry));
scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize));
memset(buffer->data(), 0, kSize);
EXPECT_EQ(kSize, WriteData(entry, 0, 0, buffer, kSize, false));
// Simulate a crash.
SimulateCrash();
ASSERT_EQ(net::OK, CreateEntry(second, &entry));
EXPECT_EQ(kSize, WriteData(entry, 0, 0, buffer, kSize, false));
EXPECT_EQ(2, cache_->GetEntryCount());
SetMaxSize(kSize);
entry->Close(); // Trim the cache.
FlushQueueForTest();
// If we evicted the entry in less than 20mS, we have one entry in the cache;
// if it took more than that, we posted a task and we'll delete the second
// entry too.
MessageLoop::current()->RunUntilIdle();
// This may be not thread-safe in general, but for now it's OK so add some
// ThreadSanitizer annotations to ignore data races on cache_.
// See http://crbug.com/55970
ANNOTATE_IGNORE_READS_BEGIN();
EXPECT_GE(1, cache_->GetEntryCount());
ANNOTATE_IGNORE_READS_END();
EXPECT_NE(net::OK, OpenEntry(first, &entry));
}
// We'll be leaking memory from this test.
TEST_F(DiskCacheBackendTest, TrimInvalidEntry) {
BackendTrimInvalidEntry();
}
// We'll be leaking memory from this test.
TEST_F(DiskCacheBackendTest, NewEvictionTrimInvalidEntry) {
SetNewEviction();
BackendTrimInvalidEntry();
}
// We'll be leaking memory from this test.
void DiskCacheBackendTest::BackendTrimInvalidEntry2() {
// Use the implementation directly... we need to simulate a crash.
SetDirectMode();
SetMask(0xf); // 16-entry table.
const int kSize = 0x3000; // 12 kB
SetMaxSize(kSize * 40);
InitCache();
scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize));
memset(buffer->data(), 0, kSize);
disk_cache::Entry* entry;
// Writing 32 entries to this cache chains most of them.
for (int i = 0; i < 32; i++) {
std::string key(base::StringPrintf("some key %d", i));
ASSERT_EQ(net::OK, CreateEntry(key, &entry));
EXPECT_EQ(kSize, WriteData(entry, 0, 0, buffer, kSize, false));
entry->Close();
ASSERT_EQ(net::OK, OpenEntry(key, &entry));
// Note that we are not closing the entries.
}
// Simulate a crash.
SimulateCrash();
ASSERT_EQ(net::OK, CreateEntry("Something else", &entry));
EXPECT_EQ(kSize, WriteData(entry, 0, 0, buffer, kSize, false));
FlushQueueForTest();
EXPECT_EQ(33, cache_->GetEntryCount());
SetMaxSize(kSize);
// For the new eviction code, all corrupt entries are on the second list so
// they are not going away that easy.
if (new_eviction_) {
EXPECT_EQ(net::OK, DoomAllEntries());
}
entry->Close(); // Trim the cache.
FlushQueueForTest();
// We may abort the eviction before cleaning up everything.
MessageLoop::current()->RunUntilIdle();
FlushQueueForTest();
// If it's not clear enough: we may still have eviction tasks running at this
// time, so the number of entries is changing while we read it.
ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN();
EXPECT_GE(30, cache_->GetEntryCount());
ANNOTATE_IGNORE_READS_AND_WRITES_END();
}
// We'll be leaking memory from this test.
TEST_F(DiskCacheBackendTest, TrimInvalidEntry2) {
BackendTrimInvalidEntry2();
}
// We'll be leaking memory from this test.
TEST_F(DiskCacheBackendTest, NewEvictionTrimInvalidEntry2) {
SetNewEviction();
BackendTrimInvalidEntry2();
}
void DiskCacheBackendTest::BackendEnumerations() {
InitCache();
Time initial = Time::Now();
int seed = static_cast<int>(initial.ToInternalValue());
srand(seed);
const int kNumEntries = 100;
for (int i = 0; i < kNumEntries; i++) {
std::string key = GenerateKey(true);
disk_cache::Entry* entry;
ASSERT_EQ(net::OK, CreateEntry(key, &entry));
entry->Close();
}
EXPECT_EQ(kNumEntries, cache_->GetEntryCount());
Time final = Time::Now();
disk_cache::Entry* entry;
void* iter = NULL;
int count = 0;
Time last_modified[kNumEntries];
Time last_used[kNumEntries];
while (OpenNextEntry(&iter, &entry) == net::OK) {
ASSERT_TRUE(NULL != entry);
if (count < kNumEntries) {
last_modified[count] = entry->GetLastModified();
last_used[count] = entry->GetLastUsed();
EXPECT_TRUE(initial <= last_modified[count]);
EXPECT_TRUE(final >= last_modified[count]);
}
entry->Close();
count++;
};
EXPECT_EQ(kNumEntries, count);
iter = NULL;
count = 0;
// The previous enumeration should not have changed the timestamps.
while (OpenNextEntry(&iter, &entry) == net::OK) {
ASSERT_TRUE(NULL != entry);
if (count < kNumEntries) {
EXPECT_TRUE(last_modified[count] == entry->GetLastModified());
EXPECT_TRUE(last_used[count] == entry->GetLastUsed());
}
entry->Close();
count++;
};
EXPECT_EQ(kNumEntries, count);
}
TEST_F(DiskCacheBackendTest, Enumerations) {
BackendEnumerations();
}
TEST_F(DiskCacheBackendTest, NewEvictionEnumerations) {
SetNewEviction();
BackendEnumerations();
}
TEST_F(DiskCacheBackendTest, MemoryOnlyEnumerations) {
SetMemoryOnlyMode();
BackendEnumerations();
}
TEST_F(DiskCacheBackendTest, AppCacheEnumerations) {
SetCacheType(net::APP_CACHE);
BackendEnumerations();
}
// Verifies enumerations while entries are open.
void DiskCacheBackendTest::BackendEnumerations2() {
InitCache();
const std::string first("first");
const std::string second("second");
disk_cache::Entry *entry1, *entry2;
ASSERT_EQ(net::OK, CreateEntry(first, &entry1));
entry1->Close();
ASSERT_EQ(net::OK, CreateEntry(second, &entry2));
entry2->Close();
FlushQueueForTest();
// Make sure that the timestamp is not the same.
AddDelay();
ASSERT_EQ(net::OK, OpenEntry(second, &entry1));
void* iter = NULL;
ASSERT_EQ(net::OK, OpenNextEntry(&iter, &entry2));
EXPECT_EQ(entry2->GetKey(), second);
// Two entries and the iterator pointing at "first".
entry1->Close();
entry2->Close();
// The iterator should still be valid, so we should not crash.
ASSERT_EQ(net::OK, OpenNextEntry(&iter, &entry2));
EXPECT_EQ(entry2->GetKey(), first);
entry2->Close();
cache_->EndEnumeration(&iter);
// Modify the oldest entry and get the newest element.
ASSERT_EQ(net::OK, OpenEntry(first, &entry1));
EXPECT_EQ(0, WriteData(entry1, 0, 200, NULL, 0, false));
ASSERT_EQ(net::OK, OpenNextEntry(&iter, &entry2));
if (type_ == net::APP_CACHE) {
// The list is not updated.
