|  | /* | 
|  | * Copyright (c) 2003-2005  Tom Wu | 
|  | * All Rights Reserved. | 
|  | * | 
|  | * Permission is hereby granted, free of charge, to any person obtaining | 
|  | * a copy of this software and associated documentation files (the | 
|  | * "Software"), to deal in the Software without restriction, including | 
|  | * without limitation the rights to use, copy, modify, merge, publish, | 
|  | * distribute, sublicense, and/or sell copies of the Software, and to | 
|  | * permit persons to whom the Software is furnished to do so, subject to | 
|  | * the following conditions: | 
|  | * | 
|  | * The above copyright notice and this permission notice shall be | 
|  | * included in all copies or substantial portions of the Software. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, | 
|  | * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY | 
|  | * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. | 
|  | * | 
|  | * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, | 
|  | * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER | 
|  | * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF | 
|  | * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT | 
|  | * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | 
|  | * | 
|  | * In addition, the following condition applies: | 
|  | * | 
|  | * All redistributions must retain an intact copy of this copyright notice | 
|  | * and disclaimer. | 
|  | */ | 
|  |  | 
|  |  | 
|  | // The code has been adapted for use as a benchmark by Google. | 
|  | var Crypto = new BenchmarkSuite('Crypto', 266181, [ | 
|  | new Benchmark("Encrypt", encrypt), | 
|  | new Benchmark("Decrypt", decrypt) | 
|  | ]); | 
|  |  | 
|  |  | 
|  | // Basic JavaScript BN library - subset useful for RSA encryption. | 
|  |  | 
|  | // Bits per digit | 
|  | var dbits; | 
|  | var BI_DB; | 
|  | var BI_DM; | 
|  | var BI_DV; | 
|  |  | 
|  | var BI_FP; | 
|  | var BI_FV; | 
|  | var BI_F1; | 
|  | var BI_F2; | 
|  |  | 
|  | // JavaScript engine analysis | 
|  | var canary = 0xdeadbeefcafe; | 
|  | var j_lm = ((canary&0xffffff)==0xefcafe); | 
|  |  | 
|  | // (public) Constructor | 
|  | function BigInteger(a,b,c) { | 
|  | this.array = new Array(); | 
|  | if(a != null) | 
|  | if("number" == typeof a) this.fromNumber(a,b,c); | 
|  | else if(b == null && "string" != typeof a) this.fromString(a,256); | 
|  | else this.fromString(a,b); | 
|  | } | 
|  |  | 
|  | // return new, unset BigInteger | 
|  | function nbi() { return new BigInteger(null); } | 
|  |  | 
|  | // am: Compute w_j += (x*this_i), propagate carries, | 
|  | // c is initial carry, returns final carry. | 
|  | // c < 3*dvalue, x < 2*dvalue, this_i < dvalue | 
|  | // We need to select the fastest one that works in this environment. | 
|  |  | 
|  | // am1: use a single mult and divide to get the high bits, | 
|  | // max digit bits should be 26 because | 
|  | // max internal value = 2*dvalue^2-2*dvalue (< 2^53) | 
|  | function am1(i,x,w,j,c,n) { | 
|  | var this_array = this.array; | 
|  | var w_array    = w.array; | 
|  | while(--n >= 0) { | 
|  | var v = x*this_array[i++]+w_array[j]+c; | 
|  | c = Math.floor(v/0x4000000); | 
|  | w_array[j++] = v&0x3ffffff; | 
|  | } | 
|  | return c; | 
|  | } | 
|  |  | 
|  | // am2 avoids a big mult-and-extract completely. | 
|  | // Max digit bits should be <= 30 because we do bitwise ops | 
|  | // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) | 
|  | function am2(i,x,w,j,c,n) { | 
|  | var this_array = this.array; | 
|  | var w_array    = w.array; | 
|  | var xl = x&0x7fff, xh = x>>15; | 
|  | while(--n >= 0) { | 
|  | var l = this_array[i]&0x7fff; | 
|  | var h = this_array[i++]>>15; | 
|  | var m = xh*l+h*xl; | 
|  | l = xl*l+((m&0x7fff)<<15)+w_array[j]+(c&0x3fffffff); | 
|  | c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); | 
|  | w_array[j++] = l&0x3fffffff; | 
|  | } | 
|  | return c; | 
|  | } | 
|  |  | 
|  | // Alternately, set max digit bits to 28 since some | 
|  | // browsers slow down when dealing with 32-bit numbers. | 
|  | function am3(i,x,w,j,c,n) { | 
|  | var this_array = this.array; | 
|  | var w_array    = w.array; | 
|  |  | 
|  | var xl = x&0x3fff, xh = x>>14; | 
|  | while(--n >= 0) { | 
|  | var l = this_array[i]&0x3fff; | 
|  | var h = this_array[i++]>>14; | 
|  | var m = xh*l+h*xl; | 
|  | l = xl*l+((m&0x3fff)<<14)+w_array[j]+c; | 
|  | c = (l>>28)+(m>>14)+xh*h; | 
|  | w_array[j++] = l&0xfffffff; | 
|  | } | 
|  | return c; | 
|  | } | 
|  |  | 
|  | // This is tailored to VMs with 2-bit tagging. It makes sure | 
|  | // that all the computations stay within the 29 bits available. | 
|  | function am4(i,x,w,j,c,n) { | 
|  | var this_array = this.array; | 
|  | var w_array    = w.array; | 
|  |  | 
|  | var xl = x&0x1fff, xh = x>>13; | 
|  | while(--n >= 0) { | 
|  | var l = this_array[i]&0x1fff; | 
|  | var h = this_array[i++]>>13; | 
|  | var m = xh*l+h*xl; | 
|  | l = xl*l+((m&0x1fff)<<13)+w_array[j]+c; | 
|  | c = (l>>26)+(m>>13)+xh*h; | 
|  | w_array[j++] = l&0x3ffffff; | 
|  | } | 
|  | return c; | 
|  | } | 
|  |  | 
|  | // am3/28 is best for SM, Rhino, but am4/26 is best for v8. | 
|  | // Kestrel (Opera 9.5) gets its best result with am4/26. | 
|  | // IE7 does 9% better with am3/28 than with am4/26. | 
|  | // Firefox (SM) gets 10% faster with am3/28 than with am4/26. | 
|  |  | 
|  | setupEngine = function(fn, bits) { | 
|  | BigInteger.prototype.am = fn; | 
|  | dbits = bits; | 
|  |  | 
|  | BI_DB = dbits; | 
|  | BI_DM = ((1<<dbits)-1); | 
|  | BI_DV = (1<<dbits); | 
|  |  | 
|  | BI_FP = 52; | 
|  | BI_FV = Math.pow(2,BI_FP); | 
|  | BI_F1 = BI_FP-dbits; | 
|  | BI_F2 = 2*dbits-BI_FP; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Digit conversions | 
|  | var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; | 
|  | var BI_RC = new Array(); | 
|  | var rr,vv; | 
|  | rr = "0".charCodeAt(0); | 
|  | for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; | 
|  | rr = "a".charCodeAt(0); | 
|  | for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; | 
|  | rr = "A".charCodeAt(0); | 
|  | for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; | 
|  |  | 
|  | function int2char(n) { return BI_RM.charAt(n); } | 
|  | function intAt(s,i) { | 
|  | var c = BI_RC[s.charCodeAt(i)]; | 
|  | return (c==null)?-1:c; | 
|  | } | 
|  |  | 
|  | // (protected) copy this to r | 
|  | function bnpCopyTo(r) { | 
|  | var this_array = this.array; | 
|  | var r_array    = r.array; | 
|  |  | 
|  | for(var i = this.t-1; i >= 0; --i) r_array[i] = this_array[i]; | 
|  | r.t = this.t; | 
|  | r.s = this.s; | 
|  | } | 
|  |  | 
|  | // (protected) set from integer value x, -DV <= x < DV | 
|  | function bnpFromInt(x) { | 
|  | var this_array = this.array; | 
|  | this.t = 1; | 
|  | this.s = (x<0)?-1:0; | 
|  | if(x > 0) this_array[0] = x; | 
|  | else if(x < -1) this_array[0] = x+DV; | 
|  | else this.t = 0; | 
|  | } | 
|  |  | 
|  | // return bigint initialized to value | 
|  | function nbv(i) { var r = nbi(); r.fromInt(i); return r; } | 
|  |  | 
|  | // (protected) set from string and radix | 
|  | function bnpFromString(s,b) { | 
|  | var this_array = this.array; | 
|  | var k; | 
|  | if(b == 16) k = 4; | 
