| /* |
| * Copyright 2010-2011 INRIA Saclay |
| * Copyright 2012-2014 Ecole Normale Superieure |
| * Copyright 2015 Sven Verdoolaege |
| * |
| * Use of this software is governed by the MIT license |
| * |
| * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, |
| * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, |
| * 91893 Orsay, France |
| * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France |
| */ |
| |
| #include <isl/constraint.h> |
| #include <isl/ilp.h> |
| |
| #include "gpu_array_tile.h" |
| #include "gpu_group.h" |
| #include "gpu_tree.h" |
| #include "schedule.h" |
| |
| /* Print the name of the local copy of a given group of array references. |
| */ |
| __isl_give isl_printer *gpu_array_ref_group_print_name( |
| struct gpu_array_ref_group *group, __isl_take isl_printer *p) |
| { |
| int global = 0; |
| enum ppcg_group_access_type type; |
| |
| type = gpu_array_ref_group_type(group); |
| if (type == ppcg_access_private) |
| p = isl_printer_print_str(p, "private_"); |
| else if (type == ppcg_access_shared) |
| p = isl_printer_print_str(p, "shared_"); |
| else |
| global = 1; |
| p = isl_printer_print_str(p, group->array->name); |
| if (!global && group->local_array->n_group > 1) { |
| p = isl_printer_print_str(p, "_"); |
| p = isl_printer_print_int(p, group->nr); |
| } |
| |
| return p; |
| } |
| |
| /* Return the union of all read (read = 1) and/or write (write = 1) |
| * access relations in the group. |
| */ |
| __isl_give isl_union_map *gpu_array_ref_group_access_relation( |
| struct gpu_array_ref_group *group, int read, int write) |
| { |
| int i; |
| isl_union_map *access; |
| |
| access = isl_union_map_empty(isl_map_get_space(group->access)); |
| for (i = 0; i < group->n_ref; ++i) { |
| isl_map *map_i; |
| |
| if (!((read && group->refs[i]->read) || |
| (write && group->refs[i]->write))) |
| continue; |
| map_i = isl_map_copy(group->refs[i]->access); |
| access = isl_union_map_union(access, |
| isl_union_map_from_map(map_i)); |
| } |
| |
| return access; |
| } |
| |
| /* Should this array reference group be mapped to private, shared or global |
| * memory? |
| * If we have computed both a private and a shared tile, then |
| * the tile with the smallest depth is used. If both have the same depth, |
| * then the private tile is used. |
| */ |
| enum ppcg_group_access_type gpu_array_ref_group_type( |
| struct gpu_array_ref_group *group) |
| { |
| if (group->private_tile && group->shared_tile && |
| group->shared_tile->depth < group->private_tile->depth) |
| return ppcg_access_shared; |
| if (group->private_tile) |
| return ppcg_access_private; |
| if (group->shared_tile) |
| return ppcg_access_shared; |
| return ppcg_access_global; |
| } |
| |
| |
| /* Return the effective gpu_array_tile associated to "group" or |
| * NULL if there is no such gpu_array_tile. |
| */ |
| struct gpu_array_tile *gpu_array_ref_group_tile( |
| struct gpu_array_ref_group *group) |
| { |
| switch (gpu_array_ref_group_type(group)) { |
| case ppcg_access_global: |
| return NULL; |
| case ppcg_access_shared: |
| return group->shared_tile; |
| case ppcg_access_private: |
| return group->private_tile; |
| } |
| } |
| |
| /* Does the tile associated to "group" require unrolling of the schedule |
| * dimensions mapped to threads? |
| * Note that this can only happen for private tiles. |
| */ |
| int gpu_array_ref_group_requires_unroll(struct gpu_array_ref_group *group) |
| { |
| struct gpu_array_tile *tile; |
| |
| tile = gpu_array_ref_group_tile(group); |
| if (!tile) |
| return 0; |
| return tile->requires_unroll; |
| } |
| |
| /* Given a constraint |
| * |
| * a(p,i) + j = g f(e) |
| * |
| * or -a(p,i) - j = g f(e) if sign < 0, |
| * store a(p,i) in bound->shift and g (stride) in bound->stride. |
| * a(p,i) is assumed to be an expression in only the parameters |
| * and the input dimensions. |
| */ |
| static void extract_stride(__isl_keep isl_constraint *c, |
| struct gpu_array_bound *bound, __isl_keep isl_val *stride, int sign) |
| { |
| int i; |
| isl_val *v; |
| isl_space *space; |
| unsigned nparam; |
| unsigned nvar; |
| isl_aff *aff; |
| |
| isl_val_free(bound->stride); |
| bound->stride = isl_val_copy(stride); |
| |
| space = isl_constraint_get_space(c); |
| space = isl_space_domain(space); |
| |
| nparam = isl_space_dim(space, isl_dim_param); |
| nvar = isl_space_dim(space, isl_dim_set); |
| |
| v = isl_constraint_get_constant_val(c); |
| if (sign < 0) |
| v = isl_val_neg(v); |
| aff = isl_aff_zero_on_domain(isl_local_space_from_space(space)); |
| aff = isl_aff_set_constant_val(aff, v); |
| |
| for (i = 0; i < nparam; ++i) { |
| if (!isl_constraint_involves_dims(c, isl_dim_param, i, 1)) |
| continue; |
| v = isl_constraint_get_coefficient_val(c, isl_dim_param, i); |
| if (sign < 0) |
| v = isl_val_neg(v); |
| aff = isl_aff_add_coefficient_val(aff, isl_dim_param, i, v); |
| } |
| |
| for (i = 0; i < nvar; ++i) { |
| if (!isl_constraint_involves_dims(c, isl_dim_in, i, 1)) |
| continue; |
| v = isl_constraint_get_coefficient_val(c, isl_dim_in, i); |
| if (sign < 0) |
| v = isl_val_neg(v); |
| aff = isl_aff_add_coefficient_val(aff, isl_dim_in, i, v); |
| } |
| |
| bound->shift = aff; |
| } |
| |
| /* Given an equality constraint of a map with a single output dimension j, |
| * check if the constraint is of the form |
| * |
| * a(p,i) + j = g f(e) |
| * |
| * with a(p,i) an expression in the parameters and input dimensions |
| * and f(e) an expression in the existentially quantified variables. |
| * If so, and if g is larger than any such g from a previously considered |
| * constraint, then call extract_stride to record the stride information |
| * in bound. |
| */ |
| static isl_stat check_stride_constraint(__isl_take isl_constraint *c, |
| void *user) |
| { |
| int i; |
| isl_ctx *ctx; |
| isl_val *v; |
| unsigned n_div; |
| struct gpu_array_bound *bound = user; |
| |
| ctx = isl_constraint_get_ctx(c); |
| n_div = isl_constraint_dim(c, isl_dim_div); |
| v = isl_constraint_get_coefficient_val(c, isl_dim_out, 0); |
| |
| if (n_div && (isl_val_is_one(v) || isl_val_is_negone(v))) { |
| int s = isl_val_sgn(v); |
| isl_val *stride = isl_val_zero(ctx); |
| |
| isl_val_free(v); |
| for (i = 0; i < n_div; ++i) { |
| v = isl_constraint_get_coefficient_val(c, |
| isl_dim_div, i); |
| stride = isl_val_gcd(stride, v); |
| } |
| if (!isl_val_is_zero(stride) && |
| isl_val_gt(stride, bound->stride)) |
| extract_stride(c, bound, stride, s); |
| |
| isl_val_free(stride); |
| } else |
| isl_val_free(v); |
| |
| isl_constraint_free(c); |
| return isl_stat_ok; |
| } |
| |
| /* Given contraints on an array index i, check if we can find |
| * a shift a(p) and a stride g such that |
| * |
| * a(p) + i = 0 mod g |
| * |
| * If so, record the information in bound and apply the mapping |
| * i -> (i + a(p))/g to the array index in bounds and return |
| * the new constraints. |
| * If not, simply return the original constraints. |
| * |
| * If bounds is a subset of the space |
| * |
| * D -> i |
| * |
| * then the bound recorded in bound->shift is of the form |
| * |
| * D -> s(D) |
| * |
| * with s(D) equal to a(p) above. |
| * Next, we construct a mapping of the form |
| * |
| * [D -> i] -> [D -> (i + S(D))/g] |
| * |
| * This mapping is computed as follows. |
| * We first introduce "i" in the domain through precomposition |
| * with [D -> i] -> D obtaining |
| * |
| * [D -> i] -> s(D) |
| * |
| * Adding [D -> i] -> i produces |
| * |
| * [D -> i] -> i + s(D) |
| * |
| * and the domain product with [D -> i] -> D yields |
| * |
| * [D -> i] -> [D -> i + s(D)] |
| * |
| * Composition with [D -> i] -> [D -> i/g] gives the desired result. |
