| //===- ScopDetection.h - Detect Scops ---------------------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Detect the maximal Scops of a function. |
| // |
| // A static control part (Scop) is a subgraph of the control flow graph (CFG) |
| // that only has statically known control flow and can therefore be described |
| // within the polyhedral model. |
| // |
| // Every Scop fulfills these restrictions: |
| // |
| // * It is a single entry single exit region |
| // |
| // * Only affine linear bounds in the loops |
| // |
| // Every natural loop in a Scop must have a number of loop iterations that can |
| // be described as an affine linear function in surrounding loop iterators or |
| // parameters. (A parameter is a scalar that does not change its value during |
| // execution of the Scop). |
| // |
| // * Only comparisons of affine linear expressions in conditions |
| // |
| // * All loops and conditions perfectly nested |
| // |
| // The control flow needs to be structured such that it could be written using |
| // just 'for' and 'if' statements, without the need for any 'goto', 'break' or |
| // 'continue'. |
| // |
| // * Side effect free functions call |
| // |
| // Only function calls and intrinsics that do not have side effects are allowed |
| // (readnone). |
| // |
| // The Scop detection finds the largest Scops by checking if the largest |
| // region is a Scop. If this is not the case, its canonical subregions are |
| // checked until a region is a Scop. It is now tried to extend this Scop by |
| // creating a larger non canonical region. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef POLLY_SCOPDETECTION_H |
| #define POLLY_SCOPDETECTION_H |
| |
| #include "polly/ScopDetectionDiagnostic.h" |
| #include "polly/Support/ScopHelper.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/AliasSetTracker.h" |
| #include "llvm/Analysis/RegionInfo.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Pass.h" |
| #include <algorithm> |
| #include <map> |
| #include <memory> |
| #include <set> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| namespace llvm { |
| |
| class BasicBlock; |
| class BranchInst; |
| class CallInst; |
| class DebugLoc; |
| class DominatorTree; |
| class Function; |
| class Instruction; |
| class IntrinsicInst; |
| class Loop; |
| class LoopInfo; |
| class OptimizationRemarkEmitter; |
| class PassRegistry; |
| class raw_ostream; |
| class ScalarEvolution; |
| class SCEV; |
| class SCEVUnknown; |
| class SwitchInst; |
| class Value; |
| |
| void initializeScopDetectionWrapperPassPass(PassRegistry &); |
| } // namespace llvm |
| |
| namespace polly { |
| |
| using ParamSetType = std::set<const SCEV *>; |
| |
| // Description of the shape of an array. |
| struct ArrayShape { |
| // Base pointer identifying all accesses to this array. |
| const SCEVUnknown *BasePointer; |
| |
| // Sizes of each delinearized dimension. |
| SmallVector<const SCEV *, 4> DelinearizedSizes; |
| |
| ArrayShape(const SCEVUnknown *B) : BasePointer(B) {} |
| }; |
| |
| struct MemAcc { |
| const Instruction *Insn; |
| |
| // A pointer to the shape description of the array. |
| std::shared_ptr<ArrayShape> Shape; |
| |
| // Subscripts computed by delinearization. |
| SmallVector<const SCEV *, 4> DelinearizedSubscripts; |
| |
| MemAcc(const Instruction *I, std::shared_ptr<ArrayShape> S) |
| : Insn(I), Shape(S) {} |
| }; |
| |
| using MapInsnToMemAcc = std::map<const Instruction *, MemAcc>; |
| using PairInstSCEV = std::pair<const Instruction *, const SCEV *>; |
| using AFs = std::vector<PairInstSCEV>; |
| using BaseToAFs = std::map<const SCEVUnknown *, AFs>; |
| using BaseToElSize = std::map<const SCEVUnknown *, const SCEV *>; |
| |
| extern bool PollyTrackFailures; |
| extern bool PollyDelinearize; |
| extern bool PollyUseRuntimeAliasChecks; |
| extern bool PollyProcessUnprofitable; |
| extern bool PollyInvariantLoadHoisting; |
| extern bool PollyAllowUnsignedOperations; |
| extern bool PollyAllowFullFunction; |
| |
| /// A function attribute which will cause Polly to skip the function |
| extern StringRef PollySkipFnAttr; |
| |
| //===----------------------------------------------------------------------===// |
