blob: dc38e767bd555dc72c0ae4acf1e1505f92e7feab [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/cast/sender/external_video_encoder.h"
#include <algorithm>
#include <cmath>
#include <list>
#include <string>
#include <utility>
#include <vector>
#include "base/bind.h"
#include "base/command_line.h"
#include "base/debug/crash_logging.h"
#include "base/debug/dump_without_crashing.h"
#include "base/format_macros.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/memory/shared_memory.h"
#include "base/message_loop/message_loop.h"
#include "base/metrics/histogram.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "build/build_config.h"
#include "media/base/bind_to_current_loop.h"
#include "media/base/media_switches.h"
#include "media/base/video_frame.h"
#include "media/base/video_types.h"
#include "media/base/video_util.h"
#include "media/cast/cast_config.h"
#include "media/cast/common/rtp_time.h"
#include "media/cast/logging/logging_defines.h"
#include "media/cast/net/cast_transport_config.h"
#include "media/cast/sender/vp8_quantizer_parser.h"
#include "media/filters/h264_parser.h"
#include "starboard/memory.h"
namespace {
enum { MAX_H264_QUANTIZER = 51 };
// Number of buffers for encoded bit stream.
constexpr size_t kOutputBufferCount = 3;
// Maximum number of extra input buffers for encoder. The input buffers are only
// used when copy is needed to match the required coded size.
constexpr size_t kExtraInputBufferCount = 2;
// This value is used to calculate the encoder utilization. The encoder is
// assumed to be in full usage when the number of frames in progress reaches it.
constexpr int kBacklogRedlineThreshold = 4;
} // namespace
namespace cobalt {
namespace media {
namespace cast {
// Container for the associated data of a video frame being processed.
struct InProgressFrameEncode {
// The source content to encode.
const scoped_refptr<VideoFrame> video_frame;
// The reference time for this frame.
const base::TimeTicks reference_time;
// The callback to run when the result is ready.
const VideoEncoder::FrameEncodedCallback frame_encoded_callback;
// The target encode bit rate.
const int target_bit_rate;
// The real-world encode start time. This is used to compute the encoded
// frame's |encoder_utilization| and so it uses the real-world clock instead
// of the CastEnvironment clock, the latter of which might be simulated.
const base::TimeTicks start_time;
InProgressFrameEncode(const scoped_refptr<VideoFrame>& v_frame,
base::TimeTicks r_time,
VideoEncoder::FrameEncodedCallback callback,
int bit_rate)
: video_frame(v_frame),
reference_time(r_time),
frame_encoded_callback(callback),
target_bit_rate(bit_rate),
start_time(base::TimeTicks::Now()) {}
};
// Owns a VideoEncoderAccelerator instance and provides the necessary adapters
// to encode media::VideoFrames and emit media::cast::EncodedFrames. All
// methods must be called on the thread associated with the given
// SingleThreadTaskRunner, except for the task_runner() accessor.
class ExternalVideoEncoder::VEAClientImpl
: public VideoEncodeAccelerator::Client,
public base::RefCountedThreadSafe<VEAClientImpl> {
public:
VEAClientImpl(
const scoped_refptr<CastEnvironment>& cast_environment,
const scoped_refptr<base::SingleThreadTaskRunner>& encoder_task_runner,
std::unique_ptr<media::VideoEncodeAccelerator> vea, double max_frame_rate,
const StatusChangeCallback& status_change_cb,
const CreateVideoEncodeMemoryCallback& create_video_encode_memory_cb)
: cast_environment_(cast_environment),
task_runner_(encoder_task_runner),
max_frame_rate_(max_frame_rate),
status_change_cb_(status_change_cb),
create_video_encode_memory_cb_(create_video_encode_memory_cb),
video_encode_accelerator_(std::move(vea)),
encoder_active_(false),
next_frame_id_(FrameId::first()),
key_frame_encountered_(false),
codec_profile_(media::VIDEO_CODEC_PROFILE_UNKNOWN),
key_frame_quantizer_parsable_(false),
requested_bit_rate_(-1),
has_seen_zero_length_encoded_frame_(false),
max_allowed_input_buffers_(0),
allocate_input_buffer_in_progress_(false) {}
base::SingleThreadTaskRunner* task_runner() const {
return task_runner_.get();
}
void Initialize(const gfx::Size& frame_size, VideoCodecProfile codec_profile,
int start_bit_rate, FrameId first_frame_id) {
DCHECK(task_runner_->RunsTasksOnCurrentThread());
requested_bit_rate_ = start_bit_rate;
encoder_active_ = video_encode_accelerator_->Initialize(
media::PIXEL_FORMAT_I420, frame_size, codec_profile, start_bit_rate,
this);
next_frame_id_ = first_frame_id;
codec_profile_ = codec_profile;
UMA_HISTOGRAM_BOOLEAN("Cast.Sender.VideoEncodeAcceleratorInitializeSuccess",
encoder_active_);
cast_environment_->PostTask(
CastEnvironment::MAIN, FROM_HERE,
base::Bind(status_change_cb_, encoder_active_
? STATUS_INITIALIZED
: STATUS_CODEC_INIT_FAILED));
}
void SetBitRate(int bit_rate) {
DCHECK(task_runner_->RunsTasksOnCurrentThread());
requested_bit_rate_ = bit_rate;
video_encode_accelerator_->RequestEncodingParametersChange(
bit_rate, static_cast<uint32_t>(max_frame_rate_ + 0.5));
}
// The destruction call back of the copied video frame to free its use of
// the input buffer.
