| /* ==================================================================== |
| * Copyright (c) 1999 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| |
| #include <stdio.h> |
| #include <openssl/bn.h> |
| #include <string.h> |
| |
| #include <openssl/e_os2.h> |
| #if !defined(OPENSSL_SYS_MSDOS) || defined(__DJGPP__) || defined(__MINGW32__) |
| # include <sys/types.h> |
| # include <unistd.h> |
| #else |
| # include <process.h> |
| typedef int pid_t; |
| #endif |
| |
| #if defined(OPENSSL_SYS_NETWARE) && defined(NETWARE_CLIB) |
| # define getpid GetThreadID |
| extern int GetThreadID(void); |
| #elif defined(_WIN32) && !defined(__WATCOMC__) |
| # define getpid _getpid |
| #endif |
| |
| #include <openssl/crypto.h> |
| #include <openssl/dso.h> |
| #include <openssl/engine.h> |
| #include <openssl/buffer.h> |
| #ifndef OPENSSL_NO_RSA |
| # include <openssl/rsa.h> |
| #endif |
| #ifndef OPENSSL_NO_DSA |
| # include <openssl/dsa.h> |
| #endif |
| #ifndef OPENSSL_NO_DH |
| # include <openssl/dh.h> |
| #endif |
| |
| #ifndef OPENSSL_NO_HW |
| # ifndef OPENSSL_NO_HW_AEP |
| # ifdef FLAT_INC |
| # include "aep.h" |
| # else |
| # include "vendor_defns/aep.h" |
| # endif |
| |
| # define AEP_LIB_NAME "aep engine" |
| # define FAIL_TO_SW 0x10101010 |
| |
| # include "e_aep_err.c" |
| |
| static int aep_init(ENGINE *e); |
| static int aep_finish(ENGINE *e); |
| static int aep_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void)); |
| static int aep_destroy(ENGINE *e); |
| |
| static AEP_RV aep_get_connection(AEP_CONNECTION_HNDL_PTR hConnection); |
| static AEP_RV aep_return_connection(AEP_CONNECTION_HNDL hConnection); |
| static AEP_RV aep_close_connection(AEP_CONNECTION_HNDL hConnection); |
| static AEP_RV aep_close_all_connections(int use_engine_lock, int *in_use); |
| |
| /* BIGNUM stuff */ |
| # ifndef OPENSSL_NO_RSA |
| static int aep_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
| const BIGNUM *m, BN_CTX *ctx); |
| |
| static AEP_RV aep_mod_exp_crt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
| const BIGNUM *q, const BIGNUM *dmp1, |
| const BIGNUM *dmq1, const BIGNUM *iqmp, |
| BN_CTX *ctx); |
| # endif |
| |
| /* RSA stuff */ |
| # ifndef OPENSSL_NO_RSA |
| static int aep_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, |
| BN_CTX *ctx); |
| # endif |
| |
| /* This function is aliased to mod_exp (with the mont stuff dropped). */ |
| # ifndef OPENSSL_NO_RSA |
| static int aep_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
| const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); |
| # endif |
| |
| /* DSA stuff */ |
| # ifndef OPENSSL_NO_DSA |
| static int aep_dsa_mod_exp(DSA *dsa, BIGNUM *rr, BIGNUM *a1, |
| BIGNUM *p1, BIGNUM *a2, BIGNUM *p2, BIGNUM *m, |
| BN_CTX *ctx, BN_MONT_CTX *in_mont); |
| |
| static int aep_mod_exp_dsa(DSA *dsa, BIGNUM *r, BIGNUM *a, |
| const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, |
| BN_MONT_CTX *m_ctx); |
| # endif |
| |
| /* DH stuff */ |
| /* This function is aliased to mod_exp (with the DH and mont dropped). */ |
| # ifndef OPENSSL_NO_DH |
| static int aep_mod_exp_dh(const DH *dh, BIGNUM *r, const BIGNUM *a, |
| const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, |
| BN_MONT_CTX *m_ctx); |
| # endif |
| |
| /* rand stuff */ |
| # ifdef AEPRAND |
| static int aep_rand(unsigned char *buf, int num); |
| static int aep_rand_status(void); |
| # endif |
| |
| /* Bignum conversion stuff */ |
| static AEP_RV GetBigNumSize(AEP_VOID_PTR ArbBigNum, AEP_U32 *BigNumSize); |
| static AEP_RV MakeAEPBigNum(AEP_VOID_PTR ArbBigNum, AEP_U32 BigNumSize, |
| unsigned char *AEP_BigNum); |