| /// Pass to detect the maximal static control parts (Scops) of a |
| /// function. |
| class ScopDetection { |
| public: |
| using RegionSet = SetVector<const Region *>; |
| |
| // Remember the valid regions |
| RegionSet ValidRegions; |
| |
| /// Context variables for SCoP detection. |
| struct DetectionContext { |
| Region &CurRegion; // The region to check. |
| AliasSetTracker AST; // The AliasSetTracker to hold the alias information. |
| bool Verifying; // If we are in the verification phase? |
| |
| /// Container to remember rejection reasons for this region. |
| RejectLog Log; |
| |
| /// Map a base pointer to all access functions accessing it. |
| /// |
| /// This map is indexed by the base pointer. Each element of the map |
| /// is a list of memory accesses that reference this base pointer. |
| BaseToAFs Accesses; |
| |
| /// The set of base pointers with non-affine accesses. |
| /// |
| /// This set contains all base pointers and the locations where they are |
| /// used for memory accesses that can not be detected as affine accesses. |
| SetVector<std::pair<const SCEVUnknown *, Loop *>> NonAffineAccesses; |
| BaseToElSize ElementSize; |
| |
| /// The region has at least one load instruction. |
| bool hasLoads = false; |
| |
| /// The region has at least one store instruction. |
| bool hasStores = false; |
| |
| /// Flag to indicate the region has at least one unknown access. |
| bool HasUnknownAccess = false; |
| |
| /// The set of non-affine subregions in the region we analyze. |
| RegionSet NonAffineSubRegionSet; |
| |
| /// The set of loops contained in non-affine regions. |
| BoxedLoopsSetTy BoxedLoopsSet; |
| |
| /// Loads that need to be invariant during execution. |
| InvariantLoadsSetTy RequiredILS; |
| |
| /// Map to memory access description for the corresponding LLVM |
| /// instructions. |
| MapInsnToMemAcc InsnToMemAcc; |
| |
| /// Initialize a DetectionContext from scratch. |
| DetectionContext(Region &R, AliasAnalysis &AA, bool Verify) |
| : CurRegion(R), AST(AA), Verifying(Verify), Log(&R) {} |
| |
| /// Initialize a DetectionContext with the data from @p DC. |
| DetectionContext(const DetectionContext &&DC) |
| : CurRegion(DC.CurRegion), AST(DC.AST.getAliasAnalysis()), |
| Verifying(DC.Verifying), Log(std::move(DC.Log)), |
| Accesses(std::move(DC.Accesses)), |
| NonAffineAccesses(std::move(DC.NonAffineAccesses)), |
| ElementSize(std::move(DC.ElementSize)), hasLoads(DC.hasLoads), |
| hasStores(DC.hasStores), HasUnknownAccess(DC.HasUnknownAccess), |
| NonAffineSubRegionSet(std::move(DC.NonAffineSubRegionSet)), |
| BoxedLoopsSet(std::move(DC.BoxedLoopsSet)), |
| RequiredILS(std::move(DC.RequiredILS)) { |
| AST.add(DC.AST); |
| } |
| }; |
| |
| /// Helper data structure to collect statistics about loop counts. |
| struct LoopStats { |
| int NumLoops; |
| int MaxDepth; |
| }; |
| |
| private: |
| //===--------------------------------------------------------------------===// |
| |
| /// Analyses used |
| //@{ |
| const DominatorTree &DT; |
| ScalarEvolution &SE; |
| LoopInfo &LI; |
| RegionInfo &RI; |
| AliasAnalysis &AA; |
| //@} |
| |
| /// Map to remember detection contexts for all regions. |
| using DetectionContextMapTy = DenseMap<BBPair, DetectionContext>; |
| mutable DetectionContextMapTy DetectionContextMap; |
| |
| /// Remove cached results for @p R. |
| void removeCachedResults(const Region &R); |
| |
| /// Remove cached results for the children of @p R recursively. |
| void removeCachedResultsRecursively(const Region &R); |
| |
| /// Check if @p S0 and @p S1 do contain multiple possibly aliasing pointers. |
| /// |
| /// @param S0 A expression to check. |
| /// @param S1 Another expression to check or nullptr. |
| /// @param Scope The loop/scope the expressions are checked in. |
| /// |
| /// @returns True, if multiple possibly aliasing pointers are used in @p S0 |
| /// (and @p S1 if given). |
| bool involvesMultiplePtrs(const SCEV *S0, const SCEV *S1, Loop *Scope) const; |
| |
| /// Add the region @p AR as over approximated sub-region in @p Context. |
| /// |
| /// @param AR The non-affine subregion. |
| /// @param Context The current detection context. |
| /// |
| /// @returns True if the subregion can be over approximated, false otherwise. |
