| /* |
| ****************************************************************************** |
| * Copyright (C) 2003-2011, International Business Machines Corporation |
| * and others. All Rights Reserved. |
| ****************************************************************************** |
| * |
| * File HEBRWCAL.CPP |
| * |
| * Modification History: |
| * |
| * Date Name Description |
| * 12/03/2003 srl ported from java HebrewCalendar |
| ***************************************************************************** |
| */ |
| |
| #include "hebrwcal.h" |
| |
| #if !UCONFIG_NO_FORMATTING |
| |
| #include "umutex.h" |
| #include <float.h> |
| #include "gregoimp.h" // Math |
| #include "astro.h" // CalendarAstronomer |
| #include "uhash.h" |
| #include "ucln_in.h" |
| |
| // Hebrew Calendar implementation |
| |
| /** |
| * The absolute date, in milliseconds since 1/1/1970 AD, Gregorian, |
| * of the start of the Hebrew calendar. In order to keep this calendar's |
| * time of day in sync with that of the Gregorian calendar, we use |
| * midnight, rather than sunset the day before. |
| */ |
| //static const double EPOCH_MILLIS = -180799862400000.; // 1/1/1 HY |
| |
| static const int32_t LIMITS[UCAL_FIELD_COUNT][4] = { |
| // Minimum Greatest Least Maximum |
| // Minimum Maximum |
| { 0, 0, 0, 0}, // ERA |
| { -5000000, -5000000, 5000000, 5000000}, // YEAR |
| { 0, 0, 12, 12}, // MONTH |
| { 1, 1, 51, 56}, // WEEK_OF_YEAR |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // WEEK_OF_MONTH |
| { 1, 1, 29, 30}, // DAY_OF_MONTH |
| { 1, 1, 353, 385}, // DAY_OF_YEAR |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DAY_OF_WEEK |
| { -1, -1, 5, 5}, // DAY_OF_WEEK_IN_MONTH |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // AM_PM |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR_OF_DAY |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MINUTE |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // SECOND |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECOND |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // ZONE_OFFSET |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DST_OFFSET |
| { -5000000, -5000000, 5000000, 5000000}, // YEAR_WOY |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DOW_LOCAL |
| { -5000000, -5000000, 5000000, 5000000}, // EXTENDED_YEAR |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // JULIAN_DAY |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECONDS_IN_DAY |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // IS_LEAP_MONTH |
| }; |
| |
| /** |
| * The lengths of the Hebrew months. This is complicated, because there |
| * are three different types of years, or six if you count leap years. |
| * Due to the rules for postponing the start of the year to avoid having |
| * certain holidays fall on the sabbath, the year can end up being three |
| * different lengths, called "deficient", "normal", and "complete". |
| */ |
| static const int8_t MONTH_LENGTH[][3] = { |
| // Deficient Normal Complete |
| { 30, 30, 30 }, //Tishri |
| { 29, 29, 30 }, //Heshvan |
| { 29, 30, 30 }, //Kislev |
| { 29, 29, 29 }, //Tevet |
| { 30, 30, 30 }, //Shevat |
| { 30, 30, 30 }, //Adar I (leap years only) |
| { 29, 29, 29 }, //Adar |
| { 30, 30, 30 }, //Nisan |
| { 29, 29, 29 }, //Iyar |
| { 30, 30, 30 }, //Sivan |
| { 29, 29, 29 }, //Tammuz |
| { 30, 30, 30 }, //Av |
| { 29, 29, 29 }, //Elul |
| }; |
| |
| /** |
| * The cumulative # of days to the end of each month in a non-leap year |
| * Although this can be calculated from the MONTH_LENGTH table, |
| * keeping it around separately makes some calculations a lot faster |
| */ |
| |
| static const int16_t MONTH_START[][3] = { |
| // Deficient Normal Complete |