| static AEP_RV ConvertAEPBigNum(void *ArbBigNum, AEP_U32 BigNumSize, |
| unsigned char *AEP_BigNum); |
| |
| /* The definitions for control commands specific to this engine */ |
| # define AEP_CMD_SO_PATH ENGINE_CMD_BASE |
| static const ENGINE_CMD_DEFN aep_cmd_defns[] = { |
| {AEP_CMD_SO_PATH, |
| "SO_PATH", |
| "Specifies the path to the 'aep' shared library", |
| ENGINE_CMD_FLAG_STRING}, |
| {0, NULL, NULL, 0} |
| }; |
| |
| # ifndef OPENSSL_NO_RSA |
| /* Our internal RSA_METHOD that we provide pointers to */ |
| static RSA_METHOD aep_rsa = { |
| "Aep RSA method", |
| NULL, /* rsa_pub_encrypt */ |
| NULL, /* rsa_pub_decrypt */ |
| NULL, /* rsa_priv_encrypt */ |
| NULL, /* rsa_priv_encrypt */ |
| aep_rsa_mod_exp, /* rsa_mod_exp */ |
| aep_mod_exp_mont, /* bn_mod_exp */ |
| NULL, /* init */ |
| NULL, /* finish */ |
| 0, /* flags */ |
| NULL, /* app_data */ |
| NULL, /* rsa_sign */ |
| NULL, /* rsa_verify */ |
| NULL /* rsa_keygen */ |
| }; |
| # endif |
| |
| # ifndef OPENSSL_NO_DSA |
| /* Our internal DSA_METHOD that we provide pointers to */ |
| static DSA_METHOD aep_dsa = { |
| "Aep DSA method", |
| NULL, /* dsa_do_sign */ |
| NULL, /* dsa_sign_setup */ |
| NULL, /* dsa_do_verify */ |
| aep_dsa_mod_exp, /* dsa_mod_exp */ |
| aep_mod_exp_dsa, /* bn_mod_exp */ |
| NULL, /* init */ |
| NULL, /* finish */ |
| 0, /* flags */ |
| NULL, /* app_data */ |
| NULL, /* dsa_paramgen */ |
| NULL /* dsa_keygen */ |
| }; |
| # endif |
| |
| # ifndef OPENSSL_NO_DH |
| /* Our internal DH_METHOD that we provide pointers to */ |
| static DH_METHOD aep_dh = { |
| "Aep DH method", |
| NULL, |
| NULL, |
| aep_mod_exp_dh, |
| NULL, |
| NULL, |
| 0, |
| NULL, |
| NULL |
| }; |
| # endif |
| |
| # ifdef AEPRAND |
| /* our internal RAND_method that we provide pointers to */ |
| static RAND_METHOD aep_random = { |
| /* |
| * "AEP RAND method", |
| */ |
| NULL, |
| aep_rand, |
| NULL, |
| NULL, |
| aep_rand, |
| aep_rand_status, |
| }; |
| # endif |
| |
| /* |
| * Define an array of structures to hold connections |
| */ |
| static AEP_CONNECTION_ENTRY aep_app_conn_table[MAX_PROCESS_CONNECTIONS]; |
| |
| /* |
| * Used to determine if this is a new process |
| */ |
| static pid_t recorded_pid = 0; |
| |
| # ifdef AEPRAND |
| static AEP_U8 rand_block[RAND_BLK_SIZE]; |
| static AEP_U32 rand_block_bytes = 0; |
| # endif |
| |
| /* Constants used when creating the ENGINE */ |
| static const char *engine_aep_id = "aep"; |
| static const char *engine_aep_name = "Aep hardware engine support"; |
| |
| static int max_key_len = 2176; |
| |
| /* |
| * This internal function is used by ENGINE_aep() and possibly by the |
| * "dynamic" ENGINE support too |
| */ |
| static int bind_aep(ENGINE *e) |
| { |
| # ifndef OPENSSL_NO_RSA |
| const RSA_METHOD *meth1; |
| # endif |
| # ifndef OPENSSL_NO_DSA |
| const DSA_METHOD *meth2; |
| # endif |
| # ifndef OPENSSL_NO_DH |
| const DH_METHOD *meth3; |
| # endif |
| |
| if (!ENGINE_set_id(e, engine_aep_id) || |
| !ENGINE_set_name(e, engine_aep_name) || |
| # ifndef OPENSSL_NO_RSA |
| !ENGINE_set_RSA(e, &aep_rsa) || |
| # endif |
| # ifndef OPENSSL_NO_DSA |
| !ENGINE_set_DSA(e, &aep_dsa) || |
| # endif |
| # ifndef OPENSSL_NO_DH |
| !ENGINE_set_DH(e, &aep_dh) || |
| # endif |
| # ifdef AEPRAND |
| !ENGINE_set_RAND(e, &aep_random) || |
| # endif |
| !ENGINE_set_init_function(e, aep_init) || |
| !ENGINE_set_destroy_function(e, aep_destroy) || |
| !ENGINE_set_finish_function(e, aep_finish) || |
| !ENGINE_set_ctrl_function(e, aep_ctrl) || |
| !ENGINE_set_cmd_defns(e, aep_cmd_defns)) |
| return 0; |
| |
| # ifndef OPENSSL_NO_RSA |
| /* |
| * We know that the "PKCS1_SSLeay()" functions hook properly to the |