EXPECT_EQ(entry2->GetKey(), second);
} else {
EXPECT_EQ(entry2->GetKey(), first);
}
entry1->Close();
entry2->Close();
cache_->EndEnumeration(&iter);
}
TEST_F(DiskCacheBackendTest, Enumerations2) {
BackendEnumerations2();
}
TEST_F(DiskCacheBackendTest, NewEvictionEnumerations2) {
SetNewEviction();
BackendEnumerations2();
}
TEST_F(DiskCacheBackendTest, MemoryOnlyEnumerations2) {
SetMemoryOnlyMode();
BackendEnumerations2();
}
TEST_F(DiskCacheBackendTest, AppCacheEnumerations2) {
SetCacheType(net::APP_CACHE);
BackendEnumerations2();
}
// Verify handling of invalid entries while doing enumerations.
// We'll be leaking memory from this test.
void DiskCacheBackendTest::BackendInvalidEntryEnumeration() {
// Use the implementation directly... we need to simulate a crash.
SetDirectMode();
InitCache();
std::string key("Some key");
disk_cache::Entry *entry, *entry1, *entry2;
ASSERT_EQ(net::OK, CreateEntry(key, &entry1));
const int kSize = 50;
scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize));
memset(buffer1->data(), 0, kSize);
base::strlcpy(buffer1->data(), "And the data to save", kSize);
EXPECT_EQ(kSize, WriteData(entry1, 0, 0, buffer1, kSize, false));
entry1->Close();
ASSERT_EQ(net::OK, OpenEntry(key, &entry1));
EXPECT_EQ(kSize, ReadData(entry1, 0, 0, buffer1, kSize));
std::string key2("Another key");
ASSERT_EQ(net::OK, CreateEntry(key2, &entry2));
entry2->Close();
ASSERT_EQ(2, cache_->GetEntryCount());
SimulateCrash();
void* iter = NULL;
int count = 0;
while (OpenNextEntry(&iter, &entry) == net::OK) {
ASSERT_TRUE(NULL != entry);
EXPECT_EQ(key2, entry->GetKey());
entry->Close();
count++;
};
EXPECT_EQ(1, count);
EXPECT_EQ(1, cache_->GetEntryCount());
}
// We'll be leaking memory from this test.
TEST_F(DiskCacheBackendTest, InvalidEntryEnumeration) {
BackendInvalidEntryEnumeration();
}
// We'll be leaking memory from this test.
TEST_F(DiskCacheBackendTest, NewEvictionInvalidEntryEnumeration) {
SetNewEviction();
BackendInvalidEntryEnumeration();
}
// Tests that if for some reason entries are modified close to existing cache
// iterators, we don't generate fatal errors or reset the cache.
void DiskCacheBackendTest::BackendFixEnumerators() {
InitCache();
int seed = static_cast<int>(Time::Now().ToInternalValue());
srand(seed);
const int kNumEntries = 10;
for (int i = 0; i < kNumEntries; i++) {
std::string key = GenerateKey(true);
disk_cache::Entry* entry;
ASSERT_EQ(net::OK, CreateEntry(key, &entry));
entry->Close();
}
EXPECT_EQ(kNumEntries, cache_->GetEntryCount());
disk_cache::Entry *entry1, *entry2;
void* iter1 = NULL;
void* iter2 = NULL;
ASSERT_EQ(net::OK, OpenNextEntry(&iter1, &entry1));
ASSERT_TRUE(NULL != entry1);
entry1->Close();
entry1 = NULL;
// Let's go to the middle of the list.
for (int i = 0; i < kNumEntries / 2; i++) {
if (entry1)
entry1->Close();
ASSERT_EQ(net::OK, OpenNextEntry(&iter1, &entry1));
ASSERT_TRUE(NULL != entry1);
ASSERT_EQ(net::OK, OpenNextEntry(&iter2, &entry2));
ASSERT_TRUE(NULL != entry2);
entry2->Close();
}
// Messing up with entry1 will modify entry2->next.
entry1->Doom();
ASSERT_EQ(net::OK, OpenNextEntry(&iter2, &entry2));
ASSERT_TRUE(NULL != entry2);
// The link entry2->entry1 should be broken.
EXPECT_NE(entry2->GetKey(), entry1->GetKey());
entry1->Close();
entry2->Close();
// And the second iterator should keep working.
ASSERT_EQ(net::OK, OpenNextEntry(&iter2, &entry2));
ASSERT_TRUE(NULL != entry2);
entry2->Close();
cache_->EndEnumeration(&iter1);
cache_->EndEnumeration(&iter2);
}
TEST_F(DiskCacheBackendTest, FixEnumerators) {
BackendFixEnumerators();
}
TEST_F(DiskCacheBackendTest, NewEvictionFixEnumerators) {
SetNewEviction();
BackendFixEnumerators();
}
void DiskCacheBackendTest::BackendDoomRecent() {
InitCache();
disk_cache::Entry *entry;
ASSERT_EQ(net::OK, CreateEntry("first", &entry));
entry->Close();
ASSERT_EQ(net::OK, CreateEntry("second", &entry));
entry->Close();
FlushQueueForTest();
AddDelay();
Time middle = Time::Now();
ASSERT_EQ(net::OK, CreateEntry("third", &entry));
entry->Close();
ASSERT_EQ(net::OK, CreateEntry("fourth", &entry));
entry->Close();
FlushQueueForTest();
AddDelay();
Time final = Time::Now();
ASSERT_EQ(4, cache_->GetEntryCount());
EXPECT_EQ(net::OK, DoomEntriesSince(final));
ASSERT_EQ(4, cache_->GetEntryCount());
EXPECT_EQ(net::OK, DoomEntriesSince(middle));
ASSERT_EQ(2, cache_->GetEntryCount());
ASSERT_EQ(net::OK, OpenEntry("second", &entry));
entry->Close();
}
TEST_F(DiskCacheBackendTest, DoomRecent) {
BackendDoomRecent();
}
TEST_F(DiskCacheBackendTest, NewEvictionDoomRecent) {
SetNewEviction();
BackendDoomRecent();
}
TEST_F(DiskCacheBackendTest, MemoryOnlyDoomRecent) {
SetMemoryOnlyMode();
BackendDoomRecent();
}
void DiskCacheBackendTest::BackendDoomBetween() {
InitCache();
disk_cache::Entry *entry;
ASSERT_EQ(net::OK, CreateEntry("first", &entry));
entry->Close();
FlushQueueForTest();
AddDelay();
Time middle_start = Time::Now();
ASSERT_EQ(net::OK, CreateEntry("second", &entry));
entry->Close();
ASSERT_EQ(net::OK, CreateEntry("third", &entry));
entry->Close();
FlushQueueForTest();
AddDelay();
Time middle_end = Time::Now();
ASSERT_EQ(net::OK, CreateEntry("fourth", &entry));
entry->Close();
ASSERT_EQ(net::OK, OpenEntry("fourth", &entry));
entry->Close();
FlushQueueForTest();
AddDelay();
Time final = Time::Now();
ASSERT_EQ(4, cache_->GetEntryCount());
EXPECT_EQ(net::OK, DoomEntriesBetween(middle_start, middle_end));
ASSERT_EQ(2, cache_->GetEntryCount());
ASSERT_EQ(net::OK, OpenEntry("fourth", &entry));
entry->Close();
EXPECT_EQ(net::OK, DoomEntriesBetween(middle_start, final));
ASSERT_EQ(1, cache_->GetEntryCount());
ASSERT_EQ(net::OK, OpenEntry("first", &entry));
entry->Close();
}
TEST_F(DiskCacheBackendTest, DoomBetween) {
BackendDoomBetween();
}
TEST_F(DiskCacheBackendTest, NewEvictionDoomBetween) {
SetNewEviction();
BackendDoomBetween();
}
TEST_F(DiskCacheBackendTest, MemoryOnlyDoomBetween) {
SetMemoryOnlyMode();
BackendDoomBetween();
}
void DiskCacheBackendTest::BackendTransaction(const std::string& name,
int num_entries, bool load) {
success_ = false;
ASSERT_TRUE(CopyTestCache(name));
DisableFirstCleanup();
uint32 mask;
if (load) {
mask = 0xf;
SetMaxSize(0x100000);
} else {
// Clear the settings from the previous run.
mask = 0;
SetMaxSize(0);
}
SetMask(mask);
InitCache();
ASSERT_EQ(num_entries + 1, cache_->GetEntryCount());
std::string key("the first key");
disk_cache::Entry* entry1;
ASSERT_NE(net::OK, OpenEntry(key, &entry1));
int actual = cache_->GetEntryCount();
if (num_entries != actual) {
ASSERT_TRUE(load);
// If there is a heavy load, inserting an entry will make another entry
// dirty (on the hash bucket) so two entries are removed.
