| //===------ Support/ScopHelper.h -- Some Helper Functions for Scop. -------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Small functions that help with LLVM-IR. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef POLLY_SUPPORT_IRHELPER_H |
| #define POLLY_SUPPORT_IRHELPER_H |
| |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include <tuple> |
| #include <vector> |
| |
| namespace llvm { |
| class LoopInfo; |
| class Loop; |
| class ScalarEvolution; |
| class SCEV; |
| class Region; |
| class Pass; |
| class DominatorTree; |
| class RegionInfo; |
| class GetElementPtrInst; |
| } // namespace llvm |
| |
| namespace polly { |
| class Scop; |
| class ScopStmt; |
| |
| /// Type to remap values. |
| using ValueMapT = llvm::DenseMap<llvm::AssertingVH<llvm::Value>, |
| llvm::AssertingVH<llvm::Value>>; |
| |
| /// Type for a set of invariant loads. |
| using InvariantLoadsSetTy = llvm::SetVector<llvm::AssertingVH<llvm::LoadInst>>; |
| |
| /// Set type for parameters. |
| using ParameterSetTy = llvm::SetVector<const llvm::SCEV *>; |
| |
| /// Set of loops (used to remember loops in non-affine subregions). |
| using BoxedLoopsSetTy = llvm::SetVector<const llvm::Loop *>; |
| |
| /// Utility proxy to wrap the common members of LoadInst and StoreInst. |
| /// |
| /// This works like the LLVM utility class CallSite, ie. it forwards all calls |
| /// to either a LoadInst, StoreInst, MemIntrinsic or MemTransferInst. |
| /// It is similar to LLVM's utility classes IntrinsicInst, MemIntrinsic, |
| /// MemTransferInst, etc. in that it offers a common interface, but does not act |
| /// as a fake base class. |
| /// It is similar to StringRef and ArrayRef in that it holds a pointer to the |
| /// referenced object and should be passed by-value as it is small enough. |
| /// |
| /// This proxy can either represent a LoadInst instance, a StoreInst instance, |
| /// a MemIntrinsic instance (memset, memmove, memcpy), a CallInst instance or a |
| /// nullptr (only creatable using the default constructor); never an Instruction |
| /// that is neither of the above mentioned. When representing a nullptr, only |
| /// the following methods are defined: |
| /// isNull(), isInstruction(), isLoad(), isStore(), ..., isMemTransferInst(), |
| /// operator bool(), operator!() |
| /// |
| /// The functions isa, cast, cast_or_null, dyn_cast are modeled te resemble |
| /// those from llvm/Support/Casting.h. Partial template function specialization |
| /// is currently not supported in C++ such that those cannot be used directly. |
| /// (llvm::isa could, but then llvm:cast etc. would not have the expected |
| /// behavior) |
| class MemAccInst { |
| private: |
| llvm::Instruction *I; |
| |
| public: |
| MemAccInst() : I(nullptr) {} |
| MemAccInst(const MemAccInst &Inst) : I(Inst.I) {} |
| /* implicit */ MemAccInst(llvm::LoadInst &LI) : I(&LI) {} |
| /* implicit */ MemAccInst(llvm::LoadInst *LI) : I(LI) {} |
| /* implicit */ MemAccInst(llvm::StoreInst &SI) : I(&SI) {} |
| /* implicit */ MemAccInst(llvm::StoreInst *SI) : I(SI) {} |
| /* implicit */ MemAccInst(llvm::MemIntrinsic *MI) : I(MI) {} |
| /* implicit */ MemAccInst(llvm::CallInst *CI) : I(CI) {} |
| explicit MemAccInst(llvm::Instruction &I) : I(&I) { assert(isa(I)); } |
| explicit MemAccInst(llvm::Instruction *I) : I(I) { assert(isa(I)); } |
| |
| static bool isa(const llvm::Value &V) { |
| return llvm::isa<llvm::LoadInst>(V) || llvm::isa<llvm::StoreInst>(V) || |
| llvm::isa<llvm::CallInst>(V) || llvm::isa<llvm::MemIntrinsic>(V); |
| } |
| static bool isa(const llvm::Value *V) { |
| return llvm::isa<llvm::LoadInst>(V) || llvm::isa<llvm::StoreInst>(V) || |