| * aep-specific mod_exp and mod_exp_crt so we use those functions. NB: We |
| * don't use ENGINE_openssl() or anything "more generic" because |
| * something like the RSAref code may not hook properly, and if you own |
| * one of these cards then you have the right to do RSA operations on it |
| * anyway! |
| */ |
| meth1 = RSA_PKCS1_SSLeay(); |
| aep_rsa.rsa_pub_enc = meth1->rsa_pub_enc; |
| aep_rsa.rsa_pub_dec = meth1->rsa_pub_dec; |
| aep_rsa.rsa_priv_enc = meth1->rsa_priv_enc; |
| aep_rsa.rsa_priv_dec = meth1->rsa_priv_dec; |
| # endif |
| |
| # ifndef OPENSSL_NO_DSA |
| /* |
| * Use the DSA_OpenSSL() method and just hook the mod_exp-ish bits. |
| */ |
| meth2 = DSA_OpenSSL(); |
| aep_dsa.dsa_do_sign = meth2->dsa_do_sign; |
| aep_dsa.dsa_sign_setup = meth2->dsa_sign_setup; |
| aep_dsa.dsa_do_verify = meth2->dsa_do_verify; |
| |
| aep_dsa = *DSA_get_default_method(); |
| aep_dsa.dsa_mod_exp = aep_dsa_mod_exp; |
| aep_dsa.bn_mod_exp = aep_mod_exp_dsa; |
| # endif |
| |
| # ifndef OPENSSL_NO_DH |
| /* Much the same for Diffie-Hellman */ |
| meth3 = DH_OpenSSL(); |
| aep_dh.generate_key = meth3->generate_key; |
| aep_dh.compute_key = meth3->compute_key; |
| aep_dh.bn_mod_exp = meth3->bn_mod_exp; |
| # endif |
| |
| /* Ensure the aep error handling is set up */ |
| ERR_load_AEPHK_strings(); |
| |
| return 1; |
| } |
| |
| # ifndef OPENSSL_NO_DYNAMIC_ENGINE |
| static int bind_helper(ENGINE *e, const char *id) |
| { |
| if (id && (strcmp(id, engine_aep_id) != 0)) |
| return 0; |
| if (!bind_aep(e)) |
| return 0; |
| return 1; |
| } |
| |
| IMPLEMENT_DYNAMIC_CHECK_FN() |
| IMPLEMENT_DYNAMIC_BIND_FN(bind_helper) |
| # else |
| static ENGINE *engine_aep(void) |
| { |
| ENGINE *ret = ENGINE_new(); |
| if (!ret) |
| return NULL; |
| if (!bind_aep(ret)) { |
| ENGINE_free(ret); |
| return NULL; |
| } |
| return ret; |
| } |
| |
| void ENGINE_load_aep(void) |
| { |
| /* Copied from eng_[openssl|dyn].c */ |
| ENGINE *toadd = engine_aep(); |
| if (!toadd) |
| return; |
| ENGINE_add(toadd); |
| ENGINE_free(toadd); |
| ERR_clear_error(); |
| } |
| # endif |
| |
| /* |
| * This is a process-global DSO handle used for loading and unloading the Aep |
| * library. NB: This is only set (or unset) during an init() or finish() call |
| * (reference counts permitting) and they're operating with global locks, so |
| * this should be thread-safe implicitly. |
| */ |
| static DSO *aep_dso = NULL; |
| |
| /* |
| * These are the static string constants for the DSO file name and the |
| * function symbol names to bind to. |
| */ |
| static const char *AEP_LIBNAME = NULL; |
| static const char *get_AEP_LIBNAME(void) |
| { |
| if (AEP_LIBNAME) |
| return AEP_LIBNAME; |
| return "aep"; |
| } |
| |
| static void free_AEP_LIBNAME(void) |
| { |
| if (AEP_LIBNAME) |
| OPENSSL_free((void *)AEP_LIBNAME); |
| AEP_LIBNAME = NULL; |
| } |
| |
| static long set_AEP_LIBNAME(const char *name) |
| { |
| free_AEP_LIBNAME(); |
| return ((AEP_LIBNAME = BUF_strdup(name)) != NULL ? 1 : 0); |
| } |
| |
| static const char *AEP_F1 = "AEP_ModExp"; |
| static const char *AEP_F2 = "AEP_ModExpCrt"; |
| # ifdef AEPRAND |
| static const char *AEP_F3 = "AEP_GenRandom"; |
| # endif |
| static const char *AEP_F4 = "AEP_Finalize"; |
| static const char *AEP_F5 = "AEP_Initialize"; |
| static const char *AEP_F6 = "AEP_OpenConnection"; |
| static const char *AEP_F7 = "AEP_SetBNCallBacks"; |
| static const char *AEP_F8 = "AEP_CloseConnection"; |
| |
| /* |
| * These are the function pointers that are (un)set when the library has |
| * successfully (un)loaded. |
| */ |
| static t_AEP_OpenConnection *p_AEP_OpenConnection = NULL; |
