blob: e37efe39319456dd9c0a506ef8d9a045922433ec [file] [log] [blame]
/* Copyright (c) 2018-2019 The Khronos Group Inc.
* Copyright (c) 2018-2019 Valve Corporation
* Copyright (c) 2018-2019 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Karl Schultz <karl@lunarg.com>
* Author: Tony Barbour <tony@lunarg.com>
*/
// Allow use of STL min and max functions in Windows
#define NOMINMAX
// This define indicates to build the VMA routines themselves
#define VMA_IMPLEMENTATION
// This define indicates that we will supply Vulkan function pointers at initialization
#define VMA_STATIC_VULKAN_FUNCTIONS 0
#include "gpu_validation.h"
#include "shader_validation.h"
#include "spirv-tools/libspirv.h"
#include "spirv-tools/optimizer.hpp"
#include "spirv-tools/instrument.hpp"
#include <SPIRV/spirv.hpp>
#include <algorithm>
#include <regex>
#include "layer_chassis_dispatch.h"
// This is the number of bindings in the debug descriptor set.
static const uint32_t kNumBindingsInSet = 3;
static const VkShaderStageFlags kShaderStageAllRayTracing =
VK_SHADER_STAGE_ANY_HIT_BIT_NV | VK_SHADER_STAGE_CALLABLE_BIT_NV | VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV |
VK_SHADER_STAGE_INTERSECTION_BIT_NV | VK_SHADER_STAGE_MISS_BIT_NV | VK_SHADER_STAGE_RAYGEN_BIT_NV;
// Keep in sync with the GLSL shader below.
struct GpuAccelerationStructureBuildValidationBuffer {
uint32_t instances_to_validate;
uint32_t replacement_handle_bits_0;
uint32_t replacement_handle_bits_1;
uint32_t invalid_handle_found;
uint32_t invalid_handle_bits_0;
uint32_t invalid_handle_bits_1;
uint32_t valid_handles_count;
};
// This is the GLSL source for the compute shader that is used during ray tracing acceleration structure
// building validation which inspects instance buffers for top level acceleration structure builds and
// reports and replaces invalid bottom level acceleration structure handles with good bottom level
// acceleration structure handle so that applications can continue without undefined behavior long enough
// to report errors.
//
// #version 450
// layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
// struct VkGeometryInstanceNV {
// uint unused[14];
// uint handle_bits_0;
// uint handle_bits_1;
// };
// layout(set=0, binding=0, std430) buffer InstanceBuffer {
// VkGeometryInstanceNV instances[];
// };
// layout(set=0, binding=1, std430) buffer ValidationBuffer {
// uint instances_to_validate;
// uint replacement_handle_bits_0;
// uint replacement_handle_bits_1;
// uint invalid_handle_found;
// uint invalid_handle_bits_0;
// uint invalid_handle_bits_1;
// uint valid_handles_count;
// uint valid_handles[];
// };
// void main() {
// for (uint instance_index = 0; instance_index < instances_to_validate; instance_index++) {
// uint instance_handle_bits_0 = instances[instance_index].handle_bits_0;
// uint instance_handle_bits_1 = instances[instance_index].handle_bits_1;
// bool valid = false;
// for (uint valid_handle_index = 0; valid_handle_index < valid_handles_count; valid_handle_index++) {
// if (instance_handle_bits_0 == valid_handles[2*valid_handle_index+0] &&
// instance_handle_bits_1 == valid_handles[2*valid_handle_index+1]) {
// valid = true;
// break;
// }
// }
// if (!valid) {
// invalid_handle_found += 1;
// invalid_handle_bits_0 = instance_handle_bits_0;
// invalid_handle_bits_1 = instance_handle_bits_1;
// instances[instance_index].handle_bits_0 = replacement_handle_bits_0;
// instances[instance_index].handle_bits_1 = replacement_handle_bits_1;
// }
// }
// }
//
// To regenerate the spirv below:
// 1. Save the above GLSL source to a file called validation_shader.comp.
// 2. Run in terminal
//
// glslangValidator.exe -x -V validation_shader.comp -o validation_shader.comp.spv
//
// 4. Copy-paste the contents of validation_shader.comp.spv here (clang-format will fix up the alignment).
static const uint32_t kComputeShaderSpirv[] = {
0x07230203, 0x00010000, 0x00080007, 0x0000006d, 0x00000000, 0x00020011, 0x00000001, 0x0006000b, 0x00000001, 0x4c534c47,
0x6474732e, 0x3035342e, 0x00000000, 0x0003000e, 0x00000000, 0x00000001, 0x0005000f, 0x00000005, 0x00000004, 0x6e69616d,
0x00000000, 0x00060010, 0x00000004, 0x00000011, 0x00000001, 0x00000001, 0x00000001, 0x00030003, 0x00000002, 0x000001c2,
0x00040005, 0x00000004, 0x6e69616d, 0x00000000, 0x00060005, 0x00000008, 0x74736e69, 0x65636e61, 0x646e695f, 0x00007865,
0x00070005, 0x00000011, 0x696c6156, 0x69746164, 0x75426e6f, 0x72656666, 0x00000000, 0x00090006, 0x00000011, 0x00000000,
0x74736e69, 0x65636e61, 0x6f745f73, 0x6c61765f, 0x74616469, 0x00000065, 0x000a0006, 0x00000011, 0x00000001, 0x6c706572,
0x6d656361, 0x5f746e65, 0x646e6168, 0x625f656c, 0x5f737469, 0x00000030, 0x000a0006, 0x00000011, 0x00000002, 0x6c706572,
0x6d656361, 0x5f746e65, 0x646e6168, 0x625f656c, 0x5f737469, 0x00000031, 0x00090006, 0x00000011, 0x00000003, 0x61766e69,
0x5f64696c, 0x646e6168, 0x665f656c, 0x646e756f, 0x00000000, 0x00090006, 0x00000011, 0x00000004, 0x61766e69, 0x5f64696c,
0x646e6168, 0x625f656c, 0x5f737469, 0x00000030, 0x00090006, 0x00000011, 0x00000005, 0x61766e69, 0x5f64696c, 0x646e6168,
0x625f656c, 0x5f737469, 0x00000031, 0x00080006, 0x00000011, 0x00000006, 0x696c6176, 0x61685f64, 0x656c646e, 0x6f635f73,
0x00746e75, 0x00070006, 0x00000011, 0x00000007, 0x696c6176, 0x61685f64, 0x656c646e, 0x00000073, 0x00030005, 0x00000013,
0x00000000, 0x00080005, 0x0000001b, 0x74736e69, 0x65636e61, 0x6e61685f, 0x5f656c64, 0x73746962, 0x0000305f, 0x00080005,
0x0000001e, 0x65476b56, 0x74656d6f, 0x6e497972, 0x6e617473, 0x564e6563, 0x00000000, 0x00050006, 0x0000001e, 0x00000000,
0x73756e75, 0x00006465, 0x00070006, 0x0000001e, 0x00000001, 0x646e6168, 0x625f656c, 0x5f737469, 0x00000030, 0x00070006,
0x0000001e, 0x00000002, 0x646e6168, 0x625f656c, 0x5f737469, 0x00000031, 0x00060005, 0x00000020, 0x74736e49, 0x65636e61,
0x66667542, 0x00007265, 0x00060006, 0x00000020, 0x00000000, 0x74736e69, 0x65636e61, 0x00000073, 0x00030005, 0x00000022,
0x00000000, 0x00080005, 0x00000027, 0x74736e69, 0x65636e61, 0x6e61685f, 0x5f656c64, 0x73746962, 0x0000315f, 0x00040005,
0x0000002d, 0x696c6176, 0x00000064, 0x00070005, 0x0000002f, 0x696c6176, 0x61685f64, 0x656c646e, 0x646e695f, 0x00007865,
0x00040047, 0x00000010, 0x00000006, 0x00000004, 0x00050048, 0x00000011, 0x00000000, 0x00000023, 0x00000000, 0x00050048,
0x00000011, 0x00000001, 0x00000023, 0x00000004, 0x00050048, 0x00000011, 0x00000002, 0x00000023, 0x00000008, 0x00050048,
0x00000011, 0x00000003, 0x00000023, 0x0000000c, 0x00050048, 0x00000011, 0x00000004, 0x00000023, 0x00000010, 0x00050048,
0x00000011, 0x00000005, 0x00000023, 0x00000014, 0x00050048, 0x00000011, 0x00000006, 0x00000023, 0x00000018, 0x00050048,
0x00000011, 0x00000007, 0x00000023, 0x0000001c, 0x00030047, 0x00000011, 0x00000003, 0x00040047, 0x00000013, 0x00000022,
0x00000000, 0x00040047, 0x00000013, 0x00000021, 0x00000001, 0x00040047, 0x0000001d, 0x00000006, 0x00000004, 0x00050048,
0x0000001e, 0x00000000, 0x00000023, 0x00000000, 0x00050048, 0x0000001e, 0x00000001, 0x00000023, 0x00000038, 0x00050048,
0x0000001e, 0x00000002, 0x00000023, 0x0000003c, 0x00040047, 0x0000001f, 0x00000006, 0x00000040, 0x00050048, 0x00000020,
0x00000000, 0x00000023, 0x00000000, 0x00030047, 0x00000020, 0x00000003, 0x00040047, 0x00000022, 0x00000022, 0x00000000,
0x00040047, 0x00000022, 0x00000021, 0x00000000, 0x00020013, 0x00000002, 0x00030021, 0x00000003, 0x00000002, 0x00040015,
0x00000006, 0x00000020, 0x00000000, 0x00040020, 0x00000007, 0x00000007, 0x00000006, 0x0004002b, 0x00000006, 0x00000009,