| llvm::isa<llvm::CallInst>(V) || llvm::isa<llvm::MemIntrinsic>(V); |
| } |
| static MemAccInst cast(llvm::Value &V) { |
| return MemAccInst(llvm::cast<llvm::Instruction>(V)); |
| } |
| static MemAccInst cast(llvm::Value *V) { |
| return MemAccInst(llvm::cast<llvm::Instruction>(V)); |
| } |
| static MemAccInst cast_or_null(llvm::Value &V) { |
| return MemAccInst(llvm::cast<llvm::Instruction>(V)); |
| } |
| static MemAccInst cast_or_null(llvm::Value *V) { |
| if (!V) |
| return MemAccInst(); |
| return MemAccInst(llvm::cast<llvm::Instruction>(V)); |
| } |
| static MemAccInst dyn_cast(llvm::Value &V) { |
| if (isa(V)) |
| return MemAccInst(llvm::cast<llvm::Instruction>(V)); |
| return MemAccInst(); |
| } |
| static MemAccInst dyn_cast(llvm::Value *V) { |
| assert(V); |
| if (isa(V)) |
| return MemAccInst(llvm::cast<llvm::Instruction>(V)); |
| return MemAccInst(); |
| } |
| |
| MemAccInst &operator=(const MemAccInst &Inst) { |
| I = Inst.I; |
| return *this; |
| } |
| MemAccInst &operator=(llvm::LoadInst &LI) { |
| I = &LI; |
| return *this; |
| } |
| MemAccInst &operator=(llvm::LoadInst *LI) { |
| I = LI; |
| return *this; |
| } |
| MemAccInst &operator=(llvm::StoreInst &SI) { |
| I = &SI; |
| return *this; |
| } |
| MemAccInst &operator=(llvm::StoreInst *SI) { |
| I = SI; |
| return *this; |
| } |
| MemAccInst &operator=(llvm::MemIntrinsic &MI) { |
| I = &MI; |
| return *this; |
| } |
| MemAccInst &operator=(llvm::MemIntrinsic *MI) { |
| I = MI; |
| return *this; |
| } |
| MemAccInst &operator=(llvm::CallInst &CI) { |
| I = &CI; |
| return *this; |
| } |
| MemAccInst &operator=(llvm::CallInst *CI) { |
| I = CI; |
| return *this; |
| } |
| |
| llvm::Instruction *get() const { |
| assert(I && "Unexpected nullptr!"); |
| return I; |
| } |
| operator llvm::Instruction *() const { return asInstruction(); } |
| llvm::Instruction *operator->() const { return get(); } |
| |
| explicit operator bool() const { return isInstruction(); } |
| bool operator!() const { return isNull(); } |
| |
| llvm::Value *getValueOperand() const { |
| if (isLoad()) |
| return asLoad(); |
| if (isStore()) |
| return asStore()->getValueOperand(); |
| if (isMemIntrinsic()) |
| return nullptr; |
| if (isCallInst()) |
| return nullptr; |
| llvm_unreachable("Operation not supported on nullptr"); |
| } |
| llvm::Value *getPointerOperand() const { |
| if (isLoad()) |
| return asLoad()->getPointerOperand(); |
| if (isStore()) |
| return asStore()->getPointerOperand(); |
| if (isMemIntrinsic()) |
| return asMemIntrinsic()->getRawDest(); |
| if (isCallInst()) |
| return nullptr; |
| llvm_unreachable("Operation not supported on nullptr"); |
| } |
| |
| unsigned getAlignment() const { |
| if (isLoad()) |
| return asLoad()->getAlignment(); |
| if (isStore()) |
| return asStore()->getAlignment(); |
| if (isMemTransferInst()) |
| return std::min(asMemTransferInst()->getDestAlignment(), |
| asMemTransferInst()->getSourceAlignment()); |
| if (isMemIntrinsic()) |
| return asMemIntrinsic()->getDestAlignment(); |
| if (isCallInst()) |
| return 0; |
| llvm_unreachable("Operation not supported on nullptr"); |
| } |
| bool isVolatile() const { |
| if (isLoad()) |
| return asLoad()->isVolatile(); |
| if (isStore()) |
| return asStore()->isVolatile(); |
| if (isMemIntrinsic()) |
| return asMemIntrinsic()->isVolatile(); |
| if (isCallInst()) |
| return false; |
| llvm_unreachable("Operation not supported on nullptr"); |
| } |
| bool isSimple() const { |
| if (isLoad()) |
| return asLoad()->isSimple(); |
| if (isStore()) |
| return asStore()->isSimple(); |
| if (isMemIntrinsic()) |
| return !asMemIntrinsic()->isVolatile(); |
