| |
| #include "polly/Support/SCEVValidator.h" |
| #include "polly/ScopInfo.h" |
| #include "llvm/Analysis/RegionInfo.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Support/Debug.h" |
| |
| using namespace llvm; |
| using namespace polly; |
| |
| #define DEBUG_TYPE "polly-scev-validator" |
| |
| namespace SCEVType { |
| /// The type of a SCEV |
| /// |
| /// To check for the validity of a SCEV we assign to each SCEV a type. The |
| /// possible types are INT, PARAM, IV and INVALID. The order of the types is |
| /// important. The subexpressions of SCEV with a type X can only have a type |
| /// that is smaller or equal than X. |
| enum TYPE { |
| // An integer value. |
| INT, |
| |
| // An expression that is constant during the execution of the Scop, |
| // but that may depend on parameters unknown at compile time. |
| PARAM, |
| |
| // An expression that may change during the execution of the SCoP. |
| IV, |
| |
| // An invalid expression. |
| INVALID |
| }; |
| } // namespace SCEVType |
| |
| /// The result the validator returns for a SCEV expression. |
| class ValidatorResult { |
| /// The type of the expression |
| SCEVType::TYPE Type; |
| |
| /// The set of Parameters in the expression. |
| ParameterSetTy Parameters; |
| |
| public: |
| /// The copy constructor |
| ValidatorResult(const ValidatorResult &Source) { |
| Type = Source.Type; |
| Parameters = Source.Parameters; |
| } |
| |
| /// Construct a result with a certain type and no parameters. |
| ValidatorResult(SCEVType::TYPE Type) : Type(Type) { |
| assert(Type != SCEVType::PARAM && "Did you forget to pass the parameter"); |
| } |
| |
| /// Construct a result with a certain type and a single parameter. |
| ValidatorResult(SCEVType::TYPE Type, const SCEV *Expr) : Type(Type) { |
| Parameters.insert(Expr); |
| } |
| |
| /// Get the type of the ValidatorResult. |
| SCEVType::TYPE getType() { return Type; } |
| |
| /// Is the analyzed SCEV constant during the execution of the SCoP. |
| bool isConstant() { return Type == SCEVType::INT || Type == SCEVType::PARAM; } |
| |
| /// Is the analyzed SCEV valid. |
| bool isValid() { return Type != SCEVType::INVALID; } |
| |
| /// Is the analyzed SCEV of Type IV. |
| bool isIV() { return Type == SCEVType::IV; } |
| |
| /// Is the analyzed SCEV of Type INT. |
| bool isINT() { return Type == SCEVType::INT; } |
| |
| /// Is the analyzed SCEV of Type PARAM. |
| bool isPARAM() { return Type == SCEVType::PARAM; } |
| |
| /// Get the parameters of this validator result. |
| const ParameterSetTy &getParameters() { return Parameters; } |
| |
| /// Add the parameters of Source to this result. |
| void addParamsFrom(const ValidatorResult &Source) { |
| Parameters.insert(Source.Parameters.begin(), Source.Parameters.end()); |
| } |
| |
| /// Merge a result. |
| /// |
| /// This means to merge the parameters and to set the Type to the most |
| /// specific Type that matches both. |
| void merge(const ValidatorResult &ToMerge) { |
| Type = std::max(Type, ToMerge.Type); |
| addParamsFrom(ToMerge); |
| } |
| |
| void print(raw_ostream &OS) { |
| switch (Type) { |
| case SCEVType::INT: |
| OS << "SCEVType::INT"; |
| break; |
| case SCEVType::PARAM: |
| OS << "SCEVType::PARAM"; |
| break; |
| case SCEVType::IV: |
| OS << "SCEVType::IV"; |
| break; |
| case SCEVType::INVALID: |
| OS << "SCEVType::INVALID"; |
| break; |
| } |
| } |
| }; |
| |