| */ |
| static __isl_give isl_basic_map *check_stride(struct gpu_array_bound *bound, |
| __isl_take isl_basic_map *bounds) |
| { |
| isl_space *space; |
| isl_basic_map *hull; |
| isl_basic_map *shift, *id, *bmap, *scale; |
| isl_basic_set *bset; |
| isl_aff *aff; |
| |
| bound->stride = NULL; |
| |
| hull = isl_basic_map_affine_hull(isl_basic_map_copy(bounds)); |
| |
| isl_basic_map_foreach_constraint(hull, &check_stride_constraint, bound); |
| |
| isl_basic_map_free(hull); |
| |
| if (!bound->stride) |
| return bounds; |
| |
| shift = isl_basic_map_from_aff(isl_aff_copy(bound->shift)); |
| space = isl_basic_map_get_space(bounds); |
| bmap = isl_basic_map_domain_map(isl_basic_map_universe(space)); |
| shift = isl_basic_map_apply_range(bmap, shift); |
| space = isl_basic_map_get_space(bounds); |
| id = isl_basic_map_range_map(isl_basic_map_universe(space)); |
| shift = isl_basic_map_sum(id, shift); |
| space = isl_basic_map_get_space(bounds); |
| id = isl_basic_map_domain_map(isl_basic_map_universe(space)); |
| shift = isl_basic_map_range_product(id, shift); |
| |
| space = isl_space_domain(isl_basic_map_get_space(bounds)); |
| id = isl_basic_map_identity(isl_space_map_from_set(space)); |
| space = isl_space_range(isl_basic_map_get_space(bounds)); |
| aff = isl_aff_zero_on_domain(isl_local_space_from_space(space)); |
| aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1); |
| aff = isl_aff_scale_down_val(aff, isl_val_copy(bound->stride)); |
| scale = isl_basic_map_from_aff(aff); |
| scale = isl_basic_map_product(id, scale); |
| |
| bmap = isl_basic_map_apply_range(shift, scale); |
| bset = isl_basic_set_apply(isl_basic_map_wrap(bounds), bmap); |
| bounds = isl_basic_set_unwrap(bset); |
| |
| return bounds; |
| } |
| |
| /* Data used in compute_array_dim_size and compute_size_in_direction. |
| * |
| * pos is the position of the variable representing the array index, |
| * i.e., the variable for which want to compute the size. This variable |
| * is also the last variable in the set. |
| */ |
| struct gpu_size_info { |
| isl_basic_set *bset; |
| struct gpu_array_bound *bound; |
| int pos; |
| }; |
| |
| /* Given a constraint from the basic set describing the bounds on |
| * an array index, check if it is a lower bound, say m i >= b(x), and, |
| * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant |
| * upper bound. If so, and if this bound is smaller than any bound |
| * derived from earlier constraints, set the size to this bound on |
| * the expression and the lower bound to ceil(b(x)/m). |
| */ |
| static isl_stat compute_size_in_direction(__isl_take isl_constraint *c, |
| void *user) |
| { |
| struct gpu_size_info *size = user; |
| unsigned nparam; |
| unsigned n_div; |
| isl_val *v; |
| isl_aff *aff; |
| isl_aff *lb; |
| |
| nparam = isl_basic_set_dim(size->bset, isl_dim_param); |
| n_div = isl_constraint_dim(c, isl_dim_div); |
| |
| if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div) || |
| !isl_constraint_is_lower_bound(c, isl_dim_set, size->pos)) { |
| isl_constraint_free(c); |
| return isl_stat_ok; |
| } |
| |
| aff = isl_constraint_get_bound(c, isl_dim_set, size->pos); |
| aff = isl_aff_ceil(aff); |
| |
| lb = isl_aff_copy(aff); |
| |
| aff = isl_aff_neg(aff); |
| aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1); |
| |
| v = isl_basic_set_max_val(size->bset, aff); |
| isl_aff_free(aff); |
| |
| if (isl_val_is_int(v)) { |
| v = isl_val_add_ui(v, 1); |
| if (!size->bound->size || isl_val_lt(v, size->bound->size)) { |
| isl_val_free(size->bound->size); |
| size->bound->size = isl_val_copy(v); |
| lb = isl_aff_drop_dims(lb, isl_dim_in, size->pos, 1); |
| isl_aff_free(size->bound->lb); |
| size->bound->lb = isl_aff_copy(lb); |
| } |
| } |
| isl_val_free(v); |
| isl_aff_free(lb); |
| |
| isl_constraint_free(c); |
| |
| return isl_stat_ok; |
| } |
| |
| /* Given a basic map "bounds" that maps parameters and input dimensions |
| * to a single output dimension, look for an expression in the parameters |
| * and input dimensions such that the range of the output dimension shifted |
| * by this expression is a constant. |
| * |
| * In particular, we currently only consider lower bounds on the output |
| * dimension as candidate expressions. |
| */ |
| static int compute_array_dim_size(struct gpu_array_bound *bound, |
| __isl_take isl_basic_map *bounds) |
| { |
| struct gpu_size_info size; |
| |
| bounds = isl_basic_map_detect_equalities(bounds); |
| bounds = check_stride(bound, bounds); |
| |
| bound->size = NULL; |
| bound->lb = NULL; |
| |
| size.bound = bound; |
| size.pos = isl_basic_map_dim(bounds, isl_dim_in); |
| size.bset = isl_basic_map_wrap(bounds); |
| size.bset = isl_basic_set_flatten(size.bset); |
| size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset)); |
| isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction, |
| &size); |
| isl_basic_set_free(size.bset); |
| |
| return bound->size ? 0 : -1; |
| } |
| |
| /* Check if we can find a memory tile for the given array |
| * based on the given accesses, and if so, put the results in "tile". |
| * |
| * We project the accesses on each index in turn and look for a parametric |
| * offset such that the size is constant. |
| * |
| * tile->depth is initialized to the input dimension of the computed bounds. |
| */ |
| static int can_tile(__isl_keep isl_map *access, struct gpu_array_tile *tile) |
| { |
| int i; |
| |
| tile->depth = isl_map_dim(access, isl_dim_in); |
| |
| for (i = 0; i < tile->n; ++i) { |
| isl_map *access_i; |
| isl_basic_map *hull; |
| |
| access_i = isl_map_copy(access); |
| access_i = isl_map_project_out(access_i, isl_dim_out, 0, i); |
| access_i = isl_map_project_out(access_i, isl_dim_out, |
| 1, tile->n - (i + 1)); |
| access_i = isl_map_compute_divs(access_i); |
| hull = isl_map_simple_hull(access_i); |
| if (compute_array_dim_size(&tile->bound[i], hull) < 0) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* Internal data structure for gpu_group_references. |
| * |
| * scop represents the input scop. |
| * kernel_depth is the schedule depth where the kernel launch will |
| * be introduced, i.e., it is the depth of the band that is mapped |
| * to blocks. |
| * shared_depth is the schedule depth at which the copying to/from |
| * shared memory is computed. The copy operation may then |
| * later be hoisted to a higher level. |
| * thread_depth is the schedule depth where the thread mark is located, |
| * i.e., it is the depth of the band that is mapped to threads and also |
| * the schedule depth at which the copying to/from private memory |
| * is computed. The copy operation may then later be hoisted to |
| * a higher level. |
| * n_thread is the number of schedule dimensions in the band that |
| * is mapped to threads. |
| * privatization lives in the range of thread_sched (i.e., it is |
| * of dimension thread_depth + n_thread) and encodes the mapping |
| * to thread identifiers (as parameters). |
| * host_sched contains the kernel_depth dimensions of the host schedule. |
| * shared_sched contains the first shared_depth dimensions of the |
| * kernel schedule. |
| * copy_sched contains the first thread_depth dimensions of the |
| * kernel schedule. |
| * thread_sched contains the first (thread_depth + n_thread) dimensions |
| * of the kernel schedule. |
| * full_sched is a union_map representation of the entire kernel schedule. |
| * The schedules are all formulated in terms of the original statement |
| * instances, i.e., those that appear in the domains of the access |
| * relations. |
| */ |
| struct gpu_group_data { |
| struct ppcg_scop *scop; |