0x00000000, 0x0003001d, 0x00000010, 0x00000006, 0x000a001e, 0x00000011, 0x00000006, 0x00000006, 0x00000006, 0x00000006,
0x00000006, 0x00000006, 0x00000006, 0x00000010, 0x00040020, 0x00000012, 0x00000002, 0x00000011, 0x0004003b, 0x00000012,
0x00000013, 0x00000002, 0x00040015, 0x00000014, 0x00000020, 0x00000001, 0x0004002b, 0x00000014, 0x00000015, 0x00000000,
0x00040020, 0x00000016, 0x00000002, 0x00000006, 0x00020014, 0x00000019, 0x0004002b, 0x00000006, 0x0000001c, 0x0000000e,
0x0004001c, 0x0000001d, 0x00000006, 0x0000001c, 0x0005001e, 0x0000001e, 0x0000001d, 0x00000006, 0x00000006, 0x0003001d,
0x0000001f, 0x0000001e, 0x0003001e, 0x00000020, 0x0000001f, 0x00040020, 0x00000021, 0x00000002, 0x00000020, 0x0004003b,
0x00000021, 0x00000022, 0x00000002, 0x0004002b, 0x00000014, 0x00000024, 0x00000001, 0x0004002b, 0x00000014, 0x00000029,
0x00000002, 0x00040020, 0x0000002c, 0x00000007, 0x00000019, 0x0003002a, 0x00000019, 0x0000002e, 0x0004002b, 0x00000014,
0x00000036, 0x00000006, 0x0004002b, 0x00000014, 0x0000003b, 0x00000007, 0x0004002b, 0x00000006, 0x0000003c, 0x00000002,
0x0004002b, 0x00000006, 0x00000048, 0x00000001, 0x00030029, 0x00000019, 0x00000050, 0x0004002b, 0x00000014, 0x00000058,
0x00000003, 0x0004002b, 0x00000014, 0x0000005d, 0x00000004, 0x0004002b, 0x00000014, 0x00000060, 0x00000005, 0x00050036,
0x00000002, 0x00000004, 0x00000000, 0x00000003, 0x000200f8, 0x00000005, 0x0004003b, 0x00000007, 0x00000008, 0x00000007,
0x0004003b, 0x00000007, 0x0000001b, 0x00000007, 0x0004003b, 0x00000007, 0x00000027, 0x00000007, 0x0004003b, 0x0000002c,
0x0000002d, 0x00000007, 0x0004003b, 0x00000007, 0x0000002f, 0x00000007, 0x0003003e, 0x00000008, 0x00000009, 0x000200f9,
0x0000000a, 0x000200f8, 0x0000000a, 0x000400f6, 0x0000000c, 0x0000000d, 0x00000000, 0x000200f9, 0x0000000e, 0x000200f8,
0x0000000e, 0x0004003d, 0x00000006, 0x0000000f, 0x00000008, 0x00050041, 0x00000016, 0x00000017, 0x00000013, 0x00000015,
0x0004003d, 0x00000006, 0x00000018, 0x00000017, 0x000500b0, 0x00000019, 0x0000001a, 0x0000000f, 0x00000018, 0x000400fa,
0x0000001a, 0x0000000b, 0x0000000c, 0x000200f8, 0x0000000b, 0x0004003d, 0x00000006, 0x00000023, 0x00000008, 0x00070041,
0x00000016, 0x00000025, 0x00000022, 0x00000015, 0x00000023, 0x00000024, 0x0004003d, 0x00000006, 0x00000026, 0x00000025,
0x0003003e, 0x0000001b, 0x00000026, 0x0004003d, 0x00000006, 0x00000028, 0x00000008, 0x00070041, 0x00000016, 0x0000002a,
0x00000022, 0x00000015, 0x00000028, 0x00000029, 0x0004003d, 0x00000006, 0x0000002b, 0x0000002a, 0x0003003e, 0x00000027,
0x0000002b, 0x0003003e, 0x0000002d, 0x0000002e, 0x0003003e, 0x0000002f, 0x00000009, 0x000200f9, 0x00000030, 0x000200f8,
0x00000030, 0x000400f6, 0x00000032, 0x00000033, 0x00000000, 0x000200f9, 0x00000034, 0x000200f8, 0x00000034, 0x0004003d,
0x00000006, 0x00000035, 0x0000002f, 0x00050041, 0x00000016, 0x00000037, 0x00000013, 0x00000036, 0x0004003d, 0x00000006,
0x00000038, 0x00000037, 0x000500b0, 0x00000019, 0x00000039, 0x00000035, 0x00000038, 0x000400fa, 0x00000039, 0x00000031,
0x00000032, 0x000200f8, 0x00000031, 0x0004003d, 0x00000006, 0x0000003a, 0x0000001b, 0x0004003d, 0x00000006, 0x0000003d,
0x0000002f, 0x00050084, 0x00000006, 0x0000003e, 0x0000003c, 0x0000003d, 0x00050080, 0x00000006, 0x0000003f, 0x0000003e,
0x00000009, 0x00060041, 0x00000016, 0x00000040, 0x00000013, 0x0000003b, 0x0000003f, 0x0004003d, 0x00000006, 0x00000041,
0x00000040, 0x000500aa, 0x00000019, 0x00000042, 0x0000003a, 0x00000041, 0x000300f7, 0x00000044, 0x00000000, 0x000400fa,
0x00000042, 0x00000043, 0x00000044, 0x000200f8, 0x00000043, 0x0004003d, 0x00000006, 0x00000045, 0x00000027, 0x0004003d,
0x00000006, 0x00000046, 0x0000002f, 0x00050084, 0x00000006, 0x00000047, 0x0000003c, 0x00000046, 0x00050080, 0x00000006,
0x00000049, 0x00000047, 0x00000048, 0x00060041, 0x00000016, 0x0000004a, 0x00000013, 0x0000003b, 0x00000049, 0x0004003d,
0x00000006, 0x0000004b, 0x0000004a, 0x000500aa, 0x00000019, 0x0000004c, 0x00000045, 0x0000004b, 0x000200f9, 0x00000044,
0x000200f8, 0x00000044, 0x000700f5, 0x00000019, 0x0000004d, 0x00000042, 0x00000031, 0x0000004c, 0x00000043, 0x000300f7,
0x0000004f, 0x00000000, 0x000400fa, 0x0000004d, 0x0000004e, 0x0000004f, 0x000200f8, 0x0000004e, 0x0003003e, 0x0000002d,
0x00000050, 0x000200f9, 0x00000032, 0x000200f8, 0x0000004f, 0x000200f9, 0x00000033, 0x000200f8, 0x00000033, 0x0004003d,
0x00000006, 0x00000052, 0x0000002f, 0x00050080, 0x00000006, 0x00000053, 0x00000052, 0x00000024, 0x0003003e, 0x0000002f,
0x00000053, 0x000200f9, 0x00000030, 0x000200f8, 0x00000032, 0x0004003d, 0x00000019, 0x00000054, 0x0000002d, 0x000400a8,
0x00000019, 0x00000055, 0x00000054, 0x000300f7, 0x00000057, 0x00000000, 0x000400fa, 0x00000055, 0x00000056, 0x00000057,
0x000200f8, 0x00000056, 0x00050041, 0x00000016, 0x00000059, 0x00000013, 0x00000058, 0x0004003d, 0x00000006, 0x0000005a,
0x00000059, 0x00050080, 0x00000006, 0x0000005b, 0x0000005a, 0x00000048, 0x00050041, 0x00000016, 0x0000005c, 0x00000013,
0x00000058, 0x0003003e, 0x0000005c, 0x0000005b, 0x0004003d, 0x00000006, 0x0000005e, 0x0000001b, 0x00050041, 0x00000016,
0x0000005f, 0x00000013, 0x0000005d, 0x0003003e, 0x0000005f, 0x0000005e, 0x0004003d, 0x00000006, 0x00000061, 0x00000027,
0x00050041, 0x00000016, 0x00000062, 0x00000013, 0x00000060, 0x0003003e, 0x00000062, 0x00000061, 0x0004003d, 0x00000006,
0x00000063, 0x00000008, 0x00050041, 0x00000016, 0x00000064, 0x00000013, 0x00000024, 0x0004003d, 0x00000006, 0x00000065,
0x00000064, 0x00070041, 0x00000016, 0x00000066, 0x00000022, 0x00000015, 0x00000063, 0x00000024, 0x0003003e, 0x00000066,
0x00000065, 0x0004003d, 0x00000006, 0x00000067, 0x00000008, 0x00050041, 0x00000016, 0x00000068, 0x00000013, 0x00000029,
0x0004003d, 0x00000006, 0x00000069, 0x00000068, 0x00070041, 0x00000016, 0x0000006a, 0x00000022, 0x00000015, 0x00000067,
0x00000029, 0x0003003e, 0x0000006a, 0x00000069, 0x000200f9, 0x00000057, 0x000200f8, 0x00000057, 0x000200f9, 0x0000000d,
0x000200f8, 0x0000000d, 0x0004003d, 0x00000006, 0x0000006b, 0x00000008, 0x00050080, 0x00000006, 0x0000006c, 0x0000006b,
0x00000024, 0x0003003e, 0x00000008, 0x0000006c, 0x000200f9, 0x0000000a, 0x000200f8, 0x0000000c, 0x000100fd, 0x00010038};
// Implementation for Descriptor Set Manager class
GpuAssistedDescriptorSetManager::GpuAssistedDescriptorSetManager(GpuAssisted *dev_data) { dev_data_ = dev_data; }
GpuAssistedDescriptorSetManager::~GpuAssistedDescriptorSetManager() {
for (auto &pool : desc_pool_map_) {
DispatchDestroyDescriptorPool(dev_data_->device, pool.first, NULL);
}
desc_pool_map_.clear();
}
VkResult GpuAssistedDescriptorSetManager::GetDescriptorSet(VkDescriptorPool *desc_pool, VkDescriptorSet *desc_set) {
std::vector<VkDescriptorSet> desc_sets;
VkResult result = GetDescriptorSets(1, desc_pool, &desc_sets);
if (result == VK_SUCCESS) {
*desc_set = desc_sets[0];
}
return result;
}
VkResult GpuAssistedDescriptorSetManager::GetDescriptorSets(uint32_t count, VkDescriptorPool *pool,
std::vector<VkDescriptorSet> *desc_sets) {
const uint32_t default_pool_size = kItemsPerChunk;
VkResult result = VK_SUCCESS;
VkDescriptorPool pool_to_use = VK_NULL_HANDLE;
if (0 == count) {
return result;
}
desc_sets->clear();
desc_sets->resize(count);
for (auto &pool : desc_pool_map_) {
if (pool.second.used + count < pool.second.size) {
pool_to_use = pool.first;
break;
}
}
if (VK_NULL_HANDLE == pool_to_use) {
uint32_t pool_count = default_pool_size;
if (count > default_pool_size) {
pool_count = count;
}