| { 0, 0, 0 }, // (placeholder) |
| { 30, 30, 30 }, // Tishri |
| { 59, 59, 60 }, // Heshvan |
| { 88, 89, 90 }, // Kislev |
| { 117, 118, 119 }, // Tevet |
| { 147, 148, 149 }, // Shevat |
| { 147, 148, 149 }, // (Adar I placeholder) |
| { 176, 177, 178 }, // Adar |
| { 206, 207, 208 }, // Nisan |
| { 235, 236, 237 }, // Iyar |
| { 265, 266, 267 }, // Sivan |
| { 294, 295, 296 }, // Tammuz |
| { 324, 325, 326 }, // Av |
| { 353, 354, 355 }, // Elul |
| }; |
| |
| /** |
| * The cumulative # of days to the end of each month in a leap year |
| */ |
| static const int16_t LEAP_MONTH_START[][3] = { |
| // Deficient Normal Complete |
| { 0, 0, 0 }, // (placeholder) |
| { 30, 30, 30 }, // Tishri |
| { 59, 59, 60 }, // Heshvan |
| { 88, 89, 90 }, // Kislev |
| { 117, 118, 119 }, // Tevet |
| { 147, 148, 149 }, // Shevat |
| { 177, 178, 179 }, // Adar I |
| { 206, 207, 208 }, // Adar II |
| { 236, 237, 238 }, // Nisan |
| { 265, 266, 267 }, // Iyar |
| { 295, 296, 297 }, // Sivan |
| { 324, 325, 326 }, // Tammuz |
| { 354, 355, 356 }, // Av |
| { 383, 384, 385 }, // Elul |
| }; |
| |
| static icu::CalendarCache *gCache = NULL; |
| |
| U_CDECL_BEGIN |
| static UBool calendar_hebrew_cleanup(void) { |
| delete gCache; |
| gCache = NULL; |
| return TRUE; |
| } |
| U_CDECL_END |
| |
| U_NAMESPACE_BEGIN |
| //------------------------------------------------------------------------- |
| // Constructors... |
| //------------------------------------------------------------------------- |
| |
| /** |
| * Constructs a default <code>HebrewCalendar</code> using the current time |
| * in the default time zone with the default locale. |
| * @internal |
| */ |
| HebrewCalendar::HebrewCalendar(const Locale& aLocale, UErrorCode& success) |
| : Calendar(TimeZone::createDefault(), aLocale, success) |
| |
| { |
| setTimeInMillis(getNow(), success); // Call this again now that the vtable is set up properly. |
| } |
| |
| |
| HebrewCalendar::~HebrewCalendar() { |
| } |
| |
| const char *HebrewCalendar::getType() const { |
| return "hebrew"; |
| } |
| |
| Calendar* HebrewCalendar::clone() const { |
| return new HebrewCalendar(*this); |
| } |
| |
| HebrewCalendar::HebrewCalendar(const HebrewCalendar& other) : Calendar(other) { |
| } |
| |
| |
| //------------------------------------------------------------------------- |
| // Rolling and adding functions overridden from Calendar |
| // |
| // These methods call through to the default implementation in IBMCalendar |
| // for most of the fields and only handle the unusual ones themselves. |
| //------------------------------------------------------------------------- |
| |
| /** |
| * Add a signed amount to a specified field, using this calendar's rules. |
| * For example, to add three days to the current date, you can call |
| * <code>add(Calendar.DATE, 3)</code>. |
| * <p> |
| * When adding to certain fields, the values of other fields may conflict and |
| * need to be changed. For example, when adding one to the {@link #MONTH MONTH} field |
| * for the date "30 Av 5758", the {@link #DAY_OF_MONTH DAY_OF_MONTH} field |
| * must be adjusted so that the result is "29 Elul 5758" rather than the invalid |
| * "30 Elul 5758". |
| * <p> |
| * This method is able to add to |
| * all fields except for {@link #ERA ERA}, {@link #DST_OFFSET DST_OFFSET}, |
| * and {@link #ZONE_OFFSET ZONE_OFFSET}. |
| * <p> |
| * <b>Note:</b> You should always use {@link #roll roll} and add rather |
| * than attempting to perform arithmetic operations directly on the fields |
| * of a <tt>HebrewCalendar</tt>. Since the {@link #MONTH MONTH} field behaves |
| * discontinuously in non-leap years, simple arithmetic can give invalid results. |
| * <p> |
| * @param field the time field. |