| int kernel_depth; |
| int shared_depth; |
| int thread_depth; |
| int n_thread; |
| isl_set *privatization; |
| isl_union_map *host_sched; |
| isl_union_map *shared_sched; |
| isl_union_map *copy_sched; |
| isl_union_map *thread_sched; |
| isl_union_map *full_sched; |
| }; |
| |
| /* Construct a map from domain_space to domain_space that increments |
| * the dimension at position "pos" and leaves all other dimensions |
| * constant. |
| */ |
| static __isl_give isl_map *next(__isl_take isl_space *domain_space, int pos) |
| { |
| isl_space *space; |
| isl_aff *aff; |
| isl_multi_aff *next; |
| |
| space = isl_space_map_from_set(domain_space); |
| next = isl_multi_aff_identity(space); |
| aff = isl_multi_aff_get_aff(next, pos); |
| aff = isl_aff_add_constant_si(aff, 1); |
| next = isl_multi_aff_set_aff(next, pos, aff); |
| |
| return isl_map_from_multi_aff(next); |
| } |
| |
| /* Check if the given access is coalesced (or if there is no point |
| * in trying to coalesce the access by mapping the array to shared memory). |
| * That is, check whether incrementing the dimension that will get |
| * wrapped over the last thread index results in incrementing |
| * the last array index. |
| * |
| * If no two consecutive array elements are ever accessed by "access", |
| * then mapping the corresponding array to shared memory will not |
| * improve coalescing. In fact, the copying will likely be performed |
| * by a single thread. Consider the access as coalesced such that |
| * the caller will not try and map the array to shared memory just |
| * to improve coalescing. |
| * |
| * This function is only called for access relations without reuse and |
| * kernels with at least one thread identifier. |
| */ |
| static int access_is_coalesced(struct gpu_group_data *data, |
| __isl_keep isl_union_map *access) |
| { |
| int dim; |
| isl_space *space; |
| isl_set *accessed; |
| isl_map *access_map; |
| isl_map *next_thread_x; |
| isl_map *next_element; |
| isl_map *map; |
| int coalesced, empty; |
| |
| access = isl_union_map_copy(access); |
| access = isl_union_map_apply_domain(access, |
| isl_union_map_copy(data->full_sched)); |
| access_map = isl_map_from_union_map(access); |
| |
| space = isl_map_get_space(access_map); |
| space = isl_space_range(space); |
| dim = isl_space_dim(space, isl_dim_set); |
| if (dim == 0) |
| next_element = isl_map_empty(isl_space_map_from_set(space)); |
| else |
| next_element = next(space, dim - 1); |
| |
| accessed = isl_map_range(isl_map_copy(access_map)); |
| map = isl_map_copy(next_element); |
| map = isl_map_intersect_domain(map, isl_set_copy(accessed)); |
| map = isl_map_intersect_range(map, accessed); |
| empty = isl_map_is_empty(map); |
| isl_map_free(map); |
| |
| if (empty < 0 || empty) { |
| isl_map_free(next_element); |
| isl_map_free(access_map); |
| return empty; |
| } |
| |
| space = isl_map_get_space(access_map); |
| space = isl_space_domain(space); |
| next_thread_x = next(space, data->thread_depth + data->n_thread - 1); |
| |
| map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map)); |
| map = isl_map_apply_range(map, access_map); |
| |
| coalesced = isl_map_is_subset(map, next_element); |
| |
| isl_map_free(next_element); |
| isl_map_free(map); |
| |
| return coalesced; |
| } |
| |
| /* Replace the host schedule dimensions in the access relation "access" |
| * by parameters, so that they are treated as fixed when checking for reuse |
| * (within a kernel) or whether two consecutive elements are accessed |
| * (within a kernel). |
| */ |
| static __isl_give isl_union_map *localize_access(struct gpu_group_data *data, |
| __isl_take isl_union_map *access) |
| { |
| int n; |
| isl_space *space; |
| isl_set *param; |
| isl_union_map *umap; |
| isl_id_list *ids; |
| |
| umap = isl_union_map_copy(data->host_sched); |
| space = isl_union_map_get_space(umap); |
| n = data->kernel_depth; |
| ids = ppcg_scop_generate_names(data->scop, n, "__ppcg_host_"); |
| param = parametrization(space, n, 0, ids); |
| isl_id_list_free(ids); |
| umap = isl_union_map_intersect_range(umap, |
| isl_union_set_from_set(param)); |
| access = isl_union_map_intersect_domain(access, |
| isl_union_map_domain(umap)); |
| |
| return access; |
| } |
| |
| /* Given an access relation in terms of at least data->thread_depth initial |
| * dimensions of the computed schedule, check if it is bijective for |
| * fixed values of the first data->thread_depth dimensions. |
| * We perform this check by equating these dimensions to parameters. |
| */ |
| static int access_is_bijective(struct gpu_group_data *data, |
| __isl_keep isl_map *access) |
| { |
| int res; |
| int dim; |
| isl_set *par; |
| isl_space *space; |
| isl_id_list *ids; |
| |
| access = isl_map_copy(access); |
| space = isl_space_params(isl_map_get_space(access)); |
| ids = ppcg_scop_generate_names(data->scop, data->thread_depth, "s"); |
| dim = isl_map_dim(access, isl_dim_in); |
| par = parametrization(space, dim, 0, ids); |
| isl_id_list_free(ids); |
| access = isl_map_intersect_domain(access, par); |
| res = isl_map_is_bijective(access); |
| isl_map_free(access); |
| |
| return res; |
| } |
| |
| /* Compute the number of outer schedule tile dimensions that affect |
| * the offset of "tile". |
| * If there is no such dimension, then return the index |
| * of the first kernel dimension, i.e., data->kernel_depth. |
| */ |
| static int compute_tile_depth(struct gpu_group_data *data, |
| struct gpu_array_tile *tile) |
| { |
| int i, j; |
| |
| for (j = tile->depth - 1; j >= data->kernel_depth; --j) { |
| for (i = 0; i < tile->n; ++i) { |
| isl_aff *lb; |
| isl_aff *shift; |
| |
| lb = tile->bound[i].lb; |
| if (isl_aff_involves_dims(lb, isl_dim_in, j, 1)) |
| break; |
| |
| shift = tile->bound[i].shift; |
| if (!shift) |
| continue; |
| if (isl_aff_involves_dims(shift, isl_dim_in, j, 1)) |
| break; |
| } |
| if (i < tile->n) |
| break; |
| } |
| |
| return ++j; |
| } |
| |
| /* Return the lowest depth between data->kernel_depth and data->thread_depth |
| * at which every array element accessed through "acc" is accessed |
| * by a single thread. The input dimension of "acc" is |
| * data->thread_depth + data->n_thread, where the final data->n_thread |
| * dimensions are those that will be mapped to threads. |
| * If the values for these dimensions are uniquely determined |
| * by the array index and a given number of outer dimensions, then |
| * there is only one thread accessing that array element within those |
| * outer dimensions. |
| * |
| * The input space of "acc" is first split up, such that it has the form |
| * |
| * [O -> T] -> A |
| * |
| * with O the outer dimensions, T the dimensions that will be mapped to threads |
| * and A the array index. |
| * |
| * Then the positions of T and A are interchanged to simplify the test |
| * whether T uniquely depends on O and A. |
| * In particular, the above access relation is first combined with |
| * |
| * [O -> T] -> T |
| * |
| * to form |
| * |
| * [O -> T] -> [A -> T] |
| * |
| * from which |
| * |
| * O -> [A -> T] |
| * |
| * is extracted, which is then uncurried to |
| * |
| * [O -> A] -> T |
| * |
| * Finally, the final dimensions of O are projected out one by one |
| * until T is no longer uniquely determined by A and the remaining |
| * dimensions in O. The value returned is that of the last dimension |
| * that was successfully projected out. |
| * Note that there is no need to test whether [O -> A] -> T itself |
| * is single-valued as that was already tested in access_is_bijective. |
| */ |
| static int compute_accessed_by_single_thread_depth(struct gpu_group_data *data, |
