| /* |
| * |
| * |
| * Copyright (c) 1994 |
| * Hewlett-Packard Company |
| * |
| * Copyright (c) 1996,1997 |
| * Silicon Graphics Computer Systems, Inc. |
| * |
| * Copyright (c) 1997 |
| * Moscow Center for SPARC Technology |
| * |
| * Copyright (c) 1999 |
| * Boris Fomitchev |
| * |
| * This material is provided "as is", with absolutely no warranty expressed |
| * or implied. Any use is at your own risk. |
| * |
| * Permission to use or copy this software for any purpose is hereby granted |
| * without fee, provided the above notices are retained on all copies. |
| * Permission to modify the code and to distribute modified code is granted, |
| * provided the above notices are retained, and a notice that the code was |
| * modified is included with the above copyright notice. |
| * |
| * Modified CRP 7/10/00 for improved conformance / efficiency on insert_unique / |
| * insert_equal with valid hint -- efficiency is improved all around, and it is |
| * should now be standard conforming for complexity on insert point immediately |
| * after hint (amortized constant time). |
| * |
| */ |
| #ifndef _STLP_TREE_C |
| #define _STLP_TREE_C |
| |
| #ifndef _STLP_INTERNAL_TREE_H |
| # include <stl/_tree.h> |
| #endif |
| |
| #if defined (_STLP_DEBUG) |
| # define _Rb_tree _STLP_NON_DBG_NAME(Rb_tree) |
| #endif |
| |
| // fbp: these defines are for outline methods definitions. |
| // needed for definitions to be portable. Should not be used in method bodies. |
| #if defined (_STLP_NESTED_TYPE_PARAM_BUG) |
| # define __iterator__ _Rb_tree_iterator<_Value, _STLP_HEADER_TYPENAME _Traits::_NonConstTraits> |
| # define __size_type__ size_t |
| # define iterator __iterator__ |
| #else |
| # define __iterator__ _STLP_TYPENAME_ON_RETURN_TYPE _Rb_tree<_Key, _Compare, _Value, _KeyOfValue, _Traits, _Alloc>::iterator |
| # define __size_type__ _STLP_TYPENAME_ON_RETURN_TYPE _Rb_tree<_Key, _Compare, _Value, _KeyOfValue, _Traits, _Alloc>::size_type |
| #endif |
| |
| _STLP_BEGIN_NAMESPACE |
| |
| _STLP_MOVE_TO_PRIV_NAMESPACE |
| |
| #if defined (_STLP_EXPOSE_GLOBALS_IMPLEMENTATION) |
| |
| template <class _Dummy> void _STLP_CALL |
| _Rb_global<_Dummy>::_Rotate_left(_Rb_tree_node_base* __x, |
| _Rb_tree_node_base*& __root) { |
| _Rb_tree_node_base* __y = __x->_M_right; |
| __x->_M_right = __y->_M_left; |
| if (__y->_M_left != 0) |
| __y->_M_left->_M_parent = __x; |
| __y->_M_parent = __x->_M_parent; |
| |
| if (__x == __root) |
| __root = __y; |
| else if (__x == __x->_M_parent->_M_left) |
| __x->_M_parent->_M_left = __y; |
| else |
| __x->_M_parent->_M_right = __y; |
| __y->_M_left = __x; |
| __x->_M_parent = __y; |
| } |
| |
| template <class _Dummy> void _STLP_CALL |
| _Rb_global<_Dummy>::_Rotate_right(_Rb_tree_node_base* __x, |
| _Rb_tree_node_base*& __root) { |
| _Rb_tree_node_base* __y = __x->_M_left; |
| __x->_M_left = __y->_M_right; |
| if (__y->_M_right != 0) |
| __y->_M_right->_M_parent = __x; |
| __y->_M_parent = __x->_M_parent; |
| |
| if (__x == __root) |
| __root = __y; |
| else if (__x == __x->_M_parent->_M_right) |
| __x->_M_parent->_M_right = __y; |
| else |
| __x->_M_parent->_M_left = __y; |
| __y->_M_right = __x; |
| __x->_M_parent = __y; |
| } |
| |
| template <class _Dummy> void _STLP_CALL |
| _Rb_global<_Dummy>::_Rebalance(_Rb_tree_node_base* __x, |
| _Rb_tree_node_base*& __root) { |
| __x->_M_color = _S_rb_tree_red; |
| while (__x != __root && __x->_M_parent->_M_color == _S_rb_tree_red) { |
| if (__x->_M_parent == __x->_M_parent->_M_parent->_M_left) { |
| _Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_right; |
| if (__y && __y->_M_color == _S_rb_tree_red) { |
| __x->_M_parent->_M_color = _S_rb_tree_black; |