| * @param amount the amount to add to the field. |
| * |
| * @exception IllegalArgumentException if the field is invalid or refers |
| * to a field that cannot be handled by this method. |
| * @internal |
| */ |
| void HebrewCalendar::add(UCalendarDateFields field, int32_t amount, UErrorCode& status) |
| { |
| if(U_FAILURE(status)) { |
| return; |
| } |
| switch (field) { |
| case UCAL_MONTH: |
| { |
| // We can't just do a set(MONTH, get(MONTH) + amount). The |
| // reason is ADAR_1. Suppose amount is +2 and we land in |
| // ADAR_1 -- then we have to bump to ADAR_2 aka ADAR. But |
| // if amount is -2 and we land in ADAR_1, then we have to |
| // bump the other way -- down to SHEVAT. - Alan 11/00 |
| int32_t month = get(UCAL_MONTH, status); |
| int32_t year = get(UCAL_YEAR, status); |
| UBool acrossAdar1; |
| if (amount > 0) { |
| acrossAdar1 = (month < ADAR_1); // started before ADAR_1? |
| month += amount; |
| for (;;) { |
| if (acrossAdar1 && month>=ADAR_1 && !isLeapYear(year)) { |
| ++month; |
| } |
| if (month <= ELUL) { |
| break; |
| } |
| month -= ELUL+1; |
| ++year; |
| acrossAdar1 = TRUE; |
| } |
| } else { |
| acrossAdar1 = (month > ADAR_1); // started after ADAR_1? |
| month += amount; |
| for (;;) { |
| if (acrossAdar1 && month<=ADAR_1 && !isLeapYear(year)) { |
| --month; |
| } |
| if (month >= 0) { |
| break; |
| } |
| month += ELUL+1; |
| --year; |
| acrossAdar1 = TRUE; |
| } |
| } |
| set(UCAL_MONTH, month); |
| set(UCAL_YEAR, year); |
| pinField(UCAL_DAY_OF_MONTH, status); |
| break; |
| } |
| |
| default: |
| Calendar::add(field, amount, status); |
| break; |
| } |
| } |
| |
| /** |
| * @deprecated ICU 2.6 use UCalendarDateFields instead of EDateFields |
| */ |
| void HebrewCalendar::add(EDateFields field, int32_t amount, UErrorCode& status) |
| { |
| add((UCalendarDateFields)field, amount, status); |
| } |
| |
| /** |
| * Rolls (up/down) a specified amount time on the given field. For |
| * example, to roll the current date up by three days, you can call |
| * <code>roll(Calendar.DATE, 3)</code>. If the |
| * field is rolled past its maximum allowable value, it will "wrap" back |
| * to its minimum and continue rolling. |
| * For example, calling <code>roll(Calendar.DATE, 10)</code> |
| * on a Hebrew calendar set to "25 Av 5758" will result in the date "5 Av 5758". |
| * <p> |
| * When rolling certain fields, the values of other fields may conflict and |
| * need to be changed. For example, when rolling the {@link #MONTH MONTH} field |
| * upward by one for the date "30 Av 5758", the {@link #DAY_OF_MONTH DAY_OF_MONTH} field |
| * must be adjusted so that the result is "29 Elul 5758" rather than the invalid |
| * "30 Elul". |
| * <p> |
| * This method is able to roll |
| * all fields except for {@link #ERA ERA}, {@link #DST_OFFSET DST_OFFSET}, |
| * and {@link #ZONE_OFFSET ZONE_OFFSET}. Subclasses may, of course, add support for |
| * additional fields in their overrides of <code>roll</code>. |
| * <p> |
| * <b>Note:</b> You should always use roll and {@link #add add} rather |
| * than attempting to perform arithmetic operations directly on the fields |
| * of a <tt>HebrewCalendar</tt>. Since the {@link #MONTH MONTH} field behaves |
| * discontinuously in non-leap years, simple arithmetic can give invalid results. |
| * <p> |
| * @param field the time field. |
| * @param amount the amount by which the field should be rolled. |
| * |
| * @exception IllegalArgumentException if the field is invalid or refers |
| * to a field that cannot be handled by this method. |
| * @internal |
| */ |
| void HebrewCalendar::roll(UCalendarDateFields field, int32_t amount, UErrorCode& status) |
| { |
| if(U_FAILURE(status)) { |
| return; |
