blob: 43e758ddbb4240ea785af2bd6c1f545e39cbe4f8 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/test/trace_event_analyzer.h"
#include "base/bind.h"
#include "base/memory/ptr_util.h"
#include "base/memory/ref_counted_memory.h"
#include "base/synchronization/waitable_event.h"
#include "base/threading/platform_thread.h"
#include "base/trace_event/trace_buffer.h"
#include "base/trace_event/trace_event_argument.h"
#include "starboard/types.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace trace_analyzer {
namespace {
class TraceEventAnalyzerTest : public testing::Test {
public:
void ManualSetUp();
void OnTraceDataCollected(
base::WaitableEvent* flush_complete_event,
const scoped_refptr<base::RefCountedString>& json_events_str,
bool has_more_events);
void BeginTracing();
void EndTracing();
base::trace_event::TraceResultBuffer::SimpleOutput output_;
base::trace_event::TraceResultBuffer buffer_;
};
void TraceEventAnalyzerTest::ManualSetUp() {
ASSERT_TRUE(base::trace_event::TraceLog::GetInstance());
buffer_.SetOutputCallback(output_.GetCallback());
output_.json_output.clear();
}
void TraceEventAnalyzerTest::OnTraceDataCollected(
base::WaitableEvent* flush_complete_event,
const scoped_refptr<base::RefCountedString>& json_events_str,
bool has_more_events) {
buffer_.AddFragment(json_events_str->data());
if (!has_more_events)
flush_complete_event->Signal();
}
void TraceEventAnalyzerTest::BeginTracing() {
output_.json_output.clear();
buffer_.Start();
base::trace_event::TraceLog::GetInstance()->SetEnabled(
base::trace_event::TraceConfig("*", ""),
base::trace_event::TraceLog::RECORDING_MODE);
}
void TraceEventAnalyzerTest::EndTracing() {
base::trace_event::TraceLog::GetInstance()->SetDisabled();
base::WaitableEvent flush_complete_event(
base::WaitableEvent::ResetPolicy::AUTOMATIC,
base::WaitableEvent::InitialState::NOT_SIGNALED);
base::trace_event::TraceLog::GetInstance()->Flush(
base::Bind(&TraceEventAnalyzerTest::OnTraceDataCollected,
base::Unretained(this),
base::Unretained(&flush_complete_event)));
flush_complete_event.Wait();
buffer_.Finish();
}
} // namespace
TEST_F(TraceEventAnalyzerTest, NoEvents) {
ManualSetUp();
// Create an empty JSON event string:
buffer_.Start();
buffer_.Finish();
std::unique_ptr<TraceAnalyzer> analyzer(
TraceAnalyzer::Create(output_.json_output));
ASSERT_TRUE(analyzer.get());
// Search for all events and verify that nothing is returned.
TraceEventVector found;
analyzer->FindEvents(Query::Bool(true), &found);
EXPECT_EQ(0u, found.size());
}
TEST_F(TraceEventAnalyzerTest, TraceEvent) {
ManualSetUp();
int int_num = 2;
double double_num = 3.5;
const char str[] = "the string";
TraceEvent event;
event.arg_numbers["false"] = 0.0;
event.arg_numbers["true"] = 1.0;
event.arg_numbers["int"] = static_cast<double>(int_num);
event.arg_numbers["double"] = double_num;
event.arg_strings["string"] = str;
event.arg_values["dict"] = WrapUnique(new base::DictionaryValue());
ASSERT_TRUE(event.HasNumberArg("false"));
ASSERT_TRUE(event.HasNumberArg("true"));
ASSERT_TRUE(event.HasNumberArg("int"));
ASSERT_TRUE(event.HasNumberArg("double"));
ASSERT_TRUE(event.HasStringArg("string"));
ASSERT_FALSE(event.HasNumberArg("notfound"));
ASSERT_FALSE(event.HasStringArg("notfound"));
ASSERT_TRUE(event.HasArg("dict"));
ASSERT_FALSE(event.HasArg("notfound"));
EXPECT_FALSE(event.GetKnownArgAsBool("false"));
EXPECT_TRUE(event.GetKnownArgAsBool("true"));
EXPECT_EQ(int_num, event.GetKnownArgAsInt("int"));
EXPECT_EQ(double_num, event.GetKnownArgAsDouble("double"));
EXPECT_STREQ(str, event.GetKnownArgAsString("string").c_str());
std::unique_ptr<base::Value> arg;
EXPECT_TRUE(event.GetArgAsValue("dict", &arg));
EXPECT_EQ(base::Value::Type::DICTIONARY, arg->type());
}
TEST_F(TraceEventAnalyzerTest, QueryEventMember) {
ManualSetUp();
TraceEvent event;
event.thread.process_id = 3;
event.thread.thread_id = 4;
event.timestamp = 1.5;
event.phase = TRACE_EVENT_PHASE_BEGIN;
event.category = "category";
event.name = "name";
event.id = "1";
event.arg_numbers["num"] = 7.0;
event.arg_strings["str"] = "the string";
// Other event with all different members:
TraceEvent other;
other.thread.process_id = 5;
other.thread.thread_id = 6;
other.timestamp = 2.5;
other.phase = TRACE_EVENT_PHASE_END;
other.category = "category2";
other.name = "name2";
other.id = "2";
other.arg_numbers["num2"] = 8.0;
other.arg_strings["str2"] = "the string 2";
event.other_event = &other;
