blob: 004a897829575f16fdf60797e24a63269535d4e6 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/cert/ct_serialization.h"
#include <string>
#include "base/files/file_path.h"
#include "base/files/file_util.h"
#include "net/base/test_completion_callback.h"
#include "net/cert/merkle_tree_leaf.h"
#include "net/cert/signed_certificate_timestamp.h"
#include "net/cert/signed_tree_head.h"
#include "net/cert/x509_certificate.h"
#include "net/test/cert_test_util.h"
#include "net/test/ct_test_util.h"
#include "net/test/test_data_directory.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
using ::testing::ElementsAreArray;
namespace net {
class CtSerializationTest : public ::testing::Test {
public:
void SetUp() override {
test_digitally_signed_ = ct::GetTestDigitallySigned();
}
protected:
std::string test_digitally_signed_;
};
TEST_F(CtSerializationTest, DecodesDigitallySigned) {
base::StringPiece digitally_signed(test_digitally_signed_);
ct::DigitallySigned parsed;
ASSERT_TRUE(ct::DecodeDigitallySigned(&digitally_signed, &parsed));
EXPECT_EQ(
ct::DigitallySigned::HASH_ALGO_SHA256,
parsed.hash_algorithm);
EXPECT_EQ(
ct::DigitallySigned::SIG_ALGO_ECDSA,
parsed.signature_algorithm);
// The encoded data contains the signature itself from the 4th byte.
// The first bytes are:
// 1 byte of hash algorithm
// 1 byte of signature algorithm
// 2 bytes - prefix containing length of the signature data.
EXPECT_EQ(
test_digitally_signed_.substr(4),
parsed.signature_data);
}
TEST_F(CtSerializationTest, FailsToDecodePartialDigitallySigned) {
base::StringPiece digitally_signed(test_digitally_signed_);
base::StringPiece partial_digitally_signed(
digitally_signed.substr(0, test_digitally_signed_.size() - 5));
ct::DigitallySigned parsed;
ASSERT_FALSE(ct::DecodeDigitallySigned(&partial_digitally_signed, &parsed));
}
TEST_F(CtSerializationTest, EncodesDigitallySigned) {
ct::DigitallySigned digitally_signed;
digitally_signed.hash_algorithm = ct::DigitallySigned::HASH_ALGO_SHA256;
digitally_signed.signature_algorithm = ct::DigitallySigned::SIG_ALGO_ECDSA;
digitally_signed.signature_data = test_digitally_signed_.substr(4);
std::string encoded;
ASSERT_TRUE(ct::EncodeDigitallySigned(digitally_signed, &encoded));
EXPECT_EQ(test_digitally_signed_, encoded);
}
TEST_F(CtSerializationTest, EncodesSignedEntryForX509Cert) {
ct::SignedEntryData entry;
ct::GetX509CertSignedEntry(&entry);
std::string encoded;
ASSERT_TRUE(ct::EncodeSignedEntry(entry, &encoded));
EXPECT_EQ((718U + 5U), encoded.size());
// First two bytes are log entry type. Next, length:
// Length is 718 which is 512 + 206, which is 0x2ce
std::string expected_prefix("\0\0\0\x2\xCE", 5);
// Note we use std::string comparison rather than ASSERT_STREQ due
// to null characters in the buffer.
EXPECT_EQ(expected_prefix, encoded.substr(0, 5));
}
TEST_F(CtSerializationTest, EncodesSignedEntryForPrecert) {
ct::SignedEntryData entry;
ct::GetPrecertSignedEntry(&entry);
std::string encoded;
ASSERT_TRUE(ct::EncodeSignedEntry(entry, &encoded));
EXPECT_EQ(604u, encoded.size());
// First two bytes are the log entry type.