const VkDescriptorPoolSize size_counts = {
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
pool_count * kNumBindingsInSet,
};
VkDescriptorPoolCreateInfo desc_pool_info = {};
desc_pool_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
desc_pool_info.pNext = NULL;
desc_pool_info.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT;
desc_pool_info.maxSets = pool_count;
desc_pool_info.poolSizeCount = 1;
desc_pool_info.pPoolSizes = &size_counts;
result = DispatchCreateDescriptorPool(dev_data_->device, &desc_pool_info, NULL, &pool_to_use);
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
return result;
}
desc_pool_map_[pool_to_use].size = desc_pool_info.maxSets;
desc_pool_map_[pool_to_use].used = 0;
}
std::vector<VkDescriptorSetLayout> desc_layouts(count, dev_data_->debug_desc_layout);
VkDescriptorSetAllocateInfo alloc_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, NULL, pool_to_use, count,
desc_layouts.data()};
result = DispatchAllocateDescriptorSets(dev_data_->device, &alloc_info, desc_sets->data());
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
return result;
}
*pool = pool_to_use;
desc_pool_map_[pool_to_use].used += count;
return result;
}
void GpuAssistedDescriptorSetManager::PutBackDescriptorSet(VkDescriptorPool desc_pool, VkDescriptorSet desc_set) {
auto iter = desc_pool_map_.find(desc_pool);
if (iter != desc_pool_map_.end()) {
VkResult result = DispatchFreeDescriptorSets(dev_data_->device, desc_pool, 1, &desc_set);
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
return;
}
desc_pool_map_[desc_pool].used--;
if (0 == desc_pool_map_[desc_pool].used) {
DispatchDestroyDescriptorPool(dev_data_->device, desc_pool, NULL);
desc_pool_map_.erase(desc_pool);
}
}
return;
}
// Trampolines to make VMA call Dispatch for Vulkan calls
static VKAPI_ATTR void VKAPI_CALL gpuVkGetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties *pProperties) {
DispatchGetPhysicalDeviceProperties(physicalDevice, pProperties);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkGetPhysicalDeviceMemoryProperties(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties *pMemoryProperties) {
DispatchGetPhysicalDeviceMemoryProperties(physicalDevice, pMemoryProperties);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkAllocateMemory(VkDevice device, const VkMemoryAllocateInfo *pAllocateInfo,
const VkAllocationCallbacks *pAllocator, VkDeviceMemory *pMemory) {
return DispatchAllocateMemory(device, pAllocateInfo, pAllocator, pMemory);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkFreeMemory(VkDevice device, VkDeviceMemory memory, const VkAllocationCallbacks *pAllocator) {
DispatchFreeMemory(device, memory, pAllocator);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkMapMemory(VkDevice device, VkDeviceMemory memory, VkDeviceSize offset, VkDeviceSize size,
VkMemoryMapFlags flags, void **ppData) {
return DispatchMapMemory(device, memory, offset, size, flags, ppData);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkUnmapMemory(VkDevice device, VkDeviceMemory memory) { DispatchUnmapMemory(device, memory); }
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkFlushMappedMemoryRanges(VkDevice device, uint32_t memoryRangeCount,
const VkMappedMemoryRange *pMemoryRanges) {
return DispatchFlushMappedMemoryRanges(device, memoryRangeCount, pMemoryRanges);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkInvalidateMappedMemoryRanges(VkDevice device, uint32_t memoryRangeCount,
const VkMappedMemoryRange *pMemoryRanges) {
return DispatchInvalidateMappedMemoryRanges(device, memoryRangeCount, pMemoryRanges);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkBindBufferMemory(VkDevice device, VkBuffer buffer, VkDeviceMemory memory,
VkDeviceSize memoryOffset) {
return DispatchBindBufferMemory(device, buffer, memory, memoryOffset);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkBindImageMemory(VkDevice device, VkImage image, VkDeviceMemory memory,
VkDeviceSize memoryOffset) {
return DispatchBindImageMemory(device, image, memory, memoryOffset);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkGetBufferMemoryRequirements(VkDevice device, VkBuffer buffer,
VkMemoryRequirements *pMemoryRequirements) {
DispatchGetBufferMemoryRequirements(device, buffer, pMemoryRequirements);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkGetImageMemoryRequirements(VkDevice device, VkImage image,
VkMemoryRequirements *pMemoryRequirements) {
DispatchGetImageMemoryRequirements(device, image, pMemoryRequirements);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkCreateBuffer(VkDevice device, const VkBufferCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkBuffer *pBuffer) {
return DispatchCreateBuffer(device, pCreateInfo, pAllocator, pBuffer);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkDestroyBuffer(VkDevice device, VkBuffer buffer, const VkAllocationCallbacks *pAllocator) {
return DispatchDestroyBuffer(device, buffer, pAllocator);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkCreateImage(VkDevice device, const VkImageCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkImage *pImage) {
return DispatchCreateImage(device, pCreateInfo, pAllocator, pImage);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkDestroyImage(VkDevice device, VkImage image, const VkAllocationCallbacks *pAllocator) {
DispatchDestroyImage(device, image, pAllocator);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkCmdCopyBuffer(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkBuffer dstBuffer,
uint32_t regionCount, const VkBufferCopy *pRegions) {
DispatchCmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, regionCount, pRegions);
}
VkResult GpuAssisted::InitializeVma(VkPhysicalDevice physical_device, VkDevice device, VmaAllocator *pAllocator) {
VmaVulkanFunctions functions;
VmaAllocatorCreateInfo allocatorInfo = {};
allocatorInfo.device = device;
allocatorInfo.physicalDevice = physical_device;
functions.vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)gpuVkGetPhysicalDeviceProperties;
functions.vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)gpuVkGetPhysicalDeviceMemoryProperties;
functions.vkAllocateMemory = (PFN_vkAllocateMemory)gpuVkAllocateMemory;
functions.vkFreeMemory = (PFN_vkFreeMemory)gpuVkFreeMemory;
functions.vkMapMemory = (PFN_vkMapMemory)gpuVkMapMemory;
functions.vkUnmapMemory = (PFN_vkUnmapMemory)gpuVkUnmapMemory;
functions.vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)gpuVkFlushMappedMemoryRanges;
functions.vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)gpuVkInvalidateMappedMemoryRanges;
functions.vkBindBufferMemory = (PFN_vkBindBufferMemory)gpuVkBindBufferMemory;
functions.vkBindImageMemory = (PFN_vkBindImageMemory)gpuVkBindImageMemory;
functions.vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)gpuVkGetBufferMemoryRequirements;
functions.vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)gpuVkGetImageMemoryRequirements;
functions.vkCreateBuffer = (PFN_vkCreateBuffer)gpuVkCreateBuffer;
functions.vkDestroyBuffer = (PFN_vkDestroyBuffer)gpuVkDestroyBuffer;
functions.vkCreateImage = (PFN_vkCreateImage)gpuVkCreateImage;
functions.vkDestroyImage = (PFN_vkDestroyImage)gpuVkDestroyImage;
functions.vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)gpuVkCmdCopyBuffer;
allocatorInfo.pVulkanFunctions = &functions;
return vmaCreateAllocator(&allocatorInfo, pAllocator);
}
// Convenience function for reporting problems with setting up GPU Validation.
