blob: 7188eb04a8c8bd128d63e9211e28e5758428412e [file] [log] [blame]
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/init/setup-isolate.h"
#include "src/builtins/builtins.h"
#include "src/codegen/assembler-inl.h"
#include "src/codegen/interface-descriptors.h"
#include "src/codegen/macro-assembler.h"
#include "src/compiler/code-assembler.h"
#include "src/execution/isolate.h"
#include "src/handles/handles-inl.h"
#include "src/heap/heap-inl.h" // For MemoryAllocator::code_range.
#include "src/interpreter/bytecodes.h"
#include "src/interpreter/interpreter-generator.h"
#include "src/interpreter/interpreter.h"
#include "src/objects/objects-inl.h"
#include "src/objects/shared-function-info.h"
#include "src/objects/smi.h"
namespace v8 {
namespace internal {
// Forward declarations for C++ builtins.
#define FORWARD_DECLARE(Name) \
Address Builtin_##Name(int argc, Address* args, Isolate* isolate);
BUILTIN_LIST_C(FORWARD_DECLARE)
#undef FORWARD_DECLARE
namespace {
AssemblerOptions BuiltinAssemblerOptions(Isolate* isolate,
int32_t builtin_index) {
AssemblerOptions options = AssemblerOptions::Default(isolate);
CHECK(!options.isolate_independent_code);
CHECK(!options.use_pc_relative_calls_and_jumps);
CHECK(!options.collect_win64_unwind_info);
if (!isolate->IsGeneratingEmbeddedBuiltins() ||
!Builtins::IsIsolateIndependent(builtin_index)) {
return options;
}
const base::AddressRegion& code_range =
isolate->heap()->memory_allocator()->code_range();
bool pc_relative_calls_fit_in_code_range =
!code_range.is_empty() &&
std::ceil(static_cast<float>(code_range.size() / MB)) <=
kMaxPCRelativeCodeRangeInMB;
options.isolate_independent_code = true;
options.use_pc_relative_calls_and_jumps = pc_relative_calls_fit_in_code_range;
options.collect_win64_unwind_info = true;
return options;
}
using MacroAssemblerGenerator = void (*)(MacroAssembler*);
using CodeAssemblerGenerator = void (*)(compiler::CodeAssemblerState*);
Handle<Code> BuildPlaceholder(Isolate* isolate, int32_t builtin_index) {
HandleScope scope(isolate);
constexpr int kBufferSize = 1 * KB;
byte buffer[kBufferSize];
MacroAssembler masm(isolate, CodeObjectRequired::kYes,
ExternalAssemblerBuffer(buffer, kBufferSize));
DCHECK(!masm.has_frame());
{
FrameScope scope(&masm, StackFrame::NONE);
// The contents of placeholder don't matter, as long as they don't create
// embedded constants or external references.
masm.Move(kJavaScriptCallCodeStartRegister, Smi::zero());
masm.Call(kJavaScriptCallCodeStartRegister);
}
CodeDesc desc;
masm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::BUILTIN)
.set_self_reference(masm.CodeObject())
.set_builtin_index(builtin_index)
.Build();
return scope.CloseAndEscape(code);
}
Code BuildWithMacroAssembler(Isolate* isolate, int32_t builtin_index,
MacroAssemblerGenerator generator,
const char* s_name) {
HandleScope scope(isolate);
// Canonicalize handles, so that we can share constant pool entries pointing
// to code targets without dereferencing their handles.
CanonicalHandleScope canonical(isolate);
constexpr int kBufferSize = 32 * KB;
byte buffer[kBufferSize];
MacroAssembler masm(isolate, BuiltinAssemblerOptions(isolate, builtin_index),
CodeObjectRequired::kYes,
ExternalAssemblerBuffer(buffer, kBufferSize));
masm.set_builtin_index(builtin_index);
DCHECK(!masm.has_frame());
generator(&masm);
int handler_table_offset = 0;
// JSEntry builtins are a special case and need to generate a handler table.
DCHECK_EQ(Builtins::KindOf(Builtins::kJSEntry), Builtins::ASM);
DCHECK_EQ(Builtins::KindOf(Builtins::kJSConstructEntry), Builtins::ASM);
DCHECK_EQ(Builtins::KindOf(Builtins::kJSRunMicrotasksEntry), Builtins::ASM);
if (Builtins::IsJSEntryVariant(builtin_index)) {
handler_table_offset = HandlerTable::EmitReturnTableStart(&masm);
HandlerTable::EmitReturnEntry(
&masm, 0, isolate->builtins()->js_entry_handler_offset());
}
CodeDesc desc;
masm.GetCode(isolate, &desc, MacroAssembler::kNoSafepointTable,
handler_table_offset);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::BUILTIN)
.set_self_reference(masm.CodeObject())
.set_builtin_index(builtin_index)
.Build();
#if defined(V8_OS_WIN_X64)
isolate->SetBuiltinUnwindData(builtin_index, masm.GetUnwindInfo());
#endif
return *code;
}
Code BuildAdaptor(Isolate* isolate, int32_t builtin_index,
Address builtin_address, const char* name) {
HandleScope scope(isolate);
// Canonicalize handles, so that we can share constant pool entries pointing
// to code targets without dereferencing their handles.
