| ; RUN: opt < %s -mtriple=nvptx64-nvidia-cuda -separate-const-offset-from-gep \ |
| ; RUN: -reassociate-geps-verify-no-dead-code -S | FileCheck %s |
| |
| ; Several unit tests for -separate-const-offset-from-gep. The transformation |
| ; heavily relies on TargetTransformInfo, so we put these tests under |
| ; target-specific folders. |
| |
| %struct.S = type { float, double } |
| |
| @struct_array = global [1024 x %struct.S] zeroinitializer, align 16 |
| @float_2d_array = global [32 x [32 x float]] zeroinitializer, align 4 |
| |
| ; We should not extract any struct field indices, because fields in a struct |
| ; may have different types. |
| define double* @struct(i32 %i) { |
| entry: |
| %add = add nsw i32 %i, 5 |
| %idxprom = sext i32 %add to i64 |
| %p = getelementptr inbounds [1024 x %struct.S], [1024 x %struct.S]* @struct_array, i64 0, i64 %idxprom, i32 1 |
| ret double* %p |
| } |
| ; CHECK-LABEL: @struct( |
| ; CHECK: getelementptr [1024 x %struct.S], [1024 x %struct.S]* @struct_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i32 1 |
| |
| ; We should be able to trace into sext(a + b) if a + b is non-negative |
| ; (e.g., used as an index of an inbounds GEP) and one of a and b is |
| ; non-negative. |
| define float* @sext_add(i32 %i, i32 %j) { |
| entry: |
| %0 = add i32 %i, 1 |
| %1 = sext i32 %0 to i64 ; inbound sext(i + 1) = sext(i) + 1 |
| %2 = add i32 %j, -2 |
| ; However, inbound sext(j + -2) != sext(j) + -2, e.g., j = INT_MIN |
| %3 = sext i32 %2 to i64 |
| %p = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %1, i64 %3 |
| ret float* %p |
| } |
| ; CHECK-LABEL: @sext_add( |
| ; CHECK-NOT: = add |
| ; CHECK: add i32 %j, -2 |
| ; CHECK: sext |
| ; CHECK: getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}} |
| ; CHECK: getelementptr inbounds float, float* %{{[a-zA-Z0-9]+}}, i64 32 |
| |
| ; We should be able to trace into sext/zext if it can be distributed to both |
| ; operands, e.g., sext (add nsw a, b) == add nsw (sext a), (sext b) |
| ; |
| ; This test verifies we can transform |
| ; gep base, a + sext(b +nsw 1), c + zext(d +nuw 1) |
| ; to |
| ; gep base, a + sext(b), c + zext(d); gep ..., 1 * 32 + 1 |
| define float* @ext_add_no_overflow(i64 %a, i32 %b, i64 %c, i32 %d) { |
| %b1 = add nsw i32 %b, 1 |
| %b2 = sext i32 %b1 to i64 |
| %i = add i64 %a, %b2 ; i = a + sext(b +nsw 1) |
| %d1 = add nuw i32 %d, 1 |
| %d2 = zext i32 %d1 to i64 |
| %j = add i64 %c, %d2 ; j = c + zext(d +nuw 1) |
| %p = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %j |
| ret float* %p |
| } |
| ; CHECK-LABEL: @ext_add_no_overflow( |
| ; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}} |
| ; CHECK: getelementptr inbounds float, float* [[BASE_PTR]], i64 33 |
| |
| ; Verifies we handle nested sext/zext correctly. |
| define void @sext_zext(i32 %a, i32 %b, float** %out1, float** %out2) { |
| entry: |
| %0 = add nsw nuw i32 %a, 1 |
| %1 = sext i32 %0 to i48 |
| %2 = zext i48 %1 to i64 ; zext(sext(a +nsw nuw 1)) = zext(sext(a)) + 1 |
| %3 = add nsw i32 %b, 2 |
| %4 = sext i32 %3 to i48 |
| %5 = zext i48 %4 to i64 ; zext(sext(b +nsw 2)) != zext(sext(b)) + 2 |