| __y->_M_color = _S_rb_tree_black; |
| __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red; |
| __x = __x->_M_parent->_M_parent; |
| } |
| else { |
| if (__x == __x->_M_parent->_M_right) { |
| __x = __x->_M_parent; |
| _Rotate_left(__x, __root); |
| } |
| __x->_M_parent->_M_color = _S_rb_tree_black; |
| __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red; |
| _Rotate_right(__x->_M_parent->_M_parent, __root); |
| } |
| } |
| else { |
| _Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_left; |
| if (__y && __y->_M_color == _S_rb_tree_red) { |
| __x->_M_parent->_M_color = _S_rb_tree_black; |
| __y->_M_color = _S_rb_tree_black; |
| __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red; |
| __x = __x->_M_parent->_M_parent; |
| } |
| else { |
| if (__x == __x->_M_parent->_M_left) { |
| __x = __x->_M_parent; |
| _Rotate_right(__x, __root); |
| } |
| __x->_M_parent->_M_color = _S_rb_tree_black; |
| __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red; |
| _Rotate_left(__x->_M_parent->_M_parent, __root); |
| } |
| } |
| } |
| __root->_M_color = _S_rb_tree_black; |
| } |
| |
| template <class _Dummy> _Rb_tree_node_base* _STLP_CALL |
| _Rb_global<_Dummy>::_Rebalance_for_erase(_Rb_tree_node_base* __z, |
| _Rb_tree_node_base*& __root, |
| _Rb_tree_node_base*& __leftmost, |
| _Rb_tree_node_base*& __rightmost) { |
| _Rb_tree_node_base* __y = __z; |
| _Rb_tree_node_base* __x; |
| _Rb_tree_node_base* __x_parent; |
| |
| if (__y->_M_left == 0) // __z has at most one non-null child. y == z. |
| __x = __y->_M_right; // __x might be null. |
| else { |
| if (__y->_M_right == 0) // __z has exactly one non-null child. y == z. |
| __x = __y->_M_left; // __x is not null. |
| else { // __z has two non-null children. Set __y to |
| __y = _Rb_tree_node_base::_S_minimum(__y->_M_right); // __z's successor. __x might be null. |
| __x = __y->_M_right; |
| } |
| } |
| |
| if (__y != __z) { // relink y in place of z. y is z's successor |
| __z->_M_left->_M_parent = __y; |
| __y->_M_left = __z->_M_left; |
| if (__y != __z->_M_right) { |
| __x_parent = __y->_M_parent; |
| if (__x) __x->_M_parent = __y->_M_parent; |
| __y->_M_parent->_M_left = __x; // __y must be a child of _M_left |
| __y->_M_right = __z->_M_right; |
| __z->_M_right->_M_parent = __y; |
| } |
| else |
| __x_parent = __y; |
| if (__root == __z) |
| __root = __y; |
| else if (__z->_M_parent->_M_left == __z) |
| __z->_M_parent->_M_left = __y; |
| else |
| __z->_M_parent->_M_right = __y; |
| __y->_M_parent = __z->_M_parent; |
| _STLP_STD::swap(__y->_M_color, __z->_M_color); |
| __y = __z; |
| // __y now points to node to be actually deleted |
| } |
| else { // __y == __z |
| __x_parent = __y->_M_parent; |
| if (__x) __x->_M_parent = __y->_M_parent; |
| if (__root == __z) |
| __root = __x; |
| else { |
| if (__z->_M_parent->_M_left == __z) |
| __z->_M_parent->_M_left = __x; |
| else |
| __z->_M_parent->_M_right = __x; |
| } |
| |
| if (__leftmost == __z) { |
| if (__z->_M_right == 0) // __z->_M_left must be null also |
| __leftmost = __z->_M_parent; |
| // makes __leftmost == _M_header if __z == __root |
| else |
| __leftmost = _Rb_tree_node_base::_S_minimum(__x); |
| } |
| if (__rightmost == __z) { |
| if (__z->_M_left == 0) // __z->_M_right must be null also |
| __rightmost = __z->_M_parent; |
| // makes __rightmost == _M_header if __z == __root |
| else // __x == __z->_M_left |
| __rightmost = _Rb_tree_node_base::_S_maximum(__x); |
| } |
| } |
| |
| if (__y->_M_color != _S_rb_tree_red) { |
| while (__x != __root && (__x == 0 || __x->_M_color == _S_rb_tree_black)) |
| if (__x == __x_parent->_M_left) { |