void GpuAssisted::ReportSetupProblem(VkDebugReportObjectTypeEXT object_type, uint64_t object_handle,
const char *const specific_message) const {
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, object_type, object_handle, "UNASSIGNED-GPU-Assisted Validation Error. ",
"Detail: (%s)", specific_message);
}
void GpuAssisted::PreCallRecordCreateBuffer(VkDevice device, const VkBufferCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkBuffer *pBuffer, void *cb_state_data) {
// Ray tracing acceleration structure instance buffers also need the storage buffer usage as
// acceleration structure build validation will find and replace invalid acceleration structure
// handles inside of a compute shader.
create_buffer_api_state *cb_state = reinterpret_cast<create_buffer_api_state *>(cb_state_data);
if (cb_state && cb_state->modified_create_info.usage & VK_BUFFER_USAGE_RAY_TRACING_BIT_NV) {
cb_state->modified_create_info.usage |= VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
}
}
// Turn on necessary device features.
void GpuAssisted::PreCallRecordCreateDevice(VkPhysicalDevice gpu, const VkDeviceCreateInfo *create_info,
const VkAllocationCallbacks *pAllocator, VkDevice *pDevice,
safe_VkDeviceCreateInfo *modified_create_info) {
VkPhysicalDeviceFeatures supported_features;
DispatchGetPhysicalDeviceFeatures(gpu, &supported_features);
if (supported_features.fragmentStoresAndAtomics || supported_features.vertexPipelineStoresAndAtomics ||
supported_features.shaderInt64) {
VkPhysicalDeviceFeatures *features = nullptr;
if (modified_create_info->pEnabledFeatures) {
// If pEnabledFeatures, VkPhysicalDeviceFeatures2 in pNext chain is not allowed
features = const_cast<VkPhysicalDeviceFeatures *>(modified_create_info->pEnabledFeatures);
} else {
VkPhysicalDeviceFeatures2 *features2 = nullptr;
features2 =
const_cast<VkPhysicalDeviceFeatures2 *>(lvl_find_in_chain<VkPhysicalDeviceFeatures2>(modified_create_info->pNext));
if (features2) features = &features2->features;
}
if (features) {
features->fragmentStoresAndAtomics = supported_features.fragmentStoresAndAtomics;
features->vertexPipelineStoresAndAtomics = supported_features.vertexPipelineStoresAndAtomics;
features->shaderInt64 = supported_features.shaderInt64;
} else {
VkPhysicalDeviceFeatures new_features = {};
new_features.fragmentStoresAndAtomics = supported_features.fragmentStoresAndAtomics;
new_features.vertexPipelineStoresAndAtomics = supported_features.vertexPipelineStoresAndAtomics;
new_features.shaderInt64 = supported_features.shaderInt64;
delete modified_create_info->pEnabledFeatures;
modified_create_info->pEnabledFeatures = new VkPhysicalDeviceFeatures(new_features);
}
}
}
// Perform initializations that can be done at Create Device time.
void GpuAssisted::PostCallRecordCreateDevice(VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkDevice *pDevice, VkResult result) {
// The state tracker sets up the device state
ValidationStateTracker::PostCallRecordCreateDevice(physicalDevice, pCreateInfo, pAllocator, pDevice, result);
ValidationObject *device_object = GetLayerDataPtr(get_dispatch_key(*pDevice), layer_data_map);
ValidationObject *validation_data = GetValidationObject(device_object->object_dispatch, this->container_type);
GpuAssisted *device_gpu_assisted = static_cast<GpuAssisted *>(validation_data);
if (device_gpu_assisted->phys_dev_props.apiVersion < VK_API_VERSION_1_1) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"GPU-Assisted validation requires Vulkan 1.1 or later. GPU-Assisted Validation disabled.");
device_gpu_assisted->aborted = true;
return;
}
if (!device_gpu_assisted->enabled_features.core.fragmentStoresAndAtomics ||
!device_gpu_assisted->enabled_features.core.vertexPipelineStoresAndAtomics) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"GPU-Assisted validation requires fragmentStoresAndAtomics and vertexPipelineStoresAndAtomics. "
"GPU-Assisted Validation disabled.");
device_gpu_assisted->aborted = true;
return;
}
if (device_extensions.vk_ext_buffer_device_address && !device_gpu_assisted->enabled_features.core.shaderInt64) {
log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"UNASSIGNED-GPU-Assisted Validation Warning",
"shaderInt64 feature is not available. No buffer device address checking will be attempted");
}
device_gpu_assisted->shaderInt64 = device_gpu_assisted->enabled_features.core.shaderInt64;
// If api version 1.1 or later, SetDeviceLoaderData will be in the loader
auto chain_info = get_chain_info(pCreateInfo, VK_LOADER_DATA_CALLBACK);
assert(chain_info->u.pfnSetDeviceLoaderData);
device_gpu_assisted->vkSetDeviceLoaderData = chain_info->u.pfnSetDeviceLoaderData;
// Some devices have extremely high limits here, so set a reasonable max because we have to pad
// the pipeline layout with dummy descriptor set layouts.
device_gpu_assisted->adjusted_max_desc_sets = device_gpu_assisted->phys_dev_props.limits.maxBoundDescriptorSets;
device_gpu_assisted->adjusted_max_desc_sets = std::min(33U, device_gpu_assisted->adjusted_max_desc_sets);
// We can't do anything if there is only one.
