| //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass implements an idiom recognizer that transforms simple loops into a |
| // non-loop form. In cases that this kicks in, it can be a significant |
| // performance win. |
| // |
| // If compiling for code size we avoid idiom recognition if the resulting |
| // code could be larger than the code for the original loop. One way this could |
| // happen is if the loop is not removable after idiom recognition due to the |
| // presence of non-idiom instructions. The initial implementation of the |
| // heuristics applies to idioms in multi-block loops. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // TODO List: |
| // |
| // Future loop memory idioms to recognize: |
| // memcmp, memmove, strlen, etc. |
| // Future floating point idioms to recognize in -ffast-math mode: |
| // fpowi |
| // Future integer operation idioms to recognize: |
| // ctpop, ctlz, cttz |
| // |
| // Beware that isel's default lowering for ctpop is highly inefficient for |
| // i64 and larger types when i64 is legal and the value has few bits set. It |
| // would be good to enhance isel to emit a loop for ctpop in this case. |
| // |
| // This could recognize common matrix multiplies and dot product idioms and |
| // replace them with calls to BLAS (if linked in??). |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/LoopAccessAnalysis.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" |
| #include "llvm/Transforms/Utils/BuildLibCalls.h" |
| #include "llvm/Transforms/Utils/LoopUtils.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "loop-idiom" |
| |
| STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); |
| STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); |
| |
| static cl::opt<bool> UseLIRCodeSizeHeurs( |
| "use-lir-code-size-heurs", |
| cl::desc("Use loop idiom recognition code size heuristics when compiling" |
| "with -Os/-Oz"), |
| cl::init(true), cl::Hidden); |
| |
| namespace { |
| |
| class LoopIdiomRecognize { |
| Loop *CurLoop = nullptr; |
| AliasAnalysis *AA; |
| DominatorTree *DT; |
| LoopInfo *LI; |
| ScalarEvolution *SE; |
| TargetLibraryInfo *TLI; |
| const TargetTransformInfo *TTI; |
| const DataLayout *DL; |
| bool ApplyCodeSizeHeuristics; |
| |
| public: |
| explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, |
| LoopInfo *LI, ScalarEvolution *SE, |
| TargetLibraryInfo *TLI, |
| const TargetTransformInfo *TTI, |
| const DataLayout *DL) |
| : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL) {} |
| |
| bool runOnLoop(Loop *L); |
| |
| private: |
| using StoreList = SmallVector<StoreInst *, 8>; |
| using StoreListMap = MapVector<Value *, StoreList>; |
| |
| StoreListMap StoreRefsForMemset; |
| StoreListMap StoreRefsForMemsetPattern; |
| StoreList StoreRefsForMemcpy; |
| bool HasMemset; |
| bool HasMemsetPattern; |
| bool HasMemcpy; |
| |
| /// Return code for isLegalStore() |
| enum LegalStoreKind { |
| None = 0, |
| Memset, |
| MemsetPattern, |
| Memcpy, |
| UnorderedAtomicMemcpy, |
| DontUse // Dummy retval never to be used. Allows catching errors in retval |
| // handling. |
| }; |
| |
| /// \name Countable Loop Idiom Handling |
| /// @{ |
| |
| bool runOnCountableLoop(); |
| bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, |
| SmallVectorImpl<BasicBlock *> &ExitBlocks); |
| |
| void collectStores(BasicBlock *BB); |
| LegalStoreKind isLegalStore(StoreInst *SI); |
| bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, |
| bool ForMemset); |
| bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); |
| |
| bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize, |
| unsigned StoreAlignment, Value *StoredVal, |
| Instruction *TheStore, |
| SmallPtrSetImpl<Instruction *> &Stores, |
| const SCEVAddRecExpr *Ev, const SCEV *BECount, |
| bool NegStride, bool IsLoopMemset = false); |
| bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); |
| bool avoidLIRForMultiBlockLoop(bool IsMemset = false, |
| bool IsLoopMemset = false); |
| |
| /// @} |
| /// \name Noncountable Loop Idiom Handling |
| /// @{ |
| |
| bool runOnNoncountableLoop(); |
| |
| bool recognizePopcount(); |
| void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, |
| PHINode *CntPhi, Value *Var); |
| bool recognizeAndInsertCTLZ(); |
| void transformLoopToCountable(BasicBlock *PreCondBB, Instruction *CntInst, |
| PHINode *CntPhi, Value *Var, Instruction *DefX, |
| const DebugLoc &DL, bool ZeroCheck, |
| bool IsCntPhiUsedOutsideLoop); |
| |
| /// @} |
| }; |
| |
| class LoopIdiomRecognizeLegacyPass : public LoopPass { |
| public: |
| static char ID; |
| |
| explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) { |
| initializeLoopIdiomRecognizeLegacyPassPass( |
| *PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnLoop(Loop *L, LPPassManager &LPM) override { |
| if (skipLoop(L)) |
| return false; |
| |
| AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| TargetLibraryInfo *TLI = |
| &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); |
| const TargetTransformInfo *TTI = |
| &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( |
| *L->getHeader()->getParent()); |
| const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout(); |
| |
| LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL); |
| return LIR.runOnLoop(L); |
| } |
| |
| /// This transformation requires natural loop information & requires that |
| /// loop preheaders be inserted into the CFG. |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| AU.addRequired<TargetTransformInfoWrapperPass>(); |
| getLoopAnalysisUsage(AU); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| char LoopIdiomRecognizeLegacyPass::ID = 0; |
| |
| PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, |
| LoopStandardAnalysisResults &AR, |
| LPMUpdater &) { |
| const auto *DL = &L.getHeader()->getModule()->getDataLayout(); |
| |
| LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, DL); |
| if (!LIR.runOnLoop(&L)) |
| return PreservedAnalyses::all(); |
| |
| return getLoopPassPreservedAnalyses(); |
| } |
| |
| INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom", |
| "Recognize loop idioms", false, false) |
| INITIALIZE_PASS_DEPENDENCY(LoopPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom", |
| "Recognize loop idioms", false, false) |
| |
| Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); } |
| |
| static void deleteDeadInstruction(Instruction *I) { |
| I->replaceAllUsesWith(UndefValue::get(I->getType())); |
| I->eraseFromParent(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // |
| // Implementation of LoopIdiomRecognize |
| // |
| //===----------------------------------------------------------------------===// |
| |
| bool LoopIdiomRecognize::runOnLoop(Loop *L) { |
| CurLoop = L; |
| // If the loop could not be converted to canonical form, it must have an |
| // indirectbr in it, just give up. |
| if (!L->getLoopPreheader()) |
| return false; |
| |
| // Disable loop idiom recognition if the function's name is a common idiom. |
| StringRef Name = L->getHeader()->getParent()->getName(); |
| if (Name == "memset" || Name == "memcpy") |
| return false; |
| |
| // Determine if code size heuristics need to be applied. |
| ApplyCodeSizeHeuristics = |
| L->getHeader()->getParent()->optForSize() && UseLIRCodeSizeHeurs; |
| |
| HasMemset = TLI->has(LibFunc_memset); |
| HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); |
| HasMemcpy = TLI->has(LibFunc_memcpy); |
| |
| if (HasMemset || HasMemsetPattern || HasMemcpy) |
| if (SE->hasLoopInvariantBackedgeTakenCount(L)) |
| return runOnCountableLoop(); |
| |
| return runOnNoncountableLoop(); |
| } |
| |
| bool LoopIdiomRecognize::runOnCountableLoop() { |