| static t_AEP_CloseConnection *p_AEP_CloseConnection = NULL; |
| static t_AEP_ModExp *p_AEP_ModExp = NULL; |
| static t_AEP_ModExpCrt *p_AEP_ModExpCrt = NULL; |
| # ifdef AEPRAND |
| static t_AEP_GenRandom *p_AEP_GenRandom = NULL; |
| # endif |
| static t_AEP_Initialize *p_AEP_Initialize = NULL; |
| static t_AEP_Finalize *p_AEP_Finalize = NULL; |
| static t_AEP_SetBNCallBacks *p_AEP_SetBNCallBacks = NULL; |
| |
| /* (de)initialisation functions. */ |
| static int aep_init(ENGINE *e) |
| { |
| t_AEP_ModExp *p1; |
| t_AEP_ModExpCrt *p2; |
| # ifdef AEPRAND |
| t_AEP_GenRandom *p3; |
| # endif |
| t_AEP_Finalize *p4; |
| t_AEP_Initialize *p5; |
| t_AEP_OpenConnection *p6; |
| t_AEP_SetBNCallBacks *p7; |
| t_AEP_CloseConnection *p8; |
| |
| int to_return = 0; |
| |
| if (aep_dso != NULL) { |
| AEPHKerr(AEPHK_F_AEP_INIT, AEPHK_R_ALREADY_LOADED); |
| goto err; |
| } |
| /* Attempt to load libaep.so. */ |
| |
| aep_dso = DSO_load(NULL, get_AEP_LIBNAME(), NULL, 0); |
| |
| if (aep_dso == NULL) { |
| AEPHKerr(AEPHK_F_AEP_INIT, AEPHK_R_NOT_LOADED); |
| goto err; |
| } |
| |
| if (!(p1 = (t_AEP_ModExp *) DSO_bind_func(aep_dso, AEP_F1)) || |
| !(p2 = (t_AEP_ModExpCrt *) DSO_bind_func(aep_dso, AEP_F2)) || |
| # ifdef AEPRAND |
| !(p3 = (t_AEP_GenRandom *) DSO_bind_func(aep_dso, AEP_F3)) || |
| # endif |
| !(p4 = (t_AEP_Finalize *) DSO_bind_func(aep_dso, AEP_F4)) || |
| !(p5 = (t_AEP_Initialize *) DSO_bind_func(aep_dso, AEP_F5)) || |
| !(p6 = (t_AEP_OpenConnection *) DSO_bind_func(aep_dso, AEP_F6)) || |
| !(p7 = (t_AEP_SetBNCallBacks *) DSO_bind_func(aep_dso, AEP_F7)) || |
| !(p8 = (t_AEP_CloseConnection *) DSO_bind_func(aep_dso, AEP_F8))) { |
| AEPHKerr(AEPHK_F_AEP_INIT, AEPHK_R_NOT_LOADED); |
| goto err; |
| } |
| |
| /* Copy the pointers */ |
| |
| p_AEP_ModExp = p1; |
| p_AEP_ModExpCrt = p2; |
| # ifdef AEPRAND |
| p_AEP_GenRandom = p3; |
| # endif |
| p_AEP_Finalize = p4; |
| p_AEP_Initialize = p5; |
| p_AEP_OpenConnection = p6; |
| p_AEP_SetBNCallBacks = p7; |
| p_AEP_CloseConnection = p8; |
| |
| to_return = 1; |
| |
| return to_return; |
| |
| err: |
| |
| if (aep_dso) |
| DSO_free(aep_dso); |
| aep_dso = NULL; |
| |
| p_AEP_OpenConnection = NULL; |
| p_AEP_ModExp = NULL; |
| p_AEP_ModExpCrt = NULL; |
| # ifdef AEPRAND |
| p_AEP_GenRandom = NULL; |
| # endif |
| p_AEP_Initialize = NULL; |
| p_AEP_Finalize = NULL; |
| p_AEP_SetBNCallBacks = NULL; |
| p_AEP_CloseConnection = NULL; |
| |
| return to_return; |
| } |
| |
| /* Destructor (complements the "ENGINE_aep()" constructor) */ |
| static int aep_destroy(ENGINE *e) |
| { |
| free_AEP_LIBNAME(); |
| ERR_unload_AEPHK_strings(); |
| return 1; |
| } |
| |
| static int aep_finish(ENGINE *e) |
| { |
| int to_return = 0, in_use; |
| AEP_RV rv; |
| |
| if (aep_dso == NULL) { |
| AEPHKerr(AEPHK_F_AEP_FINISH, AEPHK_R_NOT_LOADED); |
| goto err; |
| } |
| |
| rv = aep_close_all_connections(0, &in_use); |
| if (rv != AEP_R_OK) { |
| AEPHKerr(AEPHK_F_AEP_FINISH, AEPHK_R_CLOSE_HANDLES_FAILED); |
| goto err; |
| } |
| if (in_use) { |
| AEPHKerr(AEPHK_F_AEP_FINISH, AEPHK_R_CONNECTIONS_IN_USE); |
| goto err; |
| } |
| |
| rv = p_AEP_Finalize(); |
| if (rv != AEP_R_OK) { |
| AEPHKerr(AEPHK_F_AEP_FINISH, AEPHK_R_FINALIZE_FAILED); |
| goto err; |
| } |
| |
| if (!DSO_free(aep_dso)) { |
| AEPHKerr(AEPHK_F_AEP_FINISH, AEPHK_R_UNIT_FAILURE); |
| goto err; |
| } |
| |
| aep_dso = NULL; |
| p_AEP_CloseConnection = NULL; |
| p_AEP_OpenConnection = NULL; |
| p_AEP_ModExp = NULL; |
| p_AEP_ModExpCrt = NULL; |
| # ifdef AEPRAND |
| p_AEP_GenRandom = NULL; |
| # endif |
| p_AEP_Initialize = NULL; |
| p_AEP_Finalize = NULL; |