ASSERT_EQ(num_entries - 1, actual);
}
delete cache_;
cache_ = NULL;
cache_impl_ = NULL;
ASSERT_TRUE(CheckCacheIntegrity(cache_path_, new_eviction_, mask));
success_ = true;
}
void DiskCacheBackendTest::BackendRecoverInsert() {
// Tests with an empty cache.
BackendTransaction("insert_empty1", 0, false);
ASSERT_TRUE(success_) << "insert_empty1";
BackendTransaction("insert_empty2", 0, false);
ASSERT_TRUE(success_) << "insert_empty2";
BackendTransaction("insert_empty3", 0, false);
ASSERT_TRUE(success_) << "insert_empty3";
// Tests with one entry on the cache.
BackendTransaction("insert_one1", 1, false);
ASSERT_TRUE(success_) << "insert_one1";
BackendTransaction("insert_one2", 1, false);
ASSERT_TRUE(success_) << "insert_one2";
BackendTransaction("insert_one3", 1, false);
ASSERT_TRUE(success_) << "insert_one3";
// Tests with one hundred entries on the cache, tiny index.
BackendTransaction("insert_load1", 100, true);
ASSERT_TRUE(success_) << "insert_load1";
BackendTransaction("insert_load2", 100, true);
ASSERT_TRUE(success_) << "insert_load2";
}
TEST_F(DiskCacheBackendTest, RecoverInsert) {
BackendRecoverInsert();
}
TEST_F(DiskCacheBackendTest, NewEvictionRecoverInsert) {
SetNewEviction();
BackendRecoverInsert();
}
void DiskCacheBackendTest::BackendRecoverRemove() {
// Removing the only element.
BackendTransaction("remove_one1", 0, false);
ASSERT_TRUE(success_) << "remove_one1";
BackendTransaction("remove_one2", 0, false);
ASSERT_TRUE(success_) << "remove_one2";
BackendTransaction("remove_one3", 0, false);
ASSERT_TRUE(success_) << "remove_one3";
// Removing the head.
BackendTransaction("remove_head1", 1, false);
ASSERT_TRUE(success_) << "remove_head1";
BackendTransaction("remove_head2", 1, false);
ASSERT_TRUE(success_) << "remove_head2";
BackendTransaction("remove_head3", 1, false);
ASSERT_TRUE(success_) << "remove_head3";
// Removing the tail.
BackendTransaction("remove_tail1", 1, false);
ASSERT_TRUE(success_) << "remove_tail1";
BackendTransaction("remove_tail2", 1, false);
ASSERT_TRUE(success_) << "remove_tail2";
BackendTransaction("remove_tail3", 1, false);
ASSERT_TRUE(success_) << "remove_tail3";
// Removing with one hundred entries on the cache, tiny index.
BackendTransaction("remove_load1", 100, true);
ASSERT_TRUE(success_) << "remove_load1";
BackendTransaction("remove_load2", 100, true);
ASSERT_TRUE(success_) << "remove_load2";
BackendTransaction("remove_load3", 100, true);
ASSERT_TRUE(success_) << "remove_load3";
// This case cannot be reverted.
BackendTransaction("remove_one4", 0, false);
ASSERT_TRUE(success_) << "remove_one4";
BackendTransaction("remove_head4", 1, false);
ASSERT_TRUE(success_) << "remove_head4";
}
TEST_F(DiskCacheBackendTest, RecoverRemove) {
BackendRecoverRemove();
}
TEST_F(DiskCacheBackendTest, NewEvictionRecoverRemove) {
SetNewEviction();
BackendRecoverRemove();
}
void DiskCacheBackendTest::BackendRecoverWithEviction() {
success_ = false;
ASSERT_TRUE(CopyTestCache("insert_load1"));
DisableFirstCleanup();
SetMask(0xf);
SetMaxSize(0x1000);
// We should not crash here.
InitCache();
DisableIntegrityCheck();
}
TEST_F(DiskCacheBackendTest, RecoverWithEviction) {
BackendRecoverWithEviction();
}
TEST_F(DiskCacheBackendTest, NewEvictionRecoverWithEviction) {
SetNewEviction();
BackendRecoverWithEviction();
}
// Tests dealing with cache files that cannot be recovered.
TEST_F(DiskCacheTest, DeleteOld) {
ASSERT_TRUE(CopyTestCache("wrong_version"));
base::Thread cache_thread("CacheThread");
ASSERT_TRUE(cache_thread.StartWithOptions(
base::Thread::Options(MessageLoop::TYPE_IO, 0)));
net::TestCompletionCallback cb;
disk_cache::Backend* cache;
int rv = disk_cache::BackendImpl::CreateBackend(
cache_path_, true, 0, net::DISK_CACHE, disk_cache::kNoRandom,
cache_thread.message_loop_proxy(), NULL, &cache, cb.callback());
ASSERT_EQ(net::OK, cb.GetResult(rv));
MessageLoopHelper helper;
ASSERT_TRUE(NULL != cache);
ASSERT_EQ(0, cache->GetEntryCount());
delete cache;
}
// We want to be able to deal with messed up entries on disk.
void DiskCacheBackendTest::BackendInvalidEntry2() {
ASSERT_TRUE(CopyTestCache("bad_entry"));
DisableFirstCleanup();
InitCache();
disk_cache::Entry *entry1, *entry2;
ASSERT_EQ(net::OK, OpenEntry("the first key", &entry1));
EXPECT_NE(net::OK, OpenEntry("some other key", &entry2));
entry1->Close();
// CheckCacheIntegrity will fail at this point.
DisableIntegrityCheck();
}
TEST_F(DiskCacheBackendTest, InvalidEntry2) {
BackendInvalidEntry2();
}
TEST_F(DiskCacheBackendTest, NewEvictionInvalidEntry2) {
SetNewEviction();
BackendInvalidEntry2();
}
// Tests that we don't crash or hang when enumerating this cache.
void DiskCacheBackendTest::BackendInvalidEntry3() {
SetMask(0x1); // 2-entry table.
SetMaxSize(0x3000); // 12 kB.
DisableFirstCleanup();
InitCache();
disk_cache::Entry* entry;
void* iter = NULL;
while (OpenNextEntry(&iter, &entry) == net::OK) {
entry->Close();
}
}
TEST_F(DiskCacheBackendTest, InvalidEntry3) {
ASSERT_TRUE(CopyTestCache("dirty_entry3"));
BackendInvalidEntry3();
}
TEST_F(DiskCacheBackendTest, NewEvictionInvalidEntry3) {
ASSERT_TRUE(CopyTestCache("dirty_entry4"));
SetNewEviction();
BackendInvalidEntry3();
DisableIntegrityCheck();
}
// Test that we handle a dirty entry on the LRU list, already replaced with
// the same key, and with hash collisions.