ASSERT_TRUE(event.has_other_event());
double duration = event.GetAbsTimeToOtherEvent();
Query event_pid = Query::EventPidIs(event.thread.process_id);
Query event_tid = Query::EventTidIs(event.thread.thread_id);
Query event_time = Query::EventTimeIs(event.timestamp);
Query event_duration = Query::EventDurationIs(duration);
Query event_phase = Query::EventPhaseIs(event.phase);
Query event_category = Query::EventCategoryIs(event.category);
Query event_name = Query::EventNameIs(event.name);
Query event_id = Query::EventIdIs(event.id);
Query event_has_arg1 = Query::EventHasNumberArg("num");
Query event_has_arg2 = Query::EventHasStringArg("str");
Query event_arg1 =
(Query::EventArg("num") == Query::Double(event.arg_numbers["num"]));
Query event_arg2 =
(Query::EventArg("str") == Query::String(event.arg_strings["str"]));
Query event_has_other = Query::EventHasOther();
Query other_pid = Query::OtherPidIs(other.thread.process_id);
Query other_tid = Query::OtherTidIs(other.thread.thread_id);
Query other_time = Query::OtherTimeIs(other.timestamp);
Query other_phase = Query::OtherPhaseIs(other.phase);
Query other_category = Query::OtherCategoryIs(other.category);
Query other_name = Query::OtherNameIs(other.name);
Query other_id = Query::OtherIdIs(other.id);
Query other_has_arg1 = Query::OtherHasNumberArg("num2");
Query other_has_arg2 = Query::OtherHasStringArg("str2");
Query other_arg1 =
(Query::OtherArg("num2") == Query::Double(other.arg_numbers["num2"]));
Query other_arg2 =
(Query::OtherArg("str2") == Query::String(other.arg_strings["str2"]));
EXPECT_TRUE(event_pid.Evaluate(event));
EXPECT_TRUE(event_tid.Evaluate(event));
EXPECT_TRUE(event_time.Evaluate(event));
EXPECT_TRUE(event_duration.Evaluate(event));
EXPECT_TRUE(event_phase.Evaluate(event));
EXPECT_TRUE(event_category.Evaluate(event));
EXPECT_TRUE(event_name.Evaluate(event));
EXPECT_TRUE(event_id.Evaluate(event));
EXPECT_TRUE(event_has_arg1.Evaluate(event));
EXPECT_TRUE(event_has_arg2.Evaluate(event));
EXPECT_TRUE(event_arg1.Evaluate(event));
EXPECT_TRUE(event_arg2.Evaluate(event));
EXPECT_TRUE(event_has_other.Evaluate(event));
EXPECT_TRUE(other_pid.Evaluate(event));
EXPECT_TRUE(other_tid.Evaluate(event));
EXPECT_TRUE(other_time.Evaluate(event));
EXPECT_TRUE(other_phase.Evaluate(event));
EXPECT_TRUE(other_category.Evaluate(event));
EXPECT_TRUE(other_name.Evaluate(event));
EXPECT_TRUE(other_id.Evaluate(event));
EXPECT_TRUE(other_has_arg1.Evaluate(event));
EXPECT_TRUE(other_has_arg2.Evaluate(event));
EXPECT_TRUE(other_arg1.Evaluate(event));
EXPECT_TRUE(other_arg2.Evaluate(event));
// Evaluate event queries against other to verify the queries fail when the
// event members are wrong.
EXPECT_FALSE(event_pid.Evaluate(other));
EXPECT_FALSE(event_tid.Evaluate(other));
EXPECT_FALSE(event_time.Evaluate(other));
EXPECT_FALSE(event_duration.Evaluate(other));
EXPECT_FALSE(event_phase.Evaluate(other));
EXPECT_FALSE(event_category.Evaluate(other));
EXPECT_FALSE(event_name.Evaluate(other));
EXPECT_FALSE(event_id.Evaluate(other));
EXPECT_FALSE(event_has_arg1.Evaluate(other));
EXPECT_FALSE(event_has_arg2.Evaluate(other));
EXPECT_FALSE(event_arg1.Evaluate(other));
EXPECT_FALSE(event_arg2.Evaluate(other));
EXPECT_FALSE(event_has_other.Evaluate(other));
}
TEST_F(TraceEventAnalyzerTest, BooleanOperators) {
ManualSetUp();
BeginTracing();
{
TRACE_EVENT_INSTANT1("cat1", "name1", TRACE_EVENT_SCOPE_THREAD, "num", 1);
TRACE_EVENT_INSTANT1("cat1", "name2", TRACE_EVENT_SCOPE_THREAD, "num", 2);
TRACE_EVENT_INSTANT1("cat2", "name3", TRACE_EVENT_SCOPE_THREAD, "num", 3);
TRACE_EVENT_INSTANT1("cat2", "name4", TRACE_EVENT_SCOPE_THREAD, "num", 4);
}
EndTracing();
std::unique_ptr<TraceAnalyzer> analyzer(
TraceAnalyzer::Create(output_.json_output));
ASSERT_TRUE(analyzer);
analyzer->SetIgnoreMetadataEvents(true);
TraceEventVector found;
// ==
analyzer->FindEvents(Query::EventCategory() == Query::String("cat1"), &found);
ASSERT_EQ(2u, found.size());
EXPECT_STREQ("name1", found[0]->name.c_str());
EXPECT_STREQ("name2", found[1]->name.c_str());
analyzer->FindEvents(Query::EventArg("num") == Query::Int(2), &found);
ASSERT_EQ(1u, found.size());
EXPECT_STREQ("name2", found[0]->name.c_str());
// !=
analyzer->FindEvents(Query::EventCategory() != Query::String("cat1"), &found);
ASSERT_EQ(2u, found.size());
EXPECT_STREQ("name3", found[0]->name.c_str());
EXPECT_STREQ("name4", found[1]->name.c_str());
analyzer->FindEvents(Query::EventArg("num") != Query::Int(2), &found);