|  | else if(b == 8) k = 3; | 
|  | else if(b == 256) k = 8; // byte array | 
|  | else if(b == 2) k = 1; | 
|  | else if(b == 32) k = 5; | 
|  | else if(b == 4) k = 2; | 
|  | else { this.fromRadix(s,b); return; } | 
|  | this.t = 0; | 
|  | this.s = 0; | 
|  | var i = s.length, mi = false, sh = 0; | 
|  | while(--i >= 0) { | 
|  | var x = (k==8)?s[i]&0xff:intAt(s,i); | 
|  | if(x < 0) { | 
|  | if(s.charAt(i) == "-") mi = true; | 
|  | continue; | 
|  | } | 
|  | mi = false; | 
|  | if(sh == 0) | 
|  | this_array[this.t++] = x; | 
|  | else if(sh+k > BI_DB) { | 
|  | this_array[this.t-1] |= (x&((1<<(BI_DB-sh))-1))<<sh; | 
|  | this_array[this.t++] = (x>>(BI_DB-sh)); | 
|  | } | 
|  | else | 
|  | this_array[this.t-1] |= x<<sh; | 
|  | sh += k; | 
|  | if(sh >= BI_DB) sh -= BI_DB; | 
|  | } | 
|  | if(k == 8 && (s[0]&0x80) != 0) { | 
|  | this.s = -1; | 
|  | if(sh > 0) this_array[this.t-1] |= ((1<<(BI_DB-sh))-1)<<sh; | 
|  | } | 
|  | this.clamp(); | 
|  | if(mi) BigInteger.ZERO.subTo(this,this); | 
|  | } | 
|  |  | 
|  | // (protected) clamp off excess high words | 
|  | function bnpClamp() { | 
|  | var this_array = this.array; | 
|  | var c = this.s&BI_DM; | 
|  | while(this.t > 0 && this_array[this.t-1] == c) --this.t; | 
|  | } | 
|  |  | 
|  | // (public) return string representation in given radix | 
|  | function bnToString(b) { | 
|  | var this_array = this.array; | 
|  | if(this.s < 0) return "-"+this.negate().toString(b); | 
|  | var k; | 
|  | if(b == 16) k = 4; | 
|  | else if(b == 8) k = 3; | 
|  | else if(b == 2) k = 1; | 
|  | else if(b == 32) k = 5; | 
|  | else if(b == 4) k = 2; | 
|  | else return this.toRadix(b); | 
|  | var km = (1<<k)-1, d, m = false, r = "", i = this.t; | 
|  | var p = BI_DB-(i*BI_DB)%k; | 
|  | if(i-- > 0) { | 
|  | if(p < BI_DB && (d = this_array[i]>>p) > 0) { m = true; r = int2char(d); } | 
|  | while(i >= 0) { | 
|  | if(p < k) { | 
|  | d = (this_array[i]&((1<<p)-1))<<(k-p); | 
|  | d |= this_array[--i]>>(p+=BI_DB-k); | 
|  | } | 
|  | else { | 
|  | d = (this_array[i]>>(p-=k))&km; | 
|  | if(p <= 0) { p += BI_DB; --i; } | 
|  | } | 
|  | if(d > 0) m = true; | 
|  | if(m) r += int2char(d); | 
|  | } | 
|  | } | 
|  | return m?r:"0"; | 
|  | } | 
|  |  | 
|  | // (public) -this | 
|  | function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } | 
|  |  | 
|  | // (public) |this| | 
|  | function bnAbs() { return (this.s<0)?this.negate():this; } | 
|  |  | 
|  | // (public) return + if this > a, - if this < a, 0 if equal | 
|  | function bnCompareTo(a) { | 
|  | var this_array = this.array; | 
|  | var a_array = a.array; | 
|  |  | 
|  | var r = this.s-a.s; | 
|  | if(r != 0) return r; | 
|  | var i = this.t; | 
|  | r = i-a.t; | 
|  | if(r != 0) return r; | 
|  | while(--i >= 0) if((r=this_array[i]-a_array[i]) != 0) return r; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // returns bit length of the integer x | 
|  | function nbits(x) { | 
|  | var r = 1, t; | 
|  | if((t=x>>>16) != 0) { x = t; r += 16; } | 
|  | if((t=x>>8) != 0) { x = t; r += 8; } | 
|  | if((t=x>>4) != 0) { x = t; r += 4; } | 
|  | if((t=x>>2) != 0) { x = t; r += 2; } | 
|  | if((t=x>>1) != 0) { x = t; r += 1; } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | // (public) return the number of bits in "this" | 
|  | function bnBitLength() { | 
|  | var this_array = this.array; | 
|  | if(this.t <= 0) return 0; | 
|  | return BI_DB*(this.t-1)+nbits(this_array[this.t-1]^(this.s&BI_DM)); | 
|  | } | 
|  |  | 
|  | // (protected) r = this << n*DB | 
|  | function bnpDLShiftTo(n,r) { | 
|  | var this_array = this.array; | 
|  | var r_array = r.array; | 
|  | var i; | 
|  | for(i = this.t-1; i >= 0; --i) r_array[i+n] = this_array[i]; | 
|  | for(i = n-1; i >= 0; --i) r_array[i] = 0; | 
|  | r.t = this.t+n; | 
|  | r.s = this.s; | 
|  | } | 
|  |  | 
|  | // (protected) r = this >> n*DB | 
|  | function bnpDRShiftTo(n,r) { | 
|  | var this_array = this.array; | 
|  | var r_array = r.array; | 
|  | for(var i = n; i < this.t; ++i) r_array[i-n] = this_array[i]; | 
|  | r.t = Math.max(this.t-n,0); | 
|  | r.s = this.s; | 
|  | } | 
|  |  | 
|  | // (protected) r = this << n | 
|  | function bnpLShiftTo(n,r) { | 
|  | var this_array = this.array; | 
|  | var r_array = r.array; | 
|  | var bs = n%BI_DB; | 
|  | var cbs = BI_DB-bs; | 
|  | var bm = (1<<cbs)-1; | 
|  | var ds = Math.floor(n/BI_DB), c = (this.s<<bs)&BI_DM, i; | 
|  | for(i = this.t-1; i >= 0; --i) { | 
|  | r_array[i+ds+1] = (this_array[i]>>cbs)|c; | 
|  | c = (this_array[i]&bm)<<bs; | 
|  | } | 
|  | for(i = ds-1; i >= 0; --i) r_array[i] = 0; | 
|  | r_array[ds] = c; | 
|  | r.t = this.t+ds+1; | 
|  | r.s = this.s; | 
|  | r.clamp(); | 
|  | } | 
|  |  | 
|  | // (protected) r = this >> n | 
|  | function bnpRShiftTo(n,r) { | 
|  | var this_array = this.array; | 
|  | var r_array = r.array; | 
|  | r.s = this.s; | 
|  | var ds = Math.floor(n/BI_DB); | 
|  | if(ds >= this.t) { r.t = 0; return; } | 
|  | var bs = n%BI_DB; | 
|  | var cbs = BI_DB-bs; | 
|  | var bm = (1<<bs)-1; | 
|  | r_array[0] = this_array[ds]>>bs; | 
|  | for(var i = ds+1; i < this.t; ++i) { | 
|  | r_array[i-ds-1] |= (this_array[i]&bm)<<cbs; | 
|  | r_array[i-ds] = this_array[i]>>bs; | 
|  | } | 
|  | if(bs > 0) r_array[this.t-ds-1] |= (this.s&bm)<<cbs; | 
|  | r.t = this.t-ds; | 
|  | r.clamp(); | 
|  | } | 
|  |  | 
|  | // (protected) r = this - a | 
|  | function bnpSubTo(a,r) { | 
|  | var this_array = this.array; | 
|  | var r_array = r.array; | 
|  | var a_array = a.array; | 
|  | var i = 0, c = 0, m = Math.min(a.t,this.t); | 
|  | while(i < m) { | 
|  | c += this_array[i]-a_array[i]; | 
|  | r_array[i++] = c&BI_DM; | 
|  | c >>= BI_DB; | 
|  | } | 
|  | if(a.t < this.t) { | 
|  | c -= a.s; | 
|  | while(i < this.t) { | 
|  | c += this_array[i]; | 
|  | r_array[i++] = c&BI_DM; | 
|  | c >>= BI_DB; | 
|  | } | 
|  | c += this.s; | 
|  | } | 
|  | else { | 
|  | c += this.s; | 
|  | while(i < a.t) { | 
|  | c -= a_array[i]; | 
|  | r_array[i++] = c&BI_DM; | 
|  | c >>= BI_DB; | 
|  | } | 
|  | c -= a.s; | 
|  | } | 
|  | r.s = (c<0)?-1:0; | 
|  | if(c < -1) r_array[i++] = BI_DV+c; | 
|  | else if(c > 0) r_array[i++] = c; | 
|  | r.t = i; | 
|  | r.clamp(); | 
|  | } | 
|  |  | 
|  | // (protected) r = this * a, r != this,a (HAC 14.12) | 
|  | // "this" should be the larger one if appropriate. | 
|  | function bnpMultiplyTo(a,r) { | 
|  | var this_array = this.array; | 
|  | var r_array = r.array; | 
|  | var x = this.abs(), y = a.abs(); | 
|  | var y_array = y.array; | 
|  |  | 
|  | var i = x.t; | 
|  | r.t = i+y.t; | 
|  | while(--i >= 0) r_array[i] = 0; | 
|  | for(i = 0; i < y.t; ++i) r_array[i+x.t] = x.am(0,y_array[i],r,i,0,x.t); | 
|  | r.s = 0; | 
|  | r.clamp(); | 
|  | if(this.s != a.s) BigInteger.ZERO.subTo(r,r); | 
|  | } | 
|  |  | 
|  | // (protected) r = this^2, r != this (HAC 14.16) | 
|  | function bnpSquareTo(r) { | 
|  | var x = this.abs(); | 
|  | var x_array = x.array; | 
|  | var r_array = r.array; | 
|  |  | 
|  | var i = r.t = 2*x.t; | 
|  | while(--i >= 0) r_array[i] = 0; | 
|  | for(i = 0; i < x.t-1; ++i) { | 
|  | var c = x.am(i,x_array[i],r,2*i,0,1); | 
|  | if((r_array[i+x.t]+=x.am(i+1,2*x_array[i],r,2*i+1,c,x.t-i-1)) >= BI_DV) { | 