void ReturnInputBufferToPool(int index) {
DCHECK(task_runner_->RunsTasksOnCurrentThread());
DCHECK_GE(index, 0);
DCHECK_LT(index, static_cast<int>(input_buffers_.size()));
free_input_buffer_index_.push_back(index);
}
void EncodeVideoFrame(
const scoped_refptr<media::VideoFrame>& video_frame,
const base::TimeTicks& reference_time, bool key_frame_requested,
const VideoEncoder::FrameEncodedCallback& frame_encoded_callback) {
DCHECK(task_runner_->RunsTasksOnCurrentThread());
if (!encoder_active_) return;
in_progress_frame_encodes_.push_back(
InProgressFrameEncode(video_frame, reference_time,
frame_encoded_callback, requested_bit_rate_));
scoped_refptr<media::VideoFrame> frame = video_frame;
if (video_frame->coded_size() != frame_coded_size_) {
DCHECK_GE(frame_coded_size_.width(), video_frame->visible_rect().width());
DCHECK_GE(frame_coded_size_.height(),
video_frame->visible_rect().height());
if (free_input_buffer_index_.empty()) {
if (!allocate_input_buffer_in_progress_ &&
input_buffers_.size() < max_allowed_input_buffers_) {
allocate_input_buffer_in_progress_ = true;
create_video_encode_memory_cb_.Run(
media::VideoFrame::AllocationSize(media::PIXEL_FORMAT_I420,
frame_coded_size_),
base::Bind(&VEAClientImpl::OnCreateInputSharedMemory, this));
}
ExitEncodingWithErrors();
return;
}
int index = free_input_buffer_index_.back();
base::SharedMemory* input_buffer = input_buffers_[index].get();
frame = VideoFrame::WrapExternalSharedMemory(
video_frame->format(), frame_coded_size_, video_frame->visible_rect(),
video_frame->visible_rect().size(),
static_cast<uint8_t*>(input_buffer->memory()),
input_buffer->mapped_size(), input_buffer->handle(), 0,
video_frame->timestamp());
if (!frame || !media::I420CopyWithPadding(*video_frame, frame.get())) {
LOG(DFATAL) << "Error: ExternalVideoEncoder: copy failed.";
ExitEncodingWithErrors();
return;
}
frame->AddDestructionObserver(media::BindToCurrentLoop(base::Bind(
&ExternalVideoEncoder::VEAClientImpl::ReturnInputBufferToPool, this,
index)));
free_input_buffer_index_.pop_back();
}
// BitstreamBufferReady will be called once the encoder is done.
video_encode_accelerator_->Encode(frame, key_frame_requested);
}
protected:
void NotifyError(VideoEncodeAccelerator::Error error) final {
DCHECK(task_runner_->RunsTasksOnCurrentThread());
DCHECK(error != VideoEncodeAccelerator::kInvalidArgumentError &&
error != VideoEncodeAccelerator::kIllegalStateError);
encoder_active_ = false;
cast_environment_->PostTask(
CastEnvironment::MAIN, FROM_HERE,
base::Bind(status_change_cb_, STATUS_CODEC_RUNTIME_ERROR));
// TODO: Force-flush all |in_progress_frame_encodes_| immediately so pending
// frames do not become stuck, freezing VideoSender.