ASSERT_EQ(3u, found.size());
EXPECT_STREQ("name1", found[0]->name.c_str());
EXPECT_STREQ("name3", found[1]->name.c_str());
EXPECT_STREQ("name4", found[2]->name.c_str());
// <
analyzer->FindEvents(Query::EventArg("num") < Query::Int(2), &found);
ASSERT_EQ(1u, found.size());
EXPECT_STREQ("name1", found[0]->name.c_str());
// <=
analyzer->FindEvents(Query::EventArg("num") <= Query::Int(2), &found);
ASSERT_EQ(2u, found.size());
EXPECT_STREQ("name1", found[0]->name.c_str());
EXPECT_STREQ("name2", found[1]->name.c_str());
// >
analyzer->FindEvents(Query::EventArg("num") > Query::Int(3), &found);
ASSERT_EQ(1u, found.size());
EXPECT_STREQ("name4", found[0]->name.c_str());
// >=
analyzer->FindEvents(Query::EventArg("num") >= Query::Int(4), &found);
ASSERT_EQ(1u, found.size());
EXPECT_STREQ("name4", found[0]->name.c_str());
// &&
analyzer->FindEvents(Query::EventName() != Query::String("name1") &&
Query::EventArg("num") < Query::Int(3), &found);
ASSERT_EQ(1u, found.size());
EXPECT_STREQ("name2", found[0]->name.c_str());
// ||
analyzer->FindEvents(Query::EventName() == Query::String("name1") ||
Query::EventArg("num") == Query::Int(3), &found);
ASSERT_EQ(2u, found.size());
EXPECT_STREQ("name1", found[0]->name.c_str());
EXPECT_STREQ("name3", found[1]->name.c_str());
// !
analyzer->FindEvents(!(Query::EventName() == Query::String("name1") ||
Query::EventArg("num") == Query::Int(3)), &found);
ASSERT_EQ(2u, found.size());
EXPECT_STREQ("name2", found[0]->name.c_str());
EXPECT_STREQ("name4", found[1]->name.c_str());
}
TEST_F(TraceEventAnalyzerTest, ArithmeticOperators) {
ManualSetUp();
BeginTracing();
{
// These events are searched for:
TRACE_EVENT_INSTANT2("cat1", "math1", TRACE_EVENT_SCOPE_THREAD,
"a", 10, "b", 5);
TRACE_EVENT_INSTANT2("cat1", "math2", TRACE_EVENT_SCOPE_THREAD,
"a", 10, "b", 10);
// Extra events that never match, for noise:
TRACE_EVENT_INSTANT2("noise", "math3", TRACE_EVENT_SCOPE_THREAD,
"a", 1, "b", 3);
TRACE_EVENT_INSTANT2("noise", "math4", TRACE_EVENT_SCOPE_THREAD,
"c", 10, "d", 5);
}
EndTracing();
std::unique_ptr<TraceAnalyzer> analyzer(
TraceAnalyzer::Create(output_.json_output));
ASSERT_TRUE(analyzer.get());
TraceEventVector found;
// Verify that arithmetic operators function:
// +
analyzer->FindEvents(Query::EventArg("a") + Query::EventArg("b") ==
Query::Int(20), &found);
EXPECT_EQ(1u, found.size());
EXPECT_STREQ("math2", found.front()->name.c_str());
// -
analyzer->FindEvents(Query::EventArg("a") - Query::EventArg("b") ==
Query::Int(5), &found);
EXPECT_EQ(1u, found.size());
EXPECT_STREQ("math1", found.front()->name.c_str());
// *
analyzer->FindEvents(Query::EventArg("a") * Query::EventArg("b") ==
Query::Int(50), &found);
EXPECT_EQ(1u, found.size());
EXPECT_STREQ("math1", found.front()->name.c_str());
// /
analyzer->FindEvents(Query::EventArg("a") / Query::EventArg("b") ==
Query::Int(2), &found);
EXPECT_EQ(1u, found.size());
EXPECT_STREQ("math1", found.front()->name.c_str());
// %
analyzer->FindEvents(Query::EventArg("a") % Query::EventArg("b") ==
Query::Int(0), &found);
EXPECT_EQ(2u, found.size());
// - (negate)
analyzer->FindEvents(-Query::EventArg("b") == Query::Int(-10), &found);
EXPECT_EQ(1u, found.size());
EXPECT_STREQ("math2", found.front()->name.c_str());
}
TEST_F(TraceEventAnalyzerTest, StringPattern) {
ManualSetUp();
BeginTracing();
{
TRACE_EVENT_INSTANT0("cat1", "name1", TRACE_EVENT_SCOPE_THREAD);
TRACE_EVENT_INSTANT0("cat1", "name2", TRACE_EVENT_SCOPE_THREAD);
TRACE_EVENT_INSTANT0("cat1", "no match", TRACE_EVENT_SCOPE_THREAD);
TRACE_EVENT_INSTANT0("cat1", "name3x", TRACE_EVENT_SCOPE_THREAD);
}
EndTracing();
std::unique_ptr<TraceAnalyzer> analyzer(
TraceAnalyzer::Create(output_.json_output));
ASSERT_TRUE(analyzer.get());
analyzer->SetIgnoreMetadataEvents(true);
TraceEventVector found;
analyzer->FindEvents(Query::EventName() == Query::Pattern("name?"), &found);
ASSERT_EQ(2u, found.size());
EXPECT_STREQ("name1", found[0]->name.c_str());
EXPECT_STREQ("name2", found[1]->name.c_str());
analyzer->FindEvents(Query::EventName() == Query::Pattern("name*"), &found);
ASSERT_EQ(3u, found.size());
EXPECT_STREQ("name1", found[0]->name.c_str());
EXPECT_STREQ("name2", found[1]->name.c_str());
EXPECT_STREQ("name3x", found[2]->name.c_str());
analyzer->FindEvents(Query::EventName() != Query::Pattern("name*"), &found);
ASSERT_EQ(1u, found.size());
EXPECT_STREQ("no match", found[0]->name.c_str());
}
// Test that duration queries work.