| _Rb_tree_node_base* __w = __x_parent->_M_right; |
| if (__w->_M_color == _S_rb_tree_red) { |
| __w->_M_color = _S_rb_tree_black; |
| __x_parent->_M_color = _S_rb_tree_red; |
| _Rotate_left(__x_parent, __root); |
| __w = __x_parent->_M_right; |
| } |
| if ((__w->_M_left == 0 || |
| __w->_M_left->_M_color == _S_rb_tree_black) && (__w->_M_right == 0 || |
| __w->_M_right->_M_color == _S_rb_tree_black)) { |
| __w->_M_color = _S_rb_tree_red; |
| __x = __x_parent; |
| __x_parent = __x_parent->_M_parent; |
| } else { |
| if (__w->_M_right == 0 || |
| __w->_M_right->_M_color == _S_rb_tree_black) { |
| if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black; |
| __w->_M_color = _S_rb_tree_red; |
| _Rotate_right(__w, __root); |
| __w = __x_parent->_M_right; |
| } |
| __w->_M_color = __x_parent->_M_color; |
| __x_parent->_M_color = _S_rb_tree_black; |
| if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black; |
| _Rotate_left(__x_parent, __root); |
| break; |
| } |
| } else { // same as above, with _M_right <-> _M_left. |
| _Rb_tree_node_base* __w = __x_parent->_M_left; |
| if (__w->_M_color == _S_rb_tree_red) { |
| __w->_M_color = _S_rb_tree_black; |
| __x_parent->_M_color = _S_rb_tree_red; |
| _Rotate_right(__x_parent, __root); |
| __w = __x_parent->_M_left; |
| } |
| if ((__w->_M_right == 0 || |
| __w->_M_right->_M_color == _S_rb_tree_black) && (__w->_M_left == 0 || |
| __w->_M_left->_M_color == _S_rb_tree_black)) { |
| __w->_M_color = _S_rb_tree_red; |
| __x = __x_parent; |
| __x_parent = __x_parent->_M_parent; |
| } else { |
| if (__w->_M_left == 0 || |
| __w->_M_left->_M_color == _S_rb_tree_black) { |
| if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black; |
| __w->_M_color = _S_rb_tree_red; |
| _Rotate_left(__w, __root); |
| __w = __x_parent->_M_left; |
| } |
| __w->_M_color = __x_parent->_M_color; |
| __x_parent->_M_color = _S_rb_tree_black; |
| if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black; |
| _Rotate_right(__x_parent, __root); |
| break; |
| } |
| } |
| if (__x) __x->_M_color = _S_rb_tree_black; |
| } |
| return __y; |
| } |
| |
| template <class _Dummy> _Rb_tree_node_base* _STLP_CALL |
| _Rb_global<_Dummy>::_M_decrement(_Rb_tree_node_base* _M_node) { |
| if (_M_node->_M_color == _S_rb_tree_red && _M_node->_M_parent->_M_parent == _M_node) |
| _M_node = _M_node->_M_right; |
| else if (_M_node->_M_left != 0) { |
| _M_node = _Rb_tree_node_base::_S_maximum(_M_node->_M_left); |
| } |
| else { |
| _Base_ptr __y = _M_node->_M_parent; |
| while (_M_node == __y->_M_left) { |
| _M_node = __y; |
| __y = __y->_M_parent; |
| } |
| _M_node = __y; |
| } |
| return _M_node; |
| } |
| |
| template <class _Dummy> _Rb_tree_node_base* _STLP_CALL |
| _Rb_global<_Dummy>::_M_increment(_Rb_tree_node_base* _M_node) { |
| if (_M_node->_M_right != 0) { |
| _M_node = _Rb_tree_node_base::_S_minimum(_M_node->_M_right); |
| } |
| else { |
| _Base_ptr __y = _M_node->_M_parent; |
| while (_M_node == __y->_M_right) { |
| _M_node = __y; |
| __y = __y->_M_parent; |
| } |
| // check special case: This is necessary if _M_node is the |
| // _M_head and the tree contains only a single node __y. In |
| // that case parent, left and right all point to __y! |
| if (_M_node->_M_right != __y) |
| _M_node = __y; |
| } |
| return _M_node; |
| } |
| |
| #endif /* _STLP_EXPOSE_GLOBALS_IMPLEMENTATION */ |
| |
| |
| template <class _Key, class _Compare, |
| class _Value, class _KeyOfValue, class _Traits, class _Alloc> |
| _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc>& |
| _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::operator=( |
| const _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc>& __x) { |