TEST_F(DiskCacheBackendTest, InvalidEntry4) {
ASSERT_TRUE(CopyTestCache("dirty_entry3"));
SetMask(0x1); // 2-entry table.
SetMaxSize(0x3000); // 12 kB.
DisableFirstCleanup();
InitCache();
TrimForTest(false);
}
// Test that we handle a dirty entry on the deleted list, already replaced with
// the same key, and with hash collisions.
TEST_F(DiskCacheBackendTest, InvalidEntry5) {
ASSERT_TRUE(CopyTestCache("dirty_entry4"));
SetNewEviction();
SetMask(0x1); // 2-entry table.
SetMaxSize(0x3000); // 12 kB.
DisableFirstCleanup();
InitCache();
TrimDeletedListForTest(false);
}
TEST_F(DiskCacheBackendTest, InvalidEntry6) {
ASSERT_TRUE(CopyTestCache("dirty_entry5"));
SetMask(0x1); // 2-entry table.
SetMaxSize(0x3000); // 12 kB.
DisableFirstCleanup();
InitCache();
// There is a dirty entry (but marked as clean) at the end, pointing to a
// deleted entry through the hash collision list. We should not re-insert the
// deleted entry into the index table.
TrimForTest(false);
// The cache should be clean (as detected by CheckCacheIntegrity).
}
// Tests that we don't hang when there is a loop on the hash collision list.
// The test cache could be a result of bug 69135.
TEST_F(DiskCacheBackendTest, BadNextEntry1) {
ASSERT_TRUE(CopyTestCache("list_loop2"));
SetMask(0x1); // 2-entry table.
SetMaxSize(0x3000); // 12 kB.
DisableFirstCleanup();
InitCache();
// The second entry points at itselft, and the first entry is not accessible
// though the index, but it is at the head of the LRU.
disk_cache::Entry* entry;
ASSERT_EQ(net::OK, CreateEntry("The first key", &entry));
entry->Close();
TrimForTest(false);
TrimForTest(false);
ASSERT_EQ(net::OK, OpenEntry("The first key", &entry));
entry->Close();
EXPECT_EQ(1, cache_->GetEntryCount());
}
// Tests that we don't hang when there is a loop on the hash collision list.
// The test cache could be a result of bug 69135.
TEST_F(DiskCacheBackendTest, BadNextEntry2) {
ASSERT_TRUE(CopyTestCache("list_loop3"));
SetMask(0x1); // 2-entry table.
SetMaxSize(0x3000); // 12 kB.
DisableFirstCleanup();
InitCache();
// There is a wide loop of 5 entries.
disk_cache::Entry* entry;
ASSERT_NE(net::OK, OpenEntry("Not present key", &entry));
}
TEST_F(DiskCacheBackendTest, NewEvictionInvalidEntry6) {
ASSERT_TRUE(CopyTestCache("bad_rankings3"));
DisableFirstCleanup();
SetNewEviction();
InitCache();
// The second entry is dirty, but removing it should not corrupt the list.
disk_cache::Entry* entry;
ASSERT_NE(net::OK, OpenEntry("the second key", &entry));
ASSERT_EQ(net::OK, OpenEntry("the first key", &entry));
// This should not delete the cache.
entry->Doom();
FlushQueueForTest();
entry->Close();
ASSERT_EQ(net::OK, OpenEntry("some other key", &entry));
entry->Close();
}
// Tests handling of corrupt entries by keeping the rankings node around, with
// a fatal failure.
void DiskCacheBackendTest::BackendInvalidEntry7() {
SetDirectMode();
const int kSize = 0x3000; // 12 kB.
SetMaxSize(kSize * 10);
InitCache();
std::string first("some key");
std::string second("something else");
disk_cache::Entry* entry;
ASSERT_EQ(net::OK, CreateEntry(first, &entry));
entry->Close();
ASSERT_EQ(net::OK, CreateEntry(second, &entry));
// Corrupt this entry.
disk_cache::EntryImpl* entry_impl =
static_cast<disk_cache::EntryImpl*>(entry);
entry_impl->rankings()->Data()->next = 0;
entry_impl->rankings()->Store();
entry->Close();
FlushQueueForTest();
EXPECT_EQ(2, cache_->GetEntryCount());
// This should detect the bad entry.
EXPECT_NE(net::OK, OpenEntry(second, &entry));
EXPECT_EQ(1, cache_->GetEntryCount());
// We should delete the cache. The list still has a corrupt node.
void* iter = NULL;
EXPECT_NE(net::OK, OpenNextEntry(&iter, &entry));
FlushQueueForTest();
EXPECT_EQ(0, cache_->GetEntryCount());
}
TEST_F(DiskCacheBackendTest, InvalidEntry7) {
BackendInvalidEntry7();
}
TEST_F(DiskCacheBackendTest, NewEvictionInvalidEntry7) {
SetNewEviction();
BackendInvalidEntry7();
}
// Tests handling of corrupt entries by keeping the rankings node around, with
// a non fatal failure.
void DiskCacheBackendTest::BackendInvalidEntry8() {
SetDirectMode();
const int kSize = 0x3000; // 12 kB
SetMaxSize(kSize * 10);
InitCache();
std::string first("some key");
std::string second("something else");
disk_cache::Entry* entry;
ASSERT_EQ(net::OK, CreateEntry(first, &entry));
entry->Close();
ASSERT_EQ(net::OK, CreateEntry(second, &entry));
// Corrupt this entry.
disk_cache::EntryImpl* entry_impl =
static_cast<disk_cache::EntryImpl*>(entry);
entry_impl->rankings()->Data()->contents = 0;
entry_impl->rankings()->Store();
entry->Close();
FlushQueueForTest();
EXPECT_EQ(2, cache_->GetEntryCount());
// This should detect the bad entry.
EXPECT_NE(net::OK, OpenEntry(second, &entry));
EXPECT_EQ(1, cache_->GetEntryCount());
// We should not delete the cache.
void* iter = NULL;
ASSERT_EQ(net::OK, OpenNextEntry(&iter, &entry));
entry->Close();
EXPECT_NE(net::OK, OpenNextEntry(&iter, &entry));
EXPECT_EQ(1, cache_->GetEntryCount());
}
TEST_F(DiskCacheBackendTest, InvalidEntry8) {
BackendInvalidEntry8();
}
TEST_F(DiskCacheBackendTest, NewEvictionInvalidEntry8) {
SetNewEviction();
BackendInvalidEntry8();
}
// Tests handling of corrupt entries detected by enumerations. Note that these
// tests (xx9 to xx11) are basically just going though slightly different
// codepaths so they are tighlty coupled with the code, but that is better than
// not testing error handling code.
void DiskCacheBackendTest::BackendInvalidEntry9(bool eviction) {
SetDirectMode();
const int kSize = 0x3000; // 12 kB.
SetMaxSize(kSize * 10);
InitCache();
std::string first("some key");
std::string second("something else");
disk_cache::Entry* entry;
ASSERT_EQ(net::OK, CreateEntry(first, &entry));
entry->Close();
ASSERT_EQ(net::OK, CreateEntry(second, &entry));
// Corrupt this entry.
disk_cache::EntryImpl* entry_impl =
static_cast<disk_cache::EntryImpl*>(entry);
entry_impl->entry()->Data()->state = 0xbad;
entry_impl->entry()->Store();
entry->Close();
FlushQueueForTest();
EXPECT_EQ(2, cache_->GetEntryCount());
if (eviction) {
TrimForTest(false);
EXPECT_EQ(1, cache_->GetEntryCount());
TrimForTest(false);
EXPECT_EQ(1, cache_->GetEntryCount());
} else {
// We should detect the problem through the list, but we should not delete
// the entry, just fail the iteration.
void* iter = NULL;
EXPECT_NE(net::OK, OpenNextEntry(&iter, &entry));
// Now a full iteration will work, and return one entry.