TEST_F(TraceEventAnalyzerTest, BeginEndDuration) {
ManualSetUp();
const base::TimeDelta kSleepTime = base::TimeDelta::FromMilliseconds(200);
// We will search for events that have a duration of greater than 90% of the
// sleep time, so that there is no flakiness.
int64_t duration_cutoff_us = (kSleepTime.InMicroseconds() * 9) / 10;
BeginTracing();
{
TRACE_EVENT_BEGIN0("cat1", "name1"); // found by duration query
TRACE_EVENT_BEGIN0("noise", "name2"); // not searched for, just noise
{
TRACE_EVENT_BEGIN0("cat2", "name3"); // found by duration query
// next event not searched for, just noise
TRACE_EVENT_INSTANT0("noise", "name4", TRACE_EVENT_SCOPE_THREAD);
base::PlatformThread::Sleep(kSleepTime);
TRACE_EVENT_BEGIN0("cat2", "name5"); // not found (duration too short)
TRACE_EVENT_END0("cat2", "name5"); // not found (duration too short)
TRACE_EVENT_END0("cat2", "name3"); // found by duration query
}
TRACE_EVENT_END0("noise", "name2"); // not searched for, just noise
TRACE_EVENT_END0("cat1", "name1"); // found by duration query
}
EndTracing();
std::unique_ptr<TraceAnalyzer> analyzer(
TraceAnalyzer::Create(output_.json_output));
ASSERT_TRUE(analyzer.get());
analyzer->AssociateBeginEndEvents();
TraceEventVector found;
analyzer->FindEvents(
Query::MatchBeginWithEnd() &&
Query::EventDuration() >
Query::Int(static_cast<int>(duration_cutoff_us)) &&
(Query::EventCategory() == Query::String("cat1") ||
Query::EventCategory() == Query::String("cat2") ||
Query::EventCategory() == Query::String("cat3")),
&found);
ASSERT_EQ(2u, found.size());
EXPECT_STREQ("name1", found[0]->name.c_str());
EXPECT_STREQ("name3", found[1]->name.c_str());
}
// Test that duration queries work.
TEST_F(TraceEventAnalyzerTest, CompleteDuration) {
ManualSetUp();
const base::TimeDelta kSleepTime = base::TimeDelta::FromMilliseconds(200);
// We will search for events that have a duration of greater than 90% of the
// sleep time, so that there is no flakiness.