}
// Called to allocate the input and output buffers.
void RequireBitstreamBuffers(unsigned int input_count,
const gfx::Size& input_coded_size,
size_t output_buffer_size) final {
DCHECK(task_runner_->RunsTasksOnCurrentThread());
frame_coded_size_ = input_coded_size;
max_allowed_input_buffers_ = input_count + kExtraInputBufferCount;
for (size_t j = 0; j < kOutputBufferCount; ++j) {
create_video_encode_memory_cb_.Run(
output_buffer_size,
base::Bind(&VEAClientImpl::OnCreateSharedMemory, this));
}
}
// Encoder has encoded a frame and it's available in one of the output
// buffers. Package the result in a media::cast::EncodedFrame and post it
// to the Cast MAIN thread via the supplied callback.
void BitstreamBufferReady(int32_t bitstream_buffer_id, size_t payload_size,
bool key_frame,
base::TimeDelta /* timestamp */) final {
DCHECK(task_runner_->RunsTasksOnCurrentThread());
if (bitstream_buffer_id < 0 ||
bitstream_buffer_id >= static_cast<int32_t>(output_buffers_.size())) {
NOTREACHED();
VLOG(1) << "BitstreamBufferReady(): invalid bitstream_buffer_id="
<< bitstream_buffer_id;
NotifyError(media::VideoEncodeAccelerator::kPlatformFailureError);
return;
}
base::SharedMemory* output_buffer =
output_buffers_[bitstream_buffer_id].get();
if (payload_size > output_buffer->mapped_size()) {
NOTREACHED();
VLOG(1) << "BitstreamBufferReady(): invalid payload_size = "
<< payload_size;
NotifyError(media::VideoEncodeAccelerator::kPlatformFailureError);
return;
}
if (key_frame) key_frame_encountered_ = true;
if (!key_frame_encountered_) {
// Do not send video until we have encountered the first key frame.
// Save the bitstream buffer in |stream_header_| to be sent later along
// with the first key frame.
//
// TODO(miu): Should |stream_header_| be an std::ostringstream for
// performance reasons?
stream_header_.append(static_cast<const char*>(output_buffer->memory()),
payload_size);
} else if (!in_progress_frame_encodes_.empty()) {
const InProgressFrameEncode& request = in_progress_frame_encodes_.front();
std::unique_ptr<SenderEncodedFrame> encoded_frame(
new SenderEncodedFrame());
encoded_frame->dependency =
key_frame ? EncodedFrame::KEY : EncodedFrame::DEPENDENT;
encoded_frame->frame_id = next_frame_id_++;
if (key_frame)
encoded_frame->referenced_frame_id = encoded_frame->frame_id;
else
encoded_frame->referenced_frame_id = encoded_frame->frame_id - 1;
encoded_frame->rtp_timestamp = RtpTimeTicks::FromTimeDelta(
request.video_frame->timestamp(), kVideoFrequency);
encoded_frame->reference_time = request.reference_time;
if (!stream_header_.empty()) {
encoded_frame->data = stream_header_;
stream_header_.clear();
}
encoded_frame->data.append(
static_cast<const char*>(output_buffer->memory()), payload_size);
// If FRAME_DURATION metadata was provided in the source VideoFrame,
// compute the utilization metrics.
base::TimeDelta frame_duration;
if (request.video_frame->metadata()->GetTimeDelta(
media::VideoFrameMetadata::FRAME_DURATION, &frame_duration) &&
frame_duration > base::TimeDelta()) {
// Compute encoder utilization in terms of the number of frames in
// backlog, including the current frame encode that is finishing
// here. This "backlog" model works as follows: First, assume that all
// frames utilize the encoder by the same amount. This is actually a
// false assumption, but it still works well because any frame that
// takes longer to encode will naturally cause the backlog to
// increase, and this will result in a higher computed utilization for
// the offending frame. If the backlog continues to increase, because
// the following frames are also taking too long to encode, the
// computed utilization for each successive frame will be higher. At
// some point, upstream control logic will decide that the data volume
// must be reduced.
encoded_frame->encoder_utilization =
static_cast<double>(in_progress_frame_encodes_.size()) /
kBacklogRedlineThreshold;
const double actual_bit_rate =
encoded_frame->data.size() * 8.0 / frame_duration.InSecondsF();
DCHECK_GT(request.target_bit_rate, 0);
const double bitrate_utilization =
actual_bit_rate / request.target_bit_rate;
double quantizer = QuantizerEstimator::NO_RESULT;
// If the quantizer can be parsed from the key frame, try to parse
// the following delta frames as well.