// Device probably not a legit Vulkan device, since there should be at least 4. Protect ourselves.
if (device_gpu_assisted->adjusted_max_desc_sets == 1) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"Device can bind only a single descriptor set. GPU-Assisted Validation disabled.");
device_gpu_assisted->aborted = true;
return;
}
device_gpu_assisted->desc_set_bind_index = device_gpu_assisted->adjusted_max_desc_sets - 1;
log_msg(report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"UNASSIGNED-GPU-Assisted Validation. ", "Shaders using descriptor set at index %d. ",
device_gpu_assisted->desc_set_bind_index);
device_gpu_assisted->output_buffer_size = sizeof(uint32_t) * (spvtools::kInst2MaxOutCnt + 1);
VkResult result1 = InitializeVma(physicalDevice, *pDevice, &device_gpu_assisted->vmaAllocator);
assert(result1 == VK_SUCCESS);
std::unique_ptr<GpuAssistedDescriptorSetManager> desc_set_manager(new GpuAssistedDescriptorSetManager(device_gpu_assisted));
// The descriptor indexing checks require only the first "output" binding.
const VkDescriptorSetLayoutBinding debug_desc_layout_bindings[kNumBindingsInSet] = {
{
0, // output
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
1,
VK_SHADER_STAGE_ALL_GRAPHICS | VK_SHADER_STAGE_COMPUTE_BIT | kShaderStageAllRayTracing,
NULL,
},
{
1, // input
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
1,
VK_SHADER_STAGE_ALL_GRAPHICS | VK_SHADER_STAGE_COMPUTE_BIT | kShaderStageAllRayTracing,
NULL,
},
{
2, // input
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
1,
VK_SHADER_STAGE_ALL_GRAPHICS | VK_SHADER_STAGE_COMPUTE_BIT | kShaderStageAllRayTracing,
NULL,
},
};
const VkDescriptorSetLayoutCreateInfo debug_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, NULL, 0,
kNumBindingsInSet, debug_desc_layout_bindings};
const VkDescriptorSetLayoutCreateInfo dummy_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, NULL, 0, 0,
NULL};
result1 = DispatchCreateDescriptorSetLayout(*pDevice, &debug_desc_layout_info, NULL, &device_gpu_assisted->debug_desc_layout);
// This is a layout used to "pad" a pipeline layout to fill in any gaps to the selected bind index.
VkResult result2 =
DispatchCreateDescriptorSetLayout(*pDevice, &dummy_desc_layout_info, NULL, &device_gpu_assisted->dummy_desc_layout);
assert((result1 == VK_SUCCESS) && (result2 == VK_SUCCESS));
if ((result1 != VK_SUCCESS) || (result2 != VK_SUCCESS)) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(*pDevice),
"Unable to create descriptor set layout. GPU-Assisted Validation disabled.");
if (result == VK_SUCCESS) {
DispatchDestroyDescriptorSetLayout(*pDevice, device_gpu_assisted->debug_desc_layout, NULL);
}
if (result2 == VK_SUCCESS) {
DispatchDestroyDescriptorSetLayout(*pDevice, device_gpu_assisted->dummy_desc_layout, NULL);
}
device_gpu_assisted->debug_desc_layout = VK_NULL_HANDLE;
device_gpu_assisted->dummy_desc_layout = VK_NULL_HANDLE;
device_gpu_assisted->aborted = true;
return;
}
device_gpu_assisted->desc_set_manager = std::move(desc_set_manager);
// Register callback to be called at any ResetCommandBuffer time
device_gpu_assisted->SetCommandBufferResetCallback(
[device_gpu_assisted](VkCommandBuffer command_buffer) -> void { device_gpu_assisted->ResetCommandBuffer(command_buffer); });
CreateAccelerationStructureBuildValidationState(device_gpu_assisted);
}
void GpuAssisted::PostCallRecordGetBufferDeviceAddressEXT(VkDevice device, const VkBufferDeviceAddressInfoEXT *pInfo,
VkDeviceAddress address) {
BUFFER_STATE *buffer_state = GetBufferState(pInfo->buffer);
// Validate against the size requested when the buffer was created
if (buffer_state) {
buffer_map[address] = buffer_state->createInfo.size;
buffer_state->deviceAddress = address;
}
}
void GpuAssisted::PreCallRecordDestroyBuffer(VkDevice device, VkBuffer buffer, const VkAllocationCallbacks *pAllocator) {
BUFFER_STATE *buffer_state = GetBufferState(buffer);
if (buffer_state) buffer_map.erase(buffer_state->deviceAddress);
}
// Clean up device-related resources
void GpuAssisted::PreCallRecordDestroyDevice(VkDevice device, const VkAllocationCallbacks *pAllocator) {
for (auto &queue_barrier_command_info_kv : queue_barrier_command_infos) {
GpuAssistedQueueBarrierCommandInfo &queue_barrier_command_info = queue_barrier_command_info_kv.second;
DispatchFreeCommandBuffers(device, queue_barrier_command_info.barrier_command_pool, 1,
&queue_barrier_command_info.barrier_command_buffer);
queue_barrier_command_info.barrier_command_buffer = VK_NULL_HANDLE;
DispatchDestroyCommandPool(device, queue_barrier_command_info.barrier_command_pool, NULL);
queue_barrier_command_info.barrier_command_pool = VK_NULL_HANDLE;
}
queue_barrier_command_infos.clear();
if (debug_desc_layout) {
DispatchDestroyDescriptorSetLayout(device, debug_desc_layout, NULL);
debug_desc_layout = VK_NULL_HANDLE;
}
if (dummy_desc_layout) {
DispatchDestroyDescriptorSetLayout(device, dummy_desc_layout, NULL);
dummy_desc_layout = VK_NULL_HANDLE;
}
desc_set_manager.reset();
DestroyAccelerationStructureBuildValidationState();
if (vmaAllocator) {
vmaDestroyAllocator(vmaAllocator);
}
}
void GpuAssisted::CreateAccelerationStructureBuildValidationState(GpuAssisted *device_gpuav) {
if (device_gpuav->aborted) {
return;
}
auto &as_validation_state = device_gpuav->acceleration_structure_validation_state;
if (as_validation_state.initialized) {
return;
}
if (!device_extensions.vk_nv_ray_tracing) {
return;
}
// Outline:
// - Create valid bottom level acceleration structure which acts as replacement
// - Create and load vertex buffer
// - Create and load index buffer
// - Create, allocate memory for, and bind memory for acceleration structure
// - Query acceleration structure handle
// - Create command pool and command buffer
// - Record build acceleration structure command
// - Submit command buffer and wait for completion
// - Cleanup
// - Create compute pipeline for validating instance buffers
// - Create descriptor set layout
// - Create pipeline layout
// - Create pipeline
// - Cleanup
VkResult result = VK_SUCCESS;
VkBuffer vbo = VK_NULL_HANDLE;
VmaAllocation vbo_allocation = VK_NULL_HANDLE;
if (result == VK_SUCCESS) {
VkBufferCreateInfo vbo_ci = {};
vbo_ci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
vbo_ci.size = sizeof(float) * 9;
vbo_ci.usage = VK_BUFFER_USAGE_RAY_TRACING_BIT_NV;
VmaAllocationCreateInfo vbo_ai = {};
vbo_ai.usage = VMA_MEMORY_USAGE_CPU_TO_GPU;
vbo_ai.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
result = vmaCreateBuffer(device_gpuav->vmaAllocator, &vbo_ci, &vbo_ai, &vbo, &vbo_allocation, nullptr);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"Failed to create vertex buffer for acceleration structure build validation.");
}
}
if (result == VK_SUCCESS) {
uint8_t *mapped_vbo_buffer = nullptr;
result = vmaMapMemory(device_gpuav->vmaAllocator, vbo_allocation, (void **)&mapped_vbo_buffer);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"Failed to map vertex buffer for acceleration structure build validation.");
} else {
const std::vector<float> vertices = {1.0f, 0.0f, 0.0f, 0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f};
std::memcpy(mapped_vbo_buffer, (uint8_t *)vertices.data(), sizeof(float) * vertices.size());
vmaUnmapMemory(device_gpuav->vmaAllocator, vbo_allocation);
}
}
VkBuffer ibo = VK_NULL_HANDLE;
VmaAllocation ibo_allocation = VK_NULL_HANDLE;
if (result == VK_SUCCESS) {
VkBufferCreateInfo ibo_ci = {};
ibo_ci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
ibo_ci.size = sizeof(uint32_t) * 3;
ibo_ci.usage = VK_BUFFER_USAGE_RAY_TRACING_BIT_NV;
VmaAllocationCreateInfo ibo_ai = {};
ibo_ai.usage = VMA_MEMORY_USAGE_CPU_TO_GPU;
ibo_ai.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
result = vmaCreateBuffer(device_gpuav->vmaAllocator, &ibo_ci, &ibo_ai, &ibo, &ibo_allocation, nullptr);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"Failed to create index buffer for acceleration structure build validation.");