|  | r_array[i+x.t] -= BI_DV; | 
|  | r_array[i+x.t+1] = 1; | 
|  | } | 
|  | } | 
|  | if(r.t > 0) r_array[r.t-1] += x.am(i,x_array[i],r,2*i,0,1); | 
|  | r.s = 0; | 
|  | r.clamp(); | 
|  | } | 
|  |  | 
|  | // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) | 
|  | // r != q, this != m.  q or r may be null. | 
|  | function bnpDivRemTo(m,q,r) { | 
|  | var pm = m.abs(); | 
|  | if(pm.t <= 0) return; | 
|  | var pt = this.abs(); | 
|  | if(pt.t < pm.t) { | 
|  | if(q != null) q.fromInt(0); | 
|  | if(r != null) this.copyTo(r); | 
|  | return; | 
|  | } | 
|  | if(r == null) r = nbi(); | 
|  | var y = nbi(), ts = this.s, ms = m.s; | 
|  | var pm_array = pm.array; | 
|  | var nsh = BI_DB-nbits(pm_array[pm.t-1]);	// normalize modulus | 
|  | if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } | 
|  | else { pm.copyTo(y); pt.copyTo(r); } | 
|  | var ys = y.t; | 
|  |  | 
|  | var y_array = y.array; | 
|  | var y0 = y_array[ys-1]; | 
|  | if(y0 == 0) return; | 
|  | var yt = y0*(1<<BI_F1)+((ys>1)?y_array[ys-2]>>BI_F2:0); | 
|  | var d1 = BI_FV/yt, d2 = (1<<BI_F1)/yt, e = 1<<BI_F2; | 
|  | var i = r.t, j = i-ys, t = (q==null)?nbi():q; | 
|  | y.dlShiftTo(j,t); | 
|  |  | 
|  | var r_array = r.array; | 
|  | if(r.compareTo(t) >= 0) { | 
|  | r_array[r.t++] = 1; | 
|  | r.subTo(t,r); | 
|  | } | 
|  | BigInteger.ONE.dlShiftTo(ys,t); | 
|  | t.subTo(y,y);	// "negative" y so we can replace sub with am later | 
|  | while(y.t < ys) y_array[y.t++] = 0; | 
|  | while(--j >= 0) { | 
|  | // Estimate quotient digit | 
|  | var qd = (r_array[--i]==y0)?BI_DM:Math.floor(r_array[i]*d1+(r_array[i-1]+e)*d2); | 
|  | if((r_array[i]+=y.am(0,qd,r,j,0,ys)) < qd) {	// Try it out | 
|  | y.dlShiftTo(j,t); | 
|  | r.subTo(t,r); | 
|  | while(r_array[i] < --qd) r.subTo(t,r); | 
|  | } | 
|  | } | 
|  | if(q != null) { | 
|  | r.drShiftTo(ys,q); | 
|  | if(ts != ms) BigInteger.ZERO.subTo(q,q); | 
|  | } | 
|  | r.t = ys; | 
|  | r.clamp(); | 
|  | if(nsh > 0) r.rShiftTo(nsh,r);	// Denormalize remainder | 
|  | if(ts < 0) BigInteger.ZERO.subTo(r,r); | 
|  | } | 
|  |  | 
|  | // (public) this mod a | 
|  | function bnMod(a) { | 
|  | var r = nbi(); | 
|  | this.abs().divRemTo(a,null,r); | 
|  | if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | // Modular reduction using "classic" algorithm | 
|  | function Classic(m) { this.m = m; } | 
|  | function cConvert(x) { | 
|  | if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); | 
|  | else return x; | 
|  | } | 
|  | function cRevert(x) { return x; } | 
|  | function cReduce(x) { x.divRemTo(this.m,null,x); } | 
|  | function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } | 
|  | function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } | 
|  |  | 
|  | Classic.prototype.convert = cConvert; | 
|  | Classic.prototype.revert = cRevert; | 
|  | Classic.prototype.reduce = cReduce; | 
|  | Classic.prototype.mulTo = cMulTo; | 
|  | Classic.prototype.sqrTo = cSqrTo; | 
|  |  | 
|  | // (protected) return "-1/this % 2^DB"; useful for Mont. reduction | 
|  | // justification: | 
|  | //         xy == 1 (mod m) | 
|  | //         xy =  1+km | 
|  | //   xy(2-xy) = (1+km)(1-km) | 
|  | // x[y(2-xy)] = 1-k^2m^2 | 
|  | // x[y(2-xy)] == 1 (mod m^2) | 
|  | // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 | 
|  | // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. | 
|  | // JS multiply "overflows" differently from C/C++, so care is needed here. | 
|  | function bnpInvDigit() { | 
|  | var this_array = this.array; | 
|  | if(this.t < 1) return 0; | 
|  | var x = this_array[0]; | 
|  | if((x&1) == 0) return 0; | 
|  | var y = x&3;		// y == 1/x mod 2^2 | 
|  | y = (y*(2-(x&0xf)*y))&0xf;	// y == 1/x mod 2^4 | 
|  | y = (y*(2-(x&0xff)*y))&0xff;	// y == 1/x mod 2^8 | 
|  | y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff;	// y == 1/x mod 2^16 | 
|  | // last step - calculate inverse mod DV directly; | 
|  | // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints | 
|  | y = (y*(2-x*y%BI_DV))%BI_DV;		// y == 1/x mod 2^dbits | 
|  | // we really want the negative inverse, and -DV < y < DV | 
|  | return (y>0)?BI_DV-y:-y; | 
|  | } | 
|  |  | 
|  | // Montgomery reduction | 
|  | function Montgomery(m) { | 
|  | this.m = m; | 
|  | this.mp = m.invDigit(); | 
|  | this.mpl = this.mp&0x7fff; | 
|  | this.mph = this.mp>>15; | 
|  | this.um = (1<<(BI_DB-15))-1; | 
|  | this.mt2 = 2*m.t; | 
|  | } | 
|  |  | 
|  | // xR mod m | 
|  | function montConvert(x) { | 
|  | var r = nbi(); | 
|  | x.abs().dlShiftTo(this.m.t,r); | 
|  | r.divRemTo(this.m,null,r); | 
|  | if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | // x/R mod m | 
|  | function montRevert(x) { | 
|  | var r = nbi(); | 
|  | x.copyTo(r); | 
|  | this.reduce(r); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | // x = x/R mod m (HAC 14.32) | 
|  | function montReduce(x) { | 
|  | var x_array = x.array; | 
|  | while(x.t <= this.mt2)	// pad x so am has enough room later | 
|  | x_array[x.t++] = 0; | 
|  | for(var i = 0; i < this.m.t; ++i) { | 
|  | // faster way of calculating u0 = x[i]*mp mod DV | 
|  | var j = x_array[i]&0x7fff; | 
|  | var u0 = (j*this.mpl+(((j*this.mph+(x_array[i]>>15)*this.mpl)&this.um)<<15))&BI_DM; | 
|  | // use am to combine the multiply-shift-add into one call | 
|  | j = i+this.m.t; | 
|  | x_array[j] += this.m.am(0,u0,x,i,0,this.m.t); | 
|  | // propagate carry | 
|  | while(x_array[j] >= BI_DV) { x_array[j] -= BI_DV; x_array[++j]++; } | 
|  | } | 
|  | x.clamp(); | 
|  | x.drShiftTo(this.m.t,x); | 
|  | if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); | 
|  | } | 
|  |  | 
|  | // r = "x^2/R mod m"; x != r | 
|  | function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } | 
|  |  | 
|  | // r = "xy/R mod m"; x,y != r | 
|  | function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } | 
|  |  | 
|  | Montgomery.prototype.convert = montConvert; | 
|  | Montgomery.prototype.revert = montRevert; | 
|  | Montgomery.prototype.reduce = montReduce; | 
|  | Montgomery.prototype.mulTo = montMulTo; | 
|  | Montgomery.prototype.sqrTo = montSqrTo; | 
|  |  | 
|  | // (protected) true iff this is even | 
|  | function bnpIsEven() { | 
|  | var this_array = this.array; | 
|  | return ((this.t>0)?(this_array[0]&1):this.s) == 0; | 
|  | } | 
|  |  | 
|  | // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) | 
|  | function bnpExp(e,z) { | 
|  | if(e > 0xffffffff || e < 1) return BigInteger.ONE; | 
|  | var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; | 
|  | g.copyTo(r); | 
|  | while(--i >= 0) { | 
|  | z.sqrTo(r,r2); | 
|  | if((e&(1<<i)) > 0) z.mulTo(r2,g,r); | 
|  | else { var t = r; r = r2; r2 = t; } | 
|  | } | 
|  | return z.revert(r); | 
|  | } | 
|  |  | 
|  | // (public) this^e % m, 0 <= e < 2^32 | 
|  | function bnModPowInt(e,m) { | 
|  | var z; | 
|  | if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); | 
|  | return this.exp(e,z); | 
|  | } | 
|  |  | 
|  | // protected | 
|  | BigInteger.prototype.copyTo = bnpCopyTo; | 
|  | BigInteger.prototype.fromInt = bnpFromInt; | 
|  | BigInteger.prototype.fromString = bnpFromString; | 
|  | BigInteger.prototype.clamp = bnpClamp; | 
|  | BigInteger.prototype.dlShiftTo = bnpDLShiftTo; | 