// Otherwise, switch back to entropy estimation for the key frame
// and all the following delta frames.
if (key_frame || key_frame_quantizer_parsable_) {
if (codec_profile_ == media::VP8PROFILE_ANY) {
quantizer = ParseVp8HeaderQuantizer(
reinterpret_cast<const uint8_t*>(encoded_frame->data.data()),
encoded_frame->data.size());
} else if (codec_profile_ == media::H264PROFILE_MAIN) {
quantizer = GetH264FrameQuantizer(
reinterpret_cast<const uint8_t*>(encoded_frame->data.data()),
encoded_frame->data.size());
} else {
NOTIMPLEMENTED();
}
if (quantizer < 0) {
LOG(ERROR) << "Unable to parse quantizer from encoded "
<< (key_frame ? "key" : "delta")
<< " frame, id=" << encoded_frame->frame_id;
if (key_frame) {
key_frame_quantizer_parsable_ = false;
quantizer = quantizer_estimator_.EstimateForKeyFrame(
*request.video_frame);
}
} else {
if (key_frame) {
key_frame_quantizer_parsable_ = true;
}
}
} else {
quantizer =
quantizer_estimator_.EstimateForDeltaFrame(*request.video_frame);
}
if (quantizer >= 0) {
const double max_quantizer =
codec_profile_ == media::VP8PROFILE_ANY
? static_cast<int>(QuantizerEstimator::MAX_VP8_QUANTIZER)
: static_cast<int>(MAX_H264_QUANTIZER);
encoded_frame->lossy_utilization =
bitrate_utilization * (quantizer / max_quantizer);
}
} else {
quantizer_estimator_.Reset();
}
// TODO(miu): Determine when/why encoding can produce zero-length data,
// which causes crypto crashes. http://crbug.com/519022
if (!has_seen_zero_length_encoded_frame_ && encoded_frame->data.empty()) {
has_seen_zero_length_encoded_frame_ = true;
const char kZeroEncodeDetails[] = "zero-encode-details";
const std::string details = base::StringPrintf(
("%c/%c,id=%" PRIu32 ",rtp=%" PRIu32 ",br=%d,q=%" PRIuS
",act=%c,ref=%" PRIu32),
codec_profile_ == media::VP8PROFILE_ANY ? 'V' : 'H',
key_frame ? 'K' : 'D', encoded_frame->frame_id.lower_32_bits(),
encoded_frame->rtp_timestamp.lower_32_bits(),
request.target_bit_rate / 1000, in_progress_frame_encodes_.size(),
encoder_active_ ? 'Y' : 'N',
encoded_frame->referenced_frame_id.lower_32_bits() % 1000);
base::debug::SetCrashKeyValue(kZeroEncodeDetails, details);
// Please forward crash reports to http://crbug.com/519022:
base::debug::DumpWithoutCrashing();
base::debug::ClearCrashKey(kZeroEncodeDetails);
}
encoded_frame->encode_completion_time =
cast_environment_->Clock()->NowTicks();
cast_environment_->PostTask(CastEnvironment::MAIN, FROM_HERE,
base::Bind(request.frame_encoded_callback,
base::Passed(&encoded_frame)));
in_progress_frame_encodes_.pop_front();
} else {
VLOG(1) << "BitstreamBufferReady(): no encoded frame data available";
}
// We need to re-add the output buffer to the encoder after we are done
// with it.
video_encode_accelerator_->UseOutputBitstreamBuffer(media::BitstreamBuffer(
bitstream_buffer_id, output_buffers_[bitstream_buffer_id]->handle(),
output_buffers_[bitstream_buffer_id]->mapped_size()));
}
private:
friend class base::RefCountedThreadSafe<VEAClientImpl>;
~VEAClientImpl() final {
// According to the media::VideoEncodeAccelerator interface, Destroy()
// should be called instead of invoking its private destructor.
task_runner_->PostTask(
FROM_HERE,
base::Bind(&media::VideoEncodeAccelerator::Destroy,
base::Unretained(video_encode_accelerator_.release())));
}
// Note: This method can be called on any thread.
void OnCreateSharedMemory(std::unique_ptr<base::SharedMemory> memory) {
task_runner_->PostTask(
FROM_HERE, base::Bind(&VEAClientImpl::OnReceivedSharedMemory, this,
base::Passed(&memory)));
}
void OnCreateInputSharedMemory(std::unique_ptr<base::SharedMemory> memory) {
task_runner_->PostTask(
FROM_HERE, base::Bind(&VEAClientImpl::OnReceivedInputSharedMemory, this,
base::Passed(&memory)));
}
void OnReceivedSharedMemory(std::unique_ptr<base::SharedMemory> memory) {
DCHECK(task_runner_->RunsTasksOnCurrentThread());
output_buffers_.push_back(std::move(memory));
// Wait until all requested buffers are received.