| const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); |
| assert(!isa<SCEVCouldNotCompute>(BECount) && |
| "runOnCountableLoop() called on a loop without a predictable" |
| "backedge-taken count"); |
| |
| // If this loop executes exactly one time, then it should be peeled, not |
| // optimized by this pass. |
| if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) |
| if (BECst->getAPInt() == 0) |
| return false; |
| |
| SmallVector<BasicBlock *, 8> ExitBlocks; |
| CurLoop->getUniqueExitBlocks(ExitBlocks); |
| |
| LLVM_DEBUG(dbgs() << "loop-idiom Scanning: F[" |
| << CurLoop->getHeader()->getParent()->getName() |
| << "] Loop %" << CurLoop->getHeader()->getName() << "\n"); |
| |
| bool MadeChange = false; |
| |
| // The following transforms hoist stores/memsets into the loop pre-header. |
| // Give up if the loop has instructions may throw. |
| LoopSafetyInfo SafetyInfo; |
| computeLoopSafetyInfo(&SafetyInfo, CurLoop); |
| if (SafetyInfo.MayThrow) |
| return MadeChange; |
| |
| // Scan all the blocks in the loop that are not in subloops. |
| for (auto *BB : CurLoop->getBlocks()) { |
| // Ignore blocks in subloops. |
| if (LI->getLoopFor(BB) != CurLoop) |
| continue; |
| |
| MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); |
| } |
| return MadeChange; |
| } |
| |
| static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { |
| const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); |
| return ConstStride->getAPInt(); |
| } |
| |
| /// getMemSetPatternValue - If a strided store of the specified value is safe to |
| /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should |
| /// be passed in. Otherwise, return null. |
| /// |
| /// Note that we don't ever attempt to use memset_pattern8 or 4, because these |
| /// just replicate their input array and then pass on to memset_pattern16. |
| static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { |
| // If the value isn't a constant, we can't promote it to being in a constant |
| // array. We could theoretically do a store to an alloca or something, but |
| // that doesn't seem worthwhile. |
| Constant *C = dyn_cast<Constant>(V); |
| if (!C) |
| return nullptr; |
| |
| // Only handle simple values that are a power of two bytes in size. |
| uint64_t Size = DL->getTypeSizeInBits(V->getType()); |
| if (Size == 0 || (Size & 7) || (Size & (Size - 1))) |
| return nullptr; |
| |
| // Don't care enough about darwin/ppc to implement this. |
| if (DL->isBigEndian()) |
| return nullptr; |
| |
| // Convert to size in bytes. |
| Size /= 8; |
| |
| // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see |
| // if the top and bottom are the same (e.g. for vectors and large integers). |
| if (Size > 16) |
| return nullptr; |
| |
| // If the constant is exactly 16 bytes, just use it. |
| if (Size == 16) |
| return C; |
| |
| // Otherwise, we'll use an array of the constants. |
| unsigned ArraySize = 16 / Size; |
| ArrayType *AT = ArrayType::get(V->getType(), ArraySize); |
| return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); |
| } |
| |
| LoopIdiomRecognize::LegalStoreKind |
| LoopIdiomRecognize::isLegalStore(StoreInst *SI) { |
| // Don't touch volatile stores. |
| if (SI->isVolatile()) |
| return LegalStoreKind::None; |
| // We only want simple or unordered-atomic stores. |
| if (!SI->isUnordered()) |
| return LegalStoreKind::None; |
| |
| // Don't convert stores of non-integral pointer types to memsets (which stores |
| // integers). |
| if (DL->isNonIntegralPointerType(SI->getValueOperand()->getType())) |
| return LegalStoreKind::None; |
| |
| // Avoid merging nontemporal stores. |
| if (SI->getMetadata(LLVMContext::MD_nontemporal)) |
| return LegalStoreKind::None; |
| |
| Value *StoredVal = SI->getValueOperand(); |
| Value *StorePtr = SI->getPointerOperand(); |
| |
| // Reject stores that are so large that they overflow an unsigned. |
| uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); |
| if ((SizeInBits & 7) || (SizeInBits >> 32) != 0) |
| return LegalStoreKind::None; |
| |
| // See if the pointer expression is an AddRec like {base,+,1} on the current |
| // loop, which indicates a strided store. If we have something else, it's a |
| // random store we can't handle. |
| const SCEVAddRecExpr *StoreEv = |
| dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); |
| if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) |
| return LegalStoreKind::None; |
| |
| // Check to see if we have a constant stride. |
| if (!isa<SCEVConstant>(StoreEv->getOperand(1))) |
| return LegalStoreKind::None; |
| |
| // See if the store can be turned into a memset. |
| |
| // If the stored value is a byte-wise value (like i32 -1), then it may be |
| // turned into a memset of i8 -1, assuming that all the consecutive bytes |
| // are stored. A store of i32 0x01020304 can never be turned into a memset, |
| // but it can be turned into memset_pattern if the target supports it. |
| Value *SplatValue = isBytewiseValue(StoredVal); |
| Constant *PatternValue = nullptr; |
| |
| // Note: memset and memset_pattern on unordered-atomic is yet not supported |
| bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); |
| |
| // If we're allowed to form a memset, and the stored value would be |
| // acceptable for memset, use it. |
| if (!UnorderedAtomic && HasMemset && SplatValue && |
| // Verify that the stored value is loop invariant. If not, we can't |
| // promote the memset. |
| CurLoop->isLoopInvariant(SplatValue)) { |
| // It looks like we can use SplatValue. |
| return LegalStoreKind::Memset; |
| } else if (!UnorderedAtomic && HasMemsetPattern && |
| // Don't create memset_pattern16s with address spaces. |
| StorePtr->getType()->getPointerAddressSpace() == 0 && |
| (PatternValue = getMemSetPatternValue(StoredVal, DL))) { |
| // It looks like we can use PatternValue! |
| return LegalStoreKind::MemsetPattern; |
| } |
| |
| // Otherwise, see if the store can be turned into a memcpy. |
| if (HasMemcpy) { |
| // Check to see if the stride matches the size of the store. If so, then we |
| // know that every byte is touched in the loop. |
| APInt Stride = getStoreStride(StoreEv); |
| unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); |
| if (StoreSize != Stride && StoreSize != -Stride) |
| return LegalStoreKind::None; |
| |
| // The store must be feeding a non-volatile load. |
| LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); |
| |
| // Only allow non-volatile loads |
| if (!LI || LI->isVolatile()) |
| return LegalStoreKind::None; |
| // Only allow simple or unordered-atomic loads |
| if (!LI->isUnordered()) |
| return LegalStoreKind::None; |
| |
| // See if the pointer expression is an AddRec like {base,+,1} on the current |
| // loop, which indicates a strided load. If we have something else, it's a |
| // random load we can't handle. |
| const SCEVAddRecExpr *LoadEv = |
| dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); |
| if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) |
| return LegalStoreKind::None; |
| |
| // The store and load must share the same stride. |
| if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) |
| return LegalStoreKind::None; |
| |
| // Success. This store can be converted into a memcpy. |
| UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); |
| return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy |
| : LegalStoreKind::Memcpy; |
| } |
| // This store can't be transformed into a memset/memcpy. |
| return LegalStoreKind::None; |
| } |
| |
| void LoopIdiomRecognize::collectStores(BasicBlock *BB) { |
| StoreRefsForMemset.clear(); |
| StoreRefsForMemsetPattern.clear(); |