| __isl_keep isl_map *acc) |
| { |
| int i; |
| isl_space *space; |
| isl_map *map; |
| isl_bool sv; |
| |
| if (data->thread_depth == data->kernel_depth) |
| return data->thread_depth; |
| |
| acc = isl_map_copy(acc); |
| |
| space = isl_map_get_space(acc); |
| space = isl_space_params(space); |
| space = isl_space_set_from_params(space); |
| space = isl_space_add_dims(space, isl_dim_set, data->thread_depth); |
| space = isl_space_from_domain(space); |
| space = isl_space_add_dims(space, isl_dim_out, data->n_thread); |
| space = isl_space_wrap(space); |
| map = isl_set_flatten_map(isl_set_universe(space)); |
| acc = isl_map_apply_range(map, acc); |
| |
| space = isl_space_domain(isl_map_get_space(acc)); |
| map = isl_map_range_map(isl_map_universe(isl_space_unwrap(space))); |
| acc = isl_map_range_product(acc, map); |
| acc = isl_map_domain_factor_domain(acc); |
| acc = isl_map_uncurry(acc); |
| |
| for (i = data->thread_depth - 1; i >= data->kernel_depth; --i) { |
| acc = isl_map_project_out(acc, isl_dim_in, i, 1); |
| sv = isl_map_is_single_valued(acc); |
| if (sv < 0) |
| return -1; |
| if (!sv) |
| break; |
| } |
| |
| isl_map_free(acc); |
| |
| return ++i; |
| } |
| |
| /* Adjust the fields of "tile" to reflect the new input dimension "depth". |
| * The dimension beyond "depth" are assumed not to affect the tile, |
| * so they can simply be dropped. |
| */ |
| static int tile_adjust_depth(struct gpu_array_tile *tile, int depth) |
| { |
| int i; |
| |
| if (tile->depth == depth) |
| return 0; |
| |
| for (i = 0; i < tile->n; ++i) { |
| tile->bound[i].lb = isl_aff_drop_dims(tile->bound[i].lb, |
| isl_dim_in, depth, tile->depth - depth); |
| if (!tile->bound[i].lb) |
| return -1; |
| if (!tile->bound[i].shift) |
| continue; |
| tile->bound[i].shift = isl_aff_drop_dims(tile->bound[i].shift, |
| isl_dim_in, depth, tile->depth - depth); |
| if (!tile->bound[i].shift) |
| return -1; |
| } |
| |
| tile->depth = depth; |
| |
| return 0; |
| } |
| |
| /* Determine the number of schedule dimensions that affect the offset of the |
| * shared or private tile "tile" and store the result in tile->depth, with |
| * a lower bound of data->kernel_depth. |
| * Also adjust the fields of the tile to only refer to the tile->depth |
| * outer schedule dimensions. |
| */ |
| static isl_stat tile_set_depth(struct gpu_group_data *data, |
| struct gpu_array_tile *tile) |
| { |
| if (tile_adjust_depth(tile, compute_tile_depth(data, tile)) < 0) |
| return isl_stat_error; |
| |
| return isl_stat_ok; |
| } |
| |
| /* Determine the number of schedule dimensions that affect the offset of the |
| * shared tile and store the minimum of the private and shared tile depth |
| * in group->min_depth, with a lower bound of data->kernel_depth. |
| * If there is no tile defined on the array reference group, |
| * then set group->min_depth to data->thread_depth. |
| */ |
| static int set_depth(struct gpu_group_data *data, |
| struct gpu_array_ref_group *group) |
| { |
| group->min_depth = data->thread_depth; |
| |
| if (group->private_tile) { |
| if (group->private_tile->depth < group->min_depth) |
| group->min_depth = group->private_tile->depth; |
| } |
| if (group->shared_tile) { |
| if (tile_set_depth(data, group->shared_tile) < 0) |
| return -1; |
| if (group->shared_tile->depth < group->min_depth) |
| group->min_depth = group->shared_tile->depth; |
| } |
| |
| return 0; |
| } |
| |
| /* Fill up the groups array with singleton groups, i.e., one group |
| * per reference, initializing the array, access, write, n_ref and refs fields. |
| * In particular the access field is initialized to the scheduled |
| * access relation of the array reference. |
| * |
| * Return the number of elements initialized, i.e., the number of |
| * active references in the current kernel. |
| */ |
| static int populate_array_references(struct gpu_local_array_info *local, |
| struct gpu_array_ref_group **groups, struct gpu_group_data *data) |
| { |
| int i; |
| int n; |
| isl_ctx *ctx = isl_union_map_get_ctx(data->copy_sched); |
| |
| n = 0; |
| for (i = 0; i < local->array->n_ref; ++i) { |
| isl_union_map *umap; |
| isl_map *map; |
| struct gpu_array_ref_group *group; |
| struct gpu_stmt_access *access = local->array->refs[i]; |
| |
| map = isl_map_copy(access->access); |
| umap = isl_union_map_from_map(map); |
| umap = isl_union_map_apply_domain(umap, |
| isl_union_map_copy(data->copy_sched)); |
| |
| if (isl_union_map_is_empty(umap)) { |
| isl_union_map_free(umap); |
| continue; |
| } |
| |
| map = isl_map_from_union_map(umap); |
| map = isl_map_detect_equalities(map); |
| |
| group = isl_calloc_type(ctx, struct gpu_array_ref_group); |
| if (!group) |
| return -1; |
| group->local_array = local; |
| group->array = local->array; |
| group->access = map; |
| group->write = access->write; |
| group->exact_write = access->exact_write; |
| group->slice = access->n_index < local->array->n_index; |
| group->refs = &local->array->refs[i]; |
| group->n_ref = 1; |
| |
| groups[n++] = group; |
| } |
| |
| return n; |
| } |
| |
| /* If group->n_ref == 1, then group->refs was set by |
| * populate_array_references to point directly into |
| * group->array->refs and should not be freed. |
| * If group->n_ref > 1, then group->refs was set by join_groups |
| * to point to a newly allocated array. |
| */ |
| struct gpu_array_ref_group *gpu_array_ref_group_free( |
| struct gpu_array_ref_group *group) |
| { |
| if (!group) |
| return NULL; |
| gpu_array_tile_free(group->shared_tile); |
| gpu_array_tile_free(group->private_tile); |
| isl_map_free(group->access); |
| if (group->n_ref > 1) |
| free(group->refs); |
| free(group); |
| return NULL; |
| } |
| |
| /* Check if the access relations of group1 and group2 overlap within |
| * copy_sched. |
| */ |
| static int accesses_overlap(struct gpu_array_ref_group *group1, |
| struct gpu_array_ref_group *group2) |
| { |
| int disjoint; |
| |
| disjoint = isl_map_is_disjoint(group1->access, group2->access); |
| if (disjoint < 0) |
| return -1; |
| |
| return !disjoint; |
| } |
| |
| /* Combine the given two groups into a single group, containing |
| * the references of both groups. |
| */ |
| static struct gpu_array_ref_group *join_groups( |
| struct gpu_array_ref_group *group1, |
| struct gpu_array_ref_group *group2) |
| { |
| int i; |
| isl_ctx *ctx; |
| struct gpu_array_ref_group *group; |
| |
| if (!group1 || !group2) |
| return NULL; |
| |
| ctx = isl_map_get_ctx(group1->access); |
| group = isl_calloc_type(ctx, struct gpu_array_ref_group); |
| if (!group) |
| return NULL; |
| group->local_array = group1->local_array; |
| group->array = group1->array; |
| group->access = isl_map_union(isl_map_copy(group1->access), |
| isl_map_copy(group2->access)); |
| group->write = group1->write || group2->write; |
| group->exact_write = group1->exact_write && group2->exact_write; |
| group->slice = group1->slice || group2->slice; |
| group->n_ref = group1->n_ref + group2->n_ref; |
| group->refs = isl_alloc_array(ctx, struct gpu_stmt_access *, |
| group->n_ref); |
| if (!group->refs) |
| return gpu_array_ref_group_free(group); |
| for (i = 0; i < group1->n_ref; ++i) |
| group->refs[i] = group1->refs[i]; |
| for (i = 0; i < group2->n_ref; ++i) |
| group->refs[group1->n_ref + i] = group2->refs[i]; |
| |
| return group; |
| } |
| |
| /* Combine the given two groups into a single group and free |
| * the original two groups. |
| */ |
| static struct gpu_array_ref_group *join_groups_and_free( |
| struct gpu_array_ref_group *group1, |
| struct gpu_array_ref_group *group2) |
| { |
| struct gpu_array_ref_group *group; |
| |