| %p1 = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %2, i64 %5 |
| store float* %p1, float** %out1 |
| %6 = add nuw i32 %a, 3 |
| %7 = zext i32 %6 to i48 |
| %8 = sext i48 %7 to i64 ; sext(zext(a +nuw 3)) = zext(a +nuw 3) = zext(a) + 3 |
| %9 = add nsw i32 %b, 4 |
| %10 = zext i32 %9 to i48 |
| %11 = sext i48 %10 to i64 ; sext(zext(b +nsw 4)) != zext(b) + 4 |
| %p2 = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %8, i64 %11 |
| store float* %p2, float** %out2 |
| ret void |
| } |
| ; CHECK-LABEL: @sext_zext( |
| ; CHECK: [[BASE_PTR_1:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}} |
| ; CHECK: getelementptr float, float* [[BASE_PTR_1]], i64 32 |
| ; CHECK: [[BASE_PTR_2:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}} |
| ; CHECK: getelementptr float, float* [[BASE_PTR_2]], i64 96 |
| |
| ; Similar to @ext_add_no_overflow, we should be able to trace into s/zext if |
| ; its operand is an OR and the two operands of the OR have no common bits. |
| define float* @sext_or(i64 %a, i32 %b) { |
| entry: |
| %b1 = shl i32 %b, 2 |
| %b2 = or i32 %b1, 1 ; (b << 2) and 1 have no common bits |
| %b3 = or i32 %b1, 4 ; (b << 2) and 4 may have common bits |
| %b2.ext = zext i32 %b2 to i64 |
| %b3.ext = sext i32 %b3 to i64 |
| %i = add i64 %a, %b2.ext |
| %j = add i64 %a, %b3.ext |
| %p = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %j |
| ret float* %p |
| } |
| ; CHECK-LABEL: @sext_or( |
| ; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}} |
| ; CHECK: getelementptr inbounds float, float* [[BASE_PTR]], i64 32 |
| |
| ; The subexpression (b + 5) is used in both "i = a + (b + 5)" and "*out = b + |
| ; 5". When extracting the constant offset 5, make sure "*out = b + 5" isn't |
| ; affected. |
| define float* @expr(i64 %a, i64 %b, i64* %out) { |
| entry: |
| %b5 = add i64 %b, 5 |
| %i = add i64 %b5, %a |
| %p = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 0 |
| store i64 %b5, i64* %out |
| ret float* %p |
| } |
| ; CHECK-LABEL: @expr( |
| ; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 0 |
| ; CHECK: getelementptr inbounds float, float* [[BASE_PTR]], i64 160 |
| ; CHECK: store i64 %b5, i64* %out |
| |
| ; d + sext(a +nsw (b +nsw (c +nsw 8))) => (d + sext(a) + sext(b) + sext(c)) + 8 |
| define float* @sext_expr(i32 %a, i32 %b, i32 %c, i64 %d) { |
| entry: |
| %0 = add nsw i32 %c, 8 |
| %1 = add nsw i32 %b, %0 |
| %2 = add nsw i32 %a, %1 |
| %3 = sext i32 %2 to i64 |
| %i = add i64 %d, %3 |
| %p = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %i |
| ret float* %p |
| } |
| ; CHECK-LABEL: @sext_expr( |
| ; CHECK: sext i32 |
| ; CHECK: sext i32 |
| ; CHECK: sext i32 |
| ; CHECK: getelementptr inbounds float, float* %{{[a-zA-Z0-9]+}}, i64 8 |
| |
| ; Verifies we handle "sub" correctly. |
| define float* @sub(i64 %i, i64 %j) { |
| %i2 = sub i64 %i, 5 ; i - 5 |
| %j2 = sub i64 5, %j ; 5 - i |
| %p = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i2, i64 %j2 |
| ret float* %p |
| } |
| ; CHECK-LABEL: @sub( |
| ; CHECK: %[[j2:[a-zA-Z0-9]+]] = sub i64 0, %j |
| ; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %[[j2]] |