ASSERT_EQ(net::OK, OpenNextEntry(&iter, &entry));
entry->Close();
EXPECT_NE(net::OK, OpenNextEntry(&iter, &entry));
// This should detect what's left of the bad entry.
EXPECT_NE(net::OK, OpenEntry(second, &entry));
EXPECT_EQ(2, cache_->GetEntryCount());
}
DisableIntegrityCheck();
}
TEST_F(DiskCacheBackendTest, InvalidEntry9) {
BackendInvalidEntry9(false);
}
TEST_F(DiskCacheBackendTest, NewEvictionInvalidEntry9) {
SetNewEviction();
BackendInvalidEntry9(false);
}
TEST_F(DiskCacheBackendTest, TrimInvalidEntry9) {
BackendInvalidEntry9(true);
}
TEST_F(DiskCacheBackendTest, NewEvictionTrimInvalidEntry9) {
SetNewEviction();
BackendInvalidEntry9(true);
}
// Tests handling of corrupt entries detected by enumerations.
void DiskCacheBackendTest::BackendInvalidEntry10(bool eviction) {
SetDirectMode();
const int kSize = 0x3000; // 12 kB.
SetMaxSize(kSize * 10);
SetNewEviction();
InitCache();
std::string first("some key");
std::string second("something else");
disk_cache::Entry* entry;
ASSERT_EQ(net::OK, CreateEntry(first, &entry));
entry->Close();
ASSERT_EQ(net::OK, OpenEntry(first, &entry));
EXPECT_EQ(0, WriteData(entry, 0, 200, NULL, 0, false));
entry->Close();
ASSERT_EQ(net::OK, CreateEntry(second, &entry));
// Corrupt this entry.
disk_cache::EntryImpl* entry_impl =
static_cast<disk_cache::EntryImpl*>(entry);
entry_impl->entry()->Data()->state = 0xbad;
entry_impl->entry()->Store();
entry->Close();
ASSERT_EQ(net::OK, CreateEntry("third", &entry));
entry->Close();
EXPECT_EQ(3, cache_->GetEntryCount());
// We have:
// List 0: third -> second (bad).
// List 1: first.
if (eviction) {
// Detection order: second -> first -> third.
TrimForTest(false);
EXPECT_EQ(3, cache_->GetEntryCount());
TrimForTest(false);
EXPECT_EQ(2, cache_->GetEntryCount());
TrimForTest(false);
EXPECT_EQ(1, cache_->GetEntryCount());
} else {
// Detection order: third -> second -> first.
// We should detect the problem through the list, but we should not delete
// the entry.
void* iter = NULL;
ASSERT_EQ(net::OK, OpenNextEntry(&iter, &entry));
entry->Close();
ASSERT_EQ(net::OK, OpenNextEntry(&iter, &entry));
EXPECT_EQ(first, entry->GetKey());
entry->Close();
EXPECT_NE(net::OK, OpenNextEntry(&iter, &entry));
}
DisableIntegrityCheck();
}
TEST_F(DiskCacheBackendTest, InvalidEntry10) {
BackendInvalidEntry10(false);
}
TEST_F(DiskCacheBackendTest, TrimInvalidEntry10) {
BackendInvalidEntry10(true);
}
// Tests handling of corrupt entries detected by enumerations.
void DiskCacheBackendTest::BackendInvalidEntry11(bool eviction) {
SetDirectMode();
const int kSize = 0x3000; // 12 kB.
SetMaxSize(kSize * 10);
SetNewEviction();
InitCache();
std::string first("some key");
std::string second("something else");
disk_cache::Entry* entry;
ASSERT_EQ(net::OK, CreateEntry(first, &entry));
entry->Close();
ASSERT_EQ(net::OK, OpenEntry(first, &entry));
EXPECT_EQ(0, WriteData(entry, 0, 200, NULL, 0, false));
entry->Close();
ASSERT_EQ(net::OK, CreateEntry(second, &entry));
entry->Close();
ASSERT_EQ(net::OK, OpenEntry(second, &entry));
EXPECT_EQ(0, WriteData(entry, 0, 200, NULL, 0, false));
// Corrupt this entry.
disk_cache::EntryImpl* entry_impl =
static_cast<disk_cache::EntryImpl*>(entry);
entry_impl->entry()->Data()->state = 0xbad;
entry_impl->entry()->Store();
entry->Close();
ASSERT_EQ(net::OK, CreateEntry("third", &entry));
entry->Close();
FlushQueueForTest();
EXPECT_EQ(3, cache_->GetEntryCount());
// We have:
// List 0: third.
// List 1: second (bad) -> first.
if (eviction) {
// Detection order: third -> first -> second.
TrimForTest(false);
EXPECT_EQ(2, cache_->GetEntryCount());
TrimForTest(false);
EXPECT_EQ(1, cache_->GetEntryCount());
TrimForTest(false);
EXPECT_EQ(1, cache_->GetEntryCount());
} else {
// Detection order: third -> second.
// We should detect the problem through the list, but we should not delete
// the entry, just fail the iteration.
void* iter = NULL;
ASSERT_EQ(net::OK, OpenNextEntry(&iter, &entry));
entry->Close();
EXPECT_NE(net::OK, OpenNextEntry(&iter, &entry));
// Now a full iteration will work, and return two entries.
ASSERT_EQ(net::OK, OpenNextEntry(&iter, &entry));
entry->Close();
ASSERT_EQ(net::OK, OpenNextEntry(&iter, &entry));
entry->Close();
EXPECT_NE(net::OK, OpenNextEntry(&iter, &entry));
}
DisableIntegrityCheck();
}
TEST_F(DiskCacheBackendTest, InvalidEntry11) {
BackendInvalidEntry11(false);
}
TEST_F(DiskCacheBackendTest, TrimInvalidEntry11) {
BackendInvalidEntry11(true);
}
// Tests handling of corrupt entries in the middle of a long eviction run.
void DiskCacheBackendTest::BackendTrimInvalidEntry12() {
SetDirectMode();
const int kSize = 0x3000; // 12 kB
SetMaxSize(kSize * 10);
InitCache();
std::string first("some key");
std::string second("something else");
disk_cache::Entry* entry;
ASSERT_EQ(net::OK, CreateEntry(first, &entry));
entry->Close();
ASSERT_EQ(net::OK, CreateEntry(second, &entry));
// Corrupt this entry.
disk_cache::EntryImpl* entry_impl =
static_cast<disk_cache::EntryImpl*>(entry);
entry_impl->entry()->Data()->state = 0xbad;
entry_impl->entry()->Store();
entry->Close();
ASSERT_EQ(net::OK, CreateEntry("third", &entry));
entry->Close();
ASSERT_EQ(net::OK, CreateEntry("fourth", &entry));
TrimForTest(true);
EXPECT_EQ(1, cache_->GetEntryCount());
entry->Close();
DisableIntegrityCheck();
}
TEST_F(DiskCacheBackendTest, TrimInvalidEntry12) {
BackendTrimInvalidEntry12();
}
TEST_F(DiskCacheBackendTest, NewEvictionTrimInvalidEntry12) {
SetNewEviction();
BackendTrimInvalidEntry12();
}
// We want to be able to deal with messed up entries on disk.
void DiskCacheBackendTest::BackendInvalidRankings2() {
ASSERT_TRUE(CopyTestCache("bad_rankings"));
DisableFirstCleanup();
InitCache();
disk_cache::Entry *entry1, *entry2;
EXPECT_NE(net::OK, OpenEntry("the first key", &entry1));
ASSERT_EQ(net::OK, OpenEntry("some other key", &entry2));
entry2->Close();
// CheckCacheIntegrity will fail at this point.