| raw_ostream &operator<<(raw_ostream &OS, class ValidatorResult &VR) { |
| VR.print(OS); |
| return OS; |
| } |
| |
| bool polly::isConstCall(llvm::CallInst *Call) { |
| if (Call->mayReadOrWriteMemory()) |
| return false; |
| |
| for (auto &Operand : Call->arg_operands()) |
| if (!isa<ConstantInt>(&Operand)) |
| return false; |
| |
| return true; |
| } |
| |
| /// Check if a SCEV is valid in a SCoP. |
| struct SCEVValidator |
| : public SCEVVisitor<SCEVValidator, class ValidatorResult> { |
| private: |
| const Region *R; |
| Loop *Scope; |
| ScalarEvolution &SE; |
| InvariantLoadsSetTy *ILS; |
| |
| public: |
| SCEVValidator(const Region *R, Loop *Scope, ScalarEvolution &SE, |
| InvariantLoadsSetTy *ILS) |
| : R(R), Scope(Scope), SE(SE), ILS(ILS) {} |
| |
| class ValidatorResult visitConstant(const SCEVConstant *Constant) { |
| return ValidatorResult(SCEVType::INT); |
| } |
| |
| class ValidatorResult visitZeroExtendOrTruncateExpr(const SCEV *Expr, |
| const SCEV *Operand) { |
| ValidatorResult Op = visit(Operand); |
| auto Type = Op.getType(); |
| |
| // If unsigned operations are allowed return the operand, otherwise |
| // check if we can model the expression without unsigned assumptions. |
| if (PollyAllowUnsignedOperations || Type == SCEVType::INVALID) |
| return Op; |
| |
| if (Type == SCEVType::IV) |
| return ValidatorResult(SCEVType::INVALID); |
| return ValidatorResult(SCEVType::PARAM, Expr); |
| } |
| |
| class ValidatorResult visitTruncateExpr(const SCEVTruncateExpr *Expr) { |
| return visitZeroExtendOrTruncateExpr(Expr, Expr->getOperand()); |
| } |
| |
| class ValidatorResult visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { |
| return visitZeroExtendOrTruncateExpr(Expr, Expr->getOperand()); |
| } |
| |
| class ValidatorResult visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { |
| return visit(Expr->getOperand()); |
| } |
| |
| class ValidatorResult visitAddExpr(const SCEVAddExpr *Expr) { |
| ValidatorResult Return(SCEVType::INT); |
| |
| for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { |
| ValidatorResult Op = visit(Expr->getOperand(i)); |
| Return.merge(Op); |
| |
| // Early exit. |
| if (!Return.isValid()) |
| break; |
| } |
| |
| return Return; |
| } |
| |
| class ValidatorResult visitMulExpr(const SCEVMulExpr *Expr) { |
| ValidatorResult Return(SCEVType::INT); |
| |
| bool HasMultipleParams = false; |
| |
| for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { |
| ValidatorResult Op = visit(Expr->getOperand(i)); |
| |
| if (Op.isINT()) |
| continue; |
| |
| if (Op.isPARAM() && Return.isPARAM()) { |
| HasMultipleParams = true; |
| continue; |
| } |
| |
| if ((Op.isIV() || Op.isPARAM()) && !Return.isINT()) { |
| LLVM_DEBUG( |
| dbgs() << "INVALID: More than one non-int operand in MulExpr\n" |
| << "\tExpr: " << *Expr << "\n" |
| << "\tPrevious expression type: " << Return << "\n" |
| << "\tNext operand (" << Op << "): " << *Expr->getOperand(i) |
| << "\n"); |
| |
| return ValidatorResult(SCEVType::INVALID); |
| } |
| |
| Return.merge(Op); |
| } |
| |
| if (HasMultipleParams && Return.isValid()) |
| return ValidatorResult(SCEVType::PARAM, Expr); |
| |
| return Return; |
| } |
| |
| class ValidatorResult visitAddRecExpr(const SCEVAddRecExpr *Expr) { |
| if (!Expr->isAffine()) { |
| LLVM_DEBUG(dbgs() << "INVALID: AddRec is not affine"); |
| return ValidatorResult(SCEVType::INVALID); |
| } |
| |