}
}
if (result == VK_SUCCESS) {
uint8_t *mapped_ibo_buffer = nullptr;
result = vmaMapMemory(device_gpuav->vmaAllocator, ibo_allocation, (void **)&mapped_ibo_buffer);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"Failed to map index buffer for acceleration structure build validation.");
} else {
const std::vector<uint32_t> indicies = {0, 1, 2};
std::memcpy(mapped_ibo_buffer, (uint8_t *)indicies.data(), sizeof(uint32_t) * indicies.size());
vmaUnmapMemory(device_gpuav->vmaAllocator, ibo_allocation);
}
}
VkGeometryNV geometry = {};
geometry.sType = VK_STRUCTURE_TYPE_GEOMETRY_NV;
geometry.geometryType = VK_GEOMETRY_TYPE_TRIANGLES_NV;
geometry.geometry.triangles.sType = VK_STRUCTURE_TYPE_GEOMETRY_TRIANGLES_NV;
geometry.geometry.triangles.vertexData = vbo;
geometry.geometry.triangles.vertexOffset = 0;
geometry.geometry.triangles.vertexCount = 3;
geometry.geometry.triangles.vertexStride = 12;
geometry.geometry.triangles.vertexFormat = VK_FORMAT_R32G32B32_SFLOAT;
geometry.geometry.triangles.indexData = ibo;
geometry.geometry.triangles.indexOffset = 0;
geometry.geometry.triangles.indexCount = 3;
geometry.geometry.triangles.indexType = VK_INDEX_TYPE_UINT32;
geometry.geometry.triangles.transformData = VK_NULL_HANDLE;
geometry.geometry.triangles.transformOffset = 0;
geometry.geometry.aabbs = {};
geometry.geometry.aabbs.sType = VK_STRUCTURE_TYPE_GEOMETRY_AABB_NV;
VkAccelerationStructureCreateInfoNV as_ci = {};
as_ci.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_NV;
as_ci.info.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_INFO_NV;
as_ci.info.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_NV;
as_ci.info.instanceCount = 0;
as_ci.info.geometryCount = 1;
as_ci.info.pGeometries = &geometry;
if (result == VK_SUCCESS) {
result = DispatchCreateAccelerationStructureNV(device_gpuav->device, &as_ci, nullptr, &as_validation_state.replacement_as);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device_gpuav->device),
"Failed to create acceleration structure for acceleration structure build validation.");
}
}
VkMemoryRequirements2 as_mem_requirements = {};
if (result == VK_SUCCESS) {
VkAccelerationStructureMemoryRequirementsInfoNV as_mem_requirements_info = {};
as_mem_requirements_info.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_INFO_NV;
as_mem_requirements_info.type = VK_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_TYPE_OBJECT_NV;
as_mem_requirements_info.accelerationStructure = as_validation_state.replacement_as;
DispatchGetAccelerationStructureMemoryRequirementsNV(device_gpuav->device, &as_mem_requirements_info, &as_mem_requirements);
}
VmaAllocationInfo as_memory_ai = {};
if (result == VK_SUCCESS) {
VmaAllocationCreateInfo as_memory_aci = {};
as_memory_aci.usage = VMA_MEMORY_USAGE_GPU_ONLY;
result = vmaAllocateMemory(device_gpuav->vmaAllocator, &as_mem_requirements.memoryRequirements, &as_memory_aci,
&as_validation_state.replacement_as_allocation, &as_memory_ai);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device_gpuav->device),
"Failed to alloc acceleration structure memory for acceleration structure build validation.");
}
}
if (result == VK_SUCCESS) {
VkBindAccelerationStructureMemoryInfoNV as_bind_info = {};
as_bind_info.sType = VK_STRUCTURE_TYPE_BIND_ACCELERATION_STRUCTURE_MEMORY_INFO_NV;
as_bind_info.accelerationStructure = as_validation_state.replacement_as;
as_bind_info.memory = as_memory_ai.deviceMemory;
as_bind_info.memoryOffset = as_memory_ai.offset;
result = DispatchBindAccelerationStructureMemoryNV(device_gpuav->device, 1, &as_bind_info);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device_gpuav->device),
"Failed to bind acceleration structure memory for acceleration structure build validation.");
}
}
if (result == VK_SUCCESS) {
result = DispatchGetAccelerationStructureHandleNV(device_gpuav->device, as_validation_state.replacement_as,
sizeof(uint64_t), &as_validation_state.replacement_as_handle);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device_gpuav->device),
"Failed to get acceleration structure handle for acceleration structure build validation.");
}
}
VkMemoryRequirements2 scratch_mem_requirements = {};
if (result == VK_SUCCESS) {
VkAccelerationStructureMemoryRequirementsInfoNV scratch_mem_requirements_info = {};
scratch_mem_requirements_info.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_INFO_NV;
scratch_mem_requirements_info.type = VK_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_TYPE_BUILD_SCRATCH_NV;
scratch_mem_requirements_info.accelerationStructure = as_validation_state.replacement_as;
DispatchGetAccelerationStructureMemoryRequirementsNV(device_gpuav->device, &scratch_mem_requirements_info,
&scratch_mem_requirements);
}
VkBuffer scratch = VK_NULL_HANDLE;
if (result == VK_SUCCESS) {
VkBufferCreateInfo scratch_ci = {};
scratch_ci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
scratch_ci.size = scratch_mem_requirements.memoryRequirements.size;
scratch_ci.usage = VK_BUFFER_USAGE_RAY_TRACING_BIT_NV;
result = DispatchCreateBuffer(device_gpuav->device, &scratch_ci, nullptr, &scratch);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device_gpuav->device),
"Failed to create scratch buffer for acceleration structure build validation.");
}
}
VmaAllocation scratch_allocation = VK_NULL_HANDLE;
VmaAllocationInfo scratch_allocation_info = {};
if (result == VK_SUCCESS) {
VmaAllocationCreateInfo scratch_aci = {};
scratch_aci.usage = VMA_MEMORY_USAGE_GPU_ONLY;
result = vmaAllocateMemory(device_gpuav->vmaAllocator, &scratch_mem_requirements.memoryRequirements, &scratch_aci,
&scratch_allocation, &scratch_allocation_info);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device_gpuav->device),
"Failed to alloc scratch memory for acceleration structure build validation.");
}
}
if (result == VK_SUCCESS) {
result = DispatchBindBufferMemory(device_gpuav->device, scratch, scratch_allocation_info.deviceMemory,
scratch_allocation_info.offset);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device_gpuav->device),
"Failed to bind scratch memory for acceleration structure build validation.");
}
}
VkCommandPool command_pool = VK_NULL_HANDLE;
if (result == VK_SUCCESS) {
VkCommandPoolCreateInfo command_pool_ci = {};
command_pool_ci.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
command_pool_ci.queueFamilyIndex = 0;
result = DispatchCreateCommandPool(device_gpuav->device, &command_pool_ci, nullptr, &command_pool);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device_gpuav->device),
"Failed to create command pool for acceleration structure build validation.");
}
}
VkCommandBuffer command_buffer = VK_NULL_HANDLE;
if (result == VK_SUCCESS) {
VkCommandBufferAllocateInfo command_buffer_ai = {};
command_buffer_ai.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
command_buffer_ai.commandPool = command_pool;
command_buffer_ai.commandBufferCount = 1;
command_buffer_ai.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
result = DispatchAllocateCommandBuffers(device_gpuav->device, &command_buffer_ai, &command_buffer);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device_gpuav->device),
"Failed to create command buffer for acceleration structure build validation.");
}
// Hook up command buffer dispatch
device_gpuav->vkSetDeviceLoaderData(device_gpuav->device, command_buffer);
}
if (result == VK_SUCCESS) {
VkCommandBufferBeginInfo command_buffer_bi = {};
command_buffer_bi.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
result = DispatchBeginCommandBuffer(command_buffer, &command_buffer_bi);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device_gpuav->device),
"Failed to begin command buffer for acceleration structure build validation.");
}
}
if (result == VK_SUCCESS) {
DispatchCmdBuildAccelerationStructureNV(command_buffer, &as_ci.info, VK_NULL_HANDLE, 0, VK_FALSE,
as_validation_state.replacement_as, VK_NULL_HANDLE, scratch, 0);