DisableIntegrityCheck();
}
TEST_F(DiskCacheBackendTest, InvalidRankings2) {
BackendInvalidRankings2();
}
TEST_F(DiskCacheBackendTest, NewEvictionInvalidRankings2) {
SetNewEviction();
BackendInvalidRankings2();
}
// If the LRU is corrupt, we delete the cache.
void DiskCacheBackendTest::BackendInvalidRankings() {
disk_cache::Entry* entry;
void* iter = NULL;
ASSERT_EQ(net::OK, OpenNextEntry(&iter, &entry));
entry->Close();
EXPECT_EQ(2, cache_->GetEntryCount());
EXPECT_NE(net::OK, OpenNextEntry(&iter, &entry));
FlushQueueForTest(); // Allow the restart to finish.
EXPECT_EQ(0, cache_->GetEntryCount());
}
TEST_F(DiskCacheBackendTest, InvalidRankingsSuccess) {
ASSERT_TRUE(CopyTestCache("bad_rankings"));
DisableFirstCleanup();
SetDirectMode();
InitCache();
BackendInvalidRankings();
}
TEST_F(DiskCacheBackendTest, NewEvictionInvalidRankingsSuccess) {
ASSERT_TRUE(CopyTestCache("bad_rankings"));
DisableFirstCleanup();
SetDirectMode();
SetNewEviction();
InitCache();
BackendInvalidRankings();
}
TEST_F(DiskCacheBackendTest, InvalidRankingsFailure) {
ASSERT_TRUE(CopyTestCache("bad_rankings"));
DisableFirstCleanup();
SetDirectMode();
InitCache();
SetTestMode(); // Fail cache reinitialization.
BackendInvalidRankings();
}
TEST_F(DiskCacheBackendTest, NewEvictionInvalidRankingsFailure) {
ASSERT_TRUE(CopyTestCache("bad_rankings"));
DisableFirstCleanup();
SetDirectMode();
SetNewEviction();
InitCache();
SetTestMode(); // Fail cache reinitialization.
BackendInvalidRankings();
}
// If the LRU is corrupt and we have open entries, we disable the cache.
void DiskCacheBackendTest::BackendDisable() {
disk_cache::Entry *entry1, *entry2;
void* iter = NULL;
ASSERT_EQ(net::OK, OpenNextEntry(&iter, &entry1));
EXPECT_NE(net::OK, OpenNextEntry(&iter, &entry2));
EXPECT_EQ(0, cache_->GetEntryCount());
EXPECT_NE(net::OK, CreateEntry("Something new", &entry2));
entry1->Close();
FlushQueueForTest(); // Flushing the Close posts a task to restart the cache.
FlushQueueForTest(); // This one actually allows that task to complete.
EXPECT_EQ(0, cache_->GetEntryCount());
}
TEST_F(DiskCacheBackendTest, DisableSuccess) {
ASSERT_TRUE(CopyTestCache("bad_rankings"));
DisableFirstCleanup();
SetDirectMode();
InitCache();
BackendDisable();
}
TEST_F(DiskCacheBackendTest, NewEvictionDisableSuccess) {
ASSERT_TRUE(CopyTestCache("bad_rankings"));
DisableFirstCleanup();
SetDirectMode();
SetNewEviction();
InitCache();
BackendDisable();
}
TEST_F(DiskCacheBackendTest, DisableFailure) {
ASSERT_TRUE(CopyTestCache("bad_rankings"));
DisableFirstCleanup();
SetDirectMode();
InitCache();
SetTestMode(); // Fail cache reinitialization.
BackendDisable();
}
TEST_F(DiskCacheBackendTest, NewEvictionDisableFailure) {
ASSERT_TRUE(CopyTestCache("bad_rankings"));
DisableFirstCleanup();
SetDirectMode();
SetNewEviction();
InitCache();
SetTestMode(); // Fail cache reinitialization.
BackendDisable();
}
// This is another type of corruption on the LRU; disable the cache.
void DiskCacheBackendTest::BackendDisable2() {
EXPECT_EQ(8, cache_->GetEntryCount());
disk_cache::Entry* entry;
void* iter = NULL;
int count = 0;
while (OpenNextEntry(&iter, &entry) == net::OK) {
ASSERT_TRUE(NULL != entry);
entry->Close();
count++;
ASSERT_LT(count, 9);
};
FlushQueueForTest();
EXPECT_EQ(0, cache_->GetEntryCount());
}
TEST_F(DiskCacheBackendTest, DisableSuccess2) {
ASSERT_TRUE(CopyTestCache("list_loop"));
DisableFirstCleanup();
SetDirectMode();
InitCache();
BackendDisable2();
}
TEST_F(DiskCacheBackendTest, NewEvictionDisableSuccess2) {
ASSERT_TRUE(CopyTestCache("list_loop"));
DisableFirstCleanup();
SetNewEviction();
SetDirectMode();
InitCache();
BackendDisable2();
}
TEST_F(DiskCacheBackendTest, DisableFailure2) {
ASSERT_TRUE(CopyTestCache("list_loop"));
DisableFirstCleanup();
SetDirectMode();
InitCache();
SetTestMode(); // Fail cache reinitialization.
BackendDisable2();
}
TEST_F(DiskCacheBackendTest, NewEvictionDisableFailure2) {
ASSERT_TRUE(CopyTestCache("list_loop"));
DisableFirstCleanup();
SetDirectMode();
SetNewEviction();
InitCache();
SetTestMode(); // Fail cache reinitialization.
BackendDisable2();
}
// If the index size changes when we disable the cache, we should not crash.
void DiskCacheBackendTest::BackendDisable3() {
disk_cache::Entry *entry1, *entry2;
void* iter = NULL;
EXPECT_EQ(2, cache_->GetEntryCount());
ASSERT_EQ(net::OK, OpenNextEntry(&iter, &entry1));
entry1->Close();
EXPECT_NE(net::OK, OpenNextEntry(&iter, &entry2));
FlushQueueForTest();
ASSERT_EQ(net::OK, CreateEntry("Something new", &entry2));
entry2->Close();
EXPECT_EQ(1, cache_->GetEntryCount());
}
TEST_F(DiskCacheBackendTest, DisableSuccess3) {
ASSERT_TRUE(CopyTestCache("bad_rankings2"));
DisableFirstCleanup();
SetMaxSize(20 * 1024 * 1024);
InitCache();
BackendDisable3();
}
TEST_F(DiskCacheBackendTest, NewEvictionDisableSuccess3) {
ASSERT_TRUE(CopyTestCache("bad_rankings2"));
DisableFirstCleanup();
SetMaxSize(20 * 1024 * 1024);
SetNewEviction();
InitCache();
BackendDisable3();
}
// If we disable the cache, already open entries should work as far as possible.
void DiskCacheBackendTest::BackendDisable4() {
disk_cache::Entry *entry1, *entry2, *entry3, *entry4;
void* iter = NULL;
ASSERT_EQ(net::OK, OpenNextEntry(&iter, &entry1));
char key2[2000];
char key3[20000];
CacheTestFillBuffer(key2, sizeof(key2), true);
CacheTestFillBuffer(key3, sizeof(key3), true);
key2[sizeof(key2) - 1] = '\0';
key3[sizeof(key3) - 1] = '\0';
ASSERT_EQ(net::OK, CreateEntry(key2, &entry2));
ASSERT_EQ(net::OK, CreateEntry(key3, &entry3));
const int kBufSize = 20000;
scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kBufSize));
memset(buf->data(), 0, kBufSize);
EXPECT_EQ(100, WriteData(entry2, 0, 0, buf, 100, false));
EXPECT_EQ(kBufSize, WriteData(entry3, 0, 0, buf, kBufSize, false));
// This line should disable the cache but not delete it.