if (output_buffers_.size() < kOutputBufferCount) return;
// Immediately provide all output buffers to the VEA.
for (size_t i = 0; i < output_buffers_.size(); ++i) {
video_encode_accelerator_->UseOutputBitstreamBuffer(
media::BitstreamBuffer(static_cast<int32_t>(i),
output_buffers_[i]->handle(),
output_buffers_[i]->mapped_size()));
}
}
void OnReceivedInputSharedMemory(std::unique_ptr<base::SharedMemory> memory) {
DCHECK(task_runner_->RunsTasksOnCurrentThread());
if (memory.get()) {
input_buffers_.push_back(std::move(memory));
free_input_buffer_index_.push_back(input_buffers_.size() - 1);
}
allocate_input_buffer_in_progress_ = false;
}
// This is called when copy errors occur in encoding process when there is
// need to copy the VideoFrames to match the required coded size for encoder.
void ExitEncodingWithErrors() {
DCHECK(task_runner_->RunsTasksOnCurrentThread());
std::unique_ptr<SenderEncodedFrame> no_result(nullptr);
cast_environment_->PostTask(
CastEnvironment::MAIN, FROM_HERE,
base::Bind(in_progress_frame_encodes_.back().frame_encoded_callback,
base::Passed(&no_result)));
in_progress_frame_encodes_.pop_back();
}
// Parse H264 SPS, PPS, and Slice header, and return the averaged frame
// quantizer in the range of [0, 51], or -1 on parse error.
double GetH264FrameQuantizer(const uint8_t* encoded_data, off_t size) {
DCHECK(encoded_data);
if (!size) return -1;
h264_parser_.SetStream(encoded_data, size);
double total_quantizer = 0;
int num_slices = 0;
while (true) {
H264NALU nalu;
H264Parser::Result res = h264_parser_.AdvanceToNextNALU(&nalu);
if (res == H264Parser::kEOStream) break;
if (res != H264Parser::kOk) return -1;
switch (nalu.nal_unit_type) {
case H264NALU::kIDRSlice:
case H264NALU::kNonIDRSlice: {
H264SliceHeader slice_header;
if (h264_parser_.ParseSliceHeader(nalu, &slice_header) !=
H264Parser::kOk)
return -1;
const H264PPS* pps =
h264_parser_.GetPPS(slice_header.pic_parameter_set_id);
if (!pps) return -1;
++num_slices;
int slice_quantizer =
26 +
((slice_header.IsSPSlice() || slice_header.IsSISlice())
? pps->pic_init_qs_minus26 + slice_header.slice_qs_delta
: pps->pic_init_qp_minus26 + slice_header.slice_qp_delta);
DCHECK_GE(slice_quantizer, 0);
DCHECK_LE(slice_quantizer, MAX_H264_QUANTIZER);
total_quantizer += slice_quantizer;
break;
}
case H264NALU::kSPS: {
int id;
if (h264_parser_.ParseSPS(&id) != H264Parser::kOk) return -1;
break;
}
case H264NALU::kPPS: {
int id;
if (h264_parser_.ParsePPS(&id) != H264Parser::kOk) return -1;
break;
}
default:
// Skip other NALUs.
break;
}
}
return (num_slices == 0) ? -1 : (total_quantizer / num_slices);
}
const scoped_refptr<CastEnvironment> cast_environment_;
const scoped_refptr<base::SingleThreadTaskRunner> task_runner_;
const double max_frame_rate_;
const StatusChangeCallback status_change_cb_; // Must be run on MAIN thread.
const CreateVideoEncodeMemoryCallback create_video_encode_memory_cb_;
std::unique_ptr<media::VideoEncodeAccelerator> video_encode_accelerator_;
bool encoder_active_;
FrameId next_frame_id_;
bool key_frame_encountered_;
std::string stream_header_;
VideoCodecProfile codec_profile_;
bool key_frame_quantizer_parsable_;
H264Parser h264_parser_;
// Shared memory buffers for output with the VideoAccelerator.
std::vector<std::unique_ptr<base::SharedMemory>> output_buffers_;
// Shared memory buffers for input video frames with the VideoAccelerator.