| ValidatorResult Start = visit(Expr->getStart()); |
| ValidatorResult Recurrence = visit(Expr->getStepRecurrence(SE)); |
| |
| if (!Start.isValid()) |
| return Start; |
| |
| if (!Recurrence.isValid()) |
| return Recurrence; |
| |
| auto *L = Expr->getLoop(); |
| if (R->contains(L) && (!Scope || !L->contains(Scope))) { |
| LLVM_DEBUG( |
| dbgs() << "INVALID: Loop of AddRec expression boxed in an a " |
| "non-affine subregion or has a non-synthesizable exit " |
| "value."); |
| return ValidatorResult(SCEVType::INVALID); |
| } |
| |
| if (R->contains(L)) { |
| if (Recurrence.isINT()) { |
| ValidatorResult Result(SCEVType::IV); |
| Result.addParamsFrom(Start); |
| return Result; |
| } |
| |
| LLVM_DEBUG(dbgs() << "INVALID: AddRec within scop has non-int" |
| "recurrence part"); |
| return ValidatorResult(SCEVType::INVALID); |
| } |
| |
| assert(Recurrence.isConstant() && "Expected 'Recurrence' to be constant"); |
| |
| // Directly generate ValidatorResult for Expr if 'start' is zero. |
| if (Expr->getStart()->isZero()) |
| return ValidatorResult(SCEVType::PARAM, Expr); |
| |
| // Translate AddRecExpr from '{start, +, inc}' into 'start + {0, +, inc}' |
| // if 'start' is not zero. |
| const SCEV *ZeroStartExpr = SE.getAddRecExpr( |
| SE.getConstant(Expr->getStart()->getType(), 0), |
| Expr->getStepRecurrence(SE), Expr->getLoop(), Expr->getNoWrapFlags()); |
| |
| ValidatorResult ZeroStartResult = |
| ValidatorResult(SCEVType::PARAM, ZeroStartExpr); |
| ZeroStartResult.addParamsFrom(Start); |
| |
| return ZeroStartResult; |
| } |
| |
| class ValidatorResult visitSMaxExpr(const SCEVSMaxExpr *Expr) { |
| ValidatorResult Return(SCEVType::INT); |
| |
| for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { |
| ValidatorResult Op = visit(Expr->getOperand(i)); |
| |
| if (!Op.isValid()) |
| return Op; |
| |
| Return.merge(Op); |
| } |
| |
| return Return; |
| } |
| |
| class ValidatorResult visitUMaxExpr(const SCEVUMaxExpr *Expr) { |
| // We do not support unsigned max operations. If 'Expr' is constant during |
| // Scop execution we treat this as a parameter, otherwise we bail out. |
| for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { |
| ValidatorResult Op = visit(Expr->getOperand(i)); |
| |
| if (!Op.isConstant()) { |
| LLVM_DEBUG(dbgs() << "INVALID: UMaxExpr has a non-constant operand"); |
| return ValidatorResult(SCEVType::INVALID); |
| } |
| } |
| |
| return ValidatorResult(SCEVType::PARAM, Expr); |
| } |
| |
| ValidatorResult visitGenericInst(Instruction *I, const SCEV *S) { |
| if (R->contains(I)) { |
| LLVM_DEBUG(dbgs() << "INVALID: UnknownExpr references an instruction " |
| "within the region\n"); |
| return ValidatorResult(SCEVType::INVALID); |
| } |
| |
| return ValidatorResult(SCEVType::PARAM, S); |
| } |
| |
| ValidatorResult visitCallInstruction(Instruction *I, const SCEV *S) { |
| assert(I->getOpcode() == Instruction::Call && "Call instruction expected"); |
| |
| if (R->contains(I)) { |
| auto Call = cast<CallInst>(I); |
| |
| if (!isConstCall(Call)) |
| return ValidatorResult(SCEVType::INVALID, S); |
| } |
| return ValidatorResult(SCEVType::PARAM, S); |
| } |
| |
| ValidatorResult visitLoadInstruction(Instruction *I, const SCEV *S) { |
| if (R->contains(I) && ILS) { |
| ILS->insert(cast<LoadInst>(I)); |
| return ValidatorResult(SCEVType::PARAM, S); |
| } |
| |
| return visitGenericInst(I, S); |
| } |
| |