| StoreRefsForMemcpy.clear(); |
| for (Instruction &I : *BB) { |
| StoreInst *SI = dyn_cast<StoreInst>(&I); |
| if (!SI) |
| continue; |
| |
| // Make sure this is a strided store with a constant stride. |
| switch (isLegalStore(SI)) { |
| case LegalStoreKind::None: |
| // Nothing to do |
| break; |
| case LegalStoreKind::Memset: { |
| // Find the base pointer. |
| Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); |
| StoreRefsForMemset[Ptr].push_back(SI); |
| } break; |
| case LegalStoreKind::MemsetPattern: { |
| // Find the base pointer. |
| Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); |
| StoreRefsForMemsetPattern[Ptr].push_back(SI); |
| } break; |
| case LegalStoreKind::Memcpy: |
| case LegalStoreKind::UnorderedAtomicMemcpy: |
| StoreRefsForMemcpy.push_back(SI); |
| break; |
| default: |
| assert(false && "unhandled return value"); |
| break; |
| } |
| } |
| } |
| |
| /// runOnLoopBlock - Process the specified block, which lives in a counted loop |
| /// with the specified backedge count. This block is known to be in the current |
| /// loop and not in any subloops. |
| bool LoopIdiomRecognize::runOnLoopBlock( |
| BasicBlock *BB, const SCEV *BECount, |
| SmallVectorImpl<BasicBlock *> &ExitBlocks) { |
| // We can only promote stores in this block if they are unconditionally |
| // executed in the loop. For a block to be unconditionally executed, it has |
| // to dominate all the exit blocks of the loop. Verify this now. |
| for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) |
| if (!DT->dominates(BB, ExitBlocks[i])) |
| return false; |
| |
| bool MadeChange = false; |
| // Look for store instructions, which may be optimized to memset/memcpy. |
| collectStores(BB); |
| |
| // Look for a single store or sets of stores with a common base, which can be |
| // optimized into a memset (memset_pattern). The latter most commonly happens |
| // with structs and handunrolled loops. |
| for (auto &SL : StoreRefsForMemset) |
| MadeChange |= processLoopStores(SL.second, BECount, true); |
| |
| for (auto &SL : StoreRefsForMemsetPattern) |
| MadeChange |= processLoopStores(SL.second, BECount, false); |
| |
| // Optimize the store into a memcpy, if it feeds an similarly strided load. |
| for (auto &SI : StoreRefsForMemcpy) |
| MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); |
| |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { |
| Instruction *Inst = &*I++; |
| // Look for memset instructions, which may be optimized to a larger memset. |
| if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) { |
| WeakTrackingVH InstPtr(&*I); |
| if (!processLoopMemSet(MSI, BECount)) |
| continue; |
| MadeChange = true; |
| |
| // If processing the memset invalidated our iterator, start over from the |
| // top of the block. |
| if (!InstPtr) |
| I = BB->begin(); |
| continue; |
| } |
| } |
| |
| return MadeChange; |
| } |
| |
| /// processLoopStores - See if this store(s) can be promoted to a memset. |
| bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, |
| const SCEV *BECount, |
| bool ForMemset) { |
| // Try to find consecutive stores that can be transformed into memsets. |
| SetVector<StoreInst *> Heads, Tails; |
| SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; |
| |
| // Do a quadratic search on all of the given stores and find |
| // all of the pairs of stores that follow each other. |
| SmallVector<unsigned, 16> IndexQueue; |
| for (unsigned i = 0, e = SL.size(); i < e; ++i) { |
| assert(SL[i]->isSimple() && "Expected only non-volatile stores."); |
| |
| Value *FirstStoredVal = SL[i]->getValueOperand(); |
| Value *FirstStorePtr = SL[i]->getPointerOperand(); |
| const SCEVAddRecExpr *FirstStoreEv = |
| cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); |
| APInt FirstStride = getStoreStride(FirstStoreEv); |
| unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType()); |
| |
| // See if we can optimize just this store in isolation. |
| if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { |
| Heads.insert(SL[i]); |
| continue; |
| } |
| |
| Value *FirstSplatValue = nullptr; |
| Constant *FirstPatternValue = nullptr; |
| |
| if (ForMemset) |
| FirstSplatValue = isBytewiseValue(FirstStoredVal); |
| else |
| FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); |
| |
| assert((FirstSplatValue || FirstPatternValue) && |
| "Expected either splat value or pattern value."); |
| |
| IndexQueue.clear(); |
| // If a store has multiple consecutive store candidates, search Stores |
| // array according to the sequence: from i+1 to e, then from i-1 to 0. |
| // This is because usually pairing with immediate succeeding or preceding |
| // candidate create the best chance to find memset opportunity. |
| unsigned j = 0; |
| for (j = i + 1; j < e; ++j) |
| IndexQueue.push_back(j); |
| for (j = i; j > 0; --j) |
| IndexQueue.push_back(j - 1); |
| |
| for (auto &k : IndexQueue) { |
| assert(SL[k]->isSimple() && "Expected only non-volatile stores."); |
| Value *SecondStorePtr = SL[k]->getPointerOperand(); |
| const SCEVAddRecExpr *SecondStoreEv = |
| cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); |
| APInt SecondStride = getStoreStride(SecondStoreEv); |
| |
| if (FirstStride != SecondStride) |
| continue; |
| |
| Value *SecondStoredVal = SL[k]->getValueOperand(); |
| Value *SecondSplatValue = nullptr; |
| Constant *SecondPatternValue = nullptr; |
| |
| if (ForMemset) |
| SecondSplatValue = isBytewiseValue(SecondStoredVal); |
| else |
| SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); |
| |
| assert((SecondSplatValue || SecondPatternValue) && |
| "Expected either splat value or pattern value."); |
| |
| if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { |
| if (ForMemset) { |
| if (FirstSplatValue != SecondSplatValue) |
| continue; |
| } else { |
| if (FirstPatternValue != SecondPatternValue) |
| continue; |
| } |
| Tails.insert(SL[k]); |
| Heads.insert(SL[i]); |
| ConsecutiveChain[SL[i]] = SL[k]; |
| break; |
| } |
| } |
| } |
| |
| // We may run into multiple chains that merge into a single chain. We mark the |
| // stores that we transformed so that we don't visit the same store twice. |
| SmallPtrSet<Value *, 16> TransformedStores; |
| bool Changed = false; |
| |
| // For stores that start but don't end a link in the chain: |
| for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); |
| it != e; ++it) { |
| if (Tails.count(*it)) |
| continue; |
| |
| // We found a store instr that starts a chain. Now follow the chain and try |
| // to transform it. |
| SmallPtrSet<Instruction *, 8> AdjacentStores; |
| StoreInst *I = *it; |
| |
| StoreInst *HeadStore = I; |
| unsigned StoreSize = 0; |
| |
| // Collect the chain into a list. |
| while (Tails.count(I) || Heads.count(I)) { |
| if (TransformedStores.count(I)) |
| break; |
| AdjacentStores.insert(I); |
| |
| StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType()); |
| // Move to the next value in the chain. |
| I = ConsecutiveChain[I]; |
| } |
| |
| Value *StoredVal = HeadStore->getValueOperand(); |
| Value *StorePtr = HeadStore->getPointerOperand(); |
| const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); |
| APInt Stride = getStoreStride(StoreEv); |
| |
| // Check to see if the stride matches the size of the stores. If so, then |
| // we know that every byte is touched in the loop. |
| if (StoreSize != Stride && StoreSize != -Stride) |
| continue; |
| |
| bool NegStride = StoreSize == -Stride; |
| |
| if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(), |
| StoredVal, HeadStore, AdjacentStores, StoreEv, |
| BECount, NegStride)) { |
| TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); |