| } |
| switch (field) { |
| case UCAL_MONTH: |
| { |
| int32_t month = get(UCAL_MONTH, status); |
| int32_t year = get(UCAL_YEAR, status); |
| |
| UBool leapYear = isLeapYear(year); |
| int32_t yearLength = monthsInYear(year); |
| int32_t newMonth = month + (amount % yearLength); |
| // |
| // If it's not a leap year and we're rolling past the missing month |
| // of ADAR_1, we need to roll an extra month to make up for it. |
| // |
| if (!leapYear) { |
| if (amount > 0 && month < ADAR_1 && newMonth >= ADAR_1) { |
| newMonth++; |
| } else if (amount < 0 && month > ADAR_1 && newMonth <= ADAR_1) { |
| newMonth--; |
| } |
| } |
| set(UCAL_MONTH, (newMonth + 13) % 13); |
| pinField(UCAL_DAY_OF_MONTH, status); |
| return; |
| } |
| default: |
| Calendar::roll(field, amount, status); |
| } |
| } |
| |
| void HebrewCalendar::roll(EDateFields field, int32_t amount, UErrorCode& status) { |
| roll((UCalendarDateFields)field, amount, status); |
| } |
| |
| //------------------------------------------------------------------------- |
| // Support methods |
| //------------------------------------------------------------------------- |
| |
| // Hebrew date calculations are performed in terms of days, hours, and |
| // "parts" (or halakim), which are 1/1080 of an hour, or 3 1/3 seconds. |
| static const int32_t HOUR_PARTS = 1080; |
| static const int32_t DAY_PARTS = 24*HOUR_PARTS; |
| |
| // An approximate value for the length of a lunar month. |
| // It is used to calculate the approximate year and month of a given |
| // absolute date. |
| static const int32_t MONTH_DAYS = 29; |
| static const int32_t MONTH_FRACT = 12*HOUR_PARTS + 793; |
| static const int32_t MONTH_PARTS = MONTH_DAYS*DAY_PARTS + MONTH_FRACT; |
| |
| // The time of the new moon (in parts) on 1 Tishri, year 1 (the epoch) |
| // counting from noon on the day before. BAHARAD is an abbreviation of |
| // Bet (Monday), Hey (5 hours from sunset), Resh-Daled (204). |
| static const int32_t BAHARAD = 11*HOUR_PARTS + 204; |
| |
| /** |
| * Finds the day # of the first day in the given Hebrew year. |
| * To do this, we want to calculate the time of the Tishri 1 new moon |
| * in that year. |
| * <p> |
| * The algorithm here is similar to ones described in a number of |
| * references, including: |
| * <ul> |
| * <li>"Calendrical Calculations", by Nachum Dershowitz & Edward Reingold, |
| * Cambridge University Press, 1997, pages 85-91. |
| * |
| * <li>Hebrew Calendar Science and Myths, |
| * <a href="http://www.geocities.com/Athens/1584/"> |
| * http://www.geocities.com/Athens/1584/</a> |
| * |
| * <li>The Calendar FAQ, |
| * <a href="http://www.faqs.org/faqs/calendars/faq/"> |
| * http://www.faqs.org/faqs/calendars/faq/</a> |
| * </ul> |
| */ |
| int32_t HebrewCalendar::startOfYear(int32_t year, UErrorCode &status) |
| { |
| ucln_i18n_registerCleanup(UCLN_I18N_HEBREW_CALENDAR, calendar_hebrew_cleanup); |
| int32_t day = CalendarCache::get(&gCache, year, status); |
| |
| if (day == 0) { |
| int32_t months = (235 * year - 234) / 19; // # of months before year |
| |
| int64_t frac = (int64_t)months * MONTH_FRACT + BAHARAD; // Fractional part of day # |
| day = months * 29 + (int32_t)(frac / DAY_PARTS); // Whole # part of calculation |
| frac = frac % DAY_PARTS; // Time of day |
| |
| int32_t wd = (day % 7); // Day of week (0 == Monday) |
| |
| if (wd == 2 || wd == 4 || wd == 6) { |
| // If the 1st is on Sun, Wed, or Fri, postpone to the next day |
| day += 1; |
| wd = (day % 7); |
| } |
| if (wd == 1 && frac > 15*HOUR_PARTS+204 && !isLeapYear(year) ) { |
| // If the new moon falls after 3:11:20am (15h204p from the previous noon) |
| // on a Tuesday and it is not a leap year, postpone by 2 days. |