| if (this != &__x) { |
| // Note that _Key may be a constant type. |
| clear(); |
| _M_node_count = 0; |
| _M_key_compare = __x._M_key_compare; |
| if (__x._M_root() == 0) { |
| _M_root() = 0; |
| _M_leftmost() = &this->_M_header._M_data; |
| _M_rightmost() = &this->_M_header._M_data; |
| } |
| else { |
| _M_root() = _M_copy(__x._M_root(), &this->_M_header._M_data); |
| _M_leftmost() = _S_minimum(_M_root()); |
| _M_rightmost() = _S_maximum(_M_root()); |
| _M_node_count = __x._M_node_count; |
| } |
| } |
| return *this; |
| } |
| |
| // CRP 7/10/00 inserted argument __on_right, which is another hint (meant to |
| // act like __on_left and ignore a portion of the if conditions -- specify |
| // __on_right != 0 to bypass comparison as false or __on_left != 0 to bypass |
| // comparison as true) |
| template <class _Key, class _Compare, |
| class _Value, class _KeyOfValue, class _Traits, class _Alloc> |
| __iterator__ |
| _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::_M_insert(_Rb_tree_node_base * __parent, |
| const _Value& __val, |
| _Rb_tree_node_base * __on_left, |
| _Rb_tree_node_base * __on_right) { |
| // We do not create the node here as, depending on tests, we might call |
| // _M_key_compare that can throw an exception. |
| _Base_ptr __new_node; |
| |
| if ( __parent == &this->_M_header._M_data ) { |
| __new_node = _M_create_node(__val); |
| _S_left(__parent) = __new_node; // also makes _M_leftmost() = __new_node |
| _M_root() = __new_node; |
| _M_rightmost() = __new_node; |
| } |
| else if ( __on_right == 0 && // If __on_right != 0, the remainder fails to false |
| ( __on_left != 0 || // If __on_left != 0, the remainder succeeds to true |
| _M_key_compare( _KeyOfValue()(__val), _S_key(__parent) ) ) ) { |
| __new_node = _M_create_node(__val); |
| _S_left(__parent) = __new_node; |
| if (__parent == _M_leftmost()) |
| _M_leftmost() = __new_node; // maintain _M_leftmost() pointing to min node |
| } |
| else { |
| __new_node = _M_create_node(__val); |
| _S_right(__parent) = __new_node; |
| if (__parent == _M_rightmost()) |
| _M_rightmost() = __new_node; // maintain _M_rightmost() pointing to max node |
| } |
| _S_parent(__new_node) = __parent; |
| _Rb_global_inst::_Rebalance(__new_node, this->_M_header._M_data._M_parent); |
| ++_M_node_count; |
| return iterator(__new_node); |
| } |
| |
| template <class _Key, class _Compare, |
| class _Value, class _KeyOfValue, class _Traits, class _Alloc> |
| __iterator__ |
| _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_equal(const _Value& __val) { |
| _Base_ptr __y = &this->_M_header._M_data; |
| _Base_ptr __x = _M_root(); |
| while (__x != 0) { |
| __y = __x; |
| if (_M_key_compare(_KeyOfValue()(__val), _S_key(__x))) { |
| __x = _S_left(__x); |
| } |
| else |
| __x = _S_right(__x); |
| } |
| return _M_insert(__y, __val, __x); |
| } |
| |
| |
| template <class _Key, class _Compare, |
| class _Value, class _KeyOfValue, class _Traits, class _Alloc> |
| pair<__iterator__, bool> |
| _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_unique(const _Value& __val) { |
| _Base_ptr __y = &this->_M_header._M_data; |
| _Base_ptr __x = _M_root(); |
| bool __comp = true; |
| while (__x != 0) { |
| __y = __x; |
| __comp = _M_key_compare(_KeyOfValue()(__val), _S_key(__x)); |
| __x = __comp ? _S_left(__x) : _S_right(__x); |
| } |
| iterator __j = iterator(__y); |
| if (__comp) { |
| if (__j == begin()) |
| return pair<iterator,bool>(_M_insert(__y, __val, /* __x*/ __y), true); |
| else |
| --__j; |
| } |
| if (_M_key_compare(_S_key(__j._M_node), _KeyOfValue()(__val))) { |
| return pair<iterator,bool>(_M_insert(__y, __val, __x), true); |