int64_t duration_cutoff_us = (kSleepTime.InMicroseconds() * 9) / 10;
BeginTracing();
{
TRACE_EVENT0("cat1", "name1"); // found by duration query
TRACE_EVENT0("noise", "name2"); // not searched for, just noise
{
TRACE_EVENT0("cat2", "name3"); // found by duration query
// next event not searched for, just noise
TRACE_EVENT_INSTANT0("noise", "name4", TRACE_EVENT_SCOPE_THREAD);
base::PlatformThread::Sleep(kSleepTime);
TRACE_EVENT0("cat2", "name5"); // not found (duration too short)
}
}
EndTracing();
std::unique_ptr<TraceAnalyzer> analyzer(
TraceAnalyzer::Create(output_.json_output));
ASSERT_TRUE(analyzer.get());
analyzer->AssociateBeginEndEvents();
TraceEventVector found;
analyzer->FindEvents(
Query::EventCompleteDuration() >
Query::Int(static_cast<int>(duration_cutoff_us)) &&
(Query::EventCategory() == Query::String("cat1") ||
Query::EventCategory() == Query::String("cat2") ||
Query::EventCategory() == Query::String("cat3")),
&found);
ASSERT_EQ(2u, found.size());
EXPECT_STREQ("name1", found[0]->name.c_str());
EXPECT_STREQ("name3", found[1]->name.c_str());
}
// Test AssociateBeginEndEvents
TEST_F(TraceEventAnalyzerTest, BeginEndAssocations) {
ManualSetUp();
BeginTracing();
{
TRACE_EVENT_END0("cat1", "name1"); // does not match out of order begin
TRACE_EVENT_BEGIN0("cat1", "name2");
TRACE_EVENT_INSTANT0("cat1", "name3", TRACE_EVENT_SCOPE_THREAD);
TRACE_EVENT_BEGIN0("cat1", "name1");
TRACE_EVENT_END0("cat1", "name2");
}
EndTracing();
std::unique_ptr<TraceAnalyzer> analyzer(
TraceAnalyzer::Create(output_.json_output));
ASSERT_TRUE(analyzer.get());
analyzer->AssociateBeginEndEvents();
TraceEventVector found;
analyzer->FindEvents(Query::MatchBeginWithEnd(), &found);
ASSERT_EQ(1u, found.size());
EXPECT_STREQ("name2", found[0]->name.c_str());
}
// Test MergeAssociatedEventArgs
TEST_F(TraceEventAnalyzerTest, MergeAssociatedEventArgs) {
ManualSetUp();
const char arg_string[] = "arg_string";
BeginTracing();
{
TRACE_EVENT_BEGIN0("cat1", "name1");
TRACE_EVENT_END1("cat1", "name1", "arg", arg_string);
}
EndTracing();
std::unique_ptr<TraceAnalyzer> analyzer(
TraceAnalyzer::Create(output_.json_output));
ASSERT_TRUE(analyzer.get());
analyzer->AssociateBeginEndEvents();
TraceEventVector found;
analyzer->FindEvents(Query::MatchBeginName("name1"), &found);
ASSERT_EQ(1u, found.size());
std::string arg_actual;
EXPECT_FALSE(found[0]->GetArgAsString("arg", &arg_actual));
analyzer->MergeAssociatedEventArgs();
EXPECT_TRUE(found[0]->GetArgAsString("arg", &arg_actual));
EXPECT_STREQ(arg_string, arg_actual.c_str());
}
// Test AssociateAsyncBeginEndEvents
TEST_F(TraceEventAnalyzerTest, AsyncBeginEndAssocations) {
ManualSetUp();
BeginTracing();
{
TRACE_EVENT_ASYNC_END0("cat1", "name1", 0xA); // no match / out of order
TRACE_EVENT_ASYNC_BEGIN0("cat1", "name1", 0xB);
TRACE_EVENT_ASYNC_BEGIN0("cat1", "name1", 0xC);
TRACE_EVENT_INSTANT0("cat1", "name1", TRACE_EVENT_SCOPE_THREAD); // noise
TRACE_EVENT0("cat1", "name1"); // noise
TRACE_EVENT_ASYNC_END0("cat1", "name1", 0xB);
TRACE_EVENT_ASYNC_END0("cat1", "name1", 0xC);
TRACE_EVENT_ASYNC_BEGIN0("cat1", "name1", 0xA); // no match / out of order
}
EndTracing();
std::unique_ptr<TraceAnalyzer> analyzer(
TraceAnalyzer::Create(output_.json_output));
ASSERT_TRUE(analyzer.get());
analyzer->AssociateAsyncBeginEndEvents();
TraceEventVector found;
analyzer->FindEvents(Query::MatchAsyncBeginWithNext(), &found);
ASSERT_EQ(2u, found.size());
EXPECT_STRCASEEQ("0xb", found[0]->id.c_str());
EXPECT_STRCASEEQ("0xc", found[1]->id.c_str());
}
// Test AssociateAsyncBeginEndEvents
TEST_F(TraceEventAnalyzerTest, AsyncBeginEndAssocationsWithSteps) {
ManualSetUp();
BeginTracing();
{
TRACE_EVENT_ASYNC_STEP_INTO0("c", "n", 0xA, "s1");
TRACE_EVENT_ASYNC_END0("c", "n", 0xA);
TRACE_EVENT_ASYNC_BEGIN0("c", "n", 0xB);
TRACE_EVENT_ASYNC_BEGIN0("c", "n", 0xC);
TRACE_EVENT_ASYNC_STEP_PAST0("c", "n", 0xB, "s1");
TRACE_EVENT_ASYNC_STEP_INTO0("c", "n", 0xC, "s1");
TRACE_EVENT_ASYNC_STEP_INTO1("c", "n", 0xC, "s2", "a", 1);
TRACE_EVENT_ASYNC_END0("c", "n", 0xB);
TRACE_EVENT_ASYNC_END0("c", "n", 0xC);
TRACE_EVENT_ASYNC_BEGIN0("c", "n", 0xA);
TRACE_EVENT_ASYNC_STEP_INTO0("c", "n", 0xA, "s2");
}
EndTracing();
std::unique_ptr<TraceAnalyzer> analyzer(
TraceAnalyzer::Create(output_.json_output));
ASSERT_TRUE(analyzer.get());
analyzer->AssociateAsyncBeginEndEvents();
TraceEventVector found;
analyzer->FindEvents(Query::MatchAsyncBeginWithNext(), &found);
ASSERT_EQ(3u, found.size());
EXPECT_STRCASEEQ("0xb", found[0]->id.c_str());
EXPECT_EQ(TRACE_EVENT_PHASE_ASYNC_STEP_PAST, found[0]->other_event->phase);
EXPECT_EQ(found[0], found[0]->other_event->prev_event);
EXPECT_TRUE(found[0]->other_event->other_event);
EXPECT_EQ(TRACE_EVENT_PHASE_ASYNC_END,
found[0]->other_event->other_event->phase);
EXPECT_EQ(found[0]->other_event,
found[0]->other_event->other_event->prev_event);
EXPECT_STRCASEEQ("0xc", found[1]->id.c_str());
EXPECT_EQ(TRACE_EVENT_PHASE_ASYNC_STEP_INTO, found[1]->other_event->phase);
EXPECT_EQ(found[1], found[1]->other_event->prev_event);
EXPECT_TRUE(found[1]->other_event->other_event);
EXPECT_EQ(TRACE_EVENT_PHASE_ASYNC_STEP_INTO,
found[1]->other_event->other_event->phase);
EXPECT_EQ(found[1]->other_event,
found[1]->other_event->other_event->prev_event);
double arg_actual = 0;
EXPECT_TRUE(found[1]->other_event->other_event->GetArgAsNumber(
"a", &arg_actual));
EXPECT_EQ(1.0, arg_actual);
EXPECT_TRUE(found[1]->other_event->other_event->other_event);
EXPECT_EQ(TRACE_EVENT_PHASE_ASYNC_END,
found[1]->other_event->other_event->other_event->phase);
EXPECT_STRCASEEQ("0xa", found[2]->id.c_str());
EXPECT_EQ(TRACE_EVENT_PHASE_ASYNC_STEP_INTO, found[2]->other_event->phase);
}
// Test that the TraceAnalyzer custom associations work.