| ValidatorResult visitDivision(const SCEV *Dividend, const SCEV *Divisor, |
| const SCEV *DivExpr, |
| Instruction *SDiv = nullptr) { |
| |
| // First check if we might be able to model the division, thus if the |
| // divisor is constant. If so, check the dividend, otherwise check if |
| // the whole division can be seen as a parameter. |
| if (isa<SCEVConstant>(Divisor) && !Divisor->isZero()) |
| return visit(Dividend); |
| |
| // For signed divisions use the SDiv instruction to check for a parameter |
| // division, for unsigned divisions check the operands. |
| if (SDiv) |
| return visitGenericInst(SDiv, DivExpr); |
| |
| ValidatorResult LHS = visit(Dividend); |
| ValidatorResult RHS = visit(Divisor); |
| if (LHS.isConstant() && RHS.isConstant()) |
| return ValidatorResult(SCEVType::PARAM, DivExpr); |
| |
| LLVM_DEBUG( |
| dbgs() << "INVALID: unsigned division of non-constant expressions"); |
| return ValidatorResult(SCEVType::INVALID); |
| } |
| |
| ValidatorResult visitUDivExpr(const SCEVUDivExpr *Expr) { |
| if (!PollyAllowUnsignedOperations) |
| return ValidatorResult(SCEVType::INVALID); |
| |
| auto *Dividend = Expr->getLHS(); |
| auto *Divisor = Expr->getRHS(); |
| return visitDivision(Dividend, Divisor, Expr); |
| } |
| |
| ValidatorResult visitSDivInstruction(Instruction *SDiv, const SCEV *Expr) { |
| assert(SDiv->getOpcode() == Instruction::SDiv && |
| "Assumed SDiv instruction!"); |
| |
| auto *Dividend = SE.getSCEV(SDiv->getOperand(0)); |
| auto *Divisor = SE.getSCEV(SDiv->getOperand(1)); |
| return visitDivision(Dividend, Divisor, Expr, SDiv); |
| } |
| |
| ValidatorResult visitSRemInstruction(Instruction *SRem, const SCEV *S) { |
| assert(SRem->getOpcode() == Instruction::SRem && |
| "Assumed SRem instruction!"); |
| |
| auto *Divisor = SRem->getOperand(1); |
| auto *CI = dyn_cast<ConstantInt>(Divisor); |
| if (!CI || CI->isZeroValue()) |
| return visitGenericInst(SRem, S); |
| |
| auto *Dividend = SRem->getOperand(0); |
| auto *DividendSCEV = SE.getSCEV(Dividend); |
| return visit(DividendSCEV); |
| } |
| |
| ValidatorResult visitUnknown(const SCEVUnknown *Expr) { |
| Value *V = Expr->getValue(); |
| |
| if (!Expr->getType()->isIntegerTy() && !Expr->getType()->isPointerTy()) { |
| LLVM_DEBUG(dbgs() << "INVALID: UnknownExpr is not an integer or pointer"); |
| return ValidatorResult(SCEVType::INVALID); |
| } |
| |
| if (isa<UndefValue>(V)) { |
| LLVM_DEBUG(dbgs() << "INVALID: UnknownExpr references an undef value"); |
| return ValidatorResult(SCEVType::INVALID); |
| } |
| |
| if (Instruction *I = dyn_cast<Instruction>(Expr->getValue())) { |
| switch (I->getOpcode()) { |
| case Instruction::IntToPtr: |
| return visit(SE.getSCEVAtScope(I->getOperand(0), Scope)); |
| case Instruction::PtrToInt: |
| return visit(SE.getSCEVAtScope(I->getOperand(0), Scope)); |
| case Instruction::Load: |
| return visitLoadInstruction(I, Expr); |
| case Instruction::SDiv: |
| return visitSDivInstruction(I, Expr); |
| case Instruction::SRem: |
| return visitSRemInstruction(I, Expr); |
| case Instruction::Call: |
| return visitCallInstruction(I, Expr); |
| default: |
| return visitGenericInst(I, Expr); |
| } |
| } |
| |
| return ValidatorResult(SCEVType::PARAM, Expr); |
| } |
| }; |
| |
| class SCEVHasIVParams { |
| bool HasIVParams = false; |
| |
| public: |
| SCEVHasIVParams() {} |
| |
| bool follow(const SCEV *S) { |