| // This prevents 356-day years. |
| day += 2; |
| } |
| else if (wd == 0 && frac > 21*HOUR_PARTS+589 && isLeapYear(year-1) ) { |
| // If the new moon falls after 9:32:43 1/3am (21h589p from yesterday noon) |
| // on a Monday and *last* year was a leap year, postpone by 1 day. |
| // Prevents 382-day years. |
| day += 1; |
| } |
| CalendarCache::put(&gCache, year, day, status); |
| } |
| return day; |
| } |
| |
| /** |
| * Find the day of the week for a given day |
| * |
| * @param day The # of days since the start of the Hebrew calendar, |
| * 1-based (i.e. 1/1/1 AM is day 1). |
| */ |
| int32_t HebrewCalendar::absoluteDayToDayOfWeek(int32_t day) |
| { |
| // We know that 1/1/1 AM is a Monday, which makes the math easy... |
| return (day % 7) + 1; |
| } |
| |
| /** |
| * Returns the the type of a given year. |
| * 0 "Deficient" year with 353 or 383 days |
| * 1 "Normal" year with 354 or 384 days |
| * 2 "Complete" year with 355 or 385 days |
| */ |
| int32_t HebrewCalendar::yearType(int32_t year) const |
| { |
| int32_t yearLength = handleGetYearLength(year); |
| |
| if (yearLength > 380) { |
| yearLength -= 30; // Subtract length of leap month. |
| } |
| |
| int type = 0; |
| |
| switch (yearLength) { |
| case 353: |
| type = 0; break; |
| case 354: |
| type = 1; break; |
| case 355: |
| type = 2; break; |
| default: |
| //throw new RuntimeException("Illegal year length " + yearLength + " in year " + year); |
| type = 1; |
| } |
| return type; |
| } |
| |
| /** |
| * Determine whether a given Hebrew year is a leap year |
| * |
| * The rule here is that if (year % 19) == 0, 3, 6, 8, 11, 14, or 17. |
| * The formula below performs the same test, believe it or not. |
| */ |
| UBool HebrewCalendar::isLeapYear(int32_t year) { |
| //return (year * 12 + 17) % 19 >= 12; |
| int32_t x = (year*12 + 17) % 19; |
| return x >= ((x < 0) ? -7 : 12); |
| } |
| |
| int32_t HebrewCalendar::monthsInYear(int32_t year) { |
| return isLeapYear(year) ? 13 : 12; |
| } |
| |
| //------------------------------------------------------------------------- |
| // Calendar framework |
| //------------------------------------------------------------------------- |
| |
| /** |
| * @internal |
| */ |
| int32_t HebrewCalendar::handleGetLimit(UCalendarDateFields field, ELimitType limitType) const { |
| return LIMITS[field][limitType]; |
| } |
| |
| /** |
| * Returns the length of the given month in the given year |
| * @internal |
| */ |
| int32_t HebrewCalendar::handleGetMonthLength(int32_t extendedYear, int32_t month) const { |
| // Resolve out-of-range months. This is necessary in order to |
| // obtain the correct year. We correct to |
| // a 12- or 13-month year (add/subtract 12 or 13, depending |
| // on the year) but since we _always_ number from 0..12, and |
| // the leap year determines whether or not month 5 (Adar 1) |
| // is present, we allow 0..12 in any given year. |
| while (month < 0) { |
| month += monthsInYear(--extendedYear); |
| } |
| // Careful: allow 0..12 in all years |
| while (month > 12) { |
| month -= monthsInYear(extendedYear++); |
| } |
| |
| switch (month) { |
| case HESHVAN: |
| case KISLEV: |
| // These two month lengths can vary |
| return MONTH_LENGTH[month][yearType(extendedYear)]; |
| |
| default: |
| // The rest are a fixed length |
| return MONTH_LENGTH[month][0]; |
| } |
| } |
| |
| /** |
| * Returns the number of days in the given Hebrew year |
| * @internal |
| */ |
| int32_t HebrewCalendar::handleGetYearLength(int32_t eyear) const { |
| UErrorCode status = U_ZERO_ERROR; |
| return startOfYear(eyear+1, status) - startOfYear(eyear, status); |
| } |
| |
| //------------------------------------------------------------------------- |