| Changed = true; |
| } |
| } |
| |
| return Changed; |
| } |
| |
| /// processLoopMemSet - See if this memset can be promoted to a large memset. |
| bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, |
| const SCEV *BECount) { |
| // We can only handle non-volatile memsets with a constant size. |
| if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) |
| return false; |
| |
| // If we're not allowed to hack on memset, we fail. |
| if (!HasMemset) |
| return false; |
| |
| Value *Pointer = MSI->getDest(); |
| |
| // See if the pointer expression is an AddRec like {base,+,1} on the current |
| // loop, which indicates a strided store. If we have something else, it's a |
| // random store we can't handle. |
| const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); |
| if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine()) |
| return false; |
| |
| // Reject memsets that are so large that they overflow an unsigned. |
| uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); |
| if ((SizeInBytes >> 32) != 0) |
| return false; |
| |
| // Check to see if the stride matches the size of the memset. If so, then we |
| // know that every byte is touched in the loop. |
| const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); |
| if (!ConstStride) |
| return false; |
| |
| APInt Stride = ConstStride->getAPInt(); |
| if (SizeInBytes != Stride && SizeInBytes != -Stride) |
| return false; |
| |
| // Verify that the memset value is loop invariant. If not, we can't promote |
| // the memset. |
| Value *SplatValue = MSI->getValue(); |
| if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) |
| return false; |
| |
| SmallPtrSet<Instruction *, 1> MSIs; |
| MSIs.insert(MSI); |
| bool NegStride = SizeInBytes == -Stride; |
| return processLoopStridedStore(Pointer, (unsigned)SizeInBytes, |
| MSI->getDestAlignment(), SplatValue, MSI, MSIs, |
| Ev, BECount, NegStride, /*IsLoopMemset=*/true); |
| } |
| |
| /// mayLoopAccessLocation - Return true if the specified loop might access the |
| /// specified pointer location, which is a loop-strided access. The 'Access' |
| /// argument specifies what the verboten forms of access are (read or write). |
| static bool |
| mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, |
| const SCEV *BECount, unsigned StoreSize, |
| AliasAnalysis &AA, |
| SmallPtrSetImpl<Instruction *> &IgnoredStores) { |
| // Get the location that may be stored across the loop. Since the access is |
| // strided positively through memory, we say that the modified location starts |
| // at the pointer and has infinite size. |
| uint64_t AccessSize = MemoryLocation::UnknownSize; |
| |
| // If the loop iterates a fixed number of times, we can refine the access size |
| // to be exactly the size of the memset, which is (BECount+1)*StoreSize |
| if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) |
| AccessSize = (BECst->getValue()->getZExtValue() + 1) * StoreSize; |
| |
| // TODO: For this to be really effective, we have to dive into the pointer |
| // operand in the store. Store to &A[i] of 100 will always return may alias |
| // with store of &A[100], we need to StoreLoc to be "A" with size of 100, |
| // which will then no-alias a store to &A[100]. |
| MemoryLocation StoreLoc(Ptr, AccessSize); |
| |
| for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; |
| ++BI) |
| for (Instruction &I : **BI) |
| if (IgnoredStores.count(&I) == 0 && |
| isModOrRefSet( |
| intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access))) |
| return true; |
| |
| return false; |
| } |
| |
| // If we have a negative stride, Start refers to the end of the memory location |
| // we're trying to memset. Therefore, we need to recompute the base pointer, |
| // which is just Start - BECount*Size. |
| static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, |
| Type *IntPtr, unsigned StoreSize, |
| ScalarEvolution *SE) { |
| const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); |
| if (StoreSize != 1) |
| Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize), |
| SCEV::FlagNUW); |
| return SE->getMinusSCEV(Start, Index); |
| } |
| |
| /// Compute the number of bytes as a SCEV from the backedge taken count. |
| /// |
| /// This also maps the SCEV into the provided type and tries to handle the |
| /// computation in a way that will fold cleanly. |
| static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, |
| unsigned StoreSize, Loop *CurLoop, |
| const DataLayout *DL, ScalarEvolution *SE) { |
| const SCEV *NumBytesS; |
| // The # stored bytes is (BECount+1)*Size. Expand the trip count out to |
| // pointer size if it isn't already. |
| // |
| // If we're going to need to zero extend the BE count, check if we can add |
| // one to it prior to zero extending without overflow. Provided this is safe, |
| // it allows better simplification of the +1. |
| if (DL->getTypeSizeInBits(BECount->getType()) < |
| DL->getTypeSizeInBits(IntPtr) && |
| SE->isLoopEntryGuardedByCond( |
| CurLoop, ICmpInst::ICMP_NE, BECount, |
| SE->getNegativeSCEV(SE->getOne(BECount->getType())))) { |
| NumBytesS = SE->getZeroExtendExpr( |
| SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW), |
| IntPtr); |
| } else { |
| NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr), |
| SE->getOne(IntPtr), SCEV::FlagNUW); |
| } |
| |
| // And scale it based on the store size. |
| if (StoreSize != 1) { |
| NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), |
| SCEV::FlagNUW); |
| } |
| return NumBytesS; |
| } |
| |
| /// processLoopStridedStore - We see a strided store of some value. If we can |
| /// transform this into a memset or memset_pattern in the loop preheader, do so. |
| bool LoopIdiomRecognize::processLoopStridedStore( |
| Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment, |
| Value *StoredVal, Instruction *TheStore, |
| SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, |
| const SCEV *BECount, bool NegStride, bool IsLoopMemset) { |
| Value *SplatValue = isBytewiseValue(StoredVal); |
| Constant *PatternValue = nullptr; |
| |
| if (!SplatValue) |
| PatternValue = getMemSetPatternValue(StoredVal, DL); |
| |
| assert((SplatValue || PatternValue) && |
| "Expected either splat value or pattern value."); |
| |
| // The trip count of the loop and the base pointer of the addrec SCEV is |
| // guaranteed to be loop invariant, which means that it should dominate the |
| // header. This allows us to insert code for it in the preheader. |
| unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); |
| BasicBlock *Preheader = CurLoop->getLoopPreheader(); |
| IRBuilder<> Builder(Preheader->getTerminator()); |
| SCEVExpander Expander(*SE, *DL, "loop-idiom"); |
| |
| Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); |
| Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS); |
| |
| const SCEV *Start = Ev->getStart(); |
| // Handle negative strided loops. |
| if (NegStride) |
| Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE); |
| |
| // TODO: ideally we should still be able to generate memset if SCEV expander |
| // is taught to generate the dependencies at the latest point. |
| if (!isSafeToExpand(Start, *SE)) |
| return false; |
| |
| // Okay, we have a strided store "p[i]" of a splattable value. We can turn |
| // this into a memset in the loop preheader now if we want. However, this |
| // would be unsafe to do if there is anything else in the loop that may read |
| // or write to the aliased location. Check for any overlap by generating the |
| // base pointer and checking the region. |
| Value *BasePtr = |
| Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); |
| if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount, |