TEST_F(TraceEventAnalyzerTest, CustomAssociations) {
ManualSetUp();
// Add events that begin/end in pipelined ordering with unique ID parameter
// to match up the begin/end pairs.
BeginTracing();
{
// no begin match
TRACE_EVENT_INSTANT1("cat1", "end", TRACE_EVENT_SCOPE_THREAD, "id", 1);
// end is cat4
TRACE_EVENT_INSTANT1("cat2", "begin", TRACE_EVENT_SCOPE_THREAD, "id", 2);
// end is cat5
TRACE_EVENT_INSTANT1("cat3", "begin", TRACE_EVENT_SCOPE_THREAD, "id", 3);
TRACE_EVENT_INSTANT1("cat4", "end", TRACE_EVENT_SCOPE_THREAD, "id", 2);
TRACE_EVENT_INSTANT1("cat5", "end", TRACE_EVENT_SCOPE_THREAD, "id", 3);
// no end match
TRACE_EVENT_INSTANT1("cat6", "begin", TRACE_EVENT_SCOPE_THREAD, "id", 1);
}
EndTracing();
std::unique_ptr<TraceAnalyzer> analyzer(
TraceAnalyzer::Create(output_.json_output));
ASSERT_TRUE(analyzer.get());
// begin, end, and match queries to find proper begin/end pairs.
Query begin(Query::EventName() == Query::String("begin"));
Query end(Query::EventName() == Query::String("end"));
Query match(Query::EventArg("id") == Query::OtherArg("id"));
analyzer->AssociateEvents(begin, end, match);
TraceEventVector found;
// cat1 has no other_event.
analyzer->FindEvents(Query::EventCategory() == Query::String("cat1") &&
Query::EventHasOther(), &found);
EXPECT_EQ(0u, found.size());
// cat1 has no other_event.
analyzer->FindEvents(Query::EventCategory() == Query::String("cat1") &&
!Query::EventHasOther(), &found);
EXPECT_EQ(1u, found.size());
// cat6 has no other_event.
analyzer->FindEvents(Query::EventCategory() == Query::String("cat6") &&
!Query::EventHasOther(), &found);
EXPECT_EQ(1u, found.size());
// cat2 and cat4 are associated.
analyzer->FindEvents(Query::EventCategory() == Query::String("cat2") &&
Query::OtherCategory() == Query::String("cat4"), &found);
EXPECT_EQ(1u, found.size());
// cat4 and cat2 are not associated.
analyzer->FindEvents(Query::EventCategory() == Query::String("cat4") &&
Query::OtherCategory() == Query::String("cat2"), &found);
EXPECT_EQ(0u, found.size());
// cat3 and cat5 are associated.
analyzer->FindEvents(Query::EventCategory() == Query::String("cat3") &&
Query::OtherCategory() == Query::String("cat5"), &found);
EXPECT_EQ(1u, found.size());
// cat5 and cat3 are not associated.
analyzer->FindEvents(Query::EventCategory() == Query::String("cat5") &&
Query::OtherCategory() == Query::String("cat3"), &found);
EXPECT_EQ(0u, found.size());
}
// Verify that Query literals and types are properly casted.
TEST_F(TraceEventAnalyzerTest, Literals) {
ManualSetUp();
// Since these queries don't refer to the event data, the dummy event below
// will never be accessed.