| const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(S); |
| if (!Unknown) |
| return true; |
| |
| CallInst *Call = dyn_cast<CallInst>(Unknown->getValue()); |
| |
| if (!Call) |
| return true; |
| |
| if (isConstCall(Call)) { |
| HasIVParams = true; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool isDone() { return HasIVParams; } |
| bool hasIVParams() { return HasIVParams; } |
| }; |
| |
| /// Check whether a SCEV refers to an SSA name defined inside a region. |
| class SCEVInRegionDependences { |
| const Region *R; |
| Loop *Scope; |
| const InvariantLoadsSetTy &ILS; |
| bool AllowLoops; |
| bool HasInRegionDeps = false; |
| |
| public: |
| SCEVInRegionDependences(const Region *R, Loop *Scope, bool AllowLoops, |
| const InvariantLoadsSetTy &ILS) |
| : R(R), Scope(Scope), ILS(ILS), AllowLoops(AllowLoops) {} |
| |
| bool follow(const SCEV *S) { |
| if (auto Unknown = dyn_cast<SCEVUnknown>(S)) { |
| Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue()); |
| |
| CallInst *Call = dyn_cast<CallInst>(Unknown->getValue()); |
| |
| if (Call && isConstCall(Call)) |
| return false; |
| |
| if (Inst) { |
| // When we invariant load hoist a load, we first make sure that there |
| // can be no dependences created by it in the Scop region. So, we should |
| // not consider scalar dependences to `LoadInst`s that are invariant |
| // load hoisted. |
| // |
| // If this check is not present, then we create data dependences which |
| // are strictly not necessary by tracking the invariant load as a |
| // scalar. |
| LoadInst *LI = dyn_cast<LoadInst>(Inst); |
| if (LI && ILS.count(LI) > 0) |
| return false; |
| } |
| |
| // Return true when Inst is defined inside the region R. |
| if (!Inst || !R->contains(Inst)) |
| return true; |
| |
| HasInRegionDeps = true; |
| return false; |
| } |
| |
| if (auto AddRec = dyn_cast<SCEVAddRecExpr>(S)) { |
| if (AllowLoops) |
| return true; |
| |
| auto *L = AddRec->getLoop(); |
| if (R->contains(L) && !L->contains(Scope)) { |
| HasInRegionDeps = true; |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| bool isDone() { return false; } |
| bool hasDependences() { return HasInRegionDeps; } |
| }; |
| |
| namespace polly { |
| /// Find all loops referenced in SCEVAddRecExprs. |
| class SCEVFindLoops { |
| SetVector<const Loop *> &Loops; |
| |
| public: |
| SCEVFindLoops(SetVector<const Loop *> &Loops) : Loops(Loops) {} |
| |
| bool follow(const SCEV *S) { |
| if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) |
| Loops.insert(AddRec->getLoop()); |
| return true; |
| } |
| bool isDone() { return false; } |
| }; |
| |
| void findLoops(const SCEV *Expr, SetVector<const Loop *> &Loops) { |
| SCEVFindLoops FindLoops(Loops); |
| SCEVTraversal<SCEVFindLoops> ST(FindLoops); |
| ST.visitAll(Expr); |
| } |
| |
| /// Find all values referenced in SCEVUnknowns. |
| class SCEVFindValues { |
| ScalarEvolution &SE; |
| SetVector<Value *> &Values; |
| |
| public: |
| SCEVFindValues(ScalarEvolution &SE, SetVector<Value *> &Values) |
| : SE(SE), Values(Values) {} |
| |
| bool follow(const SCEV *S) { |
| const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(S); |
| if (!Unknown) |
| return true; |
| |
| Values.insert(Unknown->getValue()); |
| Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue()); |
| if (!Inst || (Inst->getOpcode() != Instruction::SRem && |
| Inst->getOpcode() != Instruction::SDiv)) |
| return false; |