| ; CHECK: getelementptr inbounds float, float* [[BASE_PTR]], i64 -155 |
| |
| %struct.Packed = type <{ [3 x i32], [8 x i64] }> ; <> means packed |
| |
| ; Verifies we can emit correct uglygep if the address is not natually aligned. |
| define i64* @packed_struct(i32 %i, i32 %j) { |
| entry: |
| %s = alloca [1024 x %struct.Packed], align 16 |
| %add = add nsw i32 %j, 3 |
| %idxprom = sext i32 %add to i64 |
| %add1 = add nsw i32 %i, 1 |
| %idxprom2 = sext i32 %add1 to i64 |
| %arrayidx3 = getelementptr inbounds [1024 x %struct.Packed], [1024 x %struct.Packed]* %s, i64 0, i64 %idxprom2, i32 1, i64 %idxprom |
| ret i64* %arrayidx3 |
| } |
| ; CHECK-LABEL: @packed_struct( |
| ; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [1024 x %struct.Packed], [1024 x %struct.Packed]* %s, i64 0, i64 %{{[a-zA-Z0-9]+}}, i32 1, i64 %{{[a-zA-Z0-9]+}} |
| ; CHECK: [[CASTED_PTR:%[a-zA-Z0-9]+]] = bitcast i64* [[BASE_PTR]] to i8* |
| ; CHECK: %uglygep = getelementptr inbounds i8, i8* [[CASTED_PTR]], i64 100 |
| ; CHECK: bitcast i8* %uglygep to i64* |
| |
| ; We shouldn't be able to extract the 8 from "zext(a +nuw (b + 8))", |
| ; because "zext(b + 8) != zext(b) + 8" |
| define float* @zext_expr(i32 %a, i32 %b) { |
| entry: |
| %0 = add i32 %b, 8 |
| %1 = add nuw i32 %a, %0 |
| %i = zext i32 %1 to i64 |
| %p = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %i |
| ret float* %p |
| } |
| ; CHECK-LABEL: zext_expr( |
| ; CHECK: getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %i |
| |
| ; Per http://llvm.org/docs/LangRef.html#id181, the indices of a off-bound gep |
| ; should be considered sign-extended to the pointer size. Therefore, |
| ; gep base, (add i32 a, b) != gep (gep base, i32 a), i32 b |
| ; because |
| ; sext(a + b) != sext(a) + sext(b) |
| ; |
| ; This test verifies we do not illegitimately extract the 8 from |
| ; gep base, (i32 a + 8) |
| define float* @i32_add(i32 %a) { |
| entry: |
| %i = add i32 %a, 8 |
| %p = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i32 %i |
| ret float* %p |
| } |
| ; CHECK-LABEL: @i32_add( |
| ; CHECK: getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %{{[a-zA-Z0-9]+}} |
| ; CHECK-NOT: getelementptr |
| |
| ; Verifies that we compute the correct constant offset when the index is |
| ; sign-extended and then zero-extended. The old version of our code failed to |
| ; handle this case because it simply computed the constant offset as the |
| ; sign-extended value of the constant part of the GEP index. |
| define float* @apint(i1 %a) { |
| entry: |
| %0 = add nsw nuw i1 %a, 1 |
| %1 = sext i1 %0 to i4 |
| %2 = zext i4 %1 to i64 ; zext (sext i1 1 to i4) to i64 = 15 |
| %p = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %2 |
| ret float* %p |
| } |
| ; CHECK-LABEL: @apint( |
| ; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %{{[a-zA-Z0-9]+}} |
| ; CHECK: getelementptr float, float* [[BASE_PTR]], i64 15 |
| |
| ; Do not trace into binary operators other than ADD, SUB, and OR. |
| define float* @and(i64 %a) { |
| entry: |
| %0 = shl i64 %a, 2 |
| %1 = and i64 %0, 1 |
| %p = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %1 |