| p_AEP_SetBNCallBacks = NULL; |
| |
| to_return = 1; |
| err: |
| return to_return; |
| } |
| |
| static int aep_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void)) |
| { |
| int initialised = ((aep_dso == NULL) ? 0 : 1); |
| switch (cmd) { |
| case AEP_CMD_SO_PATH: |
| if (p == NULL) { |
| AEPHKerr(AEPHK_F_AEP_CTRL, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| if (initialised) { |
| AEPHKerr(AEPHK_F_AEP_CTRL, AEPHK_R_ALREADY_LOADED); |
| return 0; |
| } |
| return set_AEP_LIBNAME((const char *)p); |
| default: |
| break; |
| } |
| AEPHKerr(AEPHK_F_AEP_CTRL, AEPHK_R_CTRL_COMMAND_NOT_IMPLEMENTED); |
| return 0; |
| } |
| |
| static int aep_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
| const BIGNUM *m, BN_CTX *ctx) |
| { |
| int to_return = 0; |
| int r_len = 0; |
| AEP_CONNECTION_HNDL hConnection; |
| AEP_RV rv; |
| |
| r_len = BN_num_bits(m); |
| |
| /* Perform in software if modulus is too large for hardware. */ |
| |
| if (r_len > max_key_len) { |
| AEPHKerr(AEPHK_F_AEP_MOD_EXP, AEPHK_R_SIZE_TOO_LARGE_OR_TOO_SMALL); |
| return BN_mod_exp(r, a, p, m, ctx); |
| } |
| |
| /* |
| * Grab a connection from the pool |
| */ |
| rv = aep_get_connection(&hConnection); |
| if (rv != AEP_R_OK) { |
| AEPHKerr(AEPHK_F_AEP_MOD_EXP, AEPHK_R_GET_HANDLE_FAILED); |
| return BN_mod_exp(r, a, p, m, ctx); |
| } |
| |
| /* |
| * To the card with the mod exp |
| */ |
| rv = p_AEP_ModExp(hConnection, (void *)a, (void *)p, (void *)m, (void *)r, |
| NULL); |
| |
| if (rv != AEP_R_OK) { |
| AEPHKerr(AEPHK_F_AEP_MOD_EXP, AEPHK_R_MOD_EXP_FAILED); |
| rv = aep_close_connection(hConnection); |
| return BN_mod_exp(r, a, p, m, ctx); |
| } |
| |
| /* |
| * Return the connection to the pool |
| */ |
| rv = aep_return_connection(hConnection); |
| if (rv != AEP_R_OK) { |
| AEPHKerr(AEPHK_F_AEP_MOD_EXP, AEPHK_R_RETURN_CONNECTION_FAILED); |
| goto err; |
| } |
| |
| to_return = 1; |
| err: |
| return to_return; |
| } |
| |
| # ifndef OPENSSL_NO_RSA |
| static AEP_RV aep_mod_exp_crt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
| const BIGNUM *q, const BIGNUM *dmp1, |
| const BIGNUM *dmq1, const BIGNUM *iqmp, |
| BN_CTX *ctx) |
| { |
| AEP_RV rv = AEP_R_OK; |
| AEP_CONNECTION_HNDL hConnection; |
| |
| /* |
| * Grab a connection from the pool |
| */ |
| rv = aep_get_connection(&hConnection); |
| if (rv != AEP_R_OK) { |
| AEPHKerr(AEPHK_F_AEP_MOD_EXP_CRT, AEPHK_R_GET_HANDLE_FAILED); |
| return FAIL_TO_SW; |
| } |
| |
| /* |
| * To the card with the mod exp |
| */ |
| rv = p_AEP_ModExpCrt(hConnection, (void *)a, (void *)p, (void *)q, |
| (void *)dmp1, (void *)dmq1, (void *)iqmp, (void *)r, |
| NULL); |
| if (rv != AEP_R_OK) { |
| AEPHKerr(AEPHK_F_AEP_MOD_EXP_CRT, AEPHK_R_MOD_EXP_CRT_FAILED); |
| rv = aep_close_connection(hConnection); |
| return FAIL_TO_SW; |
| } |
| |
| /* |
| * Return the connection to the pool |
| */ |
| rv = aep_return_connection(hConnection); |
| if (rv != AEP_R_OK) { |
| AEPHKerr(AEPHK_F_AEP_MOD_EXP_CRT, AEPHK_R_RETURN_CONNECTION_FAILED); |
| goto err; |
| } |
| |
| err: |
| return rv; |
| } |
| # endif |
| |
| # ifdef AEPRAND |
| static int aep_rand(unsigned char *buf, int len) |
| { |
| AEP_RV rv = AEP_R_OK; |
| AEP_CONNECTION_HNDL hConnection; |
| |
| CRYPTO_w_lock(CRYPTO_LOCK_RAND); |
| |
| /* |
| * Can the request be serviced with what's already in the buffer? |
| */ |
| if (len <= rand_block_bytes) { |
| memcpy(buf, &rand_block[RAND_BLK_SIZE - rand_block_bytes], len); |
| rand_block_bytes -= len; |
| CRYPTO_w_unlock(CRYPTO_LOCK_RAND); |
| } else |
| /* |
| * If not the get another block of random bytes |
| */ |
| { |
| CRYPTO_w_unlock(CRYPTO_LOCK_RAND); |