| } |
| return pair<iterator,bool>(__j, false); |
| } |
| |
| // Modifications CRP 7/10/00 as noted to improve conformance and |
| // efficiency. |
| template <class _Key, class _Compare, |
| class _Value, class _KeyOfValue, class _Traits, class _Alloc> |
| __iterator__ |
| _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_unique(iterator __position, |
| const _Value& __val) { |
| if (__position._M_node == this->_M_header._M_data._M_left) { // begin() |
| |
| // if the container is empty, fall back on insert_unique. |
| if (empty()) |
| return insert_unique(__val).first; |
| |
| if (_M_key_compare(_KeyOfValue()(__val), _S_key(__position._M_node))) { |
| return _M_insert(__position._M_node, __val, __position._M_node); |
| } |
| // first argument just needs to be non-null |
| else { |
| bool __comp_pos_v = _M_key_compare( _S_key(__position._M_node), _KeyOfValue()(__val) ); |
| |
| if (__comp_pos_v == false) // compare > and compare < both false so compare equal |
| return __position; |
| //Below __comp_pos_v == true |
| |
| // Standard-conformance - does the insertion point fall immediately AFTER |
| // the hint? |
| iterator __after = __position; |
| ++__after; |
| |
| // Check for only one member -- in that case, __position points to itself, |
| // and attempting to increment will cause an infinite loop. |
| if (__after._M_node == &this->_M_header._M_data) |
| // Check guarantees exactly one member, so comparison was already |
| // performed and we know the result; skip repeating it in _M_insert |
| // by specifying a non-zero fourth argument. |
| return _M_insert(__position._M_node, __val, 0, __position._M_node); |
| |
| // All other cases: |
| |
| // Optimization to catch insert-equivalent -- save comparison results, |
| // and we get this for free. |
| if (_M_key_compare( _KeyOfValue()(__val), _S_key(__after._M_node) )) { |
| if (_S_right(__position._M_node) == 0) |
| return _M_insert(__position._M_node, __val, 0, __position._M_node); |
| else |
| return _M_insert(__after._M_node, __val, __after._M_node); |
| } |
| else { |
| return insert_unique(__val).first; |
| } |
| } |
| } |
| else if (__position._M_node == &this->_M_header._M_data) { // end() |
| if (_M_key_compare(_S_key(_M_rightmost()), _KeyOfValue()(__val))) { |
| // pass along to _M_insert that it can skip comparing |
| // v, Key ; since compare Key, v was true, compare v, Key must be false. |
| return _M_insert(_M_rightmost(), __val, 0, __position._M_node); // Last argument only needs to be non-null |
| } |
| else |
| return insert_unique(__val).first; |
| } |
| else { |
| iterator __before = __position; |
| --__before; |
| |
| bool __comp_v_pos = _M_key_compare(_KeyOfValue()(__val), _S_key(__position._M_node)); |
| |
| if (__comp_v_pos |
| && _M_key_compare( _S_key(__before._M_node), _KeyOfValue()(__val) )) { |
| |
| if (_S_right(__before._M_node) == 0) |
| return _M_insert(__before._M_node, __val, 0, __before._M_node); // Last argument only needs to be non-null |
| else |
| return _M_insert(__position._M_node, __val, __position._M_node); |
| // first argument just needs to be non-null |
| } |
| else { |
| // Does the insertion point fall immediately AFTER the hint? |
| iterator __after = __position; |
| ++__after; |
| // Optimization to catch equivalent cases and avoid unnecessary comparisons |
| bool __comp_pos_v = !__comp_v_pos; // Stored this result earlier |
| // If the earlier comparison was true, this comparison doesn't need to be |
| // performed because it must be false. However, if the earlier comparison |
| // was false, we need to perform this one because in the equal case, both will |
| // be false. |