| StoreSize, *AA, Stores)) { |
| Expander.clear(); |
| // If we generated new code for the base pointer, clean up. |
| RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI); |
| return false; |
| } |
| |
| if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) |
| return false; |
| |
| // Okay, everything looks good, insert the memset. |
| |
| const SCEV *NumBytesS = |
| getNumBytes(BECount, IntPtr, StoreSize, CurLoop, DL, SE); |
| |
| // TODO: ideally we should still be able to generate memset if SCEV expander |
| // is taught to generate the dependencies at the latest point. |
| if (!isSafeToExpand(NumBytesS, *SE)) |
| return false; |
| |
| Value *NumBytes = |
| Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator()); |
| |
| CallInst *NewCall; |
| if (SplatValue) { |
| NewCall = |
| Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment); |
| } else { |
| // Everything is emitted in default address space |
| Type *Int8PtrTy = DestInt8PtrTy; |
| |
| Module *M = TheStore->getModule(); |
| StringRef FuncName = "memset_pattern16"; |
| Value *MSP = |
| M->getOrInsertFunction(FuncName, Builder.getVoidTy(), |
| Int8PtrTy, Int8PtrTy, IntPtr); |
| inferLibFuncAttributes(M, FuncName, *TLI); |
| |
| // Otherwise we should form a memset_pattern16. PatternValue is known to be |
| // an constant array of 16-bytes. Plop the value into a mergable global. |
| GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, |
| GlobalValue::PrivateLinkage, |
| PatternValue, ".memset_pattern"); |
| GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. |
| GV->setAlignment(16); |
| Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); |
| NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); |
| } |
| |
| LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" |
| << " from store to: " << *Ev << " at: " << *TheStore |
| << "\n"); |
| NewCall->setDebugLoc(TheStore->getDebugLoc()); |
| |
| // Okay, the memset has been formed. Zap the original store and anything that |
| // feeds into it. |
| for (auto *I : Stores) |
| deleteDeadInstruction(I); |
| ++NumMemSet; |
| return true; |
| } |
| |
| /// If the stored value is a strided load in the same loop with the same stride |
| /// this may be transformable into a memcpy. This kicks in for stuff like |
| /// for (i) A[i] = B[i]; |
| bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, |
| const SCEV *BECount) { |
| assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores."); |
| |
| Value *StorePtr = SI->getPointerOperand(); |
| const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); |
| APInt Stride = getStoreStride(StoreEv); |
| unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); |
| bool NegStride = StoreSize == -Stride; |
| |
| // The store must be feeding a non-volatile load. |
| LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); |
| assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads."); |
| |
| // See if the pointer expression is an AddRec like {base,+,1} on the current |
| // loop, which indicates a strided load. If we have something else, it's a |
| // random load we can't handle. |
| const SCEVAddRecExpr *LoadEv = |
| cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); |
| |
| // The trip count of the loop and the base pointer of the addrec SCEV is |
| // guaranteed to be loop invariant, which means that it should dominate the |
| // header. This allows us to insert code for it in the preheader. |
| BasicBlock *Preheader = CurLoop->getLoopPreheader(); |
| IRBuilder<> Builder(Preheader->getTerminator()); |
| SCEVExpander Expander(*SE, *DL, "loop-idiom"); |
| |
| const SCEV *StrStart = StoreEv->getStart(); |
| unsigned StrAS = SI->getPointerAddressSpace(); |
| Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS); |
| |
| // Handle negative strided loops. |
| if (NegStride) |
| StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE); |
| |
| // Okay, we have a strided store "p[i]" of a loaded value. We can turn |
| // this into a memcpy in the loop preheader now if we want. However, this |
| // would be unsafe to do if there is anything else in the loop that may read |
| // or write the memory region we're storing to. This includes the load that |
| // feeds the stores. Check for an alias by generating the base address and |
| // checking everything. |
| Value *StoreBasePtr = Expander.expandCodeFor( |
| StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator()); |
| |
| SmallPtrSet<Instruction *, 1> Stores; |
| Stores.insert(SI); |
| if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, |
| StoreSize, *AA, Stores)) { |
| Expander.clear(); |
| // If we generated new code for the base pointer, clean up. |
| RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); |
| return false; |
| } |
| |
| const SCEV *LdStart = LoadEv->getStart(); |
| unsigned LdAS = LI->getPointerAddressSpace(); |
| |
| // Handle negative strided loops. |
| if (NegStride) |
| LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE); |
| |
| // For a memcpy, we have to make sure that the input array is not being |
| // mutated by the loop. |
| Value *LoadBasePtr = Expander.expandCodeFor( |
| LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator()); |
| |
| if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, |
| StoreSize, *AA, Stores)) { |
| Expander.clear(); |
| // If we generated new code for the base pointer, clean up. |
| RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI); |
| RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); |
| return false; |
| } |
| |
| if (avoidLIRForMultiBlockLoop()) |
| return false; |
| |
| // Okay, everything is safe, we can transform this! |
| |
| const SCEV *NumBytesS = |
| getNumBytes(BECount, IntPtrTy, StoreSize, CurLoop, DL, SE); |
| |
| Value *NumBytes = |
| Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator()); |
| |
| CallInst *NewCall = nullptr; |
| // Check whether to generate an unordered atomic memcpy: |
| // If the load or store are atomic, then they must necessarily be unordered |
| // by previous checks. |
| if (!SI->isAtomic() && !LI->isAtomic()) |
| NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlignment(), |
| LoadBasePtr, LI->getAlignment(), NumBytes); |
| else { |
| // We cannot allow unaligned ops for unordered load/store, so reject |
| // anything where the alignment isn't at least the element size. |
| unsigned Align = std::min(SI->getAlignment(), LI->getAlignment()); |
| if (Align < StoreSize) |
| return false; |
| |
| // If the element.atomic memcpy is not lowered into explicit |
| // loads/stores later, then it will be lowered into an element-size |
| // specific lib call. If the lib call doesn't exist for our store size, then |
| // we shouldn't generate the memcpy. |
| if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) |
| return false; |
| |
| // Create the call. |
| // Note that unordered atomic loads/stores are *required* by the spec to |
| // have an alignment but non-atomic loads/stores may not. |
| NewCall = Builder.CreateElementUnorderedAtomicMemCpy( |
| StoreBasePtr, SI->getAlignment(), LoadBasePtr, LI->getAlignment(), |
| NumBytes, StoreSize); |
| } |
| NewCall->setDebugLoc(SI->getDebugLoc()); |
| |
| LLVM_DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n" |
| << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" |
| << " from store ptr=" << *StoreEv << " at: " << *SI |
| << "\n"); |
| |
| // Okay, the memcpy has been formed. Zap the original store and anything that |
| // feeds into it. |
| deleteDeadInstruction(SI); |
| ++NumMemCpy; |
| return true; |
| } |
| |
| // When compiling for codesize we avoid idiom recognition for a multi-block loop |
| // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. |
| // |
| bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, |
| bool IsLoopMemset) { |
| if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { |
| if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) { |
| LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName() |
| << " : LIR " << (IsMemset ? "Memset" : "Memcpy") |
| << " avoided: multi-block top-level loop\n"); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool LoopIdiomRecognize::runOnNoncountableLoop() { |
| return recognizePopcount() || recognizeAndInsertCTLZ(); |
| } |
| |
| /// Check if the given conditional branch is based on the comparison between |
| /// a variable and zero, and if the variable is non-zero, the control yields to |
| /// the loop entry. If the branch matches the behavior, the variable involved |
| /// in the comparison is returned. This function will be called to see if the |
| /// precondition and postcondition of the loop are in desirable form. |
| static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry) { |
| if (!BI || !BI->isConditional()) |
| return nullptr; |
| |
| ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); |
| if (!Cond) |
| return nullptr; |
| |
| ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); |
| if (!CmpZero || !CmpZero->isZero()) |
| return nullptr; |
| |
| ICmpInst::Predicate Pred = Cond->getPredicate(); |
| if ((Pred == ICmpInst::ICMP_NE && BI->getSuccessor(0) == LoopEntry) || |
| (Pred == ICmpInst::ICMP_EQ && BI->getSuccessor(1) == LoopEntry)) |
| return Cond->getOperand(0); |
| |
| return nullptr; |
| } |
| |
| // Check if the recurrence variable `VarX` is in the right form to create |
| // the idiom. Returns the value coerced to a PHINode if so. |
| static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, |
| BasicBlock *LoopEntry) { |
| auto *PhiX = dyn_cast<PHINode>(VarX); |
| if (PhiX && PhiX->getParent() == LoopEntry && |
| (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX)) |
| return PhiX; |
| return nullptr; |
| } |
| |
| /// Return true iff the idiom is detected in the loop. |
| /// |
| /// Additionally: |
| /// 1) \p CntInst is set to the instruction counting the population bit. |
| /// 2) \p CntPhi is set to the corresponding phi node. |
| /// 3) \p Var is set to the value whose population bits are being counted. |
| /// |
| /// The core idiom we are trying to detect is: |
| /// \code |
| /// if (x0 != 0) |
| /// goto loop-exit // the precondition of the loop |
| /// cnt0 = init-val; |
| /// do { |
| /// x1 = phi (x0, x2); |
| /// cnt1 = phi(cnt0, cnt2); |
| /// |
| /// cnt2 = cnt1 + 1; |
| /// ... |
| /// x2 = x1 & (x1 - 1); |
| /// ... |
| /// } while(x != 0); |
| /// |
| /// loop-exit: |
| /// \endcode |
| static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, |
| Instruction *&CntInst, PHINode *&CntPhi, |
| Value *&Var) { |
| // step 1: Check to see if the look-back branch match this pattern: |
| // "if (a!=0) goto loop-entry". |
| BasicBlock *LoopEntry; |
| Instruction *DefX2, *CountInst; |
| Value *VarX1, *VarX0; |
| PHINode *PhiX, *CountPhi; |
| |
| DefX2 = CountInst = nullptr; |
| VarX1 = VarX0 = nullptr; |
| PhiX = CountPhi = nullptr; |
| LoopEntry = *(CurLoop->block_begin()); |
| |
| // step 1: Check if the loop-back branch is in desirable form. |
| { |
| if (Value *T = matchCondition( |
| dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) |
| DefX2 = dyn_cast<Instruction>(T); |
| else |
| return false; |
| } |
| |
| // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" |
| { |
| if (!DefX2 || DefX2->getOpcode() != Instruction::And) |
| return false; |
| |
| BinaryOperator *SubOneOp; |
| |
| if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) |
| VarX1 = DefX2->getOperand(1); |
| else { |
| VarX1 = DefX2->getOperand(0); |
| SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); |
| } |
| if (!SubOneOp || SubOneOp->getOperand(0) != VarX1) |
| return false; |
| |
| ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1)); |
| if (!Dec || |
| !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) || |
| (SubOneOp->getOpcode() == Instruction::Add && |
| Dec->isMinusOne()))) { |
| return false; |
| } |
| } |
| |
| // step 3: Check the recurrence of variable X |
| PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry); |
| if (!PhiX) |
| return false; |
| |
| // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 |
| { |
| CountInst = nullptr; |
| for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), |
| IterE = LoopEntry->end(); |
| Iter != IterE; Iter++) { |
| Instruction *Inst = &*Iter; |
| if (Inst->getOpcode() != Instruction::Add) |
| continue; |
| |
| ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); |
| if (!Inc || !Inc->isOne()) |
| continue; |
| |
| PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); |
| if (!Phi) |
| continue; |
| |
| // Check if the result of the instruction is live of the loop. |
| bool LiveOutLoop = false; |
| for (User *U : Inst->users()) { |
| if ((cast<Instruction>(U))->getParent() != LoopEntry) { |
| LiveOutLoop = true; |
| break; |
| } |
| } |
| |
| if (LiveOutLoop) { |
| CountInst = Inst; |
| CountPhi = Phi; |
| break; |
| } |
| } |
| |
| if (!CountInst) |
| return false; |
| } |
| |
| // step 5: check if the precondition is in this form: |
| // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" |
| { |
| auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); |
| Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); |
| if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) |
| return false; |
| |
| CntInst = CountInst; |
| CntPhi = CountPhi; |
| Var = T; |
| } |
| |
| return true; |
| } |
| |
| /// Return true if the idiom is detected in the loop. |
| /// |
| /// Additionally: |
| /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) |
| /// or nullptr if there is no such. |
| /// 2) \p CntPhi is set to the corresponding phi node |
| /// or nullptr if there is no such. |
| /// 3) \p Var is set to the value whose CTLZ could be used. |
| /// 4) \p DefX is set to the instruction calculating Loop exit condition. |
| /// |
| /// The core idiom we are trying to detect is: |
| /// \code |
| /// if (x0 == 0) |
| /// goto loop-exit // the precondition of the loop |
| /// cnt0 = init-val; |
| /// do { |
| /// x = phi (x0, x.next); //PhiX |
| /// cnt = phi(cnt0, cnt.next); |
| /// |
| /// cnt.next = cnt + 1; |
| /// ... |
| /// x.next = x >> 1; // DefX |
| /// ... |
| /// } while(x.next != 0); |
| /// |
| /// loop-exit: |
| /// \endcode |
| static bool detectCTLZIdiom(Loop *CurLoop, PHINode *&PhiX, |
| Instruction *&CntInst, PHINode *&CntPhi, |
| Instruction *&DefX) { |
| BasicBlock *LoopEntry; |
| Value *VarX = nullptr; |
| |
| DefX = nullptr; |
| PhiX = nullptr; |
| CntInst = nullptr; |
| CntPhi = nullptr; |
| LoopEntry = *(CurLoop->block_begin()); |
| |
| // step 1: Check if the loop-back branch is in desirable form. |
| if (Value *T = matchCondition( |
| dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) |
| DefX = dyn_cast<Instruction>(T); |
| else |
| return false; |
| |
| // step 2: detect instructions corresponding to "x.next = x >> 1" |
| if (!DefX || (DefX->getOpcode() != Instruction::AShr && |
| DefX->getOpcode() != Instruction::LShr)) |
| return false; |
| ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)); |
| if (!Shft || !Shft->isOne()) |
| return false; |
| VarX = DefX->getOperand(0); |
| |
| // step 3: Check the recurrence of variable X |
| PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); |
| if (!PhiX) |
| return false; |
| |
| // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 |
