blob: 714a6f3a0b3b9f9272dc781f123a64b4fec39dab [file] [log] [blame]
class PointCloud {
ArrayList<PVector> points; // array to save points
IntList point_colors; // array to save points color
PVector cloud_mass;
float[] depth;
boolean[] real;
PointCloud() {
// initialize
points = new ArrayList<PVector>();
point_colors = new IntList();
cloud_mass = new PVector(0, 0, 0);
depth = new float[width * height];
real = new boolean[width * height];
}
void generate(PImage rgb_img, PImage depth_img, Transform trans) {
if (depth_img.width != width || depth_img.height != height ||
rgb_img.width != width || rgb_img.height != height) {
println("rgb and depth file dimension should be same with window size");
exit();
}
// clear depth and real
for (int i = 0; i < width * height; i++) {
depth[i] = 0;
real[i] = false;
}
for (int v = 0; v < height; v++)
for (int u = 0; u < width; u++) {
// get depth value (red channel)
color depth_px = depth_img.get(u, v);
depth[v * width + u] = depth_px & 0x0000FFFF;
if (int(depth[v * width + u]) != 0) {
real[v * width + u] = true;
}
point_colors.append(rgb_img.get(u, v));
}
for (int v = 0; v < height; v++)
for (int u = 0; u < width; u++) {
if (int(depth[v * width + u]) == 0) {
interpolateDepth(v, u);
}
// add transformed pixel as well as pixel color to the list
PVector pos = trans.transform(u, v, int(depth[v * width + u]));
points.add(pos);
// accumulate z value
cloud_mass = PVector.add(cloud_mass, pos);
}
}
void fillInDepthAlongPath(float d, Node node) {
node = node.parent;
while (node != null) {
int i = node.row;
int j = node.col;
if (depth[i * width + j] == 0) {
depth[i * width + j] = d;
}
node = node.parent;
}
}
// interpolate
void interpolateDepth(int row, int col) {
if (row < 0 || row >= height || col < 0 || col >= width ||
int(depth[row * width + col]) != 0) {
return;
}
ArrayList<Node> queue = new ArrayList<Node>();
queue.add(new Node(row, col, null));
boolean[] visited = new boolean[width * height];
for (int i = 0; i < width * height; i++) visited[i] = false;
visited[row * width + col] = true;
// Using BFS to Find the Nearest Neighbor
while (queue.size() > 0) {
// pop
Node node = queue.get(0);
queue.remove(0);
int i = node.row;
int j = node.col;
// if current position have a real depth
if (depth[i * width + j] != 0 && real[i * width + j]) {
fillInDepthAlongPath(depth[i * width + j], node);
break;
} else {
// search unvisited 8 neighbors
for (int r = max(0, i - 1); r < min(height, i + 2); r++) {
for (int c = max(0, j - 1); c < min(width, j + 2); c++) {
if (!visited[r * width + c]) {
visited[r * width + c] = true;
queue.add(new Node(r, c, node));
}
}
}
}
}
}
// get point cloud size
int size() { return points.size(); }
// get ith position
PVector getPosition(int i) {
if (i >= points.size()) {
println("point position: index " + str(i) + " exceeds");
exit();
}
return points.get(i);
}
// get ith color
color getColor(int i) {
if (i >= point_colors.size()) {
println("point color: index " + str(i) + " exceeds");
exit();
}
return point_colors.get(i);
}
// get cloud center
PVector getCloudCenter() {
if (points.size() > 0) {
return PVector.div(cloud_mass, points.size());
}
return new PVector(0, 0, 0);
}
// merge two clouds
void merge(PointCloud point_cloud) {
for (int i = 0; i < point_cloud.size(); i++) {
points.add(point_cloud.getPosition(i));
point_colors.append(point_cloud.getColor(i));
}
cloud_mass = PVector.add(cloud_mass, point_cloud.cloud_mass);
}
}
class Node {
int row, col;
Node parent;
Node(int row, int col, Node parent) {
this.row = row;
this.col = col;
this.parent = parent;
}
}