| ret float* %p |
| } |
| ; CHECK-LABEL: @and( |
| ; CHECK: getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array |
| ; CHECK-NOT: getelementptr |
| |
| ; The code that rebuilds an OR expression used to be buggy, and failed on this |
| ; test. |
| define float* @shl_add_or(i64 %a, float* %ptr) { |
| ; CHECK-LABEL: @shl_add_or( |
| entry: |
| %shl = shl i64 %a, 2 |
| %add = add i64 %shl, 12 |
| %or = or i64 %add, 1 |
| ; CHECK: [[OR:%or[0-9]*]] = add i64 %shl, 1 |
| ; ((a << 2) + 12) and 1 have no common bits. Therefore, |
| ; SeparateConstOffsetFromGEP is able to extract the 12. |
| ; TODO(jingyue): We could reassociate the expression to combine 12 and 1. |
| %p = getelementptr float, float* %ptr, i64 %or |
| ; CHECK: [[PTR:%[a-zA-Z0-9]+]] = getelementptr float, float* %ptr, i64 [[OR]] |
| ; CHECK: getelementptr float, float* [[PTR]], i64 12 |
| ret float* %p |
| ; CHECK-NEXT: ret |
| } |
| |
| ; The source code used to be buggy in checking |
| ; (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) |
| ; where AccumulativeByteOffset is signed but ElementTypeSizeOfGEP is unsigned. |
| ; The compiler would promote AccumulativeByteOffset to unsigned, causing |
| ; unexpected results. For example, while -64 % (int64_t)24 != 0, |
| ; -64 % (uint64_t)24 == 0. |
| %struct3 = type { i64, i32 } |
| %struct2 = type { %struct3, i32 } |
| %struct1 = type { i64, %struct2 } |
| %struct0 = type { i32, i32, i64*, [100 x %struct1] } |
| define %struct2* @sign_mod_unsign(%struct0* %ptr, i64 %idx) { |
| ; CHECK-LABEL: @sign_mod_unsign( |
| entry: |
| %arrayidx = add nsw i64 %idx, -2 |
| ; CHECK-NOT: add |
| %ptr2 = getelementptr inbounds %struct0, %struct0* %ptr, i64 0, i32 3, i64 %arrayidx, i32 1 |
| ; CHECK: [[PTR:%[a-zA-Z0-9]+]] = getelementptr %struct0, %struct0* %ptr, i64 0, i32 3, i64 %idx, i32 1 |
| ; CHECK: getelementptr inbounds %struct2, %struct2* [[PTR]], i64 -3 |
| ret %struct2* %ptr2 |
| ; CHECK-NEXT: ret |
| } |
| |
| ; Check that we can see through explicit trunc() instruction. |
| define %struct2* @trunk_explicit(%struct0* %ptr, i64 %idx) { |
| ; CHECK-LABEL: @trunk_explicit( |
| entry: |
| %idx0 = trunc i64 1 to i32 |
| %ptr2 = getelementptr inbounds %struct0, %struct0* %ptr, i32 %idx0, i32 3, i64 %idx, i32 1 |
| ; CHECK-NOT: trunc |
| ; CHECK: [[PTR:%[a-zA-Z0-9]+]] = getelementptr %struct0, %struct0* %ptr, i64 0, i32 3, i64 %idx, i32 1 |
| ; CHECK: getelementptr inbounds %struct2, %struct2* %0, i64 151 |
| ret %struct2* %ptr2 |
| ; CHECK-NEXT: ret |
| } |
| |
| ; Check that we can deal with trunc inserted by |
| ; canonicalizeArrayIndicesToPointerSize() if size of an index is larger than |
| ; that of the pointer. |
| define %struct2* @trunk_long_idx(%struct0* %ptr, i64 %idx) { |
| ; CHECK-LABEL: @trunk_long_idx( |
| entry: |
| %ptr2 = getelementptr inbounds %struct0, %struct0* %ptr, i65 1, i32 3, i64 %idx, i32 1 |
| ; CHECK-NOT: trunc |
| ; CHECK: [[PTR:%[a-zA-Z0-9]+]] = getelementptr %struct0, %struct0* %ptr, i64 0, i32 3, i64 %idx, i32 1 |
| ; CHECK: getelementptr inbounds %struct2, %struct2* %0, i64 151 |
| ret %struct2* %ptr2 |
| ; CHECK-NEXT: ret |
| } |