| if (isCallInst()) |
| return true; |
| llvm_unreachable("Operation not supported on nullptr"); |
| } |
| llvm::AtomicOrdering getOrdering() const { |
| if (isLoad()) |
| return asLoad()->getOrdering(); |
| if (isStore()) |
| return asStore()->getOrdering(); |
| if (isMemIntrinsic()) |
| return llvm::AtomicOrdering::NotAtomic; |
| if (isCallInst()) |
| return llvm::AtomicOrdering::NotAtomic; |
| llvm_unreachable("Operation not supported on nullptr"); |
| } |
| bool isUnordered() const { |
| if (isLoad()) |
| return asLoad()->isUnordered(); |
| if (isStore()) |
| return asStore()->isUnordered(); |
| // Copied from the Load/Store implementation of isUnordered: |
| if (isMemIntrinsic()) |
| return !asMemIntrinsic()->isVolatile(); |
| if (isCallInst()) |
| return true; |
| llvm_unreachable("Operation not supported on nullptr"); |
| } |
| |
| bool isNull() const { return !I; } |
| bool isInstruction() const { return I; } |
| |
| llvm::Instruction *asInstruction() const { return I; } |
| |
| private: |
| bool isLoad() const { return I && llvm::isa<llvm::LoadInst>(I); } |
| bool isStore() const { return I && llvm::isa<llvm::StoreInst>(I); } |
| bool isCallInst() const { return I && llvm::isa<llvm::CallInst>(I); } |
| bool isMemIntrinsic() const { return I && llvm::isa<llvm::MemIntrinsic>(I); } |
| bool isMemSetInst() const { return I && llvm::isa<llvm::MemSetInst>(I); } |
| bool isMemTransferInst() const { |
| return I && llvm::isa<llvm::MemTransferInst>(I); |
| } |
| |
| llvm::LoadInst *asLoad() const { return llvm::cast<llvm::LoadInst>(I); } |
| llvm::StoreInst *asStore() const { return llvm::cast<llvm::StoreInst>(I); } |
| llvm::CallInst *asCallInst() const { return llvm::cast<llvm::CallInst>(I); } |
| llvm::MemIntrinsic *asMemIntrinsic() const { |
| return llvm::cast<llvm::MemIntrinsic>(I); |
| } |
| llvm::MemSetInst *asMemSetInst() const { |
| return llvm::cast<llvm::MemSetInst>(I); |
| } |
| llvm::MemTransferInst *asMemTransferInst() const { |
| return llvm::cast<llvm::MemTransferInst>(I); |
| } |
| }; |
| } // namespace polly |
| |
| namespace llvm { |
| /// Specialize simplify_type for MemAccInst to enable dyn_cast and cast |
| /// from a MemAccInst object. |
| template <> struct simplify_type<polly::MemAccInst> { |
| typedef Instruction *SimpleType; |
| static SimpleType getSimplifiedValue(polly::MemAccInst &I) { |
| return I.asInstruction(); |
| } |
| }; |
| } // namespace llvm |
| |
| namespace polly { |
| |
| /// Simplify the region to have a single unconditional entry edge and a |
| /// single exit edge. |
| /// |
| /// Although this function allows DT and RI to be null, regions only work |
| /// properly if the DominatorTree (for Region::contains) and RegionInfo are kept |
| /// up-to-date. |
| /// |
| /// @param R The region to be simplified |
| /// @param DT DominatorTree to be updated. |
| /// @param LI LoopInfo to be updated. |
| /// @param RI RegionInfo to be updated. |
| void simplifyRegion(llvm::Region *R, llvm::DominatorTree *DT, |
| llvm::LoopInfo *LI, llvm::RegionInfo *RI); |
| |
| /// Split the entry block of a function to store the newly inserted |
| /// allocations outside of all Scops. |
| /// |
| /// @param EntryBlock The entry block of the current function. |
| /// @param P The pass that currently running. |
| /// |
| void splitEntryBlockForAlloca(llvm::BasicBlock *EntryBlock, llvm::Pass *P); |
| |
| /// Split the entry block of a function to store the newly inserted |
| /// allocations outside of all Scops. |
| /// |
| /// @param DT DominatorTree to be updated. |
| /// @param LI LoopInfo to be updated. |
| /// @param RI RegionInfo to be updated. |