EXPECT_NE(net::OK, OpenNextEntry(&iter, &entry4));
EXPECT_EQ(0, cache_->GetEntryCount());
EXPECT_NE(net::OK, CreateEntry("cache is disabled", &entry4));
EXPECT_EQ(100, ReadData(entry2, 0, 0, buf, 100));
EXPECT_EQ(100, WriteData(entry2, 0, 0, buf, 100, false));
EXPECT_EQ(100, WriteData(entry2, 1, 0, buf, 100, false));
EXPECT_EQ(kBufSize, ReadData(entry3, 0, 0, buf, kBufSize));
EXPECT_EQ(kBufSize, WriteData(entry3, 0, 0, buf, kBufSize, false));
EXPECT_EQ(kBufSize, WriteData(entry3, 1, 0, buf, kBufSize, false));
std::string key = entry2->GetKey();
EXPECT_EQ(sizeof(key2) - 1, key.size());
key = entry3->GetKey();
EXPECT_EQ(sizeof(key3) - 1, key.size());
entry1->Close();
entry2->Close();
entry3->Close();
FlushQueueForTest(); // Flushing the Close posts a task to restart the cache.
FlushQueueForTest(); // This one actually allows that task to complete.
EXPECT_EQ(0, cache_->GetEntryCount());
}
TEST_F(DiskCacheBackendTest, DisableSuccess4) {
ASSERT_TRUE(CopyTestCache("bad_rankings"));
DisableFirstCleanup();
SetDirectMode();
InitCache();
BackendDisable4();
}
TEST_F(DiskCacheBackendTest, NewEvictionDisableSuccess4) {
ASSERT_TRUE(CopyTestCache("bad_rankings"));
DisableFirstCleanup();
SetDirectMode();
SetNewEviction();
InitCache();
BackendDisable4();
}
TEST_F(DiskCacheTest, Backend_UsageStats) {
MessageLoopHelper helper;
ASSERT_TRUE(CleanupCacheDir());
scoped_ptr<disk_cache::BackendImpl> cache;
cache.reset(new disk_cache::BackendImpl(
cache_path_, base::MessageLoopProxy::current(),
NULL));
ASSERT_TRUE(NULL != cache.get());
cache->SetUnitTestMode();
ASSERT_EQ(net::OK, cache->SyncInit());
// Wait for a callback that never comes... about 2 secs :). The message loop
// has to run to allow invocation of the usage timer.
helper.WaitUntilCacheIoFinished(1);
}
void DiskCacheBackendTest::BackendDoomAll() {
InitCache();
disk_cache::Entry *entry1, *entry2;
ASSERT_EQ(net::OK, CreateEntry("first", &entry1));
ASSERT_EQ(net::OK, CreateEntry("second", &entry2));
entry1->Close();
entry2->Close();
ASSERT_EQ(net::OK, CreateEntry("third", &entry1));
ASSERT_EQ(net::OK, CreateEntry("fourth", &entry2));
ASSERT_EQ(4, cache_->GetEntryCount());
EXPECT_EQ(net::OK, DoomAllEntries());
ASSERT_EQ(0, cache_->GetEntryCount());
// We should stop posting tasks at some point (if we post any).
MessageLoop::current()->RunUntilIdle();
disk_cache::Entry *entry3, *entry4;
ASSERT_EQ(net::OK, CreateEntry("third", &entry3));
ASSERT_EQ(net::OK, CreateEntry("fourth", &entry4));
EXPECT_EQ(net::OK, DoomAllEntries());
ASSERT_EQ(0, cache_->GetEntryCount());
entry1->Close();
entry2->Close();
entry3->Doom(); // The entry should be already doomed, but this must work.
entry3->Close();
entry4->Close();
// Now try with all references released.
ASSERT_EQ(net::OK, CreateEntry("third", &entry1));
ASSERT_EQ(net::OK, CreateEntry("fourth", &entry2));
entry1->Close();
entry2->Close();
ASSERT_EQ(2, cache_->GetEntryCount());
EXPECT_EQ(net::OK, DoomAllEntries());
ASSERT_EQ(0, cache_->GetEntryCount());
EXPECT_EQ(net::OK, DoomAllEntries());
}
TEST_F(DiskCacheBackendTest, DoomAll) {
BackendDoomAll();
}
TEST_F(DiskCacheBackendTest, NewEvictionDoomAll) {
SetNewEviction();
BackendDoomAll();
}
TEST_F(DiskCacheBackendTest, MemoryOnlyDoomAll) {
SetMemoryOnlyMode();
BackendDoomAll();
}
TEST_F(DiskCacheBackendTest, AppCacheOnlyDoomAll) {
SetCacheType(net::APP_CACHE);
BackendDoomAll();
}
// If the index size changes when we doom the cache, we should not crash.
void DiskCacheBackendTest::BackendDoomAll2() {
EXPECT_EQ(2, cache_->GetEntryCount());
EXPECT_EQ(net::OK, DoomAllEntries());
disk_cache::Entry* entry;
ASSERT_EQ(net::OK, CreateEntry("Something new", &entry));
entry->Close();
EXPECT_EQ(1, cache_->GetEntryCount());
}
TEST_F(DiskCacheBackendTest, DoomAll2) {
ASSERT_TRUE(CopyTestCache("bad_rankings2"));
DisableFirstCleanup();
SetMaxSize(20 * 1024 * 1024);
InitCache();
BackendDoomAll2();
}
TEST_F(DiskCacheBackendTest, NewEvictionDoomAll2) {
ASSERT_TRUE(CopyTestCache("bad_rankings2"));
DisableFirstCleanup();
SetMaxSize(20 * 1024 * 1024);
SetNewEviction();
InitCache();
BackendDoomAll2();
}
// We should be able to create the same entry on multiple simultaneous instances
// of the cache.
TEST_F(DiskCacheTest, MultipleInstances) {
base::ScopedTempDir store1, store2;
ASSERT_TRUE(store1.CreateUniqueTempDir());
ASSERT_TRUE(store2.CreateUniqueTempDir());
base::Thread cache_thread("CacheThread");
ASSERT_TRUE(cache_thread.StartWithOptions(
base::Thread::Options(MessageLoop::TYPE_IO, 0)));
net::TestCompletionCallback cb;
const int kNumberOfCaches = 2;
disk_cache::Backend* cache[kNumberOfCaches];
int rv = disk_cache::BackendImpl::CreateBackend(
store1.path(), false, 0, net::DISK_CACHE, disk_cache::kNone,
cache_thread.message_loop_proxy(), NULL, &cache[0], cb.callback());
ASSERT_EQ(net::OK, cb.GetResult(rv));
rv = disk_cache::BackendImpl::CreateBackend(
store2.path(), false, 0, net::MEDIA_CACHE, disk_cache::kNone,
cache_thread.message_loop_proxy(), NULL, &cache[1], cb.callback());
ASSERT_EQ(net::OK, cb.GetResult(rv));
ASSERT_TRUE(cache[0] != NULL && cache[1] != NULL);
std::string key("the first key");
disk_cache::Entry* entry;
for (int i = 0; i < kNumberOfCaches; i++) {
rv = cache[i]->CreateEntry(key, &entry, cb.callback());
ASSERT_EQ(net::OK, cb.GetResult(rv));
entry->Close();
}
delete cache[0];
delete cache[1];
}
// Test the six regions of the curve that determines the max cache size.