// These buffers will be allocated only when copy is needed to match the
// required coded size for encoder. They are allocated on-demand, up to
// |max_allowed_input_buffers_|.
std::vector<std::unique_ptr<base::SharedMemory>> input_buffers_;
// Available input buffer index. These buffers are used in FILO order.
std::vector<int> free_input_buffer_index_;
// FIFO list.
std::list<InProgressFrameEncode> in_progress_frame_encodes_;
// The requested encode bit rate for the next frame.
int requested_bit_rate_;
// Used to compute utilization metrics for each frame.
QuantizerEstimator quantizer_estimator_;
// Set to true once a frame with zero-length encoded data has been
// encountered.
// TODO(miu): Remove after discovering cause. http://crbug.com/519022
bool has_seen_zero_length_encoded_frame_;
// The coded size of the video frame required by Encoder. This size is
// obtained from VEA through |RequireBitstreamBuffers()|.
gfx::Size frame_coded_size_;
// The maximum number of input buffers. These buffers are used to copy
// VideoFrames in order to match the required coded size for encoder.
size_t max_allowed_input_buffers_;
// Set to true when the allocation of an input buffer is in progress, and
// reset to false after the allocated buffer is received.
bool allocate_input_buffer_in_progress_;
DISALLOW_COPY_AND_ASSIGN(VEAClientImpl);
};
// static
bool ExternalVideoEncoder::IsSupported(const FrameSenderConfig& video_config) {
if (video_config.codec != CODEC_VIDEO_VP8 &&
video_config.codec != CODEC_VIDEO_H264)
return false;
// TODO(miu): "Layering hooks" are needed to be able to query outside of
// libmedia, to determine whether the system provides a hardware encoder. For
// now, assume that this was already checked by this point.
// http://crbug.com/454029
return video_config.use_external_encoder;
}
ExternalVideoEncoder::ExternalVideoEncoder(
const scoped_refptr<CastEnvironment>& cast_environment,
const FrameSenderConfig& video_config, const gfx::Size& frame_size,
FrameId first_frame_id, const StatusChangeCallback& status_change_cb,
const CreateVideoEncodeAcceleratorCallback& create_vea_cb,
const CreateVideoEncodeMemoryCallback& create_video_encode_memory_cb)
: cast_environment_(cast_environment),
create_video_encode_memory_cb_(create_video_encode_memory_cb),
frame_size_(frame_size),
bit_rate_(video_config.start_bitrate),
key_frame_requested_(false),
weak_factory_(this) {
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
DCHECK_GT(video_config.max_frame_rate, 0);
DCHECK(!frame_size_.IsEmpty());
DCHECK(!status_change_cb.is_null());
DCHECK(!create_vea_cb.is_null());
DCHECK(!create_video_encode_memory_cb_.is_null());
DCHECK_GT(bit_rate_, 0);
create_vea_cb.Run(
base::Bind(&ExternalVideoEncoder::OnCreateVideoEncodeAccelerator,
weak_factory_.GetWeakPtr(), video_config, first_frame_id,
status_change_cb));
}
ExternalVideoEncoder::~ExternalVideoEncoder() {}
bool ExternalVideoEncoder::EncodeVideoFrame(
const scoped_refptr<media::VideoFrame>& video_frame,
const base::TimeTicks& reference_time,
const FrameEncodedCallback& frame_encoded_callback) {
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
DCHECK(!frame_encoded_callback.is_null());
if (!client_ || video_frame->visible_rect().size() != frame_size_)
return false;
client_->task_runner()->PostTask(
FROM_HERE,
base::Bind(&VEAClientImpl::EncodeVideoFrame, client_, video_frame,
reference_time, key_frame_requested_, frame_encoded_callback));
key_frame_requested_ = false;
return true;
}
void ExternalVideoEncoder::SetBitRate(int new_bit_rate) {
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
DCHECK_GT(new_bit_rate, 0);
bit_rate_ = new_bit_rate;
if (!client_) return;
client_->task_runner()->PostTask(
FROM_HERE, base::Bind(&VEAClientImpl::SetBitRate, client_, bit_rate_));
}
void ExternalVideoEncoder::GenerateKeyFrame() {
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
key_frame_requested_ = true;
}
void ExternalVideoEncoder::OnCreateVideoEncodeAccelerator(
const FrameSenderConfig& video_config, FrameId first_frame_id,
const StatusChangeCallback& status_change_cb,
scoped_refptr<base::SingleThreadTaskRunner> encoder_task_runner,
std::unique_ptr<media::VideoEncodeAccelerator> vea) {
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
// The callback will be invoked with null pointers in the case where the
// system does not support or lacks the resources to provide GPU-accelerated
// video encoding.