| void splitEntryBlockForAlloca(llvm::BasicBlock *EntryBlock, |
| llvm::DominatorTree *DT, llvm::LoopInfo *LI, |
| llvm::RegionInfo *RI); |
| |
| /// Wrapper for SCEVExpander extended to all Polly features. |
| /// |
| /// This wrapper will internally call the SCEVExpander but also makes sure that |
| /// all additional features not represented in SCEV (e.g., SDiv/SRem are not |
| /// black boxes but can be part of the function) will be expanded correctly. |
| /// |
| /// The parameters are the same as for the creation of a SCEVExpander as well |
| /// as the call to SCEVExpander::expandCodeFor: |
| /// |
| /// @param S The current Scop. |
| /// @param SE The Scalar Evolution pass. |
| /// @param DL The module data layout. |
| /// @param Name The suffix added to the new instruction names. |
| /// @param E The expression for which code is actually generated. |
| /// @param Ty The type of the resulting code. |
| /// @param IP The insertion point for the new code. |
| /// @param VMap A remapping of values used in @p E. |
| /// @param RTCBB The last block of the RTC. Used to insert loop-invariant |
| /// instructions in rare cases. |
| llvm::Value *expandCodeFor(Scop &S, llvm::ScalarEvolution &SE, |
| const llvm::DataLayout &DL, const char *Name, |
| const llvm::SCEV *E, llvm::Type *Ty, |
| llvm::Instruction *IP, ValueMapT *VMap, |
| llvm::BasicBlock *RTCBB); |
| |
| /// Check if the block is a error block. |
| /// |
| /// A error block is currently any block that fulfills at least one of |
| /// the following conditions: |
| /// |
| /// - It is terminated by an unreachable instruction |
| /// - It contains a call to a non-pure function that is not immediately |
| /// dominated by a loop header and that does not dominate the region exit. |
| /// This is a heuristic to pick only error blocks that are conditionally |
| /// executed and can be assumed to be not executed at all without the domains |
| /// being available. |
| /// |
| /// @param BB The block to check. |
| /// @param R The analyzed region. |
| /// @param LI The loop info analysis. |
| /// @param DT The dominator tree of the function. |
| /// |
| /// @return True if the block is a error block, false otherwise. |
| bool isErrorBlock(llvm::BasicBlock &BB, const llvm::Region &R, |
| llvm::LoopInfo &LI, const llvm::DominatorTree &DT); |
| |
| /// Return the condition for the terminator @p TI. |
| /// |
| /// For unconditional branches the "i1 true" condition will be returned. |
| /// |
| /// @param TI The terminator to get the condition from. |
| /// |
| /// @return The condition of @p TI and nullptr if none could be extracted. |
| llvm::Value *getConditionFromTerminator(llvm::TerminatorInst *TI); |
| |
| /// Check if @p LInst can be hoisted in @p R. |
| /// |
| /// @param LInst The load to check. |
| /// @param R The analyzed region. |
| /// @param LI The loop info. |
| /// @param SE The scalar evolution analysis. |
| /// @param DT The dominator tree of the function. |
| /// @param KnownInvariantLoads The invariant load set. |
| /// |
| /// @return True if @p LInst can be hoisted in @p R. |
| bool isHoistableLoad(llvm::LoadInst *LInst, llvm::Region &R, llvm::LoopInfo &LI, |
| llvm::ScalarEvolution &SE, const llvm::DominatorTree &DT, |
| const InvariantLoadsSetTy &KnownInvariantLoads); |
| |
| /// Return true iff @p V is an intrinsic that we ignore during code |
| /// generation. |
| bool isIgnoredIntrinsic(const llvm::Value *V); |
| |
| /// Check whether a value an be synthesized by the code generator. |
| /// |
| /// Some value will be recalculated only from information that is code generated |