| bool addOverApproximatedRegion(Region *AR, DetectionContext &Context) const; |
| |
| /// Find for a given base pointer terms that hint towards dimension |
| /// sizes of a multi-dimensional array. |
| /// |
| /// @param Context The current detection context. |
| /// @param BasePointer A base pointer indicating the virtual array we are |
| /// interested in. |
| SmallVector<const SCEV *, 4> |
| getDelinearizationTerms(DetectionContext &Context, |
| const SCEVUnknown *BasePointer) const; |
| |
| /// Check if the dimension size of a delinearized array is valid. |
| /// |
| /// @param Context The current detection context. |
| /// @param Sizes The sizes of the different array dimensions. |
| /// @param BasePointer The base pointer we are interested in. |
| /// @param Scope The location where @p BasePointer is being used. |
| /// @returns True if one or more array sizes could be derived - meaning: we |
| /// see this array as multi-dimensional. |
| bool hasValidArraySizes(DetectionContext &Context, |
| SmallVectorImpl<const SCEV *> &Sizes, |
| const SCEVUnknown *BasePointer, Loop *Scope) const; |
| |
| /// Derive access functions for a given base pointer. |
| /// |
| /// @param Context The current detection context. |
| /// @param Sizes The sizes of the different array dimensions. |
| /// @param BasePointer The base pointer of all the array for which to compute |
| /// access functions. |
| /// @param Shape The shape that describes the derived array sizes and |
| /// which should be filled with newly computed access |
| /// functions. |
| /// @returns True if a set of affine access functions could be derived. |
| bool computeAccessFunctions(DetectionContext &Context, |
| const SCEVUnknown *BasePointer, |
| std::shared_ptr<ArrayShape> Shape) const; |
| |
| /// Check if all accesses to a given BasePointer are affine. |
| /// |
| /// @param Context The current detection context. |
| /// @param BasePointer the base pointer we are interested in. |
| /// @param Scope The location where @p BasePointer is being used. |
| /// @param True if consistent (multi-dimensional) array accesses could be |
| /// derived for this array. |
| bool hasBaseAffineAccesses(DetectionContext &Context, |
| const SCEVUnknown *BasePointer, Loop *Scope) const; |
| |
| // Delinearize all non affine memory accesses and return false when there |
| // exists a non affine memory access that cannot be delinearized. Return true |
| // when all array accesses are affine after delinearization. |
| bool hasAffineMemoryAccesses(DetectionContext &Context) const; |
| |
| // Try to expand the region R. If R can be expanded return the expanded |
| // region, NULL otherwise. |
| Region *expandRegion(Region &R); |
| |
| /// Find the Scops in this region tree. |
| /// |
| /// @param The region tree to scan for scops. |
| void findScops(Region &R); |
| |
| /// Check if all basic block in the region are valid. |
| /// |
| /// @param Context The context of scop detection. |
| /// |
| /// @return True if all blocks in R are valid, false otherwise. |
| bool allBlocksValid(DetectionContext &Context) const; |
| |
| /// Check if a region has sufficient compute instructions. |
| /// |
| /// This function checks if a region has a non-trivial number of instructions |
| /// in each loop. This can be used as an indicator whether a loop is worth |
| /// optimizing. |
| /// |
| /// @param Context The context of scop detection. |
| /// @param NumLoops The number of loops in the region. |
| /// |
| /// @return True if region is has sufficient compute instructions, |
| /// false otherwise. |
| bool hasSufficientCompute(DetectionContext &Context, |
| int NumAffineLoops) const; |
| |
| /// Check if the unique affine loop might be amendable to distribution. |
| /// |
| /// This function checks if the number of non-trivial blocks in the unique |
| /// affine loop in Context.CurRegion is at least two, thus if the loop might |
| /// be amendable to distribution. |
| /// |
| /// @param Context The context of scop detection. |
| /// |
| /// @return True only if the affine loop might be amendable to distributable. |
| bool hasPossiblyDistributableLoop(DetectionContext &Context) const; |