| // Functions for converting from milliseconds to field values |
| //------------------------------------------------------------------------- |
| |
| /** |
| * Subclasses may override this method to compute several fields |
| * specific to each calendar system. These are: |
| * |
| * <ul><li>ERA |
| * <li>YEAR |
| * <li>MONTH |
| * <li>DAY_OF_MONTH |
| * <li>DAY_OF_YEAR |
| * <li>EXTENDED_YEAR</ul> |
| * |
| * Subclasses can refer to the DAY_OF_WEEK and DOW_LOCAL fields, |
| * which will be set when this method is called. Subclasses can |
| * also call the getGregorianXxx() methods to obtain Gregorian |
| * calendar equivalents for the given Julian day. |
| * |
| * <p>In addition, subclasses should compute any subclass-specific |
| * fields, that is, fields from BASE_FIELD_COUNT to |
| * getFieldCount() - 1. |
| * @internal |
| */ |
| void HebrewCalendar::handleComputeFields(int32_t julianDay, UErrorCode &status) { |
| int32_t d = julianDay - 347997; |
| double m = ((d * (double)DAY_PARTS)/ (double) MONTH_PARTS); // Months (approx) |
| int32_t year = (int32_t)( ((19. * m + 234.) / 235.) + 1.); // Years (approx) |
| int32_t ys = startOfYear(year, status); // 1st day of year |
| int32_t dayOfYear = (d - ys); |
| |
| // Because of the postponement rules, it's possible to guess wrong. Fix it. |
| while (dayOfYear < 1) { |
| year--; |
| ys = startOfYear(year, status); |
| dayOfYear = (d - ys); |
| } |
| |
| // Now figure out which month we're in, and the date within that month |
| int32_t type = yearType(year); |
| UBool isLeap = isLeapYear(year); |
| |
| int32_t month = 0; |
| int32_t momax = sizeof(MONTH_START) / (3 * sizeof(MONTH_START[0][0])); |
| while (month < momax && dayOfYear > ( isLeap ? LEAP_MONTH_START[month][type] : MONTH_START[month][type] ) ) { |
| month++; |
| } |
| if (month >= momax || month<=0) { |
| // TODO: I found dayOfYear could be out of range when |
| // a large value is set to julianDay. I patched startOfYear |
| // to reduce the chace, but it could be still reproduced either |
| // by startOfYear or other places. For now, we check |
| // the month is in valid range to avoid out of array index |
| // access problem here. However, we need to carefully review |
| // the calendar implementation to check the extreme limit of |
| // each calendar field and the code works well for any values |
| // in the valid value range. -yoshito |
| status = U_ILLEGAL_ARGUMENT_ERROR; |
| return; |
| } |
| month--; |
| int dayOfMonth = dayOfYear - (isLeap ? LEAP_MONTH_START[month][type] : MONTH_START[month][type]); |
| |
| internalSet(UCAL_ERA, 0); |
| internalSet(UCAL_YEAR, year); |
| internalSet(UCAL_EXTENDED_YEAR, year); |
| internalSet(UCAL_MONTH, month); |
| internalSet(UCAL_DAY_OF_MONTH, dayOfMonth); |
| internalSet(UCAL_DAY_OF_YEAR, dayOfYear); |
| } |
| |
| //------------------------------------------------------------------------- |
| // Functions for converting from field values to milliseconds |
| //------------------------------------------------------------------------- |
| |
| /** |
| * @internal |
| */ |
| int32_t HebrewCalendar::handleGetExtendedYear() { |
| int32_t year; |
| if (newerField(UCAL_EXTENDED_YEAR, UCAL_YEAR) == UCAL_EXTENDED_YEAR) { |
| year = internalGet(UCAL_EXTENDED_YEAR, 1); // Default to year 1 |
| } else { |
| year = internalGet(UCAL_YEAR, 1); // Default to year 1 |
| } |
| return year; |
| } |
| |
| /** |
| * Return JD of start of given month/year. |
| * @internal |
| */ |
| int32_t HebrewCalendar::handleComputeMonthStart(int32_t eyear, int32_t month, UBool /*useMonth*/) const { |
| UErrorCode status = U_ZERO_ERROR; |
| // Resolve out-of-range months. This is necessary in order to |
| // obtain the correct year. We correct to |