| |
| auto *Dividend = SE.getSCEV(Inst->getOperand(1)); |
| if (!isa<SCEVConstant>(Dividend)) |
| return false; |
| |
| auto *Divisor = SE.getSCEV(Inst->getOperand(0)); |
| SCEVFindValues FindValues(SE, Values); |
| SCEVTraversal<SCEVFindValues> ST(FindValues); |
| ST.visitAll(Dividend); |
| ST.visitAll(Divisor); |
| |
| return false; |
| } |
| bool isDone() { return false; } |
| }; |
| |
| void findValues(const SCEV *Expr, ScalarEvolution &SE, |
| SetVector<Value *> &Values) { |
| SCEVFindValues FindValues(SE, Values); |
| SCEVTraversal<SCEVFindValues> ST(FindValues); |
| ST.visitAll(Expr); |
| } |
| |
| bool hasIVParams(const SCEV *Expr) { |
| SCEVHasIVParams HasIVParams; |
| SCEVTraversal<SCEVHasIVParams> ST(HasIVParams); |
| ST.visitAll(Expr); |
| return HasIVParams.hasIVParams(); |
| } |
| |
| bool hasScalarDepsInsideRegion(const SCEV *Expr, const Region *R, |
| llvm::Loop *Scope, bool AllowLoops, |
| const InvariantLoadsSetTy &ILS) { |
| SCEVInRegionDependences InRegionDeps(R, Scope, AllowLoops, ILS); |
| SCEVTraversal<SCEVInRegionDependences> ST(InRegionDeps); |
| ST.visitAll(Expr); |
| return InRegionDeps.hasDependences(); |
| } |
| |
| bool isAffineExpr(const Region *R, llvm::Loop *Scope, const SCEV *Expr, |
| ScalarEvolution &SE, InvariantLoadsSetTy *ILS) { |
| if (isa<SCEVCouldNotCompute>(Expr)) |
| return false; |
| |
| SCEVValidator Validator(R, Scope, SE, ILS); |
| LLVM_DEBUG({ |
| dbgs() << "\n"; |
| dbgs() << "Expr: " << *Expr << "\n"; |
| dbgs() << "Region: " << R->getNameStr() << "\n"; |
| dbgs() << " -> "; |
| }); |
| |
| ValidatorResult Result = Validator.visit(Expr); |
| |
| LLVM_DEBUG({ |
| if (Result.isValid()) |
| dbgs() << "VALID\n"; |
| dbgs() << "\n"; |
| }); |
| |
| return Result.isValid(); |
| } |
| |
| static bool isAffineExpr(Value *V, const Region *R, Loop *Scope, |
| ScalarEvolution &SE, ParameterSetTy &Params) { |
| auto *E = SE.getSCEV(V); |
| if (isa<SCEVCouldNotCompute>(E)) |
| return false; |
| |
| SCEVValidator Validator(R, Scope, SE, nullptr); |
| ValidatorResult Result = Validator.visit(E); |
| if (!Result.isValid()) |
| return false; |
| |
| auto ResultParams = Result.getParameters(); |
| Params.insert(ResultParams.begin(), ResultParams.end()); |
| |
| return true; |
| } |
| |
| bool isAffineConstraint(Value *V, const Region *R, llvm::Loop *Scope, |
| ScalarEvolution &SE, ParameterSetTy &Params, |
| bool OrExpr) { |
| if (auto *ICmp = dyn_cast<ICmpInst>(V)) { |
| return isAffineConstraint(ICmp->getOperand(0), R, Scope, SE, Params, |
| true) && |
| isAffineConstraint(ICmp->getOperand(1), R, Scope, SE, Params, true); |
| } else if (auto *BinOp = dyn_cast<BinaryOperator>(V)) { |
| auto Opcode = BinOp->getOpcode(); |
| if (Opcode == Instruction::And || Opcode == Instruction::Or) |
| return isAffineConstraint(BinOp->getOperand(0), R, Scope, SE, Params, |
| false) && |
| isAffineConstraint(BinOp->getOperand(1), R, Scope, SE, Params, |
| false); |
| /* Fall through */ |
| } |
| |
| if (!OrExpr) |
| return false; |
| |
| return isAffineExpr(V, R, Scope, SE, Params); |
| } |
| |
| ParameterSetTy getParamsInAffineExpr(const Region *R, Loop *Scope, |
| const SCEV *Expr, ScalarEvolution &SE) { |
| if (isa<SCEVCouldNotCompute>(Expr)) |
| return ParameterSetTy(); |
| |
| InvariantLoadsSetTy ILS; |
| SCEVValidator Validator(R, Scope, SE, &ILS); |
| ValidatorResult Result = Validator.visit(Expr); |
