| // Copyright 2019 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "media/learning/impl/learning_task_controller_helper.h" |
| |
| #include <memory> |
| #include <utility> |
| |
| #include "base/bind.h" |
| #include "base/threading/sequenced_task_runner_handle.h" |
| |
| namespace media { |
| namespace learning { |
| |
| LearningTaskControllerHelper::LearningTaskControllerHelper( |
| const LearningTask& task, |
| AddExampleCB add_example_cb, |
| SequenceBoundFeatureProvider feature_provider) |
| : task_(task), |
| feature_provider_(std::move(feature_provider)), |
| task_runner_(base::SequencedTaskRunnerHandle::Get()), |
| add_example_cb_(std::move(add_example_cb)) {} |
| |
| LearningTaskControllerHelper::~LearningTaskControllerHelper() = default; |
| |
| void LearningTaskControllerHelper::BeginObservation( |
| base::UnguessableToken id, |
| FeatureVector features, |
| absl::optional<ukm::SourceId> source_id) { |
| auto& pending_example = pending_examples_[id]; |
| |
| if (source_id) |
| pending_example.source_id = *source_id; |
| |
| // Start feature prediction, so that we capture the current values. |
| if (!feature_provider_.is_null()) { |
| // TODO(dcheng): Convert this to use Then() helper. |
| feature_provider_.AsyncCall(&FeatureProvider::AddFeatures) |
| .WithArgs(std::move(features), |
| base::BindOnce( |
| &LearningTaskControllerHelper::OnFeaturesReadyTrampoline, |
| task_runner_, AsWeakPtr(), id)); |
| } else { |
| pending_example.example.features = std::move(features); |
| pending_example.features_done = true; |
| } |
| } |
| |
| void LearningTaskControllerHelper::CompleteObservation( |
| base::UnguessableToken id, |
| const ObservationCompletion& completion) { |
| auto iter = pending_examples_.find(id); |
| if (iter == pending_examples_.end()) |
| return; |
| |
| iter->second.example.target_value = completion.target_value; |
| iter->second.example.weight = completion.weight; |
| iter->second.target_done = true; |
| ProcessExampleIfFinished(std::move(iter)); |
| } |
| |
| void LearningTaskControllerHelper::CancelObservation( |
| base::UnguessableToken id) { |
| auto iter = pending_examples_.find(id); |
| if (iter == pending_examples_.end()) |
| return; |
| |
| // This would have to check for pending predictions, if we supported them, and |
| // defer destruction until the features arrive. |
| pending_examples_.erase(iter); |
| } |
| |
| // static |
| void LearningTaskControllerHelper::OnFeaturesReadyTrampoline( |
| scoped_refptr<base::SequencedTaskRunner> task_runner, |
| base::WeakPtr<LearningTaskControllerHelper> weak_this, |
| base::UnguessableToken id, |
| FeatureVector features) { |
| // TODO(liberato): this would benefit from promises / deferred data. |
| auto cb = base::BindOnce(&LearningTaskControllerHelper::OnFeaturesReady, |
| std::move(weak_this), id, std::move(features)); |
| if (!task_runner->RunsTasksInCurrentSequence()) { |
| task_runner->PostTask(FROM_HERE, std::move(cb)); |
| } else { |
| std::move(cb).Run(); |
| } |
| } |
| |
| void LearningTaskControllerHelper::OnFeaturesReady(base::UnguessableToken id, |
| FeatureVector features) { |
| PendingExampleMap::iterator iter = pending_examples_.find(id); |
| // It's possible that OnLabelCallbackDestroyed has already run. That's okay |
| // since we don't support prediction right now. |
| if (iter == pending_examples_.end()) |
| return; |
| |
| iter->second.example.features = std::move(features); |
| iter->second.features_done = true; |
| ProcessExampleIfFinished(std::move(iter)); |
| } |
| |
| void LearningTaskControllerHelper::ProcessExampleIfFinished( |
| PendingExampleMap::iterator iter) { |
| if (!iter->second.features_done || !iter->second.target_done) |
| return; |
| |
| add_example_cb_.Run(std::move(iter->second.example), iter->second.source_id); |
| pending_examples_.erase(iter); |
| |
| // TODO(liberato): If we receive FeatureVector f1 then f2, and start filling |
| // in features for a prediction, and if features become available in the order |
| // f2, f1, and we receive a target value for f2 before f1's features are |
| // complete, should we insist on deferring training with f2 until we start |
| // prediction on f1? I suppose that we could just insist that features are |
| // provided in the same order they're received, and it's automatic. |
| } |
| |
| } // namespace learning |
| } // namespace media |