| /// from the polyhedral representation. For such instructions we do not need to |
| /// ensure that their operands are available during code generation. |
| /// |
| /// @param V The value to check. |
| /// @param S The current SCoP. |
| /// @param SE The scalar evolution database. |
| /// @param Scope Location where the value would by synthesized. |
| /// @return If the instruction I can be regenerated from its |
| /// scalar evolution representation, return true, |
| /// otherwise return false. |
| bool canSynthesize(const llvm::Value *V, const Scop &S, |
| llvm::ScalarEvolution *SE, llvm::Loop *Scope); |
| |
| /// Return the block in which a value is used. |
| /// |
| /// For normal instructions, this is the instruction's parent block. For PHI |
| /// nodes, this is the incoming block of that use, because this is where the |
| /// operand must be defined (i.e. its definition dominates this block). |
| /// Non-instructions do not use operands at a specific point such that in this |
| /// case this function returns nullptr. |
| llvm::BasicBlock *getUseBlock(const llvm::Use &U); |
| |
| /// Derive the individual index expressions from a GEP instruction. |
| /// |
| /// This function optimistically assumes the GEP references into a fixed size |
| /// array. If this is actually true, this function returns a list of array |
| /// subscript expressions as SCEV as well as a list of integers describing |
| /// the size of the individual array dimensions. Both lists have either equal |
| /// length or the size list is one element shorter in case there is no known |
| /// size available for the outermost array dimension. |
| /// |
| /// @param GEP The GetElementPtr instruction to analyze. |
| /// |
| /// @return A tuple with the subscript expressions and the dimension sizes. |
| std::tuple<std::vector<const llvm::SCEV *>, std::vector<int>> |
| getIndexExpressionsFromGEP(llvm::GetElementPtrInst *GEP, |
| llvm::ScalarEvolution &SE); |
| |
| // If the loop is nonaffine/boxed, return the first non-boxed surrounding loop |
| // for Polly. If the loop is affine, return the loop itself. |
| // |
| // @param L Pointer to the Loop object to analyze. |
| // @param LI Reference to the LoopInfo. |
| // @param BoxedLoops Set of Boxed Loops we get from the SCoP. |
| llvm::Loop *getFirstNonBoxedLoopFor(llvm::Loop *L, llvm::LoopInfo &LI, |
| const BoxedLoopsSetTy &BoxedLoops); |
| |
| // If the Basic Block belongs to a loop that is nonaffine/boxed, return the |
| // first non-boxed surrounding loop for Polly. If the loop is affine, return |
| // the loop itself. |
| // |
| // @param BB Pointer to the Basic Block to analyze. |
| // @param LI Reference to the LoopInfo. |
| // @param BoxedLoops Set of Boxed Loops we get from the SCoP. |
| llvm::Loop *getFirstNonBoxedLoopFor(llvm::BasicBlock *BB, llvm::LoopInfo &LI, |
| const BoxedLoopsSetTy &BoxedLoops); |
| |
| /// Is the given instruction a call to a debug function? |
| /// |
| /// A debug function can be used to insert output in Polly-optimized code which |
| /// normally does not allow function calls with side-effects. For instance, a |
| /// printf can be inserted to check whether a value still has the expected value |
| /// after Polly generated code: |
| /// |
| /// int sum = 0; |
| /// for (int i = 0; i < 16; i+=1) { |
| /// sum += i; |
| /// printf("The value of sum at i=%d is %d\n", sum, i); |
| /// } |
| bool isDebugCall(llvm::Instruction *Inst); |
| |
| /// Does the statement contain a call to a debug function? |
| /// |
| /// Such a statement must not be removed, even if has no side-effects. |
| bool hasDebugCall(ScopStmt *Stmt); |
| } // namespace polly |
| #endif |