| // a 12- or 13-month year (add/subtract 12 or 13, depending |
| // on the year) but since we _always_ number from 0..12, and |
| // the leap year determines whether or not month 5 (Adar 1) |
| // is present, we allow 0..12 in any given year. |
| while (month < 0) { |
| month += monthsInYear(--eyear); |
| } |
| // Careful: allow 0..12 in all years |
| while (month > 12) { |
| month -= monthsInYear(eyear++); |
| } |
| |
| int32_t day = startOfYear(eyear, status); |
| |
| if(U_FAILURE(status)) { |
| return 0; |
| } |
| |
| if (month != 0) { |
| if (isLeapYear(eyear)) { |
| day += LEAP_MONTH_START[month][yearType(eyear)]; |
| } else { |
| day += MONTH_START[month][yearType(eyear)]; |
| } |
| } |
| |
| return (int) (day + 347997); |
| } |
| |
| UBool |
| HebrewCalendar::inDaylightTime(UErrorCode& status) const |
| { |
| // copied from GregorianCalendar |
| if (U_FAILURE(status) || !getTimeZone().useDaylightTime()) |
| return FALSE; |
| |
| // Force an update of the state of the Calendar. |
| ((HebrewCalendar*)this)->complete(status); // cast away const |
| |
| return (UBool)(U_SUCCESS(status) ? (internalGet(UCAL_DST_OFFSET) != 0) : FALSE); |
| } |
| |
| // default century |
| const UDate HebrewCalendar::fgSystemDefaultCentury = DBL_MIN; |
| const int32_t HebrewCalendar::fgSystemDefaultCenturyYear = -1; |
| |
| UDate HebrewCalendar::fgSystemDefaultCenturyStart = DBL_MIN; |
| int32_t HebrewCalendar::fgSystemDefaultCenturyStartYear = -1; |
| |
| |
| UBool HebrewCalendar::haveDefaultCentury() const |
| { |
| return TRUE; |
| } |
| |
| UDate HebrewCalendar::defaultCenturyStart() const |
| { |
| return internalGetDefaultCenturyStart(); |
| } |
| |
| int32_t HebrewCalendar::defaultCenturyStartYear() const |
| { |
| return internalGetDefaultCenturyStartYear(); |
| } |
| |
| UDate |
| HebrewCalendar::internalGetDefaultCenturyStart() const |
| { |
| // lazy-evaluate systemDefaultCenturyStart |
| UBool needsUpdate; |
| UMTX_CHECK(NULL, (fgSystemDefaultCenturyStart == fgSystemDefaultCentury), needsUpdate); |
| |
| if (needsUpdate) { |
| initializeSystemDefaultCentury(); |
| } |
| |
| // use defaultCenturyStart unless it's the flag value; |
| // then use systemDefaultCenturyStart |
| |
| return fgSystemDefaultCenturyStart; |
| } |
| |
| int32_t |
| HebrewCalendar::internalGetDefaultCenturyStartYear() const |
| { |
| // lazy-evaluate systemDefaultCenturyStartYear |
| UBool needsUpdate; |
| UMTX_CHECK(NULL, (fgSystemDefaultCenturyStart == fgSystemDefaultCentury), needsUpdate); |
| |
| if (needsUpdate) { |
| initializeSystemDefaultCentury(); |
| } |
| |
| // use defaultCenturyStart unless it's the flag value; |
| // then use systemDefaultCenturyStartYear |
| |
| return fgSystemDefaultCenturyStartYear; |
| } |
| |
| void |
| HebrewCalendar::initializeSystemDefaultCentury() |
| { |
| // initialize systemDefaultCentury and systemDefaultCenturyYear based |
| // on the current time. They'll be set to 80 years before |
| // the current time. |
| UErrorCode status = U_ZERO_ERROR; |
| HebrewCalendar calendar(Locale("@calendar=hebrew"),status); |
| if (U_SUCCESS(status)) |
| { |
| calendar.setTime(Calendar::getNow(), status); |
| calendar.add(UCAL_YEAR, -80, status); |
| UDate newStart = calendar.getTime(status); |
| int32_t newYear = calendar.get(UCAL_YEAR, status); |
| umtx_lock(NULL); |
| if (fgSystemDefaultCenturyStart == fgSystemDefaultCentury) { |
| fgSystemDefaultCenturyStartYear = newYear; |
| fgSystemDefaultCenturyStart = newStart; |
| } |
| umtx_unlock(NULL); |
| } |
| // We have no recourse upon failure unless we want to propagate the failure |
| // out. |
| } |
| |
| UOBJECT_DEFINE_RTTI_IMPLEMENTATION(HebrewCalendar) |
| |
| U_NAMESPACE_END |
| |
| #endif // UCONFIG_NO_FORMATTING |
| |