| |
| rv = aep_get_connection(&hConnection); |
| if (rv != AEP_R_OK) { |
| AEPHKerr(AEPHK_F_AEP_RAND, AEPHK_R_GET_HANDLE_FAILED); |
| goto err_nounlock; |
| } |
| |
| if (len > RAND_BLK_SIZE) { |
| rv = p_AEP_GenRandom(hConnection, len, 2, buf, NULL); |
| if (rv != AEP_R_OK) { |
| AEPHKerr(AEPHK_F_AEP_RAND, AEPHK_R_GET_RANDOM_FAILED); |
| goto err_nounlock; |
| } |
| } else { |
| CRYPTO_w_lock(CRYPTO_LOCK_RAND); |
| |
| rv = p_AEP_GenRandom(hConnection, RAND_BLK_SIZE, 2, |
| &rand_block[0], NULL); |
| if (rv != AEP_R_OK) { |
| AEPHKerr(AEPHK_F_AEP_RAND, AEPHK_R_GET_RANDOM_FAILED); |
| |
| goto err; |
| } |
| |
| rand_block_bytes = RAND_BLK_SIZE; |
| |
| memcpy(buf, &rand_block[RAND_BLK_SIZE - rand_block_bytes], len); |
| rand_block_bytes -= len; |
| |
| CRYPTO_w_unlock(CRYPTO_LOCK_RAND); |
| } |
| |
| rv = aep_return_connection(hConnection); |
| if (rv != AEP_R_OK) { |
| AEPHKerr(AEPHK_F_AEP_RAND, AEPHK_R_RETURN_CONNECTION_FAILED); |
| |
| goto err_nounlock; |
| } |
| } |
| |
| return 1; |
| err: |
| CRYPTO_w_unlock(CRYPTO_LOCK_RAND); |
| err_nounlock: |
| return 0; |
| } |
| |
| static int aep_rand_status(void) |
| { |
| return 1; |
| } |
| # endif |
| |
| # ifndef OPENSSL_NO_RSA |
| static int aep_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) |
| { |
| int to_return = 0; |
| AEP_RV rv = AEP_R_OK; |
| |
| if (!aep_dso) { |
| AEPHKerr(AEPHK_F_AEP_RSA_MOD_EXP, AEPHK_R_NOT_LOADED); |
| goto err; |
| } |
| |
| /* |
| * See if we have all the necessary bits for a crt |
| */ |
| if (rsa->q && rsa->dmp1 && rsa->dmq1 && rsa->iqmp) { |
| rv = aep_mod_exp_crt(r0, I, rsa->p, rsa->q, rsa->dmp1, rsa->dmq1, |
| rsa->iqmp, ctx); |
| |
| if (rv == FAIL_TO_SW) { |
| const RSA_METHOD *meth = RSA_PKCS1_SSLeay(); |
| to_return = (*meth->rsa_mod_exp) (r0, I, rsa, ctx); |
| goto err; |
| } else if (rv != AEP_R_OK) |
| goto err; |
| } else { |
| if (!rsa->d || !rsa->n) { |
| AEPHKerr(AEPHK_F_AEP_RSA_MOD_EXP, AEPHK_R_MISSING_KEY_COMPONENTS); |
| goto err; |
| } |
| |
| rv = aep_mod_exp(r0, I, rsa->d, rsa->n, ctx); |
| if (rv != AEP_R_OK) |
| goto err; |
| |
| } |
| |
| to_return = 1; |
| |
| err: |
| return to_return; |
| } |
| # endif |
| |
| # ifndef OPENSSL_NO_DSA |
| static int aep_dsa_mod_exp(DSA *dsa, BIGNUM *rr, BIGNUM *a1, |
| BIGNUM *p1, BIGNUM *a2, BIGNUM *p2, BIGNUM *m, |
| BN_CTX *ctx, BN_MONT_CTX *in_mont) |
| { |
| BIGNUM t; |
| int to_return = 0; |
| BN_init(&t); |
| |
| /* let rr = a1 ^ p1 mod m */ |
| if (!aep_mod_exp(rr, a1, p1, m, ctx)) |
| goto end; |
| /* let t = a2 ^ p2 mod m */ |
| if (!aep_mod_exp(&t, a2, p2, m, ctx)) |
| goto end; |
| /* let rr = rr * t mod m */ |
| if (!BN_mod_mul(rr, rr, &t, m, ctx)) |
| goto end; |
| to_return = 1; |
| end: |
| BN_free(&t); |
| return to_return; |
| } |
| |
| static int aep_mod_exp_dsa(DSA *dsa, BIGNUM *r, BIGNUM *a, |
| const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, |
| BN_MONT_CTX *m_ctx) |
| { |
| return aep_mod_exp(r, a, p, m, ctx); |
| } |
| # endif |
| |
| # ifndef OPENSSL_NO_RSA |
| /* This function is aliased to mod_exp (with the mont stuff dropped). */ |
| static int aep_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
| const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx) |
| { |
| return aep_mod_exp(r, a, p, m, ctx); |
| } |
| # endif |
| |
| # ifndef OPENSSL_NO_DH |
| /* This function is aliased to mod_exp (with the dh and mont dropped). */ |
| static int aep_mod_exp_dh(const DH *dh, BIGNUM *r, const BIGNUM *a, |
| const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, |
| BN_MONT_CTX *m_ctx) |
| { |
| return aep_mod_exp(r, a, p, m, ctx); |
| } |
| # endif |
| |