EXPECT_EQ(std::string("\x00\x01", 2), encoded.substr(0, 2));
// Next comes the 32-byte issuer key hash
EXPECT_THAT(encoded.substr(2, 32),
ElementsAreArray(entry.issuer_key_hash.data));
// Then the length of the TBS cert (604 bytes = 0x237)
EXPECT_EQ(std::string("\x00\x02\x37", 3), encoded.substr(34, 3));
// Then the TBS cert itself
EXPECT_EQ(entry.tbs_certificate, encoded.substr(37));
}
TEST_F(CtSerializationTest, EncodesV1SCTSignedData) {
base::Time timestamp = base::Time::UnixEpoch() +
base::TimeDelta::FromMilliseconds(1348589665525);
std::string dummy_entry("abc");
std::string empty_extensions;
// For now, no known failure cases.
std::string encoded;
ASSERT_TRUE(ct::EncodeV1SCTSignedData(
timestamp,
dummy_entry,
empty_extensions,
&encoded));
EXPECT_EQ((size_t) 15, encoded.size());
// Byte 0 is version, byte 1 is signature type
// Bytes 2-10 are timestamp
// Bytes 11-14 are the log signature
// Byte 15 is the empty extension
//EXPECT_EQ(0, timestamp.ToTimeT());
std::string expected_buffer(
"\x0\x0\x0\x0\x1\x39\xFE\x35\x3C\xF5\x61\x62\x63\x0\x0", 15);
EXPECT_EQ(expected_buffer, encoded);
}
TEST_F(CtSerializationTest, DecodesSCTList) {
// Two items in the list: "abc", "def"
base::StringPiece encoded("\x0\xa\x0\x3\x61\x62\x63\x0\x3\x64\x65\x66", 12);
std::vector<base::StringPiece> decoded;
ASSERT_TRUE(ct::DecodeSCTList(encoded, &decoded));
ASSERT_STREQ("abc", decoded[0].data());
ASSERT_STREQ("def", decoded[1].data());
}
TEST_F(CtSerializationTest, FailsDecodingInvalidSCTList) {
// A list with one item that's too short
base::StringPiece encoded("\x0\xa\x0\x3\x61\x62\x63\x0\x5\x64\x65\x66", 12);
std::vector<base::StringPiece> decoded;
ASSERT_FALSE(ct::DecodeSCTList(encoded, &decoded));
}
TEST_F(CtSerializationTest, EncodeSignedCertificateTimestamp) {
std::string encoded_test_sct(ct::GetTestSignedCertificateTimestamp());
base::StringPiece encoded_sct(encoded_test_sct);
scoped_refptr<ct::SignedCertificateTimestamp> sct;
ASSERT_TRUE(ct::DecodeSignedCertificateTimestamp(&encoded_sct, &sct));
std::string serialized;
ct::EncodeSignedCertificateTimestamp(sct, &serialized);
EXPECT_EQ(serialized, encoded_test_sct);
}
TEST_F(CtSerializationTest, DecodesSignedCertificateTimestamp) {
std::string encoded_test_sct(ct::GetTestSignedCertificateTimestamp());
base::StringPiece encoded_sct(encoded_test_sct);
scoped_refptr<ct::SignedCertificateTimestamp> sct;
ASSERT_TRUE(ct::DecodeSignedCertificateTimestamp(&encoded_sct, &sct));
EXPECT_EQ(0, sct->version);
EXPECT_EQ(ct::GetTestPublicKeyId(), sct->log_id);
base::Time expected_time = base::Time::UnixEpoch() +
base::TimeDelta::FromMilliseconds(1365181456089);
EXPECT_EQ(expected_time, sct->timestamp);
// Subtracting 4 bytes for signature data (hash & sig algs),
// actual signature data should be 71 bytes.