| // TODO: We can skip the step. If loop trip count is known (CTLZ), |
| // then all uses of "cnt.next" could be optimized to the trip count |
| // plus "cnt0". Currently it is not optimized. |
| // This step could be used to detect POPCNT instruction: |
| // cnt.next = cnt + (x.next & 1) |
| for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), |
| IterE = LoopEntry->end(); |
| Iter != IterE; Iter++) { |
| Instruction *Inst = &*Iter; |
| if (Inst->getOpcode() != Instruction::Add) |
| continue; |
| |
| ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); |
| if (!Inc || !Inc->isOne()) |
| continue; |
| |
| PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); |
| if (!Phi) |
| continue; |
| |
| CntInst = Inst; |
| CntPhi = Phi; |
| break; |
| } |
| if (!CntInst) |
| return false; |
| |
| return true; |
| } |
| |
| /// Recognize CTLZ idiom in a non-countable loop and convert the loop |
| /// to countable (with CTLZ trip count). |
| /// If CTLZ inserted as a new trip count returns true; otherwise, returns false. |
| bool LoopIdiomRecognize::recognizeAndInsertCTLZ() { |
| // Give up if the loop has multiple blocks or multiple backedges. |
| if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) |
| return false; |
| |
| Instruction *CntInst, *DefX; |
| PHINode *CntPhi, *PhiX; |
| if (!detectCTLZIdiom(CurLoop, PhiX, CntInst, CntPhi, DefX)) |
| return false; |
| |
| bool IsCntPhiUsedOutsideLoop = false; |
| for (User *U : CntPhi->users()) |
| if (!CurLoop->contains(cast<Instruction>(U))) { |
| IsCntPhiUsedOutsideLoop = true; |
| break; |
| } |
| bool IsCntInstUsedOutsideLoop = false; |
| for (User *U : CntInst->users()) |
| if (!CurLoop->contains(cast<Instruction>(U))) { |
| IsCntInstUsedOutsideLoop = true; |
| break; |
| } |
| // If both CntInst and CntPhi are used outside the loop the profitability |
| // is questionable. |
| if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop) |
| return false; |
| |
| // For some CPUs result of CTLZ(X) intrinsic is undefined |
| // when X is 0. If we can not guarantee X != 0, we need to check this |
| // when expand. |
| bool ZeroCheck = false; |
| // It is safe to assume Preheader exist as it was checked in |
| // parent function RunOnLoop. |
| BasicBlock *PH = CurLoop->getLoopPreheader(); |
| Value *InitX = PhiX->getIncomingValueForBlock(PH); |
| |
| // Make sure the initial value can't be negative otherwise the ashr in the |
| // loop might never reach zero which would make the loop infinite. |
| if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, *DL)) |
| return false; |
| |
| // If we are using the count instruction outside the loop, make sure we |
| // have a zero check as a precondition. Without the check the loop would run |
| // one iteration for before any check of the input value. This means 0 and 1 |
| // would have identical behavior in the original loop and thus |
| if (!IsCntPhiUsedOutsideLoop) { |
| auto *PreCondBB = PH->getSinglePredecessor(); |
| if (!PreCondBB) |
| return false; |
| auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); |
| if (!PreCondBI) |
| return false; |
| if (matchCondition(PreCondBI, PH) != InitX) |
| return false; |
| ZeroCheck = true; |
| } |
| |
| // Check if CTLZ intrinsic is profitable. Assume it is always profitable |
| // if we delete the loop (the loop has only 6 instructions): |
| // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] |
| // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] |
| // %shr = ashr %n.addr.0, 1 |
| // %tobool = icmp eq %shr, 0 |
| // %inc = add nsw %i.0, 1 |
| // br i1 %tobool |
| |
| const Value *Args[] = |
| {InitX, ZeroCheck ? ConstantInt::getTrue(InitX->getContext()) |
| : ConstantInt::getFalse(InitX->getContext())}; |
| if (CurLoop->getHeader()->size() != 6 && |
| TTI->getIntrinsicCost(Intrinsic::ctlz, InitX->getType(), Args) > |
| TargetTransformInfo::TCC_Basic) |
| return false; |
| |
| transformLoopToCountable(PH, CntInst, CntPhi, InitX, DefX, |
| DefX->getDebugLoc(), ZeroCheck, |
| IsCntPhiUsedOutsideLoop); |
| return true; |
| } |
| |
| /// Recognizes a population count idiom in a non-countable loop. |
| /// |
| /// If detected, transforms the relevant code to issue the popcount intrinsic |
| /// function call, and returns true; otherwise, returns false. |
| bool LoopIdiomRecognize::recognizePopcount() { |
| if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) |
| return false; |
| |
| // Counting population are usually conducted by few arithmetic instructions. |
| // Such instructions can be easily "absorbed" by vacant slots in a |
| // non-compact loop. Therefore, recognizing popcount idiom only makes sense |
| // in a compact loop. |
| |
| // Give up if the loop has multiple blocks or multiple backedges. |
| if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) |
| return false; |
| |
| BasicBlock *LoopBody = *(CurLoop->block_begin()); |
| if (LoopBody->size() >= 20) { |
| // The loop is too big, bail out. |
| return false; |
| } |
| |
| // It should have a preheader containing nothing but an unconditional branch. |
| BasicBlock *PH = CurLoop->getLoopPreheader(); |
| if (!PH || &PH->front() != PH->getTerminator()) |
| return false; |
| auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); |
| if (!EntryBI || EntryBI->isConditional()) |
| return false; |
| |
| // It should have a precondition block where the generated popcount intrinsic |
| // function can be inserted. |
| auto *PreCondBB = PH->getSinglePredecessor(); |
| if (!PreCondBB) |
| return false; |
| auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); |
| if (!PreCondBI || PreCondBI->isUnconditional()) |
| return false; |
| |
| Instruction *CntInst; |
| PHINode *CntPhi; |
| Value *Val; |
| if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) |
| return false; |
| |
| transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); |
| return true; |
| } |
| |
| static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, |
| const DebugLoc &DL) { |
| Value *Ops[] = {Val}; |
| Type *Tys[] = {Val->getType()}; |
| |
| Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); |
| Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); |
| CallInst *CI = IRBuilder.CreateCall(Func, Ops); |
| CI->setDebugLoc(DL); |
| |
| return CI; |
| } |
| |
| static CallInst *createCTLZIntrinsic(IRBuilder<> &IRBuilder, Value *Val, |
| const DebugLoc &DL, bool ZeroCheck) { |
| Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()}; |
| Type *Tys[] = {Val->getType()}; |
| |
| Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); |
| Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctlz, Tys); |
| CallInst *CI = IRBuilder.CreateCall(Func, Ops); |
| CI->setDebugLoc(DL); |
| |
| return CI; |
| } |
| |
| /// Transform the following loop: |
| /// loop: |
| /// CntPhi = PHI [Cnt0, CntInst] |
| /// PhiX = PHI [InitX, DefX] |
| /// CntInst = CntPhi + 1 |
| /// DefX = PhiX >> 1 |
| /// LOOP_BODY |
| /// Br: loop if (DefX != 0) |
| /// Use(CntPhi) or Use(CntInst) |
| /// |
| /// Into: |
| /// If CntPhi used outside the loop: |
| /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) |
| /// Count = CountPrev + 1 |
| /// else |
| /// Count = BitWidth(InitX) - CTLZ(InitX) |
| /// loop: |
| /// CntPhi = PHI [Cnt0, CntInst] |
| /// PhiX = PHI [InitX, DefX] |
| /// PhiCount = PHI [Count, Dec] |
| /// CntInst = CntPhi + 1 |
| /// DefX = PhiX >> 1 |
| /// Dec = PhiCount - 1 |
| /// LOOP_BODY |
| /// Br: loop if (Dec != 0) |
| /// Use(CountPrev + Cnt0) // Use(CntPhi) |
| /// or |
| /// Use(Count + Cnt0) // Use(CntInst) |
| /// |
| /// If LOOP_BODY is empty the loop will be deleted. |
