blob: cb63557edb52ed9412106d6a2c23dedcac649c42 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This is a simple application that stress-tests the crash recovery of the disk
// cache. The main application starts a copy of itself on a loop, checking the
// exit code of the child process. When the child dies in an unexpected way,
// the main application quits.
// The child application has two threads: one to exercise the cache in an
// infinite loop, and another one to asynchronously kill the process.
// A regular build should never crash.
// To test that the disk cache doesn't generate critical errors with regular
// application level crashes, edit stress_support.h.
#include <string>
#include <vector>
#include "base/at_exit.h"
#include "base/bind.h"
#include "base/command_line.h"
#include "base/debug/debugger.h"
#include "base/file_path.h"
#include "base/logging.h"
#include "base/message_loop.h"
#include "base/path_service.h"
#include "base/process_util.h"
#include "base/string_number_conversions.h"
#include "base/string_util.h"
#include "base/threading/platform_thread.h"
#include "base/threading/thread.h"
#include "base/utf_string_conversions.h"
#include "net/base/net_errors.h"
#include "net/base/test_completion_callback.h"
#include "net/base/io_buffer.h"
#include "net/disk_cache/backend_impl.h"
#include "net/disk_cache/disk_cache.h"
#include "net/disk_cache/disk_cache_test_util.h"
#include "net/disk_cache/stress_support.h"
#include "net/disk_cache/trace.h"
#if defined(OS_WIN)
#include "base/logging_win.h"
#endif
using base::Time;
const int kError = -1;
const int kExpectedCrash = 100;
// Starts a new process.
int RunSlave(int iteration) {
FilePath exe;
PathService::Get(base::FILE_EXE, &exe);
CommandLine cmdline(exe);
cmdline.AppendArg(base::IntToString(iteration));
base::ProcessHandle handle;
if (!base::LaunchProcess(cmdline, base::LaunchOptions(), &handle)) {
printf("Unable to run test\n");
return kError;
}
int exit_code;
if (!base::WaitForExitCode(handle, &exit_code)) {
printf("Unable to get return code\n");
return kError;
}
return exit_code;
}
// Main loop for the master process.
int MasterCode() {
for (int i = 0; i < 100000; i++) {
int ret = RunSlave(i);
if (kExpectedCrash != ret)
return ret;
}
printf("More than enough...\n");
return 0;
}
// -----------------------------------------------------------------------
std::string GenerateStressKey() {
char key[20 * 1024];
size_t size = 50 + rand() % 20000;
CacheTestFillBuffer(key, size, true);
key[size - 1] = '\0';
return std::string(key);
}
// This thread will loop forever, adding and removing entries from the cache.
// iteration is the current crash cycle, so the entries on the cache are marked
// to know which instance of the application wrote them.
void StressTheCache(int iteration) {
int cache_size = 0x2000000; // 32MB.
uint32 mask = 0xfff; // 4096 entries.
FilePath path;
PathService::Get(base::DIR_TEMP, &path);
path = path.AppendASCII("cache_test_stress");
base::Thread cache_thread("CacheThread");
if (!cache_thread.StartWithOptions(
base::Thread::Options(MessageLoop::TYPE_IO, 0)))
return;
disk_cache::BackendImpl* cache =
new disk_cache::BackendImpl(path, mask, cache_thread.message_loop_proxy(),
NULL);
cache->SetMaxSize(cache_size);
cache->SetFlags(disk_cache::kNoLoadProtection);
net::TestCompletionCallback cb;
int rv = cache->Init(cb.callback());
if (cb.GetResult(rv) != net::OK) {
printf("Unable to initialize cache.\n");
return;
}
printf("Iteration %d, initial entries: %d\n", iteration,
cache->GetEntryCount());
int seed = static_cast<int>(Time::Now().ToInternalValue());
srand(seed);
// kNumKeys is meant to be enough to have about 3x or 4x iterations before
// the process crashes.