TraceEvent dummy;
char char_num = 5;
short short_num = -5;
EXPECT_TRUE((Query::Double(5.0) == Query::Int(char_num)).Evaluate(dummy));
EXPECT_TRUE((Query::Double(-5.0) == Query::Int(short_num)).Evaluate(dummy));
EXPECT_TRUE((Query::Double(1.0) == Query::Uint(1u)).Evaluate(dummy));
EXPECT_TRUE((Query::Double(1.0) == Query::Int(1)).Evaluate(dummy));
EXPECT_TRUE((Query::Double(-1.0) == Query::Int(-1)).Evaluate(dummy));
EXPECT_TRUE((Query::Double(1.0) == Query::Double(1.0f)).Evaluate(dummy));
EXPECT_TRUE((Query::Bool(true) == Query::Int(1)).Evaluate(dummy));
EXPECT_TRUE((Query::Bool(false) == Query::Int(0)).Evaluate(dummy));
EXPECT_TRUE((Query::Bool(true) == Query::Double(1.0f)).Evaluate(dummy));
EXPECT_TRUE((Query::Bool(false) == Query::Double(0.0f)).Evaluate(dummy));
}
// Test GetRateStats.
TEST_F(TraceEventAnalyzerTest, RateStats) {
std::vector<TraceEvent> events;
events.reserve(100);
TraceEventVector event_ptrs;
double timestamp = 0.0;
double little_delta = 1.0;
double big_delta = 10.0;
double tiny_delta = 0.1;
RateStats stats;
RateStatsOptions options;
// Insert 10 events, each apart by little_delta.
for (int i = 0; i < 10; ++i) {
timestamp += little_delta;
TraceEvent event;
event.timestamp = timestamp;
events.push_back(std::move(event));
event_ptrs.push_back(&events.back());
}
ASSERT_TRUE(GetRateStats(event_ptrs, &stats, nullptr));
EXPECT_EQ(little_delta, stats.mean_us);
EXPECT_EQ(little_delta, stats.min_us);
EXPECT_EQ(little_delta, stats.max_us);
EXPECT_EQ(0.0, stats.standard_deviation_us);
// Add an event apart by big_delta.
{
timestamp += big_delta;
TraceEvent event;
event.timestamp = timestamp;
events.push_back(std::move(event));
event_ptrs.push_back(&events.back());
}
ASSERT_TRUE(GetRateStats(event_ptrs, &stats, nullptr));
EXPECT_LT(little_delta, stats.mean_us);
EXPECT_EQ(little_delta, stats.min_us);
EXPECT_EQ(big_delta, stats.max_us);
EXPECT_LT(0.0, stats.standard_deviation_us);
// Trim off the biggest delta and verify stats.
options.trim_min = 0;
options.trim_max = 1;
ASSERT_TRUE(GetRateStats(event_ptrs, &stats, &options));
EXPECT_EQ(little_delta, stats.mean_us);
EXPECT_EQ(little_delta, stats.min_us);
EXPECT_EQ(little_delta, stats.max_us);
EXPECT_EQ(0.0, stats.standard_deviation_us);
// Add an event apart by tiny_delta.
{
timestamp += tiny_delta;
TraceEvent event;
event.timestamp = timestamp;
events.push_back(std::move(event));
event_ptrs.push_back(&events.back());
}
// Trim off both the biggest and tiniest delta and verify stats.
options.trim_min = 1;
options.trim_max = 1;
ASSERT_TRUE(GetRateStats(event_ptrs, &stats, &options));
EXPECT_EQ(little_delta, stats.mean_us);
EXPECT_EQ(little_delta, stats.min_us);
EXPECT_EQ(little_delta, stats.max_us);
EXPECT_EQ(0.0, stats.standard_deviation_us);
// Verify smallest allowed number of events.
{
TraceEvent event;
TraceEventVector few_event_ptrs;
few_event_ptrs.push_back(&event);
few_event_ptrs.push_back(&event);
ASSERT_FALSE(GetRateStats(few_event_ptrs, &stats, nullptr));
few_event_ptrs.push_back(&event);
ASSERT_TRUE(GetRateStats(few_event_ptrs, &stats, nullptr));
// Trim off more than allowed and verify failure.
options.trim_min = 0;
options.trim_max = 1;
ASSERT_FALSE(GetRateStats(few_event_ptrs, &stats, &options));
}
}
// Test FindFirstOf and FindLastOf.
TEST_F(TraceEventAnalyzerTest, FindOf) {
size_t num_events = 100;
size_t index = 0;
TraceEventVector event_ptrs;
EXPECT_FALSE(FindFirstOf(event_ptrs, Query::Bool(true), 0, &index));
EXPECT_FALSE(FindFirstOf(event_ptrs, Query::Bool(true), 10, &index));
EXPECT_FALSE(FindLastOf(event_ptrs, Query::Bool(true), 0, &index));
EXPECT_FALSE(FindLastOf(event_ptrs, Query::Bool(true), 10, &index));
std::vector<TraceEvent> events;
events.resize(num_events);
for (size_t i = 0; i < events.size(); ++i)
event_ptrs.push_back(&events[i]);
size_t bam_index = num_events/2;
events[bam_index].name = "bam";
Query query_bam = Query::EventName() == Query::String(events[bam_index].name);
// FindFirstOf
EXPECT_FALSE(FindFirstOf(event_ptrs, Query::Bool(false), 0, &index));
EXPECT_TRUE(FindFirstOf(event_ptrs, Query::Bool(true), 0, &index));
EXPECT_EQ(0u, index);
EXPECT_TRUE(FindFirstOf(event_ptrs, Query::Bool(true), 5, &index));
EXPECT_EQ(5u, index);
EXPECT_FALSE(FindFirstOf(event_ptrs, query_bam, bam_index + 1, &index));
EXPECT_TRUE(FindFirstOf(event_ptrs, query_bam, 0, &index));
EXPECT_EQ(bam_index, index);
EXPECT_TRUE(FindFirstOf(event_ptrs, query_bam, bam_index, &index));
EXPECT_EQ(bam_index, index);
// FindLastOf
EXPECT_FALSE(FindLastOf(event_ptrs, Query::Bool(false), 1000, &index));
EXPECT_TRUE(FindLastOf(event_ptrs, Query::Bool(true), 1000, &index));
EXPECT_EQ(num_events - 1, index);
EXPECT_TRUE(FindLastOf(event_ptrs, Query::Bool(true), num_events - 5,
&index));
EXPECT_EQ(num_events - 5, index);
EXPECT_FALSE(FindLastOf(event_ptrs, query_bam, bam_index - 1, &index));
EXPECT_TRUE(FindLastOf(event_ptrs, query_bam, num_events, &index));
EXPECT_EQ(bam_index, index);
EXPECT_TRUE(FindLastOf(event_ptrs, query_bam, bam_index, &index));
EXPECT_EQ(bam_index, index);
}
// Test FindClosest.