| group = join_groups(group1, group2); |
| gpu_array_ref_group_free(group1); |
| gpu_array_ref_group_free(group2); |
| return group; |
| } |
| |
| /* Report that the array reference group with the given access relation |
| * is not mapped to shared memory in the given kernel because |
| * it does not exhibit any reuse and is considered to be coalesced. |
| */ |
| static void report_no_reuse_and_coalesced(struct ppcg_kernel *kernel, |
| __isl_keep isl_union_map *access) |
| { |
| isl_ctx *ctx; |
| isl_printer *p; |
| |
| ctx = isl_union_map_get_ctx(access); |
| p = isl_printer_to_file(ctx, stdout); |
| p = isl_printer_print_str(p, "Array reference group "); |
| p = isl_printer_print_union_map(p, access); |
| p = isl_printer_print_str(p, |
| " not considered for mapping to shared memory in kernel"); |
| p = isl_printer_print_int(p, kernel->id); |
| p = isl_printer_print_str(p, |
| " because it exhibits no reuse and is considered to be coalesced"); |
| p = isl_printer_end_line(p); |
| isl_printer_free(p); |
| } |
| |
| /* Given an access relation in terms of the data->thread_depth initial |
| * dimensions of the computed schedule and the thread identifiers |
| * (as parameters), check if the use of the corresponding private tile |
| * requires unrolling. |
| * |
| * If we are creating a private tile because we are forced to, |
| * then no unrolling is required. |
| * Otherwise we check if "access" is bijective and unrolling |
| * is required if it is not. Note that the access relation |
| * has already been determined to be bijective before the introduction |
| * of the thread identifiers and the removal of the schedule dimensions |
| * that are mapped to these threads. If the access relation is no longer |
| * bijective, then this means that more than one value of one of those |
| * schedule dimensions is mapped to the same thread and therefore |
| * unrolling is required. |
| */ |
| static int check_requires_unroll(struct gpu_group_data *data, |
| __isl_keep isl_map *access, int force_private) |
| { |
| int bijective; |
| |
| if (force_private) |
| return 0; |
| bijective = access_is_bijective(data, access); |
| if (bijective < 0) |
| return -1; |
| return !bijective; |
| } |
| |
| /* Map the domain of "access" to the outer data->shared_depth |
| * schedule dimensions. When data->shared_depth is equal to |
| * data->thread_depth, this result is already available in group->access. |
| */ |
| static __isl_give isl_map *shared_access(struct gpu_array_ref_group *group, |
| __isl_keep isl_union_map *access, struct gpu_group_data *data) |
| { |
| isl_union_map *shared; |
| |
| if (data->shared_depth == data->thread_depth) |
| return isl_map_copy(group->access); |
| |
| shared = isl_union_map_copy(access); |
| shared = isl_union_map_apply_domain(shared, |
| isl_union_map_copy(data->shared_sched)); |
| return isl_map_from_union_map(shared); |
| } |
| |
| /* Compute the private and/or shared memory tiles for the array |
| * reference group "group" of array "array". |
| * Return 0 on success and -1 on error. |
| * |
| * If the array is a read-only scalar or if the user requested |
| * not to use shared or private memory, then we do not need to do anything. |
| * |
| * If any reference in the reference group accesses more than one element, |
| * then we would have to make sure that the layout in shared memory |
| * is the same as that in global memory. Since we do not handle this yet |
| * (and it may not even be possible), we refuse to map to private or |
| * shared memory in such cases. |
| * |
| * If the array group involves any may writes (that are not must writes), |
| * then we would have to make sure that we load the data into shared/private |
| * memory first in case the data is not written by the kernel |
| * (but still written back out to global memory). |
| * Since we don't have any such mechanism at the moment, we don't |
| * compute shared/private tiles for groups involving may writes. |
| * |
| * We only try to compute a shared memory tile if there is any reuse |
| * or if the access is not coalesced. |
| * Reuse and coalescing are checked within the given kernel. |
| * |
| * For computing a private memory tile, we also require that there is |
| * some reuse. Moreover, we require that the access is private |
| * to the thread. That is, we check that any given array element |
| * is only accessed by a single thread. |
| * We compute an access relation that maps the outer |
| * data->thread_depth + data->n_thread schedule dimensions. |
| * The latter data->n_thread will be mapped to thread identifiers. |
| * We actually check that those iterators that will be wrapped |
| * partition the array space. This check is stricter than necessary |
| * since several iterations may be mapped onto the same thread |
| * and then they could be allowed to access the same memory elements, |
| * but our check does not allow this situation. |
| * |
| * For private memory tiles, the number of schedule dimensions that |
| * affect the offset is computed and stored in tile->depth, with |
| * a lower bound of data->kernel_depth. If this depth is smaller |
| * than the minimal depth that still ensures that every element |
| * is accessed by a single thread, then the depth is raised |
| * to this minimal depth. |
| * The fields of the tile are then adjusted to only refer to the tile->depth |
| * outer schedule dimensions. |
| * |
| * We also check that the index expression only depends on parallel |
| * loops. That way, we can move those loops innermost and unroll them. |
| * Again, we use a test that is stricter than necessary. |
| * We actually check whether the index expression only depends |
| * on the iterators that are wrapped over the threads. |
| * These are necessarily parallel, but there may be more parallel loops. |
| * |
| * Combining the injectivity of the first test with the single-valuedness |
| * of the second test, we simply test for bijectivity. |
| * |
| * If the use of the private tile requires unrolling, but some |
| * of the other arrays are forcibly mapped to private memory, |
| * then we do not allow the use of this private tile since |
| * we cannot move the schedule dimensions that need to be unrolled down |
| * without performing some kind of expansion on those arrays |
| * that are forcibly mapped to private memory. |
| * |
| * If the array is marked force_private, then we bypass all checks |
| * and assume we can (and should) use registers only. |
| * |
| * If it turns out we can (or have to) use registers, we compute |
| * the private memory tile size using can_tile, after introducing a dependence |
| * on the thread indices. |
| */ |
| static int compute_group_bounds_core(struct ppcg_kernel *kernel, |
| struct gpu_array_ref_group *group, struct gpu_group_data *data) |
| { |
| isl_ctx *ctx = isl_space_get_ctx(group->array->space); |
| isl_union_map *access, *local; |
| int n_index = group->array->n_index; |
| int no_reuse, coalesced; |
| isl_map *acc; |
| int force_private = group->local_array->force_private; |
| int use_shared = !force_private && kernel->options->use_shared_memory && |
| data->n_thread > 0; |
| int use_private = force_private || kernel->options->use_private_memory; |
| int r = 0; |
| int requires_unroll; |
| int unique_depth; |
| |
| if (!use_shared && !use_private) |
| return 0; |
| if (gpu_array_is_read_only_scalar(group->array)) |
| return 0; |
| if (!force_private && !group->exact_write) |
| return 0; |
| if (group->slice) |
| return 0; |
| |
| access = gpu_array_ref_group_access_relation(group, 1, 1); |
| local = localize_access(data, isl_union_map_copy(access)); |