| |
| /// Check if a region is profitable to optimize. |
| /// |
| /// Regions that are unlikely to expose interesting optimization opportunities |
| /// are called 'unprofitable' and may be skipped during scop detection. |
| /// |
| /// @param Context The context of scop detection. |
| /// |
| /// @return True if region is profitable to optimize, false otherwise. |
| bool isProfitableRegion(DetectionContext &Context) const; |
| |
| /// Check if a region is a Scop. |
| /// |
| /// @param Context The context of scop detection. |
| /// |
| /// @return True if R is a Scop, false otherwise. |
| bool isValidRegion(DetectionContext &Context) const; |
| |
| /// Check if an intrinsic call can be part of a Scop. |
| /// |
| /// @param II The intrinsic call instruction to check. |
| /// @param Context The current detection context. |
| /// |
| /// @return True if the call instruction is valid, false otherwise. |
| bool isValidIntrinsicInst(IntrinsicInst &II, DetectionContext &Context) const; |
| |
| /// Check if a call instruction can be part of a Scop. |
| /// |
| /// @param CI The call instruction to check. |
| /// @param Context The current detection context. |
| /// |
| /// @return True if the call instruction is valid, false otherwise. |
| bool isValidCallInst(CallInst &CI, DetectionContext &Context) const; |
| |
| /// Check if the given loads could be invariant and can be hoisted. |
| /// |
| /// If true is returned the loads are added to the required invariant loads |
| /// contained in the @p Context. |
| /// |
| /// @param RequiredILS The loads to check. |
| /// @param Context The current detection context. |
| /// |
| /// @return True if all loads can be assumed invariant. |
| bool onlyValidRequiredInvariantLoads(InvariantLoadsSetTy &RequiredILS, |
| DetectionContext &Context) const; |
| |
| /// Check if a value is invariant in the region Reg. |
| /// |
| /// @param Val Value to check for invariance. |
| /// @param Reg The region to consider for the invariance of Val. |
| /// @param Ctx The current detection context. |
| /// |
| /// @return True if the value represented by Val is invariant in the region |
| /// identified by Reg. |
| bool isInvariant(Value &Val, const Region &Reg, DetectionContext &Ctx) const; |
| |
| /// Check if the memory access caused by @p Inst is valid. |
| /// |
| /// @param Inst The access instruction. |
| /// @param AF The access function. |
| /// @param BP The access base pointer. |
| /// @param Context The current detection context. |
| bool isValidAccess(Instruction *Inst, const SCEV *AF, const SCEVUnknown *BP, |
| DetectionContext &Context) const; |
| |
| /// Check if a memory access can be part of a Scop. |
| /// |
| /// @param Inst The instruction accessing the memory. |
| /// @param Context The context of scop detection. |
| /// |
| /// @return True if the memory access is valid, false otherwise. |
| bool isValidMemoryAccess(MemAccInst Inst, DetectionContext &Context) const; |
| |
| /// Check if an instruction has any non trivial scalar dependencies as part of |
| /// a Scop. |
| /// |
| /// @param Inst The instruction to check. |
| /// @param RefRegion The region in respect to which we check the access |
| /// function. |
| /// |
| /// @return True if the instruction has scalar dependences, false otherwise. |
| bool hasScalarDependency(Instruction &Inst, Region &RefRegion) const; |
| |
| /// Check if an instruction can be part of a Scop. |
| /// |
| /// @param Inst The instruction to check. |
| /// @param Context The context of scop detection. |
| /// |
| /// @return True if the instruction is valid, false otherwise. |
| bool isValidInstruction(Instruction &Inst, DetectionContext &Context) const; |
| |
| /// Check if the switch @p SI with condition @p Condition is valid. |
| /// |
| /// @param BB The block to check. |
| /// @param SI The switch to check. |
| /// @param Condition The switch condition. |
| /// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch. |
| /// @param Context The context of scop detection. |
| /// |
| /// @return True if the branch @p BI is valid. |
| bool isValidSwitch(BasicBlock &BB, SwitchInst *SI, Value *Condition, |
| bool IsLoopBranch, DetectionContext &Context) const; |