| assert(Result.isValid() && "Requested parameters for an invalid SCEV!"); |
| |
| return Result.getParameters(); |
| } |
| |
| std::pair<const SCEVConstant *, const SCEV *> |
| extractConstantFactor(const SCEV *S, ScalarEvolution &SE) { |
| auto *ConstPart = cast<SCEVConstant>(SE.getConstant(S->getType(), 1)); |
| |
| if (auto *Constant = dyn_cast<SCEVConstant>(S)) |
| return std::make_pair(Constant, SE.getConstant(S->getType(), 1)); |
| |
| auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); |
| if (AddRec) { |
| auto *StartExpr = AddRec->getStart(); |
| if (StartExpr->isZero()) { |
| auto StepPair = extractConstantFactor(AddRec->getStepRecurrence(SE), SE); |
| auto *LeftOverAddRec = |
| SE.getAddRecExpr(StartExpr, StepPair.second, AddRec->getLoop(), |
| AddRec->getNoWrapFlags()); |
| return std::make_pair(StepPair.first, LeftOverAddRec); |
| } |
| return std::make_pair(ConstPart, S); |
| } |
| |
| if (auto *Add = dyn_cast<SCEVAddExpr>(S)) { |
| SmallVector<const SCEV *, 4> LeftOvers; |
| auto Op0Pair = extractConstantFactor(Add->getOperand(0), SE); |
| auto *Factor = Op0Pair.first; |
| if (SE.isKnownNegative(Factor)) { |
| Factor = cast<SCEVConstant>(SE.getNegativeSCEV(Factor)); |
| LeftOvers.push_back(SE.getNegativeSCEV(Op0Pair.second)); |
| } else { |
| LeftOvers.push_back(Op0Pair.second); |
| } |
| |
| for (unsigned u = 1, e = Add->getNumOperands(); u < e; u++) { |
| auto OpUPair = extractConstantFactor(Add->getOperand(u), SE); |
| // TODO: Use something smarter than equality here, e.g., gcd. |
| if (Factor == OpUPair.first) |
| LeftOvers.push_back(OpUPair.second); |
| else if (Factor == SE.getNegativeSCEV(OpUPair.first)) |
| LeftOvers.push_back(SE.getNegativeSCEV(OpUPair.second)); |
| else |
| return std::make_pair(ConstPart, S); |
| } |
| |
| auto *NewAdd = SE.getAddExpr(LeftOvers, Add->getNoWrapFlags()); |
| return std::make_pair(Factor, NewAdd); |
| } |
| |
| auto *Mul = dyn_cast<SCEVMulExpr>(S); |
| if (!Mul) |
| return std::make_pair(ConstPart, S); |
| |
| SmallVector<const SCEV *, 4> LeftOvers; |
| for (auto *Op : Mul->operands()) |
| if (isa<SCEVConstant>(Op)) |
| ConstPart = cast<SCEVConstant>(SE.getMulExpr(ConstPart, Op)); |
| else |
| LeftOvers.push_back(Op); |
| |
| return std::make_pair(ConstPart, SE.getMulExpr(LeftOvers)); |
| } |
| |
| const SCEV *tryForwardThroughPHI(const SCEV *Expr, Region &R, |
| ScalarEvolution &SE, LoopInfo &LI, |
| const DominatorTree &DT) { |
| if (auto *Unknown = dyn_cast<SCEVUnknown>(Expr)) { |
| Value *V = Unknown->getValue(); |
| auto *PHI = dyn_cast<PHINode>(V); |
| if (!PHI) |
| return Expr; |
| |
| Value *Final = nullptr; |
| |
| for (unsigned i = 0; i < PHI->getNumIncomingValues(); i++) { |
| BasicBlock *Incoming = PHI->getIncomingBlock(i); |
| if (isErrorBlock(*Incoming, R, LI, DT) && R.contains(Incoming)) |
| continue; |
| if (Final) |
| return Expr; |
| Final = PHI->getIncomingValue(i); |
| } |
| |
| if (Final) |
| return SE.getSCEV(Final); |
| } |
| return Expr; |
| } |
| |
| Value *getUniqueNonErrorValue(PHINode *PHI, Region *R, LoopInfo &LI, |
| const DominatorTree &DT) { |
| Value *V = nullptr; |
| for (unsigned i = 0; i < PHI->getNumIncomingValues(); i++) { |
| BasicBlock *BB = PHI->getIncomingBlock(i); |
| if (!isErrorBlock(*BB, *R, LI, DT)) { |
| if (V) |
| return nullptr; |
| V = PHI->getIncomingValue(i); |
| } |
| } |
| |
| return V; |
| } |
| } // namespace polly |