| no_reuse = isl_union_map_is_injective(local); |
| if (no_reuse < 0) |
| r = -1; |
| if (use_shared && no_reuse) |
| coalesced = access_is_coalesced(data, local); |
| isl_union_map_free(local); |
| |
| if (r >= 0 && kernel->options->debug->verbose && |
| use_shared && no_reuse && coalesced) |
| report_no_reuse_and_coalesced(kernel, access); |
| |
| if (use_shared && (!no_reuse || !coalesced)) { |
| group->shared_tile = gpu_array_tile_create(ctx, |
| group->array->n_index); |
| acc = shared_access(group, access, data); |
| if (!group->shared_tile) |
| r = -1; |
| else if (!can_tile(acc, group->shared_tile)) |
| group->shared_tile = |
| gpu_array_tile_free(group->shared_tile); |
| isl_map_free(acc); |
| } |
| |
| if (r < 0 || (!force_private && (!use_private || no_reuse))) { |
| isl_union_map_free(access); |
| return r; |
| } |
| |
| access = isl_union_map_apply_domain(access, |
| isl_union_map_copy(data->thread_sched)); |
| |
| acc = isl_map_from_union_map(access); |
| |
| if (!force_private && !access_is_bijective(data, acc)) { |
| isl_map_free(acc); |
| return 0; |
| } |
| |
| unique_depth = compute_accessed_by_single_thread_depth(data, acc); |
| |
| acc = isl_map_intersect_domain(acc, isl_set_copy(data->privatization)); |
| acc = isl_map_project_out(acc, isl_dim_in, data->thread_depth, |
| data->n_thread); |
| requires_unroll = check_requires_unroll(data, acc, force_private); |
| if (unique_depth < 0 || requires_unroll < 0 || |
| (requires_unroll && kernel->any_force_private)) { |
| isl_map_free(acc); |
| return requires_unroll < 0 ? -1 : 0; |
| } |
| |
| group->private_tile = gpu_array_tile_create(ctx, n_index); |
| if (!group->private_tile) { |
| isl_map_free(acc); |
| return -1; |
| } |
| group->private_tile->requires_unroll = requires_unroll; |
| if (!can_tile(acc, group->private_tile)) |
| group->private_tile = gpu_array_tile_free(group->private_tile); |
| |
| isl_map_free(acc); |
| |
| if (group->private_tile) { |
| struct gpu_array_tile *tile = group->private_tile; |
| int tile_depth = compute_tile_depth(data, tile); |
| if (tile_depth < unique_depth) |
| tile_depth = unique_depth; |
| if (tile_adjust_depth(tile, tile_depth) < 0) |
| return -1; |
| } |
| |
| if (force_private && !group->private_tile) |
| isl_die(ctx, isl_error_internal, |
| "unable to map array reference group to registers", |
| return -1); |
| |
| return 0; |
| } |
| |
| /* Compute the private and/or shared memory tiles for the array |
| * reference group "group" of array "array" and set the tile depth. |
| * Return 0 on success and -1 on error. |
| */ |
| static int compute_group_bounds(struct ppcg_kernel *kernel, |
| struct gpu_array_ref_group *group, struct gpu_group_data *data) |
| { |
| if (!group) |
| return -1; |
| if (compute_group_bounds_core(kernel, group, data) < 0) |
| return -1; |
| if (set_depth(data, group) < 0) |
| return -1; |
| |
| return 0; |
| } |
| |
| /* If two groups have overlapping access relations (as determined by |
| * the "overlap" function) and if one of them involves a write, |
| * then merge the two groups into one. |
| * If "compute_bounds" is set, then call compute_group_bounds |
| * on the merged groups. |
| * |
| * Return the updated number of groups. |
| * Return -1 on error. |
| */ |
| static int group_writes(struct ppcg_kernel *kernel, |
| int n, struct gpu_array_ref_group **groups, |
| int (*overlap)(struct gpu_array_ref_group *group1, |
| struct gpu_array_ref_group *group2), int compute_bounds, |
| struct gpu_group_data *data) |
| { |
| int i, j; |
| |
| for (i = 0; i < n; ++i) { |
| for (j = n - 1; j > i; --j) { |
| if (!groups[i]->write && !groups[j]->write) |
| continue; |
| |
| if (!overlap(groups[i], groups[j])) |
| continue; |
| |
| groups[i] = join_groups_and_free(groups[i], groups[j]); |
| if (j != n - 1) |
| groups[j] = groups[n - 1]; |
| groups[n - 1] = NULL; |
| n--; |
| |
| if (!groups[i]) |
| return -1; |
| if (compute_bounds && |
| compute_group_bounds(kernel, groups[i], data) < 0) |
| return -1; |
| } |
| } |
| |
| return n; |
| } |
| |
| /* If two groups have overlapping access relations (within the innermost |
| * loop) and if one of them involves a write, then merge the two groups |
| * into one. |
| * |
| * Return the updated number of groups. |
| */ |
| static int group_overlapping_writes(struct ppcg_kernel *kernel, |
| int n, struct gpu_array_ref_group **groups, |
| struct gpu_group_data *data) |
| { |
| return group_writes(kernel, n, groups, &accesses_overlap, 0, data); |
| } |
| |
| /* Check if the access relations of group1 and group2 overlap within |
| * the outermost min(group1->min_depth, group2->min_depth) loops. |
| */ |
| static int depth_accesses_overlap(struct gpu_array_ref_group *group1, |
| struct gpu_array_ref_group *group2) |
| { |
| int depth; |
| int dim; |
| int empty; |
| isl_map *map_i, *map_j, *map; |
| |
| depth = group1->min_depth; |
| if (group2->min_depth < depth) |
| depth = group2->min_depth; |
| map_i = isl_map_copy(group1->access); |
| dim = isl_map_dim(map_i, isl_dim_in); |
| map_i = isl_map_eliminate(map_i, isl_dim_in, depth, dim - depth); |
| map_j = isl_map_copy(group2->access); |
| map_j = isl_map_eliminate(map_j, isl_dim_in, depth, dim - depth); |
| map = isl_map_intersect(map_i, map_j); |
| empty = isl_map_is_empty(map); |
| isl_map_free(map); |
| |
| return !empty; |
| } |
| |
| /* If two groups have overlapping access relations (within the outer |
| * depth loops) and if one of them involves a write, |
| * then merge the two groups into one. |
| * |
| * Return the updated number of groups. |
| */ |
| static int group_depth_overlapping_writes(struct ppcg_kernel *kernel, |
| int n, struct gpu_array_ref_group **groups, struct gpu_group_data *data) |
| { |
| return group_writes(kernel, n, groups, &depth_accesses_overlap, 1, |
| data); |
| } |
| |
| /* Is the size of the tile specified by "tile" smaller than the sum of |
| * the sizes of the tiles specified by "tile1" and "tile2"? |
| */ |
| static int smaller_tile(struct gpu_array_tile *tile, |
| struct gpu_array_tile *tile1, struct gpu_array_tile *tile2) |
| { |
| int smaller; |
| isl_val *size, *size1, *size2; |
| |
| size = gpu_array_tile_size(tile); |
| size1 = gpu_array_tile_size(tile1); |
| size2 = gpu_array_tile_size(tile2); |
| |
| size = isl_val_sub(size, size1); |
| size = isl_val_sub(size, size2); |
| smaller = isl_val_is_neg(size); |
| |
| isl_val_free(size); |
| |
| return smaller; |
| } |
| |
| /* Given an initial grouping of array references and shared memory tiles |
| * for each group that allows for a shared memory tile, merge two groups |
| * if both have a shared memory tile, the merged group also has |
| * a shared memory tile and the size of the tile for the merge group |
| * is smaller than the sum of the tile sizes of the individual groups. |
| * |
| * If merging two groups decreases the depth of the tile of |
| * one or both of the two groups, then we need to check for overlapping |
| * writes again. |
| * |
| * Return the number of groups after merging. |
| * Return -1 on error. |
| */ |
| static int group_common_shared_memory_tile(struct ppcg_kernel *kernel, |
| struct gpu_array_info *array, int n, |
| struct gpu_array_ref_group **groups, struct gpu_group_data *data) |
| { |
| int i, j; |
| int recompute_overlap = 0; |
| |
| for (i = 0; i < n; ++i) { |
| if (!groups[i]->shared_tile) |
| continue; |
| for (j = n - 1; j > i; --j) { |
| struct gpu_array_ref_group *group; |
| |
| if (!groups[j]->shared_tile) |
| continue; |
| |
| if (!depth_accesses_overlap(groups[i], groups[j])) |
| continue; |
| |
| group = join_groups(groups[i], groups[j]); |