| |
| /// Check if the branch @p BI with condition @p Condition is valid. |
| /// |
| /// @param BB The block to check. |
| /// @param BI The branch to check. |
| /// @param Condition The branch condition. |
| /// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch. |
| /// @param Context The context of scop detection. |
| /// |
| /// @return True if the branch @p BI is valid. |
| bool isValidBranch(BasicBlock &BB, BranchInst *BI, Value *Condition, |
| bool IsLoopBranch, DetectionContext &Context) const; |
| |
| /// Check if the SCEV @p S is affine in the current @p Context. |
| /// |
| /// This will also use a heuristic to decide if we want to require loads to be |
| /// invariant to make the expression affine or if we want to treat is as |
| /// non-affine. |
| /// |
| /// @param S The expression to be checked. |
| /// @param Scope The loop nest in which @p S is used. |
| /// @param Context The context of scop detection. |
| bool isAffine(const SCEV *S, Loop *Scope, DetectionContext &Context) const; |
| |
| /// Check if the control flow in a basic block is valid. |
| /// |
| /// This function checks if a certain basic block is terminated by a |
| /// Terminator instruction we can handle or, if this is not the case, |
| /// registers this basic block as the start of a non-affine region. |
| /// |
| /// This function optionally allows unreachable statements. |
| /// |
| /// @param BB The BB to check the control flow. |
| /// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch. |
| // @param AllowUnreachable Allow unreachable statements. |
| /// @param Context The context of scop detection. |
| /// |
| /// @return True if the BB contains only valid control flow. |
| bool isValidCFG(BasicBlock &BB, bool IsLoopBranch, bool AllowUnreachable, |
| DetectionContext &Context) const; |
| |
| /// Is a loop valid with respect to a given region. |
| /// |
| /// @param L The loop to check. |
| /// @param Context The context of scop detection. |
| /// |
| /// @return True if the loop is valid in the region. |
| bool isValidLoop(Loop *L, DetectionContext &Context) const; |
| |
| /// Count the number of loops and the maximal loop depth in @p L. |
| /// |
| /// @param L The loop to check. |
| /// @param SE The scalar evolution analysis. |
| /// @param MinProfitableTrips The minimum number of trip counts from which |
| /// a loop is assumed to be profitable and |
| /// consequently is counted. |
| /// returns A tuple of number of loops and their maximal depth. |
| static ScopDetection::LoopStats |
| countBeneficialSubLoops(Loop *L, ScalarEvolution &SE, |
| unsigned MinProfitableTrips); |
| |
| /// Check if the function @p F is marked as invalid. |
| /// |
| /// @note An OpenMP subfunction will be marked as invalid. |
| bool isValidFunction(Function &F); |
| |
| /// Can ISL compute the trip count of a loop. |
| /// |
| /// @param L The loop to check. |
| /// @param Context The context of scop detection. |
| /// |
| /// @return True if ISL can compute the trip count of the loop. |
| bool canUseISLTripCount(Loop *L, DetectionContext &Context) const; |
| |
| /// Print the locations of all detected scops. |
| void printLocations(Function &F); |
| |
| /// Check if a region is reducible or not. |
| /// |
| /// @param Region The region to check. |
| /// @param DbgLoc Parameter to save the location of instruction that |
| /// causes irregular control flow if the region is irreducible. |
| /// |
| /// @return True if R is reducible, false otherwise. |
| bool isReducibleRegion(Region &R, DebugLoc &DbgLoc) const; |
| |
| /// Track diagnostics for invalid scops. |
| /// |
| /// @param Context The context of scop detection. |
| /// @param Assert Throw an assert in verify mode or not. |
| /// @param Args Argument list that gets passed to the constructor of RR. |
| template <class RR, typename... Args> |
| inline bool invalid(DetectionContext &Context, bool Assert, |
| Args &&... Arguments) const; |
| |
| public: |
| ScopDetection(Function &F, const DominatorTree &DT, ScalarEvolution &SE, |
| LoopInfo &LI, RegionInfo &RI, AliasAnalysis &AA, |
| OptimizationRemarkEmitter &ORE); |
| |
| /// Get the RegionInfo stored in this pass. |
| /// |
