|  | // Copyright 2012 the V8 project authors. All rights reserved. | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are | 
|  | // met: | 
|  | // | 
|  | //     * Redistributions of source code must retain the above copyright | 
|  | //       notice, this list of conditions and the following disclaimer. | 
|  | //     * Redistributions in binary form must reproduce the above | 
|  | //       copyright notice, this list of conditions and the following | 
|  | //       disclaimer in the documentation and/or other materials provided | 
|  | //       with the distribution. | 
|  | //     * Neither the name of Google Inc. nor the names of its | 
|  | //       contributors may be used to endorse or promote products derived | 
|  | //       from this software without specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|  | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|  | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  |  | 
|  | // Number.prototype methods on non-Numbers. | 
|  |  | 
|  | assertThrows(function() { Number.prototype.toExponential.call({}) }, | 
|  | TypeError); | 
|  |  | 
|  | assertThrows(function() { Number.prototype.toPrecision.call({}) }, | 
|  | TypeError); | 
|  |  | 
|  | assertThrows(function() { Number.prototype.toFixed.call({}) }, | 
|  | TypeError); | 
|  |  | 
|  | assertThrows(function() { Number.prototype.toString.call({}) }, | 
|  | TypeError); | 
|  |  | 
|  | assertThrows(function() { Number.prototype.toLocaleString.call({}) }, | 
|  | TypeError); | 
|  |  | 
|  | assertThrows(function() { Number.prototype.ValueOf.call({}) }, | 
|  | TypeError); | 
|  |  | 
|  |  | 
|  | // Call on Number objects with custom valueOf method. | 
|  |  | 
|  | var x_obj = new Number(1); | 
|  | x_obj.valueOf = function() { assertUnreachable(); }; | 
|  |  | 
|  | assertEquals("1.00e+0", | 
|  | Number.prototype.toExponential.call(x_obj, 2)); | 
|  |  | 
|  | assertEquals("1.0", | 
|  | Number.prototype.toPrecision.call(x_obj, 2)); | 
|  |  | 
|  | assertEquals("1.00", | 
|  | Number.prototype.toFixed.call(x_obj, 2)); | 
|  |  | 
|  | // Call on primitive numbers. | 
|  | assertEquals("1.00e+0", | 
|  | Number.prototype.toExponential.call(1, 2)); | 
|  |  | 
|  | assertEquals("1.0", | 
|  | Number.prototype.toPrecision.call(1, 2)); | 
|  |  | 
|  | assertEquals("1.00", | 
|  | Number.prototype.toFixed.call(1, 2)); | 
|  |  | 
|  |  | 
|  | // toExponential and toPrecision does following steps in order | 
|  | // 1) convert the argument using ToInteger | 
|  | // 2) check for non-finite receiver, on which it returns, | 
|  | // 3) check argument range and throw exception if out of range. | 
|  | // Note that the the last two steps are reversed for toFixed. | 
|  | // Luckily, the receiver is expected to be a number or number | 
|  | // wrapper, so that getting its value is not observable. | 
|  |  | 
|  | var f_flag = false; | 
|  | var f_obj = { valueOf: function() { f_flag = true; return 1000; } }; | 
|  |  | 
|  | assertEquals("NaN", | 
|  | Number.prototype.toExponential.call(NaN, f_obj)); | 
|  | assertTrue(f_flag); | 
|  |  | 
|  | f_flag = false; | 
|  | assertEquals("Infinity", | 
|  | Number.prototype.toExponential.call(1/0, f_obj)); | 
|  | assertTrue(f_flag); | 
|  |  | 
|  | f_flag = false; | 
|  | assertEquals("-Infinity", | 
|  | Number.prototype.toExponential.call(-1/0, f_obj)); | 
|  | assertTrue(f_flag); | 
|  |  | 
|  | f_flag = false; | 
|  | assertEquals("NaN", | 
|  | Number.prototype.toPrecision.call(NaN, f_obj)); | 
|  | assertTrue(f_flag); | 
|  |  | 
|  | f_flag = false; | 
|  | assertEquals("Infinity", | 
|  | Number.prototype.toPrecision.call(1/0, f_obj)); | 
|  | assertTrue(f_flag); | 
|  |  | 
|  | f_flag = false; | 
|  | assertEquals("-Infinity", | 
|  | Number.prototype.toPrecision.call(-1/0, f_obj)); | 
|  | assertTrue(f_flag); | 
|  |  | 
|  | // The odd man out: toFixed. | 
|  |  | 
|  | f_flag = false; | 
|  | assertThrows(function() { Number.prototype.toFixed.call(NaN, f_obj) }, | 
|  | RangeError); | 
|  | assertTrue(f_flag); | 
|  |  | 
|  | f_flag = false; | 
|  | assertThrows(function() { Number.prototype.toFixed.call(1/0, f_obj) }, | 
|  | RangeError); | 
|  | assertTrue(f_flag); | 
|  |  | 
|  | f_flag = false; | 
|  | assertThrows(function() { Number.prototype.toFixed.call(-1/0, f_obj) }, | 
|  | RangeError); | 
|  | assertTrue(f_flag); |