| static AEP_RV aep_get_connection(AEP_CONNECTION_HNDL_PTR phConnection) |
| { |
| int count; |
| AEP_RV rv = AEP_R_OK; |
| |
| /* |
| * Get the current process id |
| */ |
| pid_t curr_pid; |
| |
| CRYPTO_w_lock(CRYPTO_LOCK_ENGINE); |
| |
| curr_pid = getpid(); |
| |
| /* |
| * Check if this is the first time this is being called from the current |
| * process |
| */ |
| if (recorded_pid != curr_pid) { |
| /* |
| * Remember our pid so we can check if we're in a new process |
| */ |
| recorded_pid = curr_pid; |
| |
| /* |
| * Call Finalize to make sure we have not inherited some data from a |
| * parent process |
| */ |
| p_AEP_Finalize(); |
| |
| /* |
| * Initialise the AEP API |
| */ |
| rv = p_AEP_Initialize(NULL); |
| |
| if (rv != AEP_R_OK) { |
| AEPHKerr(AEPHK_F_AEP_GET_CONNECTION, AEPHK_R_INIT_FAILURE); |
| recorded_pid = 0; |
| goto end; |
| } |
| |
| /* |
| * Set the AEP big num call back functions |
| */ |
| rv = p_AEP_SetBNCallBacks(&GetBigNumSize, &MakeAEPBigNum, |
| &ConvertAEPBigNum); |
| |
| if (rv != AEP_R_OK) { |
| AEPHKerr(AEPHK_F_AEP_GET_CONNECTION, |
| AEPHK_R_SETBNCALLBACK_FAILURE); |
| recorded_pid = 0; |
| goto end; |
| } |
| # ifdef AEPRAND |
| /* |
| * Reset the rand byte count |
| */ |
| rand_block_bytes = 0; |
| # endif |
| |
| /* |
| * Init the structures |
| */ |
| for (count = 0; count < MAX_PROCESS_CONNECTIONS; count++) { |
| aep_app_conn_table[count].conn_state = NotConnected; |
| aep_app_conn_table[count].conn_hndl = 0; |
| } |
| |
| /* |
| * Open a connection |
| */ |
| rv = p_AEP_OpenConnection(phConnection); |
| |
| if (rv != AEP_R_OK) { |
| AEPHKerr(AEPHK_F_AEP_GET_CONNECTION, AEPHK_R_UNIT_FAILURE); |
| recorded_pid = 0; |
| goto end; |
| } |
| |
| aep_app_conn_table[0].conn_state = InUse; |
| aep_app_conn_table[0].conn_hndl = *phConnection; |
| goto end; |
| } |
| /* |
| * Check the existing connections to see if we can find a free one |
| */ |
| for (count = 0; count < MAX_PROCESS_CONNECTIONS; count++) { |
| if (aep_app_conn_table[count].conn_state == Connected) { |
| aep_app_conn_table[count].conn_state = InUse; |
| *phConnection = aep_app_conn_table[count].conn_hndl; |
| goto end; |
| } |
| } |
| /* |
| * If no connections available, we're going to have to try to open a new |
| * one |
| */ |
| for (count = 0; count < MAX_PROCESS_CONNECTIONS; count++) { |
| if (aep_app_conn_table[count].conn_state == NotConnected) { |
| /* |
| * Open a connection |
| */ |
| rv = p_AEP_OpenConnection(phConnection); |
| |
| if (rv != AEP_R_OK) { |
| AEPHKerr(AEPHK_F_AEP_GET_CONNECTION, AEPHK_R_UNIT_FAILURE); |
| goto end; |
| } |
| |
| aep_app_conn_table[count].conn_state = InUse; |
| aep_app_conn_table[count].conn_hndl = *phConnection; |
| goto end; |
| } |
| } |
| rv = AEP_R_GENERAL_ERROR; |
| end: |
| CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE); |
| return rv; |
| } |
| |
| static AEP_RV aep_return_connection(AEP_CONNECTION_HNDL hConnection) |
| { |
| int count; |
| |
| CRYPTO_w_lock(CRYPTO_LOCK_ENGINE); |
| |
| /* |
| * Find the connection item that matches this connection handle |
| */ |
| for (count = 0; count < MAX_PROCESS_CONNECTIONS; count++) { |
| if (aep_app_conn_table[count].conn_hndl == hConnection) { |
| aep_app_conn_table[count].conn_state = Connected; |
| break; |
| } |
| } |
| |
| CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE); |
| |
| return AEP_R_OK; |
| } |
| |
| static AEP_RV aep_close_connection(AEP_CONNECTION_HNDL hConnection) |
| { |
| int count; |
| AEP_RV rv = AEP_R_OK; |
| |
| CRYPTO_w_lock(CRYPTO_LOCK_ENGINE); |
| |
| /* |
| * Find the connection item that matches this connection handle |
| */ |