| if (!__comp_v_pos) { |
| __comp_pos_v = _M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__val)); |
| } |
| |
| if ( (!__comp_v_pos) // comp_v_pos true implies comp_v_pos false |
| && __comp_pos_v |
| && (__after._M_node == &this->_M_header._M_data || |
| _M_key_compare( _KeyOfValue()(__val), _S_key(__after._M_node) ))) { |
| if (_S_right(__position._M_node) == 0) |
| return _M_insert(__position._M_node, __val, 0, __position._M_node); |
| else |
| return _M_insert(__after._M_node, __val, __after._M_node); |
| } else { |
| // Test for equivalent case |
| if (__comp_v_pos == __comp_pos_v) |
| return __position; |
| else |
| return insert_unique(__val).first; |
| } |
| } |
| } |
| } |
| |
| template <class _Key, class _Compare, |
| class _Value, class _KeyOfValue, class _Traits, class _Alloc> |
| __iterator__ |
| _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_equal(iterator __position, |
| const _Value& __val) { |
| if (__position._M_node == this->_M_header._M_data._M_left) { // begin() |
| |
| // Check for zero members |
| if (size() <= 0) |
| return insert_equal(__val); |
| |
| if (!_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__val))) |
| return _M_insert(__position._M_node, __val, __position._M_node); |
| else { |
| // Check for only one member |
| if (__position._M_node->_M_left == __position._M_node) |
| // Unlike insert_unique, can't avoid doing a comparison here. |
| return _M_insert(__position._M_node, __val); |
| |
| // All other cases: |
| // Standard-conformance - does the insertion point fall immediately AFTER |
| // the hint? |
| iterator __after = __position; |
| ++__after; |
| |
| // Already know that compare(pos, v) must be true! |
| // Therefore, we want to know if compare(after, v) is false. |
| // (i.e., we now pos < v, now we want to know if v <= after) |
| // If not, invalid hint. |
| if ( __after._M_node == &this->_M_header._M_data || |
| !_M_key_compare( _S_key(__after._M_node), _KeyOfValue()(__val) ) ) { |
| if (_S_right(__position._M_node) == 0) |
| return _M_insert(__position._M_node, __val, 0, __position._M_node); |
| else |
| return _M_insert(__after._M_node, __val, __after._M_node); |
| } |
| else { // Invalid hint |
| return insert_equal(__val); |
| } |
| } |
| } |
| else if (__position._M_node == &this->_M_header._M_data) { // end() |
| if (!_M_key_compare(_KeyOfValue()(__val), _S_key(_M_rightmost()))) |
| return _M_insert(_M_rightmost(), __val, 0, __position._M_node); // Last argument only needs to be non-null |
| else { |
| return insert_equal(__val); |
| } |
| } |
| else { |
| iterator __before = __position; |
| --__before; |
| // store the result of the comparison between pos and v so |
| // that we don't have to do it again later. Note that this reverses the shortcut |
| // on the if, possibly harming efficiency in comparisons; I think the harm will |
| // be negligible, and to do what I want to do (save the result of a comparison so |
| // that it can be re-used) there is no alternative. Test here is for before <= v <= pos. |
| bool __comp_pos_v = _M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__val)); |
| if (!__comp_pos_v && |
| !_M_key_compare(_KeyOfValue()(__val), _S_key(__before._M_node))) { |
| if (_S_right(__before._M_node) == 0) |
| return _M_insert(__before._M_node, __val, 0, __before._M_node); // Last argument only needs to be non-null |
| else |
| return _M_insert(__position._M_node, __val, __position._M_node); |
| } |
| else { |
| // Does the insertion point fall immediately AFTER the hint? |
| // Test for pos < v <= after |
| iterator __after = __position; |
| ++__after; |
| |
| if (__comp_pos_v && |