| /// If CntInst and DefX are not used in LOOP_BODY they will be removed. |
| void LoopIdiomRecognize::transformLoopToCountable( |
| BasicBlock *Preheader, Instruction *CntInst, PHINode *CntPhi, Value *InitX, |
| Instruction *DefX, const DebugLoc &DL, bool ZeroCheck, |
| bool IsCntPhiUsedOutsideLoop) { |
| BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator()); |
| |
| // Step 1: Insert the CTLZ instruction at the end of the preheader block |
| // Count = BitWidth - CTLZ(InitX); |
| // If there are uses of CntPhi create: |
| // CountPrev = BitWidth - CTLZ(InitX >> 1); |
| IRBuilder<> Builder(PreheaderBr); |
| Builder.SetCurrentDebugLocation(DL); |
| Value *CTLZ, *Count, *CountPrev, *NewCount, *InitXNext; |
| |
| if (IsCntPhiUsedOutsideLoop) { |
| if (DefX->getOpcode() == Instruction::AShr) |
| InitXNext = |
| Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1)); |
| else if (DefX->getOpcode() == Instruction::LShr) |
| InitXNext = |
| Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1)); |
| else |
| llvm_unreachable("Unexpected opcode!"); |
| } else |
| InitXNext = InitX; |
| CTLZ = createCTLZIntrinsic(Builder, InitXNext, DL, ZeroCheck); |
| Count = Builder.CreateSub( |
| ConstantInt::get(CTLZ->getType(), |
| CTLZ->getType()->getIntegerBitWidth()), |
| CTLZ); |
| if (IsCntPhiUsedOutsideLoop) { |
| CountPrev = Count; |
| Count = Builder.CreateAdd( |
| CountPrev, |
| ConstantInt::get(CountPrev->getType(), 1)); |
| } |
| if (IsCntPhiUsedOutsideLoop) |
| NewCount = Builder.CreateZExtOrTrunc(CountPrev, |
| cast<IntegerType>(CntInst->getType())); |
| else |
| NewCount = Builder.CreateZExtOrTrunc(Count, |
| cast<IntegerType>(CntInst->getType())); |
| |
| // If the CTLZ counter's initial value is not zero, insert Add Inst. |
| Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader); |
| ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); |
| if (!InitConst || !InitConst->isZero()) |
| NewCount = Builder.CreateAdd(NewCount, CntInitVal); |
| |
| // Step 2: Insert new IV and loop condition: |
| // loop: |
| // ... |
| // PhiCount = PHI [Count, Dec] |
| // ... |
| // Dec = PhiCount - 1 |
| // ... |
| // Br: loop if (Dec != 0) |
| BasicBlock *Body = *(CurLoop->block_begin()); |
| auto *LbBr = cast<BranchInst>(Body->getTerminator()); |
| ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); |
| Type *Ty = Count->getType(); |
| |
| PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); |
| |
| Builder.SetInsertPoint(LbCond); |
| Instruction *TcDec = cast<Instruction>( |
| Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), |
| "tcdec", false, true)); |
| |
| TcPhi->addIncoming(Count, Preheader); |
| TcPhi->addIncoming(TcDec, Body); |
| |
| CmpInst::Predicate Pred = |
| (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; |
| LbCond->setPredicate(Pred); |
| LbCond->setOperand(0, TcDec); |
| LbCond->setOperand(1, ConstantInt::get(Ty, 0)); |
| |
| // Step 3: All the references to the original counter outside |
| // the loop are replaced with the NewCount -- the value returned from |
| // __builtin_ctlz(x). |
| if (IsCntPhiUsedOutsideLoop) |
| CntPhi->replaceUsesOutsideBlock(NewCount, Body); |
| else |
| CntInst->replaceUsesOutsideBlock(NewCount, Body); |
| |
| // step 4: Forget the "non-computable" trip-count SCEV associated with the |
| // loop. The loop would otherwise not be deleted even if it becomes empty. |
| SE->forgetLoop(CurLoop); |
| } |
| |
| void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, |
| Instruction *CntInst, |
| PHINode *CntPhi, Value *Var) { |
| BasicBlock *PreHead = CurLoop->getLoopPreheader(); |
| auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator()); |
| const DebugLoc &DL = CntInst->getDebugLoc(); |
| |
| // Assuming before transformation, the loop is following: |
| // if (x) // the precondition |
| // do { cnt++; x &= x - 1; } while(x); |
| |
| // Step 1: Insert the ctpop instruction at the end of the precondition block |
| IRBuilder<> Builder(PreCondBr); |
| Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; |
| { |
| PopCnt = createPopcntIntrinsic(Builder, Var, DL); |
| NewCount = PopCntZext = |
| Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); |
| |
| if (NewCount != PopCnt) |
| (cast<Instruction>(NewCount))->setDebugLoc(DL); |
| |
| // TripCnt is exactly the number of iterations the loop has |
| TripCnt = NewCount; |
| |
| // If the population counter's initial value is not zero, insert Add Inst. |
| Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); |
| ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); |
| if (!InitConst || !InitConst->isZero()) { |
| NewCount = Builder.CreateAdd(NewCount, CntInitVal); |
| (cast<Instruction>(NewCount))->setDebugLoc(DL); |
| } |
| } |
| |
| // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to |
| // "if (NewCount == 0) loop-exit". Without this change, the intrinsic |
| // function would be partial dead code, and downstream passes will drag |
| // it back from the precondition block to the preheader. |
| { |
| ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); |
| |
| Value *Opnd0 = PopCntZext; |
| Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); |
| if (PreCond->getOperand(0) != Var) |
| std::swap(Opnd0, Opnd1); |
| |
| ICmpInst *NewPreCond = cast<ICmpInst>( |
| Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); |
| PreCondBr->setCondition(NewPreCond); |
| |
| RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); |
| } |
| |
| // Step 3: Note that the population count is exactly the trip count of the |
| // loop in question, which enable us to convert the loop from noncountable |
| // loop into a countable one. The benefit is twofold: |
| // |
| // - If the loop only counts population, the entire loop becomes dead after |
| // the transformation. It is a lot easier to prove a countable loop dead |
| // than to prove a noncountable one. (In some C dialects, an infinite loop |
| // isn't dead even if it computes nothing useful. In general, DCE needs |
| // to prove a noncountable loop finite before safely delete it.) |
| // |
| // - If the loop also performs something else, it remains alive. |
| // Since it is transformed to countable form, it can be aggressively |
| // optimized by some optimizations which are in general not applicable |
| // to a noncountable loop. |
| // |
| // After this step, this loop (conceptually) would look like following: |
| // newcnt = __builtin_ctpop(x); |
| // t = newcnt; |
| // if (x) |
| // do { cnt++; x &= x-1; t--) } while (t > 0); |
| BasicBlock *Body = *(CurLoop->block_begin()); |
| { |
| auto *LbBr = cast<BranchInst>(Body->getTerminator()); |
| ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); |
| Type *Ty = TripCnt->getType(); |
| |
| PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); |
| |
| Builder.SetInsertPoint(LbCond); |
| Instruction *TcDec = cast<Instruction>( |
| Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), |
| "tcdec", false, true)); |
| |
| TcPhi->addIncoming(TripCnt, PreHead); |
| TcPhi->addIncoming(TcDec, Body); |
| |
| CmpInst::Predicate Pred = |
| (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; |
| LbCond->setPredicate(Pred); |
| LbCond->setOperand(0, TcDec); |
| LbCond->setOperand(1, ConstantInt::get(Ty, 0)); |
| } |
| |
| // Step 4: All the references to the original population counter outside |
| // the loop are replaced with the NewCount -- the value returned from |
| // __builtin_ctpop(). |
| CntInst->replaceUsesOutsideBlock(NewCount, Body); |
| |
| // step 5: Forget the "non-computable" trip-count SCEV associated with the |
| // loop. The loop would otherwise not be deleted even if it becomes empty. |
| SE->forgetLoop(CurLoop); |
| } |