#ifdef NDEBUG
const int kNumKeys = 4000;
#else
const int kNumKeys = 1200;
#endif
const int kNumEntries = 30;
std::string keys[kNumKeys];
disk_cache::Entry* entries[kNumEntries] = {0};
for (int i = 0; i < kNumKeys; i++) {
keys[i] = GenerateStressKey();
}
const int kSize = 20000;
scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize));
memset(buffer->data(), 'k', kSize);
for (int i = 0;; i++) {
int slot = rand() % kNumEntries;
int key = rand() % kNumKeys;
bool truncate = (rand() % 2 == 0);
int size = kSize - (rand() % 20) * kSize / 20;
if (entries[slot])
entries[slot]->Close();
net::TestCompletionCallback cb;
rv = cache->OpenEntry(keys[key], &entries[slot], cb.callback());
if (cb.GetResult(rv) != net::OK) {
rv = cache->CreateEntry(keys[key], &entries[slot], cb.callback());
CHECK_EQ(net::OK, cb.GetResult(rv));
}
base::snprintf(buffer->data(), kSize,
"i: %d iter: %d, size: %d, truncate: %d ", i, iteration,
size, truncate ? 1 : 0);
rv = entries[slot]->WriteData(0, 0, buffer, size, cb.callback(), truncate);
CHECK_EQ(size, cb.GetResult(rv));
if (rand() % 100 > 80) {
key = rand() % kNumKeys;
net::TestCompletionCallback cb2;
rv = cache->DoomEntry(keys[key], cb2.callback());
cb2.GetResult(rv);
}
if (!(i % 100))
printf("Entries: %d \r", i);
}
}
// We want to prevent the timer thread from killing the process while we are
// waiting for the debugger to attach.
bool g_crashing = false;
// RunSoon() and CrashCallback() reference each other, unfortunately.
void RunSoon(MessageLoop* target_loop);
void CrashCallback() {
// Keep trying to run.
RunSoon(MessageLoop::current());
if (g_crashing)
return;
if (rand() % 100 > 30) {
printf("sweet death...\n");
#if defined(OS_WIN)
// Windows does more work on _exit() that we would like, so we use Kill.
base::KillProcessById(base::GetCurrentProcId(), kExpectedCrash, false);
#elif defined(OS_POSIX)
// On POSIX, _exit() will terminate the process with minimal cleanup,
// and it is cleaner than killing.
_exit(kExpectedCrash);
#endif
}
}
void RunSoon(MessageLoop* target_loop) {
const base::TimeDelta kTaskDelay = base::TimeDelta::FromSeconds(10);
target_loop->PostDelayedTask(
FROM_HERE, base::Bind(&CrashCallback), kTaskDelay);
}
// We leak everything here :)
bool StartCrashThread() {
base::Thread* thread = new base::Thread("party_crasher");
if (!thread->Start())
return false;
RunSoon(thread->message_loop());
return true;
}
void CrashHandler(const std::string& str) {
g_crashing = true;
base::debug::BreakDebugger();
}
bool MessageHandler(int severity, const char* file, int line,
size_t message_start, const std::string& str) {
const size_t kMaxMessageLen = 48;
char message[kMaxMessageLen];
size_t len = std::min(str.length() - message_start, kMaxMessageLen - 1);
memcpy(message, str.c_str() + message_start, len);
message[len] = '\0';
#if !defined(DISK_CACHE_TRACE_TO_LOG)
disk_cache::Trace("%s", message);
#endif
return false;
}
// -----------------------------------------------------------------------
#if defined(OS_WIN)
// {B9A153D4-31C3-48e4-9ABF-D54383F14A0D}
const GUID kStressCacheTraceProviderName = {
0xb9a153d4, 0x31c3, 0x48e4,
{ 0x9a, 0xbf, 0xd5, 0x43, 0x83, 0xf1, 0x4a, 0xd } };
#endif
int main(int argc, const char* argv[]) {
// Setup an AtExitManager so Singleton objects will be destructed.
base::AtExitManager at_exit_manager;
if (argc < 2)
return MasterCode();
logging::SetLogAssertHandler(CrashHandler);
logging::SetLogMessageHandler(MessageHandler);
#if defined(OS_WIN)
logging::LogEventProvider::Initialize(kStressCacheTraceProviderName);
#else
CommandLine::Init(argc, argv);
logging::InitLogging(NULL, logging::LOG_ONLY_TO_SYSTEM_DEBUG_LOG,
logging::LOCK_LOG_FILE, logging::DELETE_OLD_LOG_FILE,
logging::DISABLE_DCHECK_FOR_NON_OFFICIAL_RELEASE_BUILDS);
#endif
// Some time for the memory manager to flush stuff.
base::PlatformThread::Sleep(base::TimeDelta::FromSeconds(3));
MessageLoop message_loop(MessageLoop::TYPE_IO);
char* end;
long int iteration = strtol(argv[1], &end, 0);
if (!StartCrashThread()) {
printf("failed to start thread\n");
return kError;
}
StressTheCache(iteration);
return 0;
}