DispatchEndCommandBuffer(command_buffer);
}
VkQueue queue = VK_NULL_HANDLE;
if (result == VK_SUCCESS) {
DispatchGetDeviceQueue(device_gpuav->device, 0, 0, &queue);
// Hook up queue dispatch
device_gpuav->vkSetDeviceLoaderData(device_gpuav->device, queue);
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &command_buffer;
result = DispatchQueueSubmit(queue, 1, &submit_info, VK_NULL_HANDLE);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device_gpuav->device),
"Failed to submit command buffer for acceleration structure build validation.");
}
}
if (result == VK_SUCCESS) {
result = DispatchQueueWaitIdle(queue);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device_gpuav->device),
"Failed to wait for queue idle for acceleration structure build validation.");
}
}
if (vbo != VK_NULL_HANDLE) {
vmaDestroyBuffer(device_gpuav->vmaAllocator, vbo, vbo_allocation);
}
if (ibo != VK_NULL_HANDLE) {
vmaDestroyBuffer(device_gpuav->vmaAllocator, ibo, ibo_allocation);
}
if (scratch != VK_NULL_HANDLE) {
DispatchDestroyBuffer(device_gpuav->device, scratch, nullptr);
vmaFreeMemory(device_gpuav->vmaAllocator, scratch_allocation);
}
if (command_pool != VK_NULL_HANDLE) {
DispatchDestroyCommandPool(device_gpuav->device, command_pool, nullptr);
}
if (device_gpuav->debug_desc_layout == VK_NULL_HANDLE) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device_gpuav->device),
"Failed to find descriptor set layout for acceleration structure build validation.");
result = VK_INCOMPLETE;
}
if (result == VK_SUCCESS) {
VkPipelineLayoutCreateInfo pipeline_layout_ci = {};
pipeline_layout_ci.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipeline_layout_ci.setLayoutCount = 1;
pipeline_layout_ci.pSetLayouts = &device_gpuav->debug_desc_layout;
result = DispatchCreatePipelineLayout(device_gpuav->device, &pipeline_layout_ci, 0, &as_validation_state.pipeline_layout);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device_gpuav->device),
"Failed to create pipeline layout for acceleration structure build validation.");
}
}
VkShaderModule shader_module = VK_NULL_HANDLE;
if (result == VK_SUCCESS) {
VkShaderModuleCreateInfo shader_module_ci = {};
shader_module_ci.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
shader_module_ci.codeSize = sizeof(kComputeShaderSpirv);
shader_module_ci.pCode = (uint32_t *)kComputeShaderSpirv;
result = DispatchCreateShaderModule(device_gpuav->device, &shader_module_ci, nullptr, &shader_module);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device_gpuav->device),
"Failed to create compute shader module for acceleration structure build validation.");
}
}
if (result == VK_SUCCESS) {
VkPipelineShaderStageCreateInfo pipeline_stage_ci = {};
pipeline_stage_ci.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
pipeline_stage_ci.stage = VK_SHADER_STAGE_COMPUTE_BIT;
pipeline_stage_ci.module = shader_module;
pipeline_stage_ci.pName = "main";
VkComputePipelineCreateInfo pipeline_ci = {};
pipeline_ci.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO;
pipeline_ci.stage = pipeline_stage_ci;
pipeline_ci.layout = as_validation_state.pipeline_layout;
result = DispatchCreateComputePipelines(device_gpuav->device, VK_NULL_HANDLE, 1, &pipeline_ci, nullptr,
&as_validation_state.pipeline);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device_gpuav->device),
"Failed to create compute pipeline for acceleration structure build validation.");
}
}
if (shader_module != VK_NULL_HANDLE) {
DispatchDestroyShaderModule(device_gpuav->device, shader_module, nullptr);
}
if (result == VK_SUCCESS) {
as_validation_state.initialized = true;
log_msg(report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
HandleToUint64(device_gpuav->device), "UNASSIGNED-GPU-Assisted Validation.",
"Acceleration Structure Building GPU Validation Enabled.");
} else {
device_gpuav->aborted = true;
}
}
void GpuAssisted::DestroyAccelerationStructureBuildValidationState() {
auto &as_validation_state = acceleration_structure_validation_state;
if (as_validation_state.pipeline != VK_NULL_HANDLE) {
DispatchDestroyPipeline(device, as_validation_state.pipeline, nullptr);
}
if (as_validation_state.pipeline_layout != VK_NULL_HANDLE) {
DispatchDestroyPipelineLayout(device, as_validation_state.pipeline_layout, nullptr);
}
if (as_validation_state.replacement_as != VK_NULL_HANDLE) {
DispatchDestroyAccelerationStructureNV(device, as_validation_state.replacement_as, nullptr);
}
if (as_validation_state.replacement_as_allocation != VK_NULL_HANDLE) {
vmaFreeMemory(vmaAllocator, as_validation_state.replacement_as_allocation);
}
}
struct GPUAV_RESTORABLE_PIPELINE_STATE {
VkPipelineBindPoint pipeline_bind_point = VK_PIPELINE_BIND_POINT_MAX_ENUM;
VkPipeline pipeline = VK_NULL_HANDLE;
VkPipelineLayout pipeline_layout = VK_NULL_HANDLE;
std::vector<VkDescriptorSet> descriptor_sets;
std::vector<std::vector<uint32_t>> dynamic_offsets;
uint32_t push_descriptor_set_index = 0;
std::vector<safe_VkWriteDescriptorSet> push_descriptor_set_writes;
std::vector<uint8_t> push_constants_data;
PushConstantRangesId push_constants_ranges;
void Create(CMD_BUFFER_STATE *cb_state, VkPipelineBindPoint bind_point) {
pipeline_bind_point = bind_point;
LAST_BOUND_STATE &last_bound = cb_state->lastBound[bind_point];
if (last_bound.pipeline_state) {
pipeline = last_bound.pipeline_state->pipeline;
pipeline_layout = last_bound.pipeline_layout;
descriptor_sets.reserve(last_bound.per_set.size());
for (std::size_t i = 0; i < last_bound.per_set.size(); i++) {
const auto *bound_descriptor_set = last_bound.per_set[i].bound_descriptor_set;
descriptor_sets.push_back(bound_descriptor_set->GetSet());
if (bound_descriptor_set->IsPushDescriptor()) {
push_descriptor_set_index = static_cast<uint32_t>(i);
}
dynamic_offsets.push_back(last_bound.per_set[i].dynamicOffsets);
}
if (last_bound.push_descriptor_set) {
push_descriptor_set_writes = last_bound.push_descriptor_set->GetWrites();
}
if (last_bound.pipeline_state->pipeline_layout->push_constant_ranges == cb_state->push_constant_data_ranges) {
push_constants_data = cb_state->push_constant_data;
push_constants_ranges = last_bound.pipeline_state->pipeline_layout->push_constant_ranges;
}
}
}
void Restore(VkCommandBuffer command_buffer) const {
if (pipeline != VK_NULL_HANDLE) {
DispatchCmdBindPipeline(command_buffer, pipeline_bind_point, pipeline);
if (!descriptor_sets.empty()) {
for (std::size_t i = 0; i < descriptor_sets.size(); i++) {
VkDescriptorSet descriptor_set = descriptor_sets[i];
if (descriptor_set != VK_NULL_HANDLE) {
DispatchCmdBindDescriptorSets(command_buffer, pipeline_bind_point, pipeline_layout,
static_cast<uint32_t>(i), 1, &descriptor_set,
static_cast<uint32_t>(dynamic_offsets[i].size()), dynamic_offsets[i].data());
}
}
}
if (!push_descriptor_set_writes.empty()) {
DispatchCmdPushDescriptorSetKHR(command_buffer, pipeline_bind_point, pipeline_layout, push_descriptor_set_index,
static_cast<uint32_t>(push_descriptor_set_writes.size()),
reinterpret_cast<const VkWriteDescriptorSet *>(push_descriptor_set_writes.data()));
}
for (const auto &push_constant_range : *push_constants_ranges) {
if (push_constant_range.size == 0) continue;
DispatchCmdPushConstants(command_buffer, pipeline_layout, push_constant_range.stageFlags,
push_constant_range.offset, push_constant_range.size, push_constants_data.data());
}
}
}
};
void GpuAssisted::PreCallRecordCmdBuildAccelerationStructureNV(VkCommandBuffer commandBuffer,
const VkAccelerationStructureInfoNV *pInfo, VkBuffer instanceData,
VkDeviceSize instanceOffset, VkBool32 update,
VkAccelerationStructureNV dst, VkAccelerationStructureNV src,
VkBuffer scratch, VkDeviceSize scratchOffset) {
if (pInfo == nullptr || pInfo->type != VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_NV) {
return;
}
auto &as_validation_state = acceleration_structure_validation_state;
if (!as_validation_state.initialized) {
return;
}
// Empty acceleration structure is valid according to the spec.