| if (compute_group_bounds(kernel, group, data) < 0) { |
| gpu_array_ref_group_free(group); |
| return -1; |
| } |
| if (!group->shared_tile || |
| !smaller_tile(group->shared_tile, |
| groups[i]->shared_tile, |
| groups[j]->shared_tile)) { |
| gpu_array_ref_group_free(group); |
| continue; |
| } |
| |
| if (group->min_depth < groups[i]->min_depth || |
| group->min_depth < groups[j]->min_depth) |
| recompute_overlap = 1; |
| gpu_array_ref_group_free(groups[i]); |
| gpu_array_ref_group_free(groups[j]); |
| groups[i] = group; |
| if (j != n - 1) |
| groups[j] = groups[n - 1]; |
| n--; |
| } |
| } |
| |
| if (recompute_overlap) |
| n = group_depth_overlapping_writes(kernel, n, groups, data); |
| return n; |
| } |
| |
| /* Set array->n_group and array->groups to n and groups. |
| * |
| * Additionally, set the "nr" field of each group. |
| */ |
| static void set_array_groups(struct gpu_local_array_info *array, |
| int n, struct gpu_array_ref_group **groups) |
| { |
| int i; |
| |
| array->n_group = n; |
| array->groups = groups; |
| |
| for (i = 0; i < n; ++i) |
| groups[i]->nr = i; |
| } |
| |
| /* Combine all groups in "groups" into a single group and return |
| * the new number of groups (1 or 0 if there were no groups to start with). |
| */ |
| static int join_all_groups(int n, struct gpu_array_ref_group **groups) |
| { |
| int i; |
| |
| for (i = n - 1; i > 0; --i) { |
| groups[0] = join_groups_and_free(groups[0], groups[i]); |
| groups[i] = NULL; |
| n--; |
| } |
| |
| return n; |
| } |
| |
| /* Group array references that should be considered together when |
| * deciding whether to access them from private, shared or global memory. |
| * Return -1 on error. |
| * |
| * In particular, if two array references overlap and if one of them |
| * is a write, then the two references are grouped together. |
| * We first perform an initial grouping based only on the access relation. |
| * After computing shared and private memory tiles, we check for |
| * overlapping writes again, but this time taking into account |
| * the depth of the effective tile. |
| * |
| * Furthermore, if two groups admit a shared memory tile and if the |
| * combination of the two also admits a shared memory tile, we merge |
| * the two groups. |
| * |
| * If the array contains structures, then we compute a single |
| * reference group without trying to find any tiles |
| * since we do not map such arrays to private or shared |
| * memory. The only exception is when those arrays of structures |
| * are required to be mapped to private memory. |
| */ |
| static int group_array_references(struct ppcg_kernel *kernel, |
| struct gpu_local_array_info *local, struct gpu_group_data *data) |
| { |
| int i; |
| int n; |
| isl_ctx *ctx = isl_union_map_get_ctx(data->shared_sched); |
| struct gpu_array_ref_group **groups; |
| |
| groups = isl_calloc_array(ctx, struct gpu_array_ref_group *, |
| local->array->n_ref); |
| if (!groups) |
| return -1; |
| |
| n = populate_array_references(local, groups, data); |
| |
| if (local->array->has_compound_element && !local->force_private) { |
| n = join_all_groups(n, groups); |
| set_array_groups(local, n, groups); |
| return 0; |
| } |
| |
| n = group_overlapping_writes(kernel, n, groups, data); |
| |
| for (i = 0; i < n; ++i) |
| if (compute_group_bounds(kernel, groups[i], data) < 0) |
| n = -1; |
| |
| n = group_depth_overlapping_writes(kernel, n, groups, data); |
| |
| n = group_common_shared_memory_tile(kernel, local->array, |
| n, groups, data); |
| |
| set_array_groups(local, n, groups); |
| |
| if (n >= 0) |
| return 0; |
| |
| for (i = 0; i < local->array->n_ref; ++i) |
| gpu_array_ref_group_free(groups[i]); |
| return -1; |
| } |
| |
| /* For each array in the input program that can be mapped to private memory, |
| * check if there are any order dependences active inside the current kernel, |
| * within the same iteration of the host schedule, i.e., the prefix |
| * schedule at "node". |
| * If so, mark the array as force_private so that its reference groups will be |
| * mapped to a registers. |
| * |
| * Note that the arrays that cannot be mapped to private memory have |
| * had their order dependences added to prog->array_order and |
| * subsequently to the coincidence constraints. |
| */ |
| static void check_can_be_private_live_ranges(struct ppcg_kernel *kernel, |
| __isl_keep isl_schedule_node *node) |
| { |
| int i; |
| isl_union_set *domain; |
| isl_multi_union_pw_aff *prefix; |
| isl_union_pw_multi_aff *contraction; |
| |
| if (!kernel->options->live_range_reordering) |
| return; |
| |
| kernel->any_force_private = 0; |
| |
| prefix = isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node); |
| contraction = isl_union_pw_multi_aff_copy(kernel->contraction); |
| prefix = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(prefix, |
| contraction); |
| domain = isl_union_set_copy(kernel->expanded_domain); |
| domain = isl_union_set_universe(domain); |
| |
| for (i = 0; i < kernel->n_array; ++i) { |
| struct gpu_local_array_info *local = &kernel->array[i]; |
| isl_union_map *order; |
| |
| local->force_private = 0; |
| if (!gpu_array_can_be_private(local->array)) |
| continue; |
| order = isl_union_map_copy(local->array->dep_order); |
| order = isl_union_map_intersect_domain(order, |
| isl_union_set_copy(domain)); |
| order = isl_union_map_intersect_range(order, |
| isl_union_set_copy(domain)); |
| order = isl_union_map_eq_at_multi_union_pw_aff(order, |
| isl_multi_union_pw_aff_copy(prefix)); |
| if (!isl_union_map_is_empty(order)) { |
| local->force_private = 1; |
| kernel->any_force_private = 1; |
| } |
| isl_union_map_free(order); |
| } |
| |
| isl_multi_union_pw_aff_free(prefix); |
| isl_union_set_free(domain); |
| } |
| |
| /* Expand the domain of the schedule "s" by plugging in |
| * the contraction "contraction" and return the result. |
| */ |
| static __isl_give isl_union_map *expand(__isl_take isl_union_map *s, |
| __isl_keep isl_union_pw_multi_aff *contraction) |
| { |
| contraction = isl_union_pw_multi_aff_copy(contraction); |
| s = isl_union_map_preimage_domain_union_pw_multi_aff(s, contraction); |
| return s; |
| } |
| |
| /* Create a set of dimension data->thread_depth + data->n_thread |
| * that equates the residue of the final data->n_thread dimensions |
| * modulo the kernel->block_dim sizes to the thread identifiers. |
| * Store the computed set in data->privatization. |
| * |
| * The construction starts with the space of kernel->thread_filter, |
| * which is known to reference all thread identifiers. |
| */ |
| static void compute_privatization(struct gpu_group_data *data, |
| struct ppcg_kernel *kernel) |
| { |
| int i; |
| isl_ctx *ctx; |
| isl_space *space; |
| isl_local_space *ls; |
| isl_set *set; |
| |
| ctx = isl_union_map_get_ctx(data->shared_sched); |
| space = isl_union_set_get_space(kernel->thread_filter); |
| space = isl_space_set_from_params(space); |
| space = isl_space_add_dims(space, isl_dim_set, |
| data->thread_depth + data->n_thread); |
| set = isl_set_universe(space); |
| space = isl_set_get_space(set); |
| ls = isl_local_space_from_space(space); |
| |
| for (i = 0; i < data->n_thread; ++i) { |
| isl_aff *aff, *aff2; |
| isl_constraint *c; |
| isl_val *v; |
| isl_id *id; |
| int pos; |
| |
| aff = isl_aff_var_on_domain(isl_local_space_copy(ls), |
| isl_dim_set, data->thread_depth + i); |
| v = isl_val_int_from_si(ctx, kernel->block_dim[i]); |
| aff = isl_aff_mod_val(aff, v); |
| id = isl_id_list_get_id(kernel->thread_ids, i); |
| pos = isl_set_find_dim_by_id(set, isl_dim_param, id); |
| isl_id_free(id); |
| aff2 = isl_aff_var_on_domain(isl_local_space_copy(ls), |