| /// This was added to give the DOT printer easy access to this information. |
| RegionInfo *getRI() const { return &RI; } |
| |
| /// Get the LoopInfo stored in this pass. |
| LoopInfo *getLI() const { return &LI; } |
| |
| /// Is the region is the maximum region of a Scop? |
| /// |
| /// @param R The Region to test if it is maximum. |
| /// @param Verify Rerun the scop detection to verify SCoP was not invalidated |
| /// meanwhile. |
| /// |
| /// @return Return true if R is the maximum Region in a Scop, false otherwise. |
| bool isMaxRegionInScop(const Region &R, bool Verify = true) const; |
| |
| /// Return the detection context for @p R, nullptr if @p R was invalid. |
| DetectionContext *getDetectionContext(const Region *R) const; |
| |
| /// Return the set of rejection causes for @p R. |
| const RejectLog *lookupRejectionLog(const Region *R) const; |
| |
| /// Return true if @p SubR is a non-affine subregion in @p ScopR. |
| bool isNonAffineSubRegion(const Region *SubR, const Region *ScopR) const; |
| |
| /// Get a message why a region is invalid |
| /// |
| /// @param R The region for which we get the error message |
| /// |
| /// @return The error or "" if no error appeared. |
| std::string regionIsInvalidBecause(const Region *R) const; |
| |
| /// @name Maximum Region In Scops Iterators |
| /// |
| /// These iterators iterator over all maximum region in Scops of this |
| /// function. |
| //@{ |
| using iterator = RegionSet::iterator; |
| using const_iterator = RegionSet::const_iterator; |
| |
| iterator begin() { return ValidRegions.begin(); } |
| iterator end() { return ValidRegions.end(); } |
| |
| const_iterator begin() const { return ValidRegions.begin(); } |
| const_iterator end() const { return ValidRegions.end(); } |
| //@} |
| |
| /// Emit rejection remarks for all rejected regions. |
| /// |
| /// @param F The function to emit remarks for. |
| void emitMissedRemarks(const Function &F); |
| |
| /// Mark the function as invalid so we will not extract any scop from |
| /// the function. |
| /// |
| /// @param F The function to mark as invalid. |
| static void markFunctionAsInvalid(Function *F); |
| |
| /// Verify if all valid Regions in this Function are still valid |
| /// after some transformations. |
| void verifyAnalysis() const; |
| |
| /// Verify if R is still a valid part of Scop after some transformations. |
| /// |
| /// @param R The Region to verify. |
| void verifyRegion(const Region &R) const; |
| |
| /// Count the number of loops and the maximal loop depth in @p R. |
| /// |
| /// @param R The region to check |
| /// @param SE The scalar evolution analysis. |
| /// @param MinProfitableTrips The minimum number of trip counts from which |
| /// a loop is assumed to be profitable and |
| /// consequently is counted. |
| /// returns A tuple of number of loops and their maximal depth. |
| static ScopDetection::LoopStats |
| countBeneficialLoops(Region *R, ScalarEvolution &SE, LoopInfo &LI, |
| unsigned MinProfitableTrips); |
| |
| private: |
| /// OptimizationRemarkEmitter object used to emit diagnostic remarks |
| OptimizationRemarkEmitter &ORE; |
| }; |
| |
| struct ScopAnalysis : public AnalysisInfoMixin<ScopAnalysis> { |
| static AnalysisKey Key; |
| |
| using Result = ScopDetection; |
| |
| ScopAnalysis(); |
| |
| Result run(Function &F, FunctionAnalysisManager &FAM); |
| }; |
| |
| struct ScopAnalysisPrinterPass : public PassInfoMixin<ScopAnalysisPrinterPass> { |
| ScopAnalysisPrinterPass(raw_ostream &OS) : OS(OS) {} |
| |
| PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM); |
| |
| raw_ostream &OS; |
| }; |
| |
| struct ScopDetectionWrapperPass : public FunctionPass { |
| static char ID; |
| std::unique_ptr<ScopDetection> Result; |
| |
| ScopDetectionWrapperPass(); |
| |
| /// @name FunctionPass interface |
| //@{ |
| void getAnalysisUsage(AnalysisUsage &AU) const override; |
| void releaseMemory() override; |
| bool runOnFunction(Function &F) override; |
| void print(raw_ostream &OS, const Module *) const override; |
| //@} |
| |
| ScopDetection &getSD() { return *Result; } |
| const ScopDetection &getSD() const { return *Result; } |
| }; |
| } // namespace polly |
| |
| #endif // POLLY_SCOPDETECTION_H |