| ( __after._M_node == &this->_M_header._M_data || |
| !_M_key_compare( _S_key(__after._M_node), _KeyOfValue()(__val) ) ) ) { |
| if (_S_right(__position._M_node) == 0) |
| return _M_insert(__position._M_node, __val, 0, __position._M_node); |
| else |
| return _M_insert(__after._M_node, __val, __after._M_node); |
| } |
| else { // Invalid hint |
| return insert_equal(__val); |
| } |
| } |
| } |
| } |
| |
| template <class _Key, class _Compare, |
| class _Value, class _KeyOfValue, class _Traits, class _Alloc> |
| _Rb_tree_node_base* |
| _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::_M_copy(_Rb_tree_node_base* __x, |
| _Rb_tree_node_base* __p) { |
| // structural copy. __x and __p must be non-null. |
| _Base_ptr __top = _M_clone_node(__x); |
| _S_parent(__top) = __p; |
| |
| _STLP_TRY { |
| if (_S_right(__x)) |
| _S_right(__top) = _M_copy(_S_right(__x), __top); |
| __p = __top; |
| __x = _S_left(__x); |
| |
| while (__x != 0) { |
| _Base_ptr __y = _M_clone_node(__x); |
| _S_left(__p) = __y; |
| _S_parent(__y) = __p; |
| if (_S_right(__x)) |
| _S_right(__y) = _M_copy(_S_right(__x), __y); |
| __p = __y; |
| __x = _S_left(__x); |
| } |
| } |
| _STLP_UNWIND(_M_erase(__top)) |
| |
| return __top; |
| } |
| |
| // this has to stay out-of-line : it's recursive |
| template <class _Key, class _Compare, |
| class _Value, class _KeyOfValue, class _Traits, class _Alloc> |
| void |
| _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc>::_M_erase(_Rb_tree_node_base *__x) { |
| // erase without rebalancing |
| while (__x != 0) { |
| _M_erase(_S_right(__x)); |
| _Base_ptr __y = _S_left(__x); |
| _STLP_STD::_Destroy(&_S_value(__x)); |
| this->_M_header.deallocate(__STATIC_CAST(_Link_type, __x),1); |
| __x = __y; |
| } |
| } |
| |
| #if defined (_STLP_DEBUG) |
| inline int |
| __black_count(_Rb_tree_node_base* __node, _Rb_tree_node_base* __root) { |
| if (__node == 0) |
| return 0; |
| else { |
| int __bc = __node->_M_color == _S_rb_tree_black ? 1 : 0; |
| if (__node == __root) |
| return __bc; |
| else |
| return __bc + __black_count(__node->_M_parent, __root); |
| } |
| } |
| |
| template <class _Key, class _Compare, |
| class _Value, class _KeyOfValue, class _Traits, class _Alloc> |
| bool _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc>::__rb_verify() const { |
| if (_M_node_count == 0 || begin() == end()) |
| return ((_M_node_count == 0) && |
| (begin() == end()) && |
| (this->_M_header._M_data._M_left == &this->_M_header._M_data) && |
| (this->_M_header._M_data._M_right == &this->_M_header._M_data)); |
| |
| int __len = __black_count(_M_leftmost(), _M_root()); |
| for (const_iterator __it = begin(); __it != end(); ++__it) { |
| _Base_ptr __x = __it._M_node; |
| _Base_ptr __L = _S_left(__x); |
| _Base_ptr __R = _S_right(__x); |
| |
| if (__x->_M_color == _S_rb_tree_red) |
| if ((__L && __L->_M_color == _S_rb_tree_red) || |
| (__R && __R->_M_color == _S_rb_tree_red)) |
| return false; |
| |
| if (__L && _M_key_compare(_S_key(__x), _S_key(__L))) |
| return false; |
| if (__R && _M_key_compare(_S_key(__R), _S_key(__x))) |
| return false; |
| |
| if (!__L && !__R && __black_count(__x, _M_root()) != __len) |
| return false; |
| } |
| |
| if (_M_leftmost() != _Rb_tree_node_base::_S_minimum(_M_root())) |
| return false; |
| if (_M_rightmost() != _Rb_tree_node_base::_S_maximum(_M_root())) |
| return false; |
| |
| return true; |
| } |
| #endif /* _STLP_DEBUG */ |
| |
| _STLP_MOVE_TO_STD_NAMESPACE |
| _STLP_END_NAMESPACE |
| |
| #undef _Rb_tree |
| #undef __iterator__ |
| #undef iterator |
| #undef __size_type__ |
| |
| #endif /* _STLP_TREE_C */ |
| |
| // Local Variables: |
| // mode:C++ |
| // End: |