| for (count = 0; count < MAX_PROCESS_CONNECTIONS; count++) { |
| if (aep_app_conn_table[count].conn_hndl == hConnection) { |
| rv = p_AEP_CloseConnection(aep_app_conn_table[count].conn_hndl); |
| if (rv != AEP_R_OK) |
| goto end; |
| aep_app_conn_table[count].conn_state = NotConnected; |
| aep_app_conn_table[count].conn_hndl = 0; |
| break; |
| } |
| } |
| |
| end: |
| CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE); |
| return rv; |
| } |
| |
| static AEP_RV aep_close_all_connections(int use_engine_lock, int *in_use) |
| { |
| int count; |
| AEP_RV rv = AEP_R_OK; |
| |
| *in_use = 0; |
| if (use_engine_lock) |
| CRYPTO_w_lock(CRYPTO_LOCK_ENGINE); |
| for (count = 0; count < MAX_PROCESS_CONNECTIONS; count++) { |
| switch (aep_app_conn_table[count].conn_state) { |
| case Connected: |
| rv = p_AEP_CloseConnection(aep_app_conn_table[count].conn_hndl); |
| if (rv != AEP_R_OK) |
| goto end; |
| aep_app_conn_table[count].conn_state = NotConnected; |
| aep_app_conn_table[count].conn_hndl = 0; |
| break; |
| case InUse: |
| (*in_use)++; |
| break; |
| case NotConnected: |
| break; |
| } |
| } |
| end: |
| if (use_engine_lock) |
| CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE); |
| return rv; |
| } |
| |
| /* |
| * BigNum call back functions, used to convert OpenSSL bignums into AEP |
| * bignums. Note only 32bit Openssl build support |
| */ |
| |
| static AEP_RV GetBigNumSize(AEP_VOID_PTR ArbBigNum, AEP_U32 *BigNumSize) |
| { |
| BIGNUM *bn; |
| |
| /* |
| * Cast the ArbBigNum pointer to our BIGNUM struct |
| */ |
| bn = (BIGNUM *)ArbBigNum; |
| |
| # ifdef SIXTY_FOUR_BIT_LONG |
| *BigNumSize = bn->top << 3; |
| # else |
| /* |
| * Size of the bignum in bytes is equal to the bn->top (no of 32 bit |
| * words) multiplies by 4 |
| */ |
| *BigNumSize = bn->top << 2; |
| # endif |
| |
| return AEP_R_OK; |
| } |
| |
| static AEP_RV MakeAEPBigNum(AEP_VOID_PTR ArbBigNum, AEP_U32 BigNumSize, |
| unsigned char *AEP_BigNum) |
| { |
| BIGNUM *bn; |
| |
| # ifndef SIXTY_FOUR_BIT_LONG |
| unsigned char *buf; |
| int i; |
| # endif |
| |
| /* |
| * Cast the ArbBigNum pointer to our BIGNUM struct |
| */ |
| bn = (BIGNUM *)ArbBigNum; |
| |
| # ifdef SIXTY_FOUR_BIT_LONG |
| memcpy(AEP_BigNum, bn->d, BigNumSize); |
| # else |
| /* |
| * Must copy data into a (monotone) least significant byte first format |
| * performing endian conversion if necessary |
| */ |
| for (i = 0; i < bn->top; i++) { |
| buf = (unsigned char *)&bn->d[i]; |
| |
| *((AEP_U32 *)AEP_BigNum) = (AEP_U32) |
| ((unsigned)buf[1] << 8 | buf[0]) | |
| ((unsigned)buf[3] << 8 | buf[2]) << 16; |
| |
| AEP_BigNum += 4; |
| } |
| # endif |
| |
| return AEP_R_OK; |
| } |
| |
| /* |
| * Turn an AEP Big Num back to a user big num |
| */ |
| static AEP_RV ConvertAEPBigNum(void *ArbBigNum, AEP_U32 BigNumSize, |
| unsigned char *AEP_BigNum) |
| { |
| BIGNUM *bn; |
| # ifndef SIXTY_FOUR_BIT_LONG |
| int i; |
| # endif |
| |
| bn = (BIGNUM *)ArbBigNum; |
| |
| /* |
| * Expand the result bn so that it can hold our big num. Size is in bits |
| */ |
| bn_expand(bn, (int)(BigNumSize << 3)); |
| |
| # ifdef SIXTY_FOUR_BIT_LONG |
| bn->top = BigNumSize >> 3; |
| |
| if ((BigNumSize & 7) != 0) |
| bn->top++; |
| |
| memset(bn->d, 0, bn->top << 3); |
| |
| memcpy(bn->d, AEP_BigNum, BigNumSize); |
| # else |
| bn->top = BigNumSize >> 2; |
| |
| for (i = 0; i < bn->top; i++) { |
| bn->d[i] = (AEP_U32) |
| ((unsigned)AEP_BigNum[3] << 8 | AEP_BigNum[2]) << 16 | |
| ((unsigned)AEP_BigNum[1] << 8 | AEP_BigNum[0]); |
| AEP_BigNum += 4; |
| } |
| # endif |
| |
| return AEP_R_OK; |
| } |
| |
| # endif /* !OPENSSL_NO_HW_AEP */ |
| #endif /* !OPENSSL_NO_HW */ |