TEST_F(DiskCacheTest, AutomaticMaxSize) {
const int kDefaultSize = 80 * 1024 * 1024;
int64 large_size = kDefaultSize;
int64 largest_size = kint32max;
// Region 1: expected = available * 0.8
EXPECT_EQ((kDefaultSize - 1) * 8 / 10,
disk_cache::PreferedCacheSize(large_size - 1));
EXPECT_EQ(kDefaultSize * 8 / 10,
disk_cache::PreferedCacheSize(large_size));
EXPECT_EQ(kDefaultSize - 1,
disk_cache::PreferedCacheSize(large_size * 10 / 8 - 1));
// Region 2: expected = default_size
EXPECT_EQ(kDefaultSize,
disk_cache::PreferedCacheSize(large_size * 10 / 8));
EXPECT_EQ(kDefaultSize,
disk_cache::PreferedCacheSize(large_size * 10 - 1));
// Region 3: expected = available * 0.1
EXPECT_EQ(kDefaultSize,
disk_cache::PreferedCacheSize(large_size * 10));
EXPECT_EQ((kDefaultSize * 25 - 1) / 10,
disk_cache::PreferedCacheSize(large_size * 25 - 1));
// Region 4: expected = default_size * 2.5
EXPECT_EQ(kDefaultSize * 25 / 10,
disk_cache::PreferedCacheSize(large_size * 25));
EXPECT_EQ(kDefaultSize * 25 / 10,
disk_cache::PreferedCacheSize(large_size * 100 - 1));
EXPECT_EQ(kDefaultSize * 25 / 10,
disk_cache::PreferedCacheSize(large_size * 100));
EXPECT_EQ(kDefaultSize * 25 / 10,
disk_cache::PreferedCacheSize(large_size * 250 - 1));
// Region 5: expected = available * 0.1
EXPECT_EQ(kDefaultSize * 25 / 10,
disk_cache::PreferedCacheSize(large_size * 250));
EXPECT_EQ(kint32max - 1,
disk_cache::PreferedCacheSize(largest_size * 100 - 1));
// Region 6: expected = kint32max
EXPECT_EQ(kint32max,
disk_cache::PreferedCacheSize(largest_size * 100));
EXPECT_EQ(kint32max,
disk_cache::PreferedCacheSize(largest_size * 10000));
}
// Tests that we can "migrate" a running instance from one experiment group to
// another.
TEST_F(DiskCacheBackendTest, Histograms) {
SetDirectMode();
InitCache();
disk_cache::BackendImpl* backend_ = cache_impl_; // Needed be the macro.
for (int i = 1; i < 3; i++) {
CACHE_UMA(HOURS, "FillupTime", i, 28);
}
}
// Make sure that we keep the total memory used by the internal buffers under
// control.
TEST_F(DiskCacheBackendTest, TotalBuffersSize1) {
SetDirectMode();
InitCache();
std::string key("the first key");
disk_cache::Entry* entry;
ASSERT_EQ(net::OK, CreateEntry(key, &entry));
const int kSize = 200;
scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize));
CacheTestFillBuffer(buffer->data(), kSize, true);
for (int i = 0; i < 10; i++) {
SCOPED_TRACE(i);
// Allocate 2MB for this entry.
EXPECT_EQ(kSize, WriteData(entry, 0, 0, buffer, kSize, true));
EXPECT_EQ(kSize, WriteData(entry, 1, 0, buffer, kSize, true));
EXPECT_EQ(kSize, WriteData(entry, 0, 1024 * 1024, buffer, kSize, false));
EXPECT_EQ(kSize, WriteData(entry, 1, 1024 * 1024, buffer, kSize, false));
// Delete one of the buffers and truncate the other.
EXPECT_EQ(0, WriteData(entry, 0, 0, buffer, 0, true));
EXPECT_EQ(0, WriteData(entry, 1, 10, buffer, 0, true));
// Delete the second buffer, writing 10 bytes to disk.
entry->Close();
ASSERT_EQ(net::OK, OpenEntry(key, &entry));
}
entry->Close();
EXPECT_EQ(0, cache_impl_->GetTotalBuffersSize());
}
// This test assumes at least 150MB of system memory.
TEST_F(DiskCacheBackendTest, TotalBuffersSize2) {
SetDirectMode();
InitCache();
const int kOneMB = 1024 * 1024;
EXPECT_TRUE(cache_impl_->IsAllocAllowed(0, kOneMB));
EXPECT_EQ(kOneMB, cache_impl_->GetTotalBuffersSize());
EXPECT_TRUE(cache_impl_->IsAllocAllowed(0, kOneMB));
EXPECT_EQ(kOneMB * 2, cache_impl_->GetTotalBuffersSize());
EXPECT_TRUE(cache_impl_->IsAllocAllowed(0, kOneMB));
EXPECT_EQ(kOneMB * 3, cache_impl_->GetTotalBuffersSize());
cache_impl_->BufferDeleted(kOneMB);
EXPECT_EQ(kOneMB * 2, cache_impl_->GetTotalBuffersSize());
// Check the upper limit.
EXPECT_FALSE(cache_impl_->IsAllocAllowed(0, 30 * kOneMB));
for (int i = 0; i < 30; i++)
cache_impl_->IsAllocAllowed(0, kOneMB); // Ignore the result.
EXPECT_FALSE(cache_impl_->IsAllocAllowed(0, kOneMB));
}
// Tests that sharing of external files works and we are able to delete the
// files when we need to.
TEST_F(DiskCacheBackendTest, FileSharing) {
SetDirectMode();
InitCache();
disk_cache::Addr address(0x80000001);
ASSERT_TRUE(cache_impl_->CreateExternalFile(&address));
FilePath name = cache_impl_->GetFileName(address);
scoped_refptr<disk_cache::File> file(new disk_cache::File(false));
file->Init(name);
#if defined(OS_WIN)
DWORD sharing = FILE_SHARE_READ | FILE_SHARE_WRITE;
DWORD access = GENERIC_READ | GENERIC_WRITE;
base::win::ScopedHandle file2(CreateFile(
name.value().c_str(), access, sharing, NULL, OPEN_EXISTING, 0, NULL));
EXPECT_FALSE(file2.IsValid());
sharing |= FILE_SHARE_DELETE;
file2.Set(CreateFile(name.value().c_str(), access, sharing, NULL,
OPEN_EXISTING, 0, NULL));
EXPECT_TRUE(file2.IsValid());
#endif
EXPECT_TRUE(file_util::Delete(name, false));
// We should be able to use the file.
const int kSize = 200;
char buffer1[kSize];
char buffer2[kSize];
memset(buffer1, 't', kSize);
memset(buffer2, 0, kSize);
EXPECT_TRUE(file->Write(buffer1, kSize, 0));
EXPECT_TRUE(file->Read(buffer2, kSize, 0));
EXPECT_EQ(0, memcmp(buffer1, buffer2, kSize));
EXPECT_TRUE(disk_cache::DeleteCacheFile(name));
}
TEST_F(DiskCacheBackendTest, UpdateRankForExternalCacheHit) {
SetDirectMode();
InitCache();
disk_cache::Entry* entry;
for (int i = 0; i < 2; ++i) {
std::string key = StringPrintf("key%d", i);
ASSERT_EQ(net::OK, CreateEntry(key, &entry));
entry->Close();
}
// Ping the oldest entry.
cache_->OnExternalCacheHit("key0");
TrimForTest(false);
// Make sure the older key remains.
EXPECT_EQ(1, cache_->GetEntryCount());
ASSERT_EQ(net::OK, OpenEntry("key0", &entry));
entry->Close();
}