CanonicalHandleScope canonical(isolate);
constexpr int kBufferSize = 32 * KB;
byte buffer[kBufferSize];
MacroAssembler masm(isolate, BuiltinAssemblerOptions(isolate, builtin_index),
CodeObjectRequired::kYes,
ExternalAssemblerBuffer(buffer, kBufferSize));
masm.set_builtin_index(builtin_index);
DCHECK(!masm.has_frame());
Builtins::Generate_Adaptor(&masm, builtin_address);
CodeDesc desc;
masm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::BUILTIN)
.set_self_reference(masm.CodeObject())
.set_builtin_index(builtin_index)
.Build();
return *code;
}
// Builder for builtins implemented in TurboFan with JS linkage.
Code BuildWithCodeStubAssemblerJS(Isolate* isolate, int32_t builtin_index,
CodeAssemblerGenerator generator, int argc,
const char* name) {
HandleScope scope(isolate);
// Canonicalize handles, so that we can share constant pool entries pointing
// to code targets without dereferencing their handles.
CanonicalHandleScope canonical(isolate);
Zone zone(isolate->allocator(), ZONE_NAME);
const int argc_with_recv =
(argc == SharedFunctionInfo::kDontAdaptArgumentsSentinel) ? 0 : argc + 1;
compiler::CodeAssemblerState state(
isolate, &zone, argc_with_recv, Code::BUILTIN, name,
PoisoningMitigationLevel::kDontPoison, builtin_index);
generator(&state);
Handle<Code> code = compiler::CodeAssembler::GenerateCode(
&state, BuiltinAssemblerOptions(isolate, builtin_index));
return *code;
}
// Builder for builtins implemented in TurboFan with CallStub linkage.
Code BuildWithCodeStubAssemblerCS(Isolate* isolate, int32_t builtin_index,
CodeAssemblerGenerator generator,
CallDescriptors::Key interface_descriptor,
const char* name) {
HandleScope scope(isolate);
// Canonicalize handles, so that we can share constant pool entries pointing
// to code targets without dereferencing their handles.
CanonicalHandleScope canonical(isolate);
Zone zone(isolate->allocator(), ZONE_NAME);
// The interface descriptor with given key must be initialized at this point
// and this construction just queries the details from the descriptors table.
CallInterfaceDescriptor descriptor(interface_descriptor);
// Ensure descriptor is already initialized.
DCHECK_LE(0, descriptor.GetRegisterParameterCount());
compiler::CodeAssemblerState state(
isolate, &zone, descriptor, Code::BUILTIN, name,
PoisoningMitigationLevel::kDontPoison, builtin_index);
generator(&state);
Handle<Code> code = compiler::CodeAssembler::GenerateCode(
&state, BuiltinAssemblerOptions(isolate, builtin_index));
return *code;
}
} // anonymous namespace
// static
void SetupIsolateDelegate::AddBuiltin(Builtins* builtins, int index,
Code code) {
DCHECK_EQ(index, code.builtin_index());
builtins->set_builtin(index, code);
}
// static
void SetupIsolateDelegate::PopulateWithPlaceholders(Isolate* isolate) {
// Fill the builtins list with placeholders. References to these placeholder
// builtins are eventually replaced by the actual builtins. This is to
// support circular references between builtins.
Builtins* builtins = isolate->builtins();
HandleScope scope(isolate);
for (int i = 0; i < Builtins::builtin_count; i++) {
Handle<Code> placeholder = BuildPlaceholder(isolate, i);
AddBuiltin(builtins, i, *placeholder);
}
}
// static
void SetupIsolateDelegate::ReplacePlaceholders(Isolate* isolate) {
// Replace references from all code objects to placeholders.