if (!encoder_task_runner || !vea) {
cast_environment_->PostTask(
CastEnvironment::MAIN, FROM_HERE,
base::Bind(status_change_cb, STATUS_CODEC_INIT_FAILED));
return;
}
VideoCodecProfile codec_profile;
switch (video_config.codec) {
case CODEC_VIDEO_VP8:
codec_profile = media::VP8PROFILE_ANY;
break;
case CODEC_VIDEO_H264:
codec_profile = media::H264PROFILE_MAIN;
break;
case CODEC_VIDEO_FAKE:
NOTREACHED() << "Fake software video encoder cannot be external";
// ...flow through to next case...
default:
cast_environment_->PostTask(
CastEnvironment::MAIN, FROM_HERE,
base::Bind(status_change_cb, STATUS_UNSUPPORTED_CODEC));
return;
}
DCHECK(!client_);
client_ = new VEAClientImpl(cast_environment_, encoder_task_runner,
std::move(vea), video_config.max_frame_rate,
status_change_cb, create_video_encode_memory_cb_);
client_->task_runner()->PostTask(
FROM_HERE, base::Bind(&VEAClientImpl::Initialize, client_, frame_size_,
codec_profile, bit_rate_, first_frame_id));
}
SizeAdaptableExternalVideoEncoder::SizeAdaptableExternalVideoEncoder(
const scoped_refptr<CastEnvironment>& cast_environment,
const FrameSenderConfig& video_config,
const StatusChangeCallback& status_change_cb,
const CreateVideoEncodeAcceleratorCallback& create_vea_cb,
const CreateVideoEncodeMemoryCallback& create_video_encode_memory_cb)
: SizeAdaptableVideoEncoderBase(cast_environment, video_config,
status_change_cb),
create_vea_cb_(create_vea_cb),
create_video_encode_memory_cb_(create_video_encode_memory_cb) {}
SizeAdaptableExternalVideoEncoder::~SizeAdaptableExternalVideoEncoder() {}
std::unique_ptr<VideoEncoder>
SizeAdaptableExternalVideoEncoder::CreateEncoder() {
return std::unique_ptr<VideoEncoder>(new ExternalVideoEncoder(
cast_environment(), video_config(), frame_size(), next_frame_id(),
CreateEncoderStatusChangeCallback(), create_vea_cb_,
create_video_encode_memory_cb_));
}
QuantizerEstimator::QuantizerEstimator() {}
QuantizerEstimator::~QuantizerEstimator() {}
void QuantizerEstimator::Reset() { last_frame_pixel_buffer_.reset(); }
double QuantizerEstimator::EstimateForKeyFrame(const VideoFrame& frame) {
if (!CanExamineFrame(frame)) return NO_RESULT;
// If the size of the frame is different from the last frame, allocate a new
// buffer. The buffer only needs to be a fraction of the size of the entire
// frame, since the entropy analysis only examines a subset of each frame.
const gfx::Size size = frame.visible_rect().size();
const int rows_in_subset =
std::max(1, size.height() * FRAME_SAMPLING_PERCENT / 100);
if (last_frame_size_ != size || !last_frame_pixel_buffer_) {
last_frame_pixel_buffer_.reset(new uint8_t[size.width() * rows_in_subset]);
last_frame_size_ = size;
}
// Compute a histogram where each bucket represents the number of times two
// neighboring pixels were different by a specific amount. 511 buckets are
// needed, one for each integer in the range [-255,255].
int histogram[511];
SbMemorySet(histogram, 0, sizeof(histogram));
const int row_skip = size.height() / rows_in_subset;
int y = 0;
for (int i = 0; i < rows_in_subset; ++i, y += row_skip) {
const uint8_t* const row_begin = frame.visible_data(VideoFrame::kYPlane) +
y * frame.stride(VideoFrame::kYPlane);
const uint8_t* const row_end = row_begin + size.width();
int left_hand_pixel_value = static_cast<int>(*row_begin);
for (const uint8_t* p = row_begin + 1; p < row_end; ++p) {
const int right_hand_pixel_value = static_cast<int>(*p);
const int difference = right_hand_pixel_value - left_hand_pixel_value;
const int histogram_index = difference + 255;
++histogram[histogram_index];
left_hand_pixel_value = right_hand_pixel_value; // For next iteration.