| isl_dim_param, pos); |
| aff = isl_aff_sub(aff, aff2); |
| c = isl_equality_from_aff(aff); |
| set = isl_set_add_constraint(set, c); |
| } |
| |
| isl_local_space_free(ls); |
| data->privatization = set; |
| } |
| |
| /* Return the prefix schedule at "node" as a relation |
| * between domain elements and schedule dimensions after detecting |
| * equalities in this relation. |
| */ |
| static __isl_give isl_union_map *prefix_with_equalities( |
| __isl_keep isl_schedule_node *node) |
| { |
| isl_union_map *schedule; |
| |
| schedule = isl_schedule_node_get_prefix_schedule_relation(node); |
| schedule = isl_union_map_detect_equalities(schedule); |
| |
| return schedule; |
| } |
| |
| /* Group references of all arrays in "kernel". |
| * "node" points to the kernel mark. |
| * The mapping to shared memory in computed at the "shared" mark. |
| * |
| * We first extract all required schedule information into |
| * a gpu_group_data structure and then consider each array |
| * in turn. |
| */ |
| int gpu_group_references(struct ppcg_kernel *kernel, |
| __isl_keep isl_schedule_node *node) |
| { |
| int i; |
| int r = 0; |
| isl_union_pw_multi_aff *contraction; |
| struct gpu_group_data data; |
| |
| check_can_be_private_live_ranges(kernel, node); |
| |
| data.scop = kernel->prog->scop; |
| |
| data.kernel_depth = isl_schedule_node_get_schedule_depth(node); |
| data.host_sched = isl_schedule_node_get_prefix_schedule_relation(node); |
| |
| node = isl_schedule_node_copy(node); |
| node = gpu_tree_move_down_to_shared(node, kernel->core); |
| data.shared_depth = isl_schedule_node_get_schedule_depth(node); |
| data.shared_sched = prefix_with_equalities(node); |
| |
| node = gpu_tree_move_down_to_thread(node, kernel->core); |
| node = isl_schedule_node_child(node, 0); |
| data.thread_depth = isl_schedule_node_get_schedule_depth(node); |
| data.n_thread = isl_schedule_node_band_n_member(node); |
| if (data.thread_depth == data.shared_depth) |
| data.copy_sched = isl_union_map_copy(data.shared_sched); |
| else |
| data.copy_sched = prefix_with_equalities(node); |
| data.thread_sched = isl_union_map_copy(data.copy_sched); |
| data.thread_sched = isl_union_map_flat_range_product(data.thread_sched, |
| isl_schedule_node_band_get_partial_schedule_union_map(node)); |
| data.thread_sched = isl_union_map_detect_equalities(data.thread_sched); |
| |
| contraction = isl_union_pw_multi_aff_copy(kernel->contraction); |
| data.host_sched = expand(data.host_sched, contraction); |
| data.shared_sched = expand(data.shared_sched, contraction); |
| if (data.thread_depth == data.shared_depth) { |
| isl_union_map_free(data.copy_sched); |
| data.copy_sched = isl_union_map_copy(data.shared_sched); |
| } else { |
| data.copy_sched = expand(data.copy_sched, contraction); |
| } |
| data.thread_sched = expand(data.thread_sched, contraction); |
| isl_union_pw_multi_aff_free(contraction); |
| |
| node = isl_schedule_node_child(node, 0); |
| data.full_sched = isl_union_map_copy(data.thread_sched); |
| data.full_sched = isl_union_map_flat_range_product(data.full_sched, |
| isl_schedule_node_get_subtree_schedule_union_map(node)); |
| isl_schedule_node_free(node); |
| |
| compute_privatization(&data, kernel); |
| |
| for (i = 0; i < kernel->n_array; ++i) { |
| r = group_array_references(kernel, &kernel->array[i], &data); |
| if (r < 0) |
| break; |
| } |
| |
| isl_union_map_free(data.host_sched); |
| isl_union_map_free(data.shared_sched); |
| isl_union_map_free(data.copy_sched); |
| isl_union_map_free(data.thread_sched); |
| isl_union_map_free(data.full_sched); |
| isl_set_free(data.privatization); |
| |
| return r; |
| } |
| |
| /* Given a description of an array tile "tile" and the "space" |
| * |
| * { D -> A } |
| * |
| * where D represents the first tile->depth schedule dimensions |
| * and A represents the array, construct an isl_multi_aff |
| * |
| * { [D[i] -> A[a]] -> A'[a'] } |
| * |
| * with A' a scaled down copy of A according to the shifts and strides |
| * in "tile". In particular, |
| * |
| * a' = (a + shift(i))/stride |
| * |
| * "insert_array" represents |
| * |
| * { [D -> A] -> D } |
| * |
| * and is used to insert A into the domain of functions that only |
| * reference D. |
| */ |
| static __isl_give isl_multi_aff *strided_tile( |
| struct gpu_array_tile *tile, __isl_keep isl_space *space, |
| __isl_keep isl_multi_aff *insert_array) |
| { |
| int i; |
| isl_ctx *ctx; |
| isl_multi_aff *shift; |
| isl_multi_val *stride; |
| isl_space *space2; |
| isl_local_space *ls; |
| isl_multi_aff *tiling; |
| |
| ctx = isl_space_get_ctx(space); |
| space2 = isl_space_domain(isl_space_copy(space)); |
| ls = isl_local_space_from_space(space2); |
| space2 = isl_space_range(isl_space_copy(space)); |
| stride = isl_multi_val_zero(space2); |
| shift = isl_multi_aff_zero(isl_space_copy(space)); |
| |
| for (i = 0; i < tile->n; ++i) { |
| struct gpu_array_bound *bound = &tile->bound[i]; |
| isl_val *stride_i; |
| isl_aff *shift_i; |
| |
| if (tile->bound[i].shift) { |
| stride_i = isl_val_copy(bound->stride); |
| shift_i = isl_aff_copy(bound->shift); |
| } else { |
| stride_i = isl_val_one(ctx); |
| shift_i = isl_aff_zero_on_domain( |
| isl_local_space_copy(ls)); |
| } |
| |
| stride = isl_multi_val_set_val(stride, i, stride_i); |
| shift = isl_multi_aff_set_aff(shift, i, shift_i); |
| } |
| isl_local_space_free(ls); |
| |
| shift = isl_multi_aff_pullback_multi_aff(shift, |
| isl_multi_aff_copy(insert_array)); |
| |
| tiling = isl_multi_aff_range_map(isl_space_copy(space)); |
| tiling = isl_multi_aff_add(tiling, shift); |
| tiling = isl_multi_aff_scale_down_multi_val(tiling, stride); |
| |
| return tiling; |
| } |
| |
| /* Compute a tiling for the array reference group "group". |
| * |
| * The tiling is of the form |
| * |
| * { [D[i] -> A[a]] -> T[t] } |
| * |
| * where D represents the first tile->depth schedule dimensions, |
| * A represents the global array and T represents the shared or |
| * private memory tile. The name of T is the name of the local |
| * array. |
| * |
| * If there is any stride in the accesses, then the mapping is |
| * |
| * t = (a + shift(i))/stride - lb(i) |
| * |
| * otherwise, it is simply |
| * |
| * t = a - lb(i) |
| */ |
| void gpu_array_ref_group_compute_tiling(struct gpu_array_ref_group *group) |
| { |
| int i; |
| struct gpu_array_tile *tile; |
| isl_space *space; |
| isl_multi_aff *tiling, *lb, *insert_array; |
| isl_printer *p; |
| char *local_name; |
| |
| tile = gpu_array_ref_group_tile(group); |
| if (!tile) |
| return; |
| |
| space = isl_map_get_space(group->access); |
| space = isl_space_from_range(isl_space_range(space)); |
| space = isl_space_add_dims(space, isl_dim_in, tile->depth); |
| insert_array = isl_multi_aff_domain_map(isl_space_copy(space)); |
| |
| for (i = 0; i < tile->n; ++i) |
| if (tile->bound[i].shift) |
| break; |
| |
| if (i < tile->n) |
| tiling = strided_tile(tile, space, insert_array); |
| else |
| tiling = isl_multi_aff_range_map(isl_space_copy(space)); |
| |
| lb = isl_multi_aff_zero(space); |
| for (i = 0; i < tile->n; ++i) { |
| isl_aff *lb_i = isl_aff_copy(tile->bound[i].lb); |
| lb = isl_multi_aff_set_aff(lb, i, lb_i); |
| } |
| lb = isl_multi_aff_pullback_multi_aff(lb, insert_array); |
| |
| tiling = isl_multi_aff_sub(tiling, lb); |
| |
| p = isl_printer_to_str(isl_multi_aff_get_ctx(tiling)); |
| p = gpu_array_ref_group_print_name(group, p); |
| local_name = isl_printer_get_str(p); |
| isl_printer_free(p); |
| tiling = isl_multi_aff_set_tuple_name(tiling, isl_dim_out, local_name); |
| free(local_name); |
| |
| tile->tiling = tiling; |
| } |