TEST_F(TraceEventAnalyzerTest, FindClosest) {
size_t index_1 = 0;
size_t index_2 = 0;
TraceEventVector event_ptrs;
EXPECT_FALSE(FindClosest(event_ptrs, Query::Bool(true), 0,
&index_1, &index_2));
size_t num_events = 5;
std::vector<TraceEvent> events;
events.resize(num_events);
for (size_t i = 0; i < events.size(); ++i) {
// timestamps go up exponentially so the lower index is always closer in
// time than the higher index.
events[i].timestamp = static_cast<double>(i) * static_cast<double>(i);
event_ptrs.push_back(&events[i]);
}
events[0].name = "one";
events[2].name = "two";
events[4].name = "three";
Query query_named = Query::EventName() != Query::String(std::string());
Query query_one = Query::EventName() == Query::String("one");
// Only one event matches query_one, so two closest can't be found.
EXPECT_FALSE(FindClosest(event_ptrs, query_one, 0, &index_1, &index_2));
EXPECT_TRUE(FindClosest(event_ptrs, query_one, 3, &index_1, nullptr));
EXPECT_EQ(0u, index_1);
EXPECT_TRUE(FindClosest(event_ptrs, query_named, 1, &index_1, &index_2));
EXPECT_EQ(0u, index_1);
EXPECT_EQ(2u, index_2);
EXPECT_TRUE(FindClosest(event_ptrs, query_named, 4, &index_1, &index_2));
EXPECT_EQ(4u, index_1);
EXPECT_EQ(2u, index_2);
EXPECT_TRUE(FindClosest(event_ptrs, query_named, 3, &index_1, &index_2));
EXPECT_EQ(2u, index_1);
EXPECT_EQ(0u, index_2);
}
// Test CountMatches.
TEST_F(TraceEventAnalyzerTest, CountMatches) {
TraceEventVector event_ptrs;
EXPECT_EQ(0u, CountMatches(event_ptrs, Query::Bool(true), 0, 10));
size_t num_events = 5;
size_t num_named = 3;
std::vector<TraceEvent> events;
events.resize(num_events);
for (size_t i = 0; i < events.size(); ++i)
event_ptrs.push_back(&events[i]);
events[0].name = "one";
events[2].name = "two";
events[4].name = "three";
Query query_named = Query::EventName() != Query::String(std::string());
Query query_one = Query::EventName() == Query::String("one");
EXPECT_EQ(0u, CountMatches(event_ptrs, Query::Bool(false)));
EXPECT_EQ(num_events, CountMatches(event_ptrs, Query::Bool(true)));
EXPECT_EQ(num_events - 1, CountMatches(event_ptrs, Query::Bool(true),
1, num_events));
EXPECT_EQ(1u, CountMatches(event_ptrs, query_one));
EXPECT_EQ(num_events - 1, CountMatches(event_ptrs, !query_one));
EXPECT_EQ(num_named, CountMatches(event_ptrs, query_named));
}
TEST_F(TraceEventAnalyzerTest, ComplexArgument) {
ManualSetUp();
BeginTracing();
{
std::unique_ptr<base::trace_event::TracedValue> value(
new base::trace_event::TracedValue);
value->SetString("property", "value");
TRACE_EVENT1("cat", "name", "arg", std::move(value));
}
EndTracing();
std::unique_ptr<TraceAnalyzer> analyzer(
TraceAnalyzer::Create(output_.json_output));
ASSERT_TRUE(analyzer.get());
TraceEventVector events;
analyzer->FindEvents(Query::EventName() == Query::String("name"), &events);
EXPECT_EQ(1u, events.size());
EXPECT_EQ("cat", events[0]->category);
EXPECT_EQ("name", events[0]->name);
EXPECT_TRUE(events[0]->HasArg("arg"));
std::unique_ptr<base::Value> arg;
events[0]->GetArgAsValue("arg", &arg);
base::DictionaryValue* arg_dict;
EXPECT_TRUE(arg->GetAsDictionary(&arg_dict));
std::string property;
EXPECT_TRUE(arg_dict->GetString("property", &property));
EXPECT_EQ("value", property);
}
} // namespace trace_analyzer