EXPECT_EQ((size_t) 71, sct->signature.signature_data.size());
EXPECT_TRUE(sct->extensions.empty());
}
TEST_F(CtSerializationTest, FailsDecodingInvalidSignedCertificateTimestamp) {
// Invalid version
base::StringPiece invalid_version_sct("\x2\x0", 2);
scoped_refptr<ct::SignedCertificateTimestamp> sct;
ASSERT_FALSE(
ct::DecodeSignedCertificateTimestamp(&invalid_version_sct, &sct));
// Valid version, invalid length (missing data)
base::StringPiece invalid_length_sct("\x0\xa\xb\xc", 4);
ASSERT_FALSE(
ct::DecodeSignedCertificateTimestamp(&invalid_length_sct, &sct));
}
TEST_F(CtSerializationTest, EncodesMerkleTreeLeafForX509Cert) {
ct::MerkleTreeLeaf tree_leaf;
ct::GetX509CertTreeLeaf(&tree_leaf);
std::string encoded;
ASSERT_TRUE(ct::EncodeTreeLeaf(tree_leaf, &encoded));
EXPECT_EQ(741u, encoded.size()) << "Merkle tree leaf encoded incorrectly";
EXPECT_EQ(std::string("\x00", 1), encoded.substr(0, 1)) <<
"Version encoded incorrectly";
EXPECT_EQ(std::string("\x00", 1), encoded.substr(1, 1)) <<
"Merkle tree leaf type encoded incorrectly";
EXPECT_EQ(std::string("\x00\x00\x01\x45\x3c\x5f\xb8\x35", 8),
encoded.substr(2, 8)) <<
"Timestamp encoded incorrectly";
EXPECT_EQ(std::string("\x00\x00", 2), encoded.substr(10, 2)) <<
"Log entry type encoded incorrectly";
EXPECT_EQ(std::string("\x00\x02\xce", 3), encoded.substr(12, 3)) <<
"Certificate length encoded incorrectly";
EXPECT_EQ(tree_leaf.signed_entry.leaf_certificate, encoded.substr(15, 718))
<< "Certificate encoded incorrectly";
EXPECT_EQ(std::string("\x00\x06", 2), encoded.substr(733, 2)) <<
"CT extensions length encoded incorrectly";
EXPECT_EQ(tree_leaf.extensions, encoded.substr(735, 6)) <<
"CT extensions encoded incorrectly";
}
TEST_F(CtSerializationTest, EncodesMerkleTreeLeafForPrecert) {
ct::MerkleTreeLeaf tree_leaf;
ct::GetPrecertTreeLeaf(&tree_leaf);
std::string encoded;
ASSERT_TRUE(ct::EncodeTreeLeaf(tree_leaf, &encoded));
EXPECT_EQ(622u, encoded.size()) << "Merkle tree leaf encoded incorrectly";
EXPECT_EQ(std::string("\x00", 1), encoded.substr(0, 1)) <<
"Version encoded incorrectly";
EXPECT_EQ(std::string("\x00", 1), encoded.substr(1, 1)) <<
"Merkle tree leaf type encoded incorrectly";
EXPECT_EQ(std::string("\x00\x00\x01\x45\x3c\x5f\xb8\x35", 8),
encoded.substr(2, 8)) <<
"Timestamp encoded incorrectly";
EXPECT_EQ(std::string("\x00\x01", 2), encoded.substr(10, 2)) <<
"Log entry type encoded incorrectly";
EXPECT_THAT(encoded.substr(12, 32),
ElementsAreArray(tree_leaf.signed_entry.issuer_key_hash.data))
<< "Issuer key hash encoded incorrectly";
EXPECT_EQ(std::string("\x00\x02\x37", 3), encoded.substr(44, 3)) <<
"TBS certificate length encoded incorrectly";
EXPECT_EQ(tree_leaf.signed_entry.tbs_certificate, encoded.substr(47, 567))
<< "TBS certificate encoded incorrectly";
EXPECT_EQ(std::string("\x00\x06", 2), encoded.substr(614, 2)) <<
"CT extensions length encoded incorrectly";
EXPECT_EQ(tree_leaf.extensions, encoded.substr(616, 6)) <<
"CT extensions encoded incorrectly";
}
TEST_F(CtSerializationTest, EncodesValidSignedTreeHead) {
ct::SignedTreeHead signed_tree_head;
ASSERT_TRUE(GetSampleSignedTreeHead(&signed_tree_head));
std::string encoded;
ct::EncodeTreeHeadSignature(signed_tree_head, &encoded);
// Expected size is 50 bytes:
// Byte 0 is version, byte 1 is signature type
// Bytes 2-9 are timestamp
// Bytes 10-17 are tree size
// Bytes 18-49 are sha256 root hash
ASSERT_EQ(50u, encoded.length());
std::string expected_buffer(
"\x0\x1\x0\x0\x1\x45\x3c\x5f\xb8\x35\x0\x0\x0\x0\x0\x0\x0\x15", 18);
expected_buffer.append(ct::GetSampleSTHSHA256RootHash());
ASSERT_EQ(expected_buffer, encoded);
}
} // namespace net