if (pInfo->instanceCount == 0 || instanceData == VK_NULL_HANDLE) {
return;
}
CMD_BUFFER_STATE *cb_state = GetCBState(commandBuffer);
assert(cb_state != nullptr);
std::vector<uint64_t> current_valid_handles;
for (const auto &as_state_kv : accelerationStructureMap) {
const ACCELERATION_STRUCTURE_STATE &as_state = *as_state_kv.second;
if (as_state.built && as_state.create_info.info.type == VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_NV) {
current_valid_handles.push_back(as_state.opaque_handle);
}
}
GpuAssistedAccelerationStructureBuildValidationBufferInfo as_validation_buffer_info = {};
as_validation_buffer_info.acceleration_structure = dst;
const VkDeviceSize validation_buffer_size =
// One uint for number of instances to validate
4 +
// Two uint for the replacement acceleration structure handle
8 +
// One uint for number of invalid handles found
4 +
// Two uint for the first invalid handle found
8 +
// One uint for the number of current valid handles
4 +
// Two uint for each current valid handle
(8 * current_valid_handles.size());
VkBufferCreateInfo validation_buffer_create_info = {};
validation_buffer_create_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
validation_buffer_create_info.size = validation_buffer_size;
validation_buffer_create_info.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
VmaAllocationCreateInfo validation_buffer_alloc_info = {};
validation_buffer_alloc_info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
VkResult result = vmaCreateBuffer(vmaAllocator, &validation_buffer_create_info, &validation_buffer_alloc_info,
&as_validation_buffer_info.validation_buffer,
&as_validation_buffer_info.validation_buffer_allocation, nullptr);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"Unable to allocate device memory. Device could become unstable.");
aborted = true;
return;
}
GpuAccelerationStructureBuildValidationBuffer *mapped_validation_buffer = nullptr;
result = vmaMapMemory(vmaAllocator, as_validation_buffer_info.validation_buffer_allocation, (void **)&mapped_validation_buffer);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"Unable to allocate device memory for acceleration structure build val buffer.");
aborted = true;
return;
}
mapped_validation_buffer->instances_to_validate = pInfo->instanceCount;
mapped_validation_buffer->replacement_handle_bits_0 =
reinterpret_cast<const uint32_t *>(&as_validation_state.replacement_as_handle)[0];
mapped_validation_buffer->replacement_handle_bits_1 =
reinterpret_cast<const uint32_t *>(&as_validation_state.replacement_as_handle)[1];
mapped_validation_buffer->invalid_handle_found = 0;
mapped_validation_buffer->invalid_handle_bits_0 = 0;
mapped_validation_buffer->invalid_handle_bits_1 = 0;
mapped_validation_buffer->valid_handles_count = static_cast<uint32_t>(current_valid_handles.size());
uint32_t *mapped_valid_handles = reinterpret_cast<uint32_t *>(&mapped_validation_buffer[1]);
for (std::size_t i = 0; i < current_valid_handles.size(); i++) {
const uint64_t current_valid_handle = current_valid_handles[i];
*mapped_valid_handles = reinterpret_cast<const uint32_t *>(&current_valid_handle)[0];
++mapped_valid_handles;
*mapped_valid_handles = reinterpret_cast<const uint32_t *>(&current_valid_handle)[1];
++mapped_valid_handles;
}
vmaUnmapMemory(vmaAllocator, as_validation_buffer_info.validation_buffer_allocation);
static constexpr const VkDeviceSize kInstanceSize = 64;
const VkDeviceSize instance_buffer_size = kInstanceSize * pInfo->instanceCount;
result =
desc_set_manager->GetDescriptorSet(&as_validation_buffer_info.descriptor_pool, &as_validation_buffer_info.descriptor_set);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"Unable to get descriptor set for acceleration structure build.");
aborted = true;
return;
}
VkDescriptorBufferInfo descriptor_buffer_infos[2] = {};
descriptor_buffer_infos[0].buffer = instanceData;
descriptor_buffer_infos[0].offset = instanceOffset;
descriptor_buffer_infos[0].range = instance_buffer_size;
descriptor_buffer_infos[1].buffer = as_validation_buffer_info.validation_buffer;
descriptor_buffer_infos[1].offset = 0;
descriptor_buffer_infos[1].range = validation_buffer_size;
VkWriteDescriptorSet descriptor_set_writes[2] = {};
descriptor_set_writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptor_set_writes[0].dstSet = as_validation_buffer_info.descriptor_set;
descriptor_set_writes[0].dstBinding = 0;
descriptor_set_writes[0].descriptorCount = 1;
descriptor_set_writes[0].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
descriptor_set_writes[0].pBufferInfo = &descriptor_buffer_infos[0];
descriptor_set_writes[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptor_set_writes[1].dstSet = as_validation_buffer_info.descriptor_set;
descriptor_set_writes[1].dstBinding = 1;
descriptor_set_writes[1].descriptorCount = 1;
descriptor_set_writes[1].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
descriptor_set_writes[1].pBufferInfo = &descriptor_buffer_infos[1];
DispatchUpdateDescriptorSets(device, 2, descriptor_set_writes, 0, nullptr);
// Issue a memory barrier to make sure anything writing to the instance buffer has finished.
VkMemoryBarrier memory_barrier = {};
memory_barrier.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER;
memory_barrier.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT;
memory_barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
DispatchCmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0, 1,
&memory_barrier, 0, nullptr, 0, nullptr);
// Save a copy of the compute pipeline state that needs to be restored.
GPUAV_RESTORABLE_PIPELINE_STATE restorable_state;
restorable_state.Create(cb_state, VK_PIPELINE_BIND_POINT_COMPUTE);
// Switch to and launch the validation compute shader to find, replace, and report invalid acceleration structure handles.
DispatchCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, as_validation_state.pipeline);
DispatchCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, as_validation_state.pipeline_layout, 0, 1,
&as_validation_buffer_info.descriptor_set, 0, nullptr);
DispatchCmdDispatch(commandBuffer, 1, 1, 1);
// Issue a buffer memory barrier to make sure that any invalid bottom level acceleration structure handles
// have been replaced by the validation compute shader before any builds take place.
VkBufferMemoryBarrier instance_buffer_barrier = {};
instance_buffer_barrier.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER;
instance_buffer_barrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
instance_buffer_barrier.dstAccessMask = VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_NV;
instance_buffer_barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
instance_buffer_barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
instance_buffer_barrier.buffer = instanceData;
instance_buffer_barrier.offset = instanceOffset;
instance_buffer_barrier.size = instance_buffer_size;
DispatchCmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_NV, 0, 0, nullptr, 1, &instance_buffer_barrier, 0,
nullptr);
// Restore the previous compute pipeline state.
restorable_state.Restore(commandBuffer);
as_validation_state.validation_buffers[commandBuffer].push_back(std::move(as_validation_buffer_info));
}
void GpuAssisted::ProcessAccelerationStructureBuildValidationBuffer(VkQueue queue, CMD_BUFFER_STATE *cb_node) {
if (cb_node == nullptr || !cb_node->hasBuildAccelerationStructureCmd) {
return;
}
auto &as_validation_info = acceleration_structure_validation_state;
auto &as_validation_buffer_infos = as_validation_info.validation_buffers[cb_node->commandBuffer];
for (const auto &as_validation_buffer_info : as_validation_buffer_infos) {
GpuAccelerationStructureBuildValidationBuffer *mapped_validation_buffer = nullptr;
VkResult result =
vmaMapMemory(vmaAllocator, as_validation_buffer_info.validation_buffer_allocation, (void **)&mapped_validation_buffer);
if (result == VK_SUCCESS) {
if (mapped_validation_buffer->invalid_handle_found > 0) {
uint64_t invalid_handle = 0;
reinterpret_cast<uint32_t *>(&invalid_handle)[0] = mapped_validation_buffer->invalid_handle_bits_0;
reinterpret_cast<uint32_t *>(&invalid_handle)[1] = mapped_validation_buffer->invalid_handle_bits_1;
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_ACCELERATION_STRUCTURE_NV_EXT,
HandleToUint64(as_validation_buffer_info.acceleration_structure), "UNASSIGNED-AccelerationStructure",
"Attempted to build top level acceleration structure using invalid bottom level acceleration structure "
"handle (%" PRIu64 ")",
invalid_handle);
}
vmaUnmapMemory(vmaAllocator, as_validation_buffer_info.validation_buffer_allocation);
}
}
}
void GpuAssisted::PostCallRecordBindAccelerationStructureMemoryNV(VkDevice device, uint32_t bindInfoCount,
const VkBindAccelerationStructureMemoryInfoNV *pBindInfos,
VkResult result) {
if (VK_SUCCESS != result) return;
ValidationStateTracker::PostCallRecordBindAccelerationStructureMemoryNV(device, bindInfoCount, pBindInfos, result);
for (uint32_t i = 0; i < bindInfoCount; i++) {
const VkBindAccelerationStructureMemoryInfoNV &info = pBindInfos[i];
ACCELERATION_STRUCTURE_STATE *as_state = GetAccelerationStructureState(info.accelerationStructure);
if (as_state) {
DispatchGetAccelerationStructureHandleNV(device, info.