Builtins* builtins = isolate->builtins();
DisallowHeapAllocation no_gc;
CodeSpaceMemoryModificationScope modification_scope(isolate->heap());
static const int kRelocMask =
RelocInfo::ModeMask(RelocInfo::CODE_TARGET) |
RelocInfo::ModeMask(RelocInfo::FULL_EMBEDDED_OBJECT) |
RelocInfo::ModeMask(RelocInfo::COMPRESSED_EMBEDDED_OBJECT) |
RelocInfo::ModeMask(RelocInfo::RELATIVE_CODE_TARGET);
HeapObjectIterator iterator(isolate->heap());
for (HeapObject obj = iterator.Next(); !obj.is_null();
obj = iterator.Next()) {
if (!obj.IsCode()) continue;
Code code = Code::cast(obj);
bool flush_icache = false;
for (RelocIterator it(code, kRelocMask); !it.done(); it.next()) {
RelocInfo* rinfo = it.rinfo();
if (RelocInfo::IsCodeTargetMode(rinfo->rmode())) {
Code target = Code::GetCodeFromTargetAddress(rinfo->target_address());
DCHECK_IMPLIES(RelocInfo::IsRelativeCodeTarget(rinfo->rmode()),
Builtins::IsIsolateIndependent(target.builtin_index()));
if (!target.is_builtin()) continue;
Code new_target = builtins->builtin(target.builtin_index());
rinfo->set_target_address(new_target.raw_instruction_start(),
UPDATE_WRITE_BARRIER, SKIP_ICACHE_FLUSH);
} else {
DCHECK(RelocInfo::IsEmbeddedObjectMode(rinfo->rmode()));
Object object = rinfo->target_object();
if (!object.IsCode()) continue;
Code target = Code::cast(object);
if (!target.is_builtin()) continue;
Code new_target = builtins->builtin(target.builtin_index());
rinfo->set_target_object(isolate->heap(), new_target,
UPDATE_WRITE_BARRIER, SKIP_ICACHE_FLUSH);
}
flush_icache = true;
}
if (flush_icache) {
FlushInstructionCache(code.raw_instruction_start(),
code.raw_instruction_size());
}
}
}
namespace {
Code GenerateBytecodeHandler(Isolate* isolate, int builtin_index,
const char* name,
interpreter::OperandScale operand_scale,
interpreter::Bytecode bytecode) {
DCHECK(interpreter::Bytecodes::BytecodeHasHandler(bytecode, operand_scale));
Handle<Code> code = interpreter::GenerateBytecodeHandler(
isolate, bytecode, operand_scale, builtin_index,
BuiltinAssemblerOptions(isolate, builtin_index));
return *code;
}
} // namespace
// static
void SetupIsolateDelegate::SetupBuiltinsInternal(Isolate* isolate) {
Builtins* builtins = isolate->builtins();
DCHECK(!builtins->initialized_);
PopulateWithPlaceholders(isolate);
// Create a scope for the handles in the builtins.
HandleScope scope(isolate);
int index = 0;
Code code;
#define BUILD_CPP(Name) \
code = BuildAdaptor(isolate, index, FUNCTION_ADDR(Builtin_##Name), #Name); \
AddBuiltin(builtins, index++, code);
#define BUILD_TFJ(Name, Argc, ...) \
code = BuildWithCodeStubAssemblerJS( \
isolate, index, &Builtins::Generate_##Name, Argc, #Name); \
AddBuiltin(builtins, index++, code);
#define BUILD_TFC(Name, InterfaceDescriptor) \
/* Return size is from the provided CallInterfaceDescriptor. */ \
code = BuildWithCodeStubAssemblerCS( \
isolate, index, &Builtins::Generate_##Name, \
CallDescriptors::InterfaceDescriptor, #Name); \
AddBuiltin(builtins, index++, code);
#define BUILD_TFS(Name, ...) \
/* Return size for generic TF builtins (stub linkage) is always 1. */ \
code = \
BuildWithCodeStubAssemblerCS(isolate, index, &Builtins::Generate_##Name, \
CallDescriptors::Name, #Name); \
AddBuiltin(builtins, index++, code);
#define BUILD_TFH(Name, InterfaceDescriptor) \
/* Return size for IC builtins/handlers is always 1. */ \
code = BuildWithCodeStubAssemblerCS( \
isolate, index, &Builtins::Generate_##Name, \
CallDescriptors::InterfaceDescriptor, #Name); \
AddBuiltin(builtins, index++, code);
#define BUILD_BCH(Name, OperandScale, Bytecode) \
code = GenerateBytecodeHandler(isolate, index, Builtins::name(index), \
OperandScale, Bytecode); \
AddBuiltin(builtins, index++, code);
#define BUILD_ASM(Name, InterfaceDescriptor) \
code = BuildWithMacroAssembler(isolate, index, Builtins::Generate_##Name, \
#Name); \
AddBuiltin(builtins, index++, code);
BUILTIN_LIST(BUILD_CPP, BUILD_TFJ, BUILD_TFC, BUILD_TFS, BUILD_TFH, BUILD_BCH,
BUILD_ASM);
#undef BUILD_CPP
#undef BUILD_TFJ
#undef BUILD_TFC
#undef BUILD_TFS
#undef BUILD_TFH
#undef BUILD_BCH
#undef BUILD_ASM
CHECK_EQ(Builtins::builtin_count, index);
ReplacePlaceholders(isolate);
#define SET_PROMISE_REJECTION_PREDICTION(Name) \
builtins->builtin(Builtins::k##Name).set_is_promise_rejection(true);
BUILTIN_PROMISE_REJECTION_PREDICTION_LIST(SET_PROMISE_REJECTION_PREDICTION)
#undef SET_PROMISE_REJECTION_PREDICTION
#define SET_EXCEPTION_CAUGHT_PREDICTION(Name) \
builtins->builtin(Builtins::k##Name).set_is_exception_caught(true);
BUILTIN_EXCEPTION_CAUGHT_PREDICTION_LIST(SET_EXCEPTION_CAUGHT_PREDICTION)
#undef SET_EXCEPTION_CAUGHT_PREDICTION
builtins->MarkInitialized();
}
} // namespace internal
} // namespace v8