}
// Copy the row of pixels into the buffer. This will be used when
// generating histograms for future delta frames.
SbMemoryCopy(last_frame_pixel_buffer_.get() + i * size.width(), row_begin,
size.width());
}
// Estimate a quantizer value depending on the difference data in the
// histogram and return it.
const int num_samples = (size.width() - 1) * rows_in_subset;
return ToQuantizerEstimate(ComputeEntropyFromHistogram(
histogram, arraysize(histogram), num_samples));
}
double QuantizerEstimator::EstimateForDeltaFrame(const VideoFrame& frame) {
if (!CanExamineFrame(frame)) return NO_RESULT;
// If the size of the |frame| has changed, no difference can be examined.
// In this case, process this frame as if it were a key frame.
const gfx::Size size = frame.visible_rect().size();
if (last_frame_size_ != size || !last_frame_pixel_buffer_)
return EstimateForKeyFrame(frame);
const int rows_in_subset =
std::max(1, size.height() * FRAME_SAMPLING_PERCENT / 100);
// Compute a histogram where each bucket represents the number of times the
// same pixel in this frame versus the last frame was different by a specific
// amount. 511 buckets are needed, one for each integer in the range
// [-255,255].
int histogram[511];
SbMemorySet(histogram, 0, sizeof(histogram));
const int row_skip = size.height() / rows_in_subset;
int y = 0;
for (int i = 0; i < rows_in_subset; ++i, y += row_skip) {
const uint8_t* const row_begin = frame.visible_data(VideoFrame::kYPlane) +
y * frame.stride(VideoFrame::kYPlane);
const uint8_t* const row_end = row_begin + size.width();
uint8_t* const last_frame_row_begin =
last_frame_pixel_buffer_.get() + i * size.width();
for (const uint8_t *p = row_begin, *q = last_frame_row_begin; p < row_end;
++p, ++q) {
const int difference = static_cast<int>(*p) - static_cast<int>(*q);
const int histogram_index = difference + 255;
++histogram[histogram_index];
}
// Copy the row of pixels into the buffer. This will be used when
// generating histograms for future delta frames.
SbMemoryCopy(last_frame_row_begin, row_begin, size.width());
}
// Estimate a quantizer value depending on the difference data in the
// histogram and return it.
const int num_samples = size.width() * rows_in_subset;
return ToQuantizerEstimate(ComputeEntropyFromHistogram(
histogram, arraysize(histogram), num_samples));
}
// static
bool QuantizerEstimator::CanExamineFrame(const VideoFrame& frame) {
DCHECK_EQ(8, VideoFrame::PlaneHorizontalBitsPerPixel(frame.format(),
VideoFrame::kYPlane));
return media::IsYuvPlanar(frame.format()) && !frame.visible_rect().IsEmpty();
}
// static
double QuantizerEstimator::ComputeEntropyFromHistogram(const int* histogram,
size_t num_buckets,
int num_samples) {
#if defined(OS_ANDROID)
// Android does not currently provide a log2() function in their C++ standard
// library. This is a substitute.
const auto log2 = [](double num) -> double {
return log(num) / 0.69314718055994528622676398299518041312694549560546875;
};
#endif
DCHECK_LT(0, num_samples);
double entropy = 0.0;
for (size_t i = 0; i < num_buckets; ++i) {
const double probability = static_cast<double>(histogram[i]) / num_samples;
if (probability > 0.0) entropy = entropy - probability * log2(probability);
}
return entropy;
}
// static
double QuantizerEstimator::ToQuantizerEstimate(double shannon_entropy) {
DCHECK_GE(shannon_entropy, 0.0);
// This math is based on an analysis of data produced by running a wide range
// of mirroring content in a Cast streaming session on a Chromebook Pixel
// (2013 edition). The output from the Pixel's built-in hardware encoder was
// compared to an identically-configured software implementation (libvpx)
// running alongside. Based on an analysis of the data, the following linear
// mapping seems to produce reasonable VP8 quantizer values from the
// |shannon_entropy| values.
//
// TODO(miu): Confirm whether this model and value work well on other
// platforms.
const double kEntropyAtMaxQuantizer = 7.5;
const double slope =
(MAX_VP8_QUANTIZER - MIN_VP8_QUANTIZER) / kEntropyAtMaxQuantizer;
const double quantizer = std::min<double>(
MAX_VP8_QUANTIZER, MIN_VP8_QUANTIZER + slope * shannon_entropy);
return quantizer;
}
} // namespace cast
} // namespace media