|  | BigInteger.prototype.drShiftTo = bnpDRShiftTo; | 
|  | BigInteger.prototype.lShiftTo = bnpLShiftTo; | 
|  | BigInteger.prototype.rShiftTo = bnpRShiftTo; | 
|  | BigInteger.prototype.subTo = bnpSubTo; | 
|  | BigInteger.prototype.multiplyTo = bnpMultiplyTo; | 
|  | BigInteger.prototype.squareTo = bnpSquareTo; | 
|  | BigInteger.prototype.divRemTo = bnpDivRemTo; | 
|  | BigInteger.prototype.invDigit = bnpInvDigit; | 
|  | BigInteger.prototype.isEven = bnpIsEven; | 
|  | BigInteger.prototype.exp = bnpExp; | 
|  |  | 
|  | // public | 
|  | BigInteger.prototype.toString = bnToString; | 
|  | BigInteger.prototype.negate = bnNegate; | 
|  | BigInteger.prototype.abs = bnAbs; | 
|  | BigInteger.prototype.compareTo = bnCompareTo; | 
|  | BigInteger.prototype.bitLength = bnBitLength; | 
|  | BigInteger.prototype.mod = bnMod; | 
|  | BigInteger.prototype.modPowInt = bnModPowInt; | 
|  |  | 
|  | // "constants" | 
|  | BigInteger.ZERO = nbv(0); | 
|  | BigInteger.ONE = nbv(1); | 
|  | // Copyright (c) 2005  Tom Wu | 
|  | // All Rights Reserved. | 
|  | // See "LICENSE" for details. | 
|  |  | 
|  | // Extended JavaScript BN functions, required for RSA private ops. | 
|  |  | 
|  | // (public) | 
|  | function bnClone() { var r = nbi(); this.copyTo(r); return r; } | 
|  |  | 
|  | // (public) return value as integer | 
|  | function bnIntValue() { | 
|  | var this_array = this.array; | 
|  | if(this.s < 0) { | 
|  | if(this.t == 1) return this_array[0]-BI_DV; | 
|  | else if(this.t == 0) return -1; | 
|  | } | 
|  | else if(this.t == 1) return this_array[0]; | 
|  | else if(this.t == 0) return 0; | 
|  | // assumes 16 < DB < 32 | 
|  | return ((this_array[1]&((1<<(32-BI_DB))-1))<<BI_DB)|this_array[0]; | 
|  | } | 
|  |  | 
|  | // (public) return value as byte | 
|  | function bnByteValue() { | 
|  | var this_array = this.array; | 
|  | return (this.t==0)?this.s:(this_array[0]<<24)>>24; | 
|  | } | 
|  |  | 
|  | // (public) return value as short (assumes DB>=16) | 
|  | function bnShortValue() { | 
|  | var this_array = this.array; | 
|  | return (this.t==0)?this.s:(this_array[0]<<16)>>16; | 
|  | } | 
|  |  | 
|  | // (protected) return x s.t. r^x < DV | 
|  | function bnpChunkSize(r) { return Math.floor(Math.LN2*BI_DB/Math.log(r)); } | 
|  |  | 
|  | // (public) 0 if this == 0, 1 if this > 0 | 
|  | function bnSigNum() { | 
|  | var this_array = this.array; | 
|  | if(this.s < 0) return -1; | 
|  | else if(this.t <= 0 || (this.t == 1 && this_array[0] <= 0)) return 0; | 
|  | else return 1; | 
|  | } | 
|  |  | 
|  | // (protected) convert to radix string | 
|  | function bnpToRadix(b) { | 
|  | if(b == null) b = 10; | 
|  | if(this.signum() == 0 || b < 2 || b > 36) return "0"; | 
|  | var cs = this.chunkSize(b); | 
|  | var a = Math.pow(b,cs); | 
|  | var d = nbv(a), y = nbi(), z = nbi(), r = ""; | 
|  | this.divRemTo(d,y,z); | 
|  | while(y.signum() > 0) { | 
|  | r = (a+z.intValue()).toString(b).substr(1) + r; | 
|  | y.divRemTo(d,y,z); | 
|  | } | 
|  | return z.intValue().toString(b) + r; | 
|  | } | 
|  |  | 
|  | // (protected) convert from radix string | 
|  | function bnpFromRadix(s,b) { | 
|  | this.fromInt(0); | 
|  | if(b == null) b = 10; | 
|  | var cs = this.chunkSize(b); | 
|  | var d = Math.pow(b,cs), mi = false, j = 0, w = 0; | 
|  | for(var i = 0; i < s.length; ++i) { | 
|  | var x = intAt(s,i); | 
|  | if(x < 0) { | 
|  | if(s.charAt(i) == "-" && this.signum() == 0) mi = true; | 
|  | continue; | 
|  | } | 
|  | w = b*w+x; | 
|  | if(++j >= cs) { | 
|  | this.dMultiply(d); | 
|  | this.dAddOffset(w,0); | 
|  | j = 0; | 
|  | w = 0; | 
|  | } | 
|  | } | 
|  | if(j > 0) { | 
|  | this.dMultiply(Math.pow(b,j)); | 
|  | this.dAddOffset(w,0); | 
|  | } | 
|  | if(mi) BigInteger.ZERO.subTo(this,this); | 
|  | } | 
|  |  | 
|  | // (protected) alternate constructor | 
|  | function bnpFromNumber(a,b,c) { | 
|  | if("number" == typeof b) { | 
|  | // new BigInteger(int,int,RNG) | 
|  | if(a < 2) this.fromInt(1); | 
|  | else { | 
|  | this.fromNumber(a,c); | 
|  | if(!this.testBit(a-1))	// force MSB set | 
|  | this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); | 
|  | if(this.isEven()) this.dAddOffset(1,0); // force odd | 
|  | while(!this.isProbablePrime(b)) { | 
|  | this.dAddOffset(2,0); | 
|  | if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this); | 
|  | } | 
|  | } | 
|  | } | 
|  | else { | 
|  | // new BigInteger(int,RNG) | 
|  | var x = new Array(), t = a&7; | 
|  | x.length = (a>>3)+1; | 
|  | b.nextBytes(x); | 
|  | if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0; | 
|  | this.fromString(x,256); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (public) convert to bigendian byte array | 
|  | function bnToByteArray() { | 
|  | var this_array = this.array; | 
|  | var i = this.t, r = new Array(); | 
|  | r[0] = this.s; | 
|  | var p = BI_DB-(i*BI_DB)%8, d, k = 0; | 
|  | if(i-- > 0) { | 
|  | if(p < BI_DB && (d = this_array[i]>>p) != (this.s&BI_DM)>>p) | 
|  | r[k++] = d|(this.s<<(BI_DB-p)); | 
|  | while(i >= 0) { | 
|  | if(p < 8) { | 
|  | d = (this_array[i]&((1<<p)-1))<<(8-p); | 
|  | d |= this_array[--i]>>(p+=BI_DB-8); | 
|  | } | 
|  | else { | 
|  | d = (this_array[i]>>(p-=8))&0xff; | 
|  | if(p <= 0) { p += BI_DB; --i; } | 
|  | } | 
|  | if((d&0x80) != 0) d |= -256; | 
|  | if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; | 
|  | if(k > 0 || d != this.s) r[k++] = d; | 
|  | } | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | function bnEquals(a) { return(this.compareTo(a)==0); } | 
|  | function bnMin(a) { return(this.compareTo(a)<0)?this:a; } | 
|  | function bnMax(a) { return(this.compareTo(a)>0)?this:a; } | 
|  |  | 
|  | // (protected) r = this op a (bitwise) | 
|  | function bnpBitwiseTo(a,op,r) { | 
|  | var this_array = this.array; | 
|  | var a_array    = a.array; | 
|  | var r_array    = r.array; | 
|  | var i, f, m = Math.min(a.t,this.t); | 
|  | for(i = 0; i < m; ++i) r_array[i] = op(this_array[i],a_array[i]); | 
|  | if(a.t < this.t) { | 
|  | f = a.s&BI_DM; | 
|  | for(i = m; i < this.t; ++i) r_array[i] = op(this_array[i],f); | 
|  | r.t = this.t; | 
|  | } | 
|  | else { | 
|  | f = this.s&BI_DM; | 
|  | for(i = m; i < a.t; ++i) r_array[i] = op(f,a_array[i]); | 
|  | r.t = a.t; | 
|  | } | 
|  | r.s = op(this.s,a.s); | 
|  | r.clamp(); | 
|  | } | 
|  |  | 
|  | // (public) this & a | 
|  | function op_and(x,y) { return x&y; } | 
|  | function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; } | 
|  |  | 
|  | // (public) this | a | 
|  | function op_or(x,y) { return x|y; } | 
|  | function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; } | 
|  |  | 
|  | // (public) this ^ a | 
|  | function op_xor(x,y) { return x^y; } | 
|  | function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; } | 
|  |  | 
|  | // (public) this & ~a | 
|  | function op_andnot(x,y) { return x&~y; } | 
|  | function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; } | 
|  |  | 
|  | // (public) ~this | 
|  | function bnNot() { | 
|  | var this_array = this.array; | 
|  | var r = nbi(); | 
|  | var r_array = r.array; | 
|  |  | 
|  | for(var i = 0; i < this.t; ++i) r_array[i] = BI_DM&~this_array[i]; | 
|  | r.t = this.t; | 
|  | r.s = ~this.s; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | // (public) this << n | 
|  | function bnShiftLeft(n) { | 
|  | var r = nbi(); | 
|  | if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | // (public) this >> n | 
|  | function bnShiftRight(n) { | 
|  | var r = nbi(); | 
|  | if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | // return index of lowest 1-bit in x, x < 2^31 | 
|  | function lbit(x) { | 
|  | if(x == 0) return -1; | 
|  | var r = 0; | 
|  | if((x&0xffff) == 0) { x >>= 16; r += 16; } | 
|  | if((x&0xff) == 0) { x >>= 8; r += 8; } | 
|  | if((x&0xf) == 0) { x >>= 4; r += 4; } | 
|  | if((x&3) == 0) { x >>= 2; r += 2; } | 
|  | if((x&1) == 0) ++r; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | // (public) returns index of lowest 1-bit (or -1 if none) | 
|  | function bnGetLowestSetBit() { | 
|  | var this_array = this.array; | 
|  | for(var i = 0; i < this.t; ++i) | 
|  | if(this_array[i] != 0) return i*BI_DB+lbit(this_array[i]); | 
|  | if(this.s < 0) return this.t*BI_DB; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // return number of 1 bits in x | 
|  | function cbit(x) { | 
|  | var r = 0; | 
|  | while(x != 0) { x &= x-1; ++r; } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | // (public) return number of set bits | 
|  | function bnBitCount() { | 
|  | var r = 0, x = this.s&BI_DM; | 
|  | for(var i = 0; i < this.t; ++i) r += cbit(this_array[i]^x); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | // (public) true iff nth bit is set | 
|  | function bnTestBit(n) { | 
|  | var this_array = this.array; | 
|  | var j = Math.floor(n/BI_DB); | 
|  | if(j >= this.t) return(this.s!=0); | 
|  | return((this_array[j]&(1<<(n%BI_DB)))!=0); | 
|  | } | 
|  |  | 
|  | // (protected) this op (1<<n) | 
|  | function bnpChangeBit(n,op) { | 
|  | var r = BigInteger.ONE.shiftLeft(n); | 
|  | this.bitwiseTo(r,op,r); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | // (public) this | (1<<n) | 
|  | function bnSetBit(n) { return this.changeBit(n,op_or); } | 
|  |  | 
|  | // (public) this & ~(1<<n) | 
|  | function bnClearBit(n) { return this.changeBit(n,op_andnot); } | 
|  |  | 
|  | // (public) this ^ (1<<n) | 
|  | function bnFlipBit(n) { return this.changeBit(n,op_xor); } | 
|  |  | 
|  | // (protected) r = this + a | 
|  | function bnpAddTo(a,r) { | 
|  | var this_array = this.array; | 
|  | var a_array = a.array; | 
|  | var r_array = r.array; | 
|  | var i = 0, c = 0, m = Math.min(a.t,this.t); | 
|  | while(i < m) { | 
|  | c += this_array[i]+a_array[i]; | 
|  | r_array[i++] = c&BI_DM; | 
|  | c >>= BI_DB; | 
|  | } | 
|  | if(a.t < this.t) { | 
|  | c += a.s; | 
|  | while(i < this.t) { | 
|  | c += this_array[i]; | 
|  | r_array[i++] = c&BI_DM; | 
|  | c >>= BI_DB; | 
|  | } | 
|  | c += this.s; | 
|  | } | 
|  | else { | 
|  | c += this.s; | 
|  | while(i < a.t) { | 
|  | c += a_array[i]; | 
|  | r_array[i++] = c&BI_DM; | 
|  | c >>= BI_DB; | 
|  | } | 
|  | c += a.s; | 
|  | } | 
|  | r.s = (c<0)?-1:0; | 
|  | if(c > 0) r_array[i++] = c; | 
|  | else if(c < -1) r_array[i++] = BI_DV+c; | 
|  | r.t = i; | 
|  | r.clamp(); | 
|  | } | 
|  |  | 
|  | // (public) this + a | 
|  | function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; } | 
|  |  | 
|  | // (public) this - a | 
|  | function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; } | 
|  |  | 
|  | // (public) this * a | 
|  | function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; } | 
|  |  | 
|  | // (public) this / a | 
|  | function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; } | 
|  |  | 
|  | // (public) this % a | 
|  | function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; } | 
|  |  | 
|  | // (public) [this/a,this%a] | 
|  | function bnDivideAndRemainder(a) { | 
|  | var q = nbi(), r = nbi(); | 
|  | this.divRemTo(a,q,r); | 
|  | return new Array(q,r); | 
|  | } | 
|  |  | 
|  | // (protected) this *= n, this >= 0, 1 < n < DV | 
|  | function bnpDMultiply(n) { | 
|  | var this_array = this.array; | 
|  | this_array[this.t] = this.am(0,n-1,this,0,0,this.t); | 
|  | ++this.t; | 
|  | this.clamp(); | 
|  | } | 
|  |  | 
|  | // (protected) this += n << w words, this >= 0 | 
|  | function bnpDAddOffset(n,w) { | 
|  | var this_array = this.array; | 
|  | while(this.t <= w) this_array[this.t++] = 0; | 
|  | this_array[w] += n; | 
|  | while(this_array[w] >= BI_DV) { | 
|  | this_array[w] -= BI_DV; | 
|  | if(++w >= this.t) this_array[this.t++] = 0; | 
|  | ++this_array[w]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // A "null" reducer | 
|  | function NullExp() {} | 
|  | function nNop(x) { return x; } | 
|  | function nMulTo(x,y,r) { x.multiplyTo(y,r); } | 
|  | function nSqrTo(x,r) { x.squareTo(r); } | 
|  |  | 
|  | NullExp.prototype.convert = nNop; | 
|  | NullExp.prototype.revert = nNop; | 
|  | NullExp.prototype.mulTo = nMulTo; | 
|  | NullExp.prototype.sqrTo = nSqrTo; | 
|  |  | 
|  | // (public) this^e | 
|  | function bnPow(e) { return this.exp(e,new NullExp()); } | 
|  |  | 
|  | // (protected) r = lower n words of "this * a", a.t <= n | 
|  | // "this" should be the larger one if appropriate. | 
|  | function bnpMultiplyLowerTo(a,n,r) { | 
|  | var r_array = r.array; | 
|  | var a_array = a.array; | 
|  | var i = Math.min(this.t+a.t,n); | 
|  | r.s = 0; // assumes a,this >= 0 | 
|  | r.t = i; | 
|  | while(i > 0) r_array[--i] = 0; | 
|  | var j; | 
|  | for(j = r.t-this.t; i < j; ++i) r_array[i+this.t] = this.am(0,a_array[i],r,i,0,this.t); | 
|  | for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a_array[i],r,i,0,n-i); | 
|  | r.clamp(); | 
|  | } | 
|  |  | 
|  | // (protected) r = "this * a" without lower n words, n > 0 | 
|  | // "this" should be the larger one if appropriate. | 
|  | function bnpMultiplyUpperTo(a,n,r) { | 
|  | var r_array = r.array; | 
|  | var a_array = a.array; | 
|  | --n; | 
|  | var i = r.t = this.t+a.t-n; | 
|  | r.s = 0; // assumes a,this >= 0 | 
|  | while(--i >= 0) r_array[i] = 0; | 
|  | for(i = Math.max(n-this.t,0); i < a.t; ++i) | 
|  | r_array[this.t+i-n] = this.am(n-i,a_array[i],r,0,0,this.t+i-n); | 
|  | r.clamp(); | 
|  | r.drShiftTo(1,r); | 
|  | } | 
|  |  | 
|  | // Barrett modular reduction | 
|  | function Barrett(m) { | 
|  | // setup Barrett | 
|  | this.r2 = nbi(); | 
|  | this.q3 = nbi(); | 
|  | BigInteger.ONE.dlShiftTo(2*m.t,this.r2); | 
|  | this.mu = this.r2.divide(m); | 
|  | this.m = m; | 
|  | } | 
|  |  | 
|  | function barrettConvert(x) { | 
|  | if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); | 
|  | else if(x.compareTo(this.m) < 0) return x; | 
|  | else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } | 
|  | } | 
|  |  | 
|  | function barrettRevert(x) { return x; } | 
|  |  | 
|  | // x = x mod m (HAC 14.42) | 
|  | function barrettReduce(x) { | 
|  | x.drShiftTo(this.m.t-1,this.r2); | 
|  | if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); } | 
|  | this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3); | 
|  | this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2); | 
|  | while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1); | 
|  | x.subTo(this.r2,x); | 
|  | while(x.compareTo(this.m) >= 0) x.subTo(this.m,x); | 
|  | } | 
|  |  | 
|  | // r = x^2 mod m; x != r | 
|  | function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); } | 
|  |  | 
|  | // r = x*y mod m; x,y != r | 
|  | function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } | 
|  |  | 
|  | Barrett.prototype.convert = barrettConvert; | 
|  | Barrett.prototype.revert = barrettRevert; | 
|  | Barrett.prototype.reduce = barrettReduce; | 
|  | Barrett.prototype.mulTo = barrettMulTo; | 
|  | Barrett.prototype.sqrTo = barrettSqrTo; | 
|  |  | 
|  | // (public) this^e % m (HAC 14.85) | 
|  | function bnModPow(e,m) { | 
|  | var e_array = e.array; | 
|  | var i = e.bitLength(), k, r = nbv(1), z; | 
|  | if(i <= 0) return r; | 
|  | else if(i < 18) k = 1; | 
|  | else if(i < 48) k = 3; | 
|  | else if(i < 144) k = 4; | 
|  | else if(i < 768) k = 5; | 
|  | else k = 6; | 
|  | if(i < 8) | 
|  | z = new Classic(m); | 
|  | else if(m.isEven()) | 
|  | z = new Barrett(m); | 
|  | else | 
|  | z = new Montgomery(m); | 
|  |  | 
|  | // precomputation | 
|  | var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1; | 
|  | g[1] = z.convert(this); | 
|  | if(k > 1) { | 
|  | var g2 = nbi(); | 
|  | z.sqrTo(g[1],g2); | 
|  | while(n <= km) { | 
|  | g[n] = nbi(); | 
|  | z.mulTo(g2,g[n-2],g[n]); | 
|  | n += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | var j = e.t-1, w, is1 = true, r2 = nbi(), t; | 
|  | i = nbits(e_array[j])-1; | 
|  | while(j >= 0) { | 
|  | if(i >= k1) w = (e_array[j]>>(i-k1))&km; | 
|  | else { | 
|  | w = (e_array[j]&((1<<(i+1))-1))<<(k1-i); | 
|  | if(j > 0) w |= e_array[j-1]>>(BI_DB+i-k1); | 
|  | } | 
|  |  | 
|  | n = k; | 
|  | while((w&1) == 0) { w >>= 1; --n; } | 
|  | if((i -= n) < 0) { i += BI_DB; --j; } | 
|  | if(is1) {	// ret == 1, don't bother squaring or multiplying it | 
|  | g[w].copyTo(r); | 
|  | is1 = false; | 
|  | } | 
|  | else { | 
|  | while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } | 
|  | if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } | 
|  | z.mulTo(r2,g[w],r); | 
|  | } | 
|  |  | 
|  | while(j >= 0 && (e_array[j]&(1<<i)) == 0) { | 
|  | z.sqrTo(r,r2); t = r; r = r2; r2 = t; | 
|  | if(--i < 0) { i = BI_DB-1; --j; } | 
|  | } | 
|  | } | 
|  | return z.revert(r); | 
|  | } | 
|  |  | 
|  | // (public) gcd(this,a) (HAC 14.54) | 
|  | function bnGCD(a) { | 
|  | var x = (this.s<0)?this.negate():this.clone(); | 
|  | var y = (a.s<0)?a.negate():a.clone(); | 
|  | if(x.compareTo(y) < 0) { var t = x; x = y; y = t; } | 
|  | var i = x.getLowestSetBit(), g = y.getLowestSetBit(); | 
|  | if(g < 0) return x; | 
|  | if(i < g) g = i; | 
|  | if(g > 0) { | 
|  | x.rShiftTo(g,x); | 
|  | y.rShiftTo(g,y); | 
|  | } | 
|  | while(x.signum() > 0) { | 
|  | if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x); | 
|  | if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y); | 
|  | if(x.compareTo(y) >= 0) { | 
|  | x.subTo(y,x); | 
|  | x.rShiftTo(1,x); | 
|  | } | 
|  | else { | 
|  | y.subTo(x,y); | 
|  | y.rShiftTo(1,y); | 
|  | } | 
|  | } | 
|  | if(g > 0) y.lShiftTo(g,y); | 
|  | return y; | 
|  | } | 
|  |  | 
|  | // (protected) this % n, n < 2^26 | 
|  | function bnpModInt(n) { | 
|  | var this_array = this.array; | 
|  | if(n <= 0) return 0; | 
|  | var d = BI_DV%n, r = (this.s<0)?n-1:0; | 
|  | if(this.t > 0) | 
|  | if(d == 0) r = this_array[0]%n; | 
|  | else for(var i = this.t-1; i >= 0; --i) r = (d*r+this_array[i])%n; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | // (public) 1/this % m (HAC 14.61) | 
|  | function bnModInverse(m) { | 
|  | var ac = m.isEven(); | 
|  | if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; | 
|  | var u = m.clone(), v = this.clone(); | 
|  | var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); | 
|  | while(u.signum() != 0) { | 
|  | while(u.isEven()) { | 
|  | u.rShiftTo(1,u); | 
|  | if(ac) { | 
|  | if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); } | 
|  | a.rShiftTo(1,a); | 
|  | } | 
|  | else if(!b.isEven()) b.subTo(m,b); | 
|  | b.rShiftTo(1,b); | 
|  | } | 
|  | while(v.isEven()) { | 
|  | v.rShiftTo(1,v); | 
|  | if(ac) { | 
|  | if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); } | 
|  | c.rShiftTo(1,c); | 
|  | } | 
|  | else if(!d.isEven()) d.subTo(m,d); | 
|  | d.rShiftTo(1,d); | 
|  | } | 
|  | if(u.compareTo(v) >= 0) { | 
|  | u.subTo(v,u); | 
|  | if(ac) a.subTo(c,a); | 
|  | b.subTo(d,b); | 
|  | } | 
|  | else { | 
|  | v.subTo(u,v); | 
|  | if(ac) c.subTo(a,c); | 
|  | d.subTo(b,d); | 
|  | } | 
|  | } | 
|  | if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; | 
|  | if(d.compareTo(m) >= 0) return d.subtract(m); | 
|  | if(d.signum() < 0) d.addTo(m,d); else return d; | 
|  | if(d.signum() < 0) return d.add(m); else return d; | 
|  | } | 
|  |  | 
|  | var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509]; | 
|  | var lplim = (1<<26)/lowprimes[lowprimes.length-1]; | 
|  |  | 
|  | // (public) test primality with certainty >= 1-.5^t | 
|  | function bnIsProbablePrime(t) { | 
|  | var i, x = this.abs(); | 
|  | var x_array = x.array; | 
|  | if(x.t == 1 && x_array[0] <= lowprimes[lowprimes.length-1]) { | 
|  | for(i = 0; i < lowprimes.length; ++i) | 
|  | if(x_array[0] == lowprimes[i]) return true; | 
|  | return false; | 
|  | } | 
|  | if(x.isEven()) return false; | 
|  | i = 1; | 
|  | while(i < lowprimes.length) { | 
|  | var m = lowprimes[i], j = i+1; | 
|  | while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; | 
|  | m = x.modInt(m); | 
|  | while(i < j) if(m%lowprimes[i++] == 0) return false; | 
|  | } | 
|  | return x.millerRabin(t); | 
|  | } | 
|  |  | 
|  | // (protected) true if probably prime (HAC 4.24, Miller-Rabin) | 
|  | function bnpMillerRabin(t) { | 
|  | var n1 = this.subtract(BigInteger.ONE); | 
|  | var k = n1.getLowestSetBit(); | 
|  | if(k <= 0) return false; | 
|  | var r = n1.shiftRight(k); | 
|  | t = (t+1)>>1; | 
|  | if(t > lowprimes.length) t = lowprimes.length; | 
|  | var a = nbi(); | 
|  | for(var i = 0; i < t; ++i) { | 
|  | a.fromInt(lowprimes[i]); | 
|  | var y = a.modPow(r,this); | 
|  | if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { | 
|  | var j = 1; | 
|  | while(j++ < k && y.compareTo(n1) != 0) { | 
|  | y = y.modPowInt(2,this); | 
|  | if(y.compareTo(BigInteger.ONE) == 0) return false; | 
|  | } | 
|  | if(y.compareTo(n1) != 0) return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // protected | 
|  | BigInteger.prototype.chunkSize = bnpChunkSize; | 
|  | BigInteger.prototype.toRadix = bnpToRadix; | 
|  | BigInteger.prototype.fromRadix = bnpFromRadix; | 
|  | BigInteger.prototype.fromNumber = bnpFromNumber; | 
|  | BigInteger.prototype.bitwiseTo = bnpBitwiseTo; | 
|  | BigInteger.prototype.changeBit = bnpChangeBit; | 
|  | BigInteger.prototype.addTo = bnpAddTo; | 
|  | BigInteger.prototype.dMultiply = bnpDMultiply; | 
|  | BigInteger.prototype.dAddOffset = bnpDAddOffset; | 
|  | BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo; | 
|  | BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo; | 
|  | BigInteger.prototype.modInt = bnpModInt; | 
|  | BigInteger.prototype.millerRabin = bnpMillerRabin; | 
|  |  | 
|  | // public | 
|  | BigInteger.prototype.clone = bnClone; | 
|  | BigInteger.prototype.intValue = bnIntValue; | 
|  | BigInteger.prototype.byteValue = bnByteValue; | 
|  | BigInteger.prototype.shortValue = bnShortValue; | 
|  | BigInteger.prototype.signum = bnSigNum; | 
|  | BigInteger.prototype.toByteArray = bnToByteArray; | 
|  | BigInteger.prototype.equals = bnEquals; | 
|  | BigInteger.prototype.min = bnMin; | 
|  | BigInteger.prototype.max = bnMax; | 
|  | BigInteger.prototype.and = bnAnd; | 
|  | BigInteger.prototype.or = bnOr; | 
|  | BigInteger.prototype.xor = bnXor; | 
|  | BigInteger.prototype.andNot = bnAndNot; | 
|  | BigInteger.prototype.not = bnNot; | 
|  | BigInteger.prototype.shiftLeft = bnShiftLeft; | 
|  | BigInteger.prototype.shiftRight = bnShiftRight; | 
|  | BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit; | 
|  | BigInteger.prototype.bitCount = bnBitCount; | 
|  | BigInteger.prototype.testBit = bnTestBit; | 
|  | BigInteger.prototype.setBit = bnSetBit; | 
|  | BigInteger.prototype.clearBit = bnClearBit; | 
|  | BigInteger.prototype.flipBit = bnFlipBit; | 
|  | BigInteger.prototype.add = bnAdd; | 
|  | BigInteger.prototype.subtract = bnSubtract; | 
|  | BigInteger.prototype.multiply = bnMultiply; | 
|  | BigInteger.prototype.divide = bnDivide; | 
|  | BigInteger.prototype.remainder = bnRemainder; | 
|  | BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder; | 
|  | BigInteger.prototype.modPow = bnModPow; | 
|  | BigInteger.prototype.modInverse = bnModInverse; | 
|  | BigInteger.prototype.pow = bnPow; | 
|  | BigInteger.prototype.gcd = bnGCD; | 
|  | BigInteger.prototype.isProbablePrime = bnIsProbablePrime; | 
|  |  | 
|  | // BigInteger interfaces not implemented in jsbn: | 
|  |  | 
|  | // BigInteger(int signum, byte[] magnitude) | 
|  | // double doubleValue() | 
|  | // float floatValue() | 
|  | // int hashCode() | 
|  | // long longValue() | 
|  | // static BigInteger valueOf(long val) | 
|  | // prng4.js - uses Arcfour as a PRNG | 
|  |  | 
|  | function Arcfour() { | 
|  | this.i = 0; | 
|  | this.j = 0; | 
|  | this.S = new Array(); | 
|  | } | 
|  |  | 
|  | // Initialize arcfour context from key, an array of ints, each from [0..255] | 
|  | function ARC4init(key) { | 
|  | var i, j, t; | 
|  | for(i = 0; i < 256; ++i) | 
|  | this.S[i] = i; | 
|  | j = 0; | 
|  | for(i = 0; i < 256; ++i) { | 
|  | j = (j + this.S[i] + key[i % key.length]) & 255; | 
|  | t = this.S[i]; | 
|  | this.S[i] = this.S[j]; | 
|  | this.S[j] = t; | 
|  | } | 
|  | this.i = 0; | 
|  | this.j = 0; | 
|  | } | 
|  |  | 
|  | function ARC4next() { | 
|  | var t; | 
|  | this.i = (this.i + 1) & 255; | 
|  | this.j = (this.j + this.S[this.i]) & 255; | 
|  | t = this.S[this.i]; | 
|  | this.S[this.i] = this.S[this.j]; | 
|  | this.S[this.j] = t; | 
|  | return this.S[(t + this.S[this.i]) & 255]; | 
|  | } | 
|  |  | 
|  | Arcfour.prototype.init = ARC4init; | 
|  | Arcfour.prototype.next = ARC4next; | 
|  |  | 
|  | // Plug in your RNG constructor here | 
|  | function prng_newstate() { | 
|  | return new Arcfour(); | 
|  | } | 
|  |  | 
|  | // Pool size must be a multiple of 4 and greater than 32. | 
|  | // An array of bytes the size of the pool will be passed to init() | 
|  | var rng_psize = 256; | 
|  | // Random number generator - requires a PRNG backend, e.g. prng4.js | 
|  |  | 
|  | // For best results, put code like | 
|  | // <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'> | 
|  | // in your main HTML document. | 
|  |  | 
|  | var rng_state; | 
|  | var rng_pool; | 
|  | var rng_pptr; | 
|  |  | 
|  | // Mix in a 32-bit integer into the pool | 
|  | function rng_seed_int(x) { | 
|  | rng_pool[rng_pptr++] ^= x & 255; | 
|  | rng_pool[rng_pptr++] ^= (x >> 8) & 255; | 
|  | rng_pool[rng_pptr++] ^= (x >> 16) & 255; | 
|  | rng_pool[rng_pptr++] ^= (x >> 24) & 255; | 
|  | if(rng_pptr >= rng_psize) rng_pptr -= rng_psize; | 
|  | } | 
|  |  | 
|  | // Mix in the current time (w/milliseconds) into the pool | 
|  | function rng_seed_time() { | 
|  | // Use pre-computed date to avoid making the benchmark | 
|  | // results dependent on the current date. | 
|  | rng_seed_int(1122926989487); | 
|  | } | 
|  |  | 
|  | // Initialize the pool with junk if needed. | 
|  | if(rng_pool == null) { | 
|  | rng_pool = new Array(); | 
|  | rng_pptr = 0; | 
|  | var t; | 
|  | while(rng_pptr < rng_psize) {  // extract some randomness from Math.random() | 
|  | t = Math.floor(65536 * Math.random()); | 
|  | rng_pool[rng_pptr++] = t >>> 8; | 
|  | rng_pool[rng_pptr++] = t & 255; | 
|  | } | 
|  | rng_pptr = 0; | 
|  | rng_seed_time(); | 
|  | //rng_seed_int(window.screenX); | 
|  | //rng_seed_int(window.screenY); | 
|  | } | 
|  |  | 
|  | function rng_get_byte() { | 
|  | if(rng_state == null) { | 
|  | rng_seed_time(); | 
|  | rng_state = prng_newstate(); | 
|  | rng_state.init(rng_pool); | 
|  | for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr) | 
|  | rng_pool[rng_pptr] = 0; | 
|  | rng_pptr = 0; | 
|  | //rng_pool = null; | 
|  | } | 
|  | // TODO: allow reseeding after first request | 
|  | return rng_state.next(); | 
|  | } | 
|  |  | 
|  | function rng_get_bytes(ba) { | 
|  | var i; | 
|  | for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte(); | 
|  | } | 
|  |  | 
|  | function SecureRandom() {} | 
|  |  | 
|  | SecureRandom.prototype.nextBytes = rng_get_bytes; | 
|  | // Depends on jsbn.js and rng.js | 
|  |  | 
|  | // convert a (hex) string to a bignum object | 
|  | function parseBigInt(str,r) { | 
|  | return new BigInteger(str,r); | 
|  | } | 
|  |  | 
|  | function linebrk(s,n) { | 
|  | var ret = ""; | 
|  | var i = 0; | 
|  | while(i + n < s.length) { | 
|  | ret += s.substring(i,i+n) + "\n"; | 
|  | i += n; | 
|  | } | 
|  | return ret + s.substring(i,s.length); | 
|  | } | 
|  |  | 
|  | function byte2Hex(b) { | 
|  | if(b < 0x10) | 
|  | return "0" + b.toString(16); | 
|  | else | 
|  | return b.toString(16); | 
|  | } | 
|  |  | 
|  | // PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint | 
|  | function pkcs1pad2(s,n) { | 
|  | if(n < s.length + 11) { | 
|  | alert("Message too long for RSA"); | 
|  | return null; | 
|  | } | 
|  | var ba = new Array(); | 
|  | var i = s.length - 1; | 
|  | while(i >= 0 && n > 0) ba[--n] = s.charCodeAt(i--); | 
|  | ba[--n] = 0; | 
|  | var rng = new SecureRandom(); | 
|  | var x = new Array(); | 
|  | while(n > 2) { // random non-zero pad | 
|  | x[0] = 0; | 
|  | while(x[0] == 0) rng.nextBytes(x); | 
|  | ba[--n] = x[0]; | 
|  | } | 
|  | ba[--n] = 2; | 
|  | ba[--n] = 0; | 
|  | return new BigInteger(ba); | 
|  | } | 
|  |  | 
|  | // "empty" RSA key constructor | 
|  | function RSAKey() { | 
|  | this.n = null; | 
|  | this.e = 0; | 
|  | this.d = null; | 
|  | this.p = null; | 
|  | this.q = null; | 
|  | this.dmp1 = null; | 
|  | this.dmq1 = null; | 
|  | this.coeff = null; | 
|  | } | 
|  |  | 
|  | // Set the public key fields N and e from hex strings | 
|  | function RSASetPublic(N,E) { | 
|  | if(N != null && E != null && N.length > 0 && E.length > 0) { | 
|  | this.n = parseBigInt(N,16); | 
|  | this.e = parseInt(E,16); | 
|  | } | 
|  | else | 
|  | alert("Invalid RSA public key"); | 
|  | } | 
|  |  | 
|  | // Perform raw public operation on "x": return x^e (mod n) | 
|  | function RSADoPublic(x) { | 
|  | return x.modPowInt(this.e, this.n); | 
|  | } | 
|  |  | 
|  | // Return the PKCS#1 RSA encryption of "text" as an even-length hex string | 
|  | function RSAEncrypt(text) { | 
|  | var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3); | 
|  | if(m == null) return null; | 
|  | var c = this.doPublic(m); | 
|  | if(c == null) return null; | 
|  | var h = c.toString(16); | 
|  | if((h.length & 1) == 0) return h; else return "0" + h; | 
|  | } | 
|  |  | 
|  | // Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string | 
|  | //function RSAEncryptB64(text) { | 
|  | //  var h = this.encrypt(text); | 
|  | //  if(h) return hex2b64(h); else return null; | 
|  | //} | 
|  |  | 
|  | // protected | 
|  | RSAKey.prototype.doPublic = RSADoPublic; | 
|  |  | 
|  | // public | 
|  | RSAKey.prototype.setPublic = RSASetPublic; | 
|  | RSAKey.prototype.encrypt = RSAEncrypt; | 
|  | //RSAKey.prototype.encrypt_b64 = RSAEncryptB64; | 
|  | // Depends on rsa.js and jsbn2.js | 
|  |  | 
|  | // Undo PKCS#1 (type 2, random) padding and, if valid, return the plaintext | 
|  | function pkcs1unpad2(d,n) { | 
|  | var b = d.toByteArray(); | 
|  | var i = 0; | 
|  | while(i < b.length && b[i] == 0) ++i; | 
|  | if(b.length-i != n-1 || b[i] != 2) | 
|  | return null; | 
|  | ++i; | 
|  | while(b[i] != 0) | 
|  | if(++i >= b.length) return null; | 
|  | var ret = ""; | 
|  | while(++i < b.length) | 
|  | ret += String.fromCharCode(b[i]); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // Set the private key fields N, e, and d from hex strings | 
|  | function RSASetPrivate(N,E,D) { | 
|  | if(N != null && E != null && N.length > 0 && E.length > 0) { | 
|  | this.n = parseBigInt(N,16); | 
|  | this.e = parseInt(E,16); | 
|  | this.d = parseBigInt(D,16); | 
|  | } | 
|  | else | 
|  | alert("Invalid RSA private key"); | 
|  | } | 
|  |  | 
|  | // Set the private key fields N, e, d and CRT params from hex strings | 
|  | function RSASetPrivateEx(N,E,D,P,Q,DP,DQ,C) { | 
|  | if(N != null && E != null && N.length > 0 && E.length > 0) { | 
|  | this.n = parseBigInt(N,16); | 
|  | this.e = parseInt(E,16); | 
|  | this.d = parseBigInt(D,16); | 
|  | this.p = parseBigInt(P,16); | 
|  | this.q = parseBigInt(Q,16); | 
|  | this.dmp1 = parseBigInt(DP,16); | 
|  | this.dmq1 = parseBigInt(DQ,16); | 
|  | this.coeff = parseBigInt(C,16); | 
|  | } | 
|  | else | 
|  | alert("Invalid RSA private key"); | 
|  | } | 
|  |  | 
|  | // Generate a new random private key B bits long, using public expt E | 
|  | function RSAGenerate(B,E) { | 
|  | var rng = new SecureRandom(); | 
|  | var qs = B>>1; | 
|  | this.e = parseInt(E,16); | 
|  | var ee = new BigInteger(E,16); | 
|  | for(;;) { | 
|  | for(;;) { | 
|  | this.p = new BigInteger(B-qs,1,rng); | 
|  | if(this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.p.isProbablePrime(10)) break; | 
|  | } | 
|  | for(;;) { | 
|  | this.q = new BigInteger(qs,1,rng); | 
|  | if(this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.q.isProbablePrime(10)) break; | 
|  | } | 
|  | if(this.p.compareTo(this.q) <= 0) { | 
|  | var t = this.p; | 
|  | this.p = this.q; | 
|  | this.q = t; | 
|  | } | 
|  | var p1 = this.p.subtract(BigInteger.ONE); | 
|  | var q1 = this.q.subtract(BigInteger.ONE); | 
|  | var phi = p1.multiply(q1); | 
|  | if(phi.gcd(ee).compareTo(BigInteger.ONE) == 0) { | 
|  | this.n = this.p.multiply(this.q); | 
|  | this.d = ee.modInverse(phi); | 
|  | this.dmp1 = this.d.mod(p1); | 
|  | this.dmq1 = this.d.mod(q1); | 
|  | this.coeff = this.q.modInverse(this.p); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Perform raw private operation on "x": return x^d (mod n) | 
|  | function RSADoPrivate(x) { | 
|  | if(this.p == null || this.q == null) | 
|  | return x.modPow(this.d, this.n); | 
|  |  | 
|  | // TODO: re-calculate any missing CRT params | 
|  | var xp = x.mod(this.p).modPow(this.dmp1, this.p); | 
|  | var xq = x.mod(this.q).modPow(this.dmq1, this.q); | 
|  |  | 
|  | while(xp.compareTo(xq) < 0) | 
|  | xp = xp.add(this.p); | 
|  | return xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq); | 
|  | } | 
|  |  | 
|  | // Return the PKCS#1 RSA decryption of "ctext". | 
|  | // "ctext" is an even-length hex string and the output is a plain string. | 
|  | function RSADecrypt(ctext) { | 
|  | var c = parseBigInt(ctext, 16); | 
|  | var m = this.doPrivate(c); | 
|  | if(m == null) return null; | 
|  | return pkcs1unpad2(m, (this.n.bitLength()+7)>>3); | 
|  | } | 
|  |  | 
|  | // Return the PKCS#1 RSA decryption of "ctext". | 
|  | // "ctext" is a Base64-encoded string and the output is a plain string. | 
|  | //function RSAB64Decrypt(ctext) { | 
|  | //  var h = b64tohex(ctext); | 
|  | //  if(h) return this.decrypt(h); else return null; | 
|  | //} | 
|  |  | 
|  | // protected | 
|  | RSAKey.prototype.doPrivate = RSADoPrivate; | 
|  |  | 
|  | // public | 
|  | RSAKey.prototype.setPrivate = RSASetPrivate; | 
|  | RSAKey.prototype.setPrivateEx = RSASetPrivateEx; | 
|  | RSAKey.prototype.generate = RSAGenerate; | 
|  | RSAKey.prototype.decrypt = RSADecrypt; | 
|  | //RSAKey.prototype.b64_decrypt = RSAB64Decrypt; | 
|  |  | 
|  |  | 
|  | nValue="a5261939975948bb7a58dffe5ff54e65f0498f9175f5a09288810b8975871e99af3b5dd94057b0fc07535f5f97444504fa35169d461d0d30cf0192e307727c065168c788771c561a9400fb49175e9e6aa4e23fe11af69e9412dd23b0cb6684c4c2429bce139e848ab26d0829073351f4acd36074eafd036a5eb83359d2a698d3"; | 
|  | eValue="10001"; | 
|  | dValue="8e9912f6d3645894e8d38cb58c0db81ff516cf4c7e5a14c7f1eddb1459d2cded4d8d293fc97aee6aefb861859c8b6a3d1dfe710463e1f9ddc72048c09751971c4a580aa51eb523357a3cc48d31cfad1d4a165066ed92d4748fb6571211da5cb14bc11b6e2df7c1a559e6d5ac1cd5c94703a22891464fba23d0d965086277a161"; | 
|  | pValue="d090ce58a92c75233a6486cb0a9209bf3583b64f540c76f5294bb97d285eed33aec220bde14b2417951178ac152ceab6da7090905b478195498b352048f15e7d"; | 
|  | qValue="cab575dc652bb66df15a0359609d51d1db184750c00c6698b90ef3465c99655103edbf0d54c56aec0ce3c4d22592338092a126a0cc49f65a4a30d222b411e58f"; | 
|  | dmp1Value="1a24bca8e273df2f0e47c199bbf678604e7df7215480c77c8db39f49b000ce2cf7500038acfff5433b7d582a01f1826e6f4d42e1c57f5e1fef7b12aabc59fd25"; | 
|  | dmq1Value="3d06982efbbe47339e1f6d36b1216b8a741d410b0c662f54f7118b27b9a4ec9d914337eb39841d8666f3034408cf94f5b62f11c402fc994fe15a05493150d9fd"; | 
|  | coeffValue="3a3e731acd8960b7ff9eb81a7ff93bd1cfa74cbd56987db58b4594fb09c09084db1734c8143f98b602b981aaa9243ca28deb69b5b280ee8dcee0fd2625e53250"; | 
|  |  | 
|  | setupEngine(am3, 28); | 
|  |  | 
|  | var TEXT = "The quick brown fox jumped over the extremely lazy frog! " + | 
|  | "Now is the time for all good men to come to the party."; | 
|  | var encrypted; | 
|  |  | 
|  | function encrypt() { | 
|  | var RSA = new RSAKey(); | 
|  | RSA.setPublic(nValue, eValue); | 
|  | RSA.setPrivateEx(nValue, eValue, dValue, pValue, qValue, dmp1Value, dmq1Value, coeffValue); | 
|  | encrypted = RSA.encrypt(TEXT); | 
|  | } | 
|  |  | 
|  | function decrypt() { | 
|  | var RSA = new RSAKey(); | 
|  | RSA.setPublic(nValue, eValue); | 
|  | RSA.setPrivateEx(nValue, eValue, dValue, pValue, qValue, dmp1Value, dmq1Value, coeffValue); | 
|  | var decrypted = RSA.decrypt(encrypted); | 
|  | if (decrypted != TEXT) { | 
|  | throw new Error("Crypto operation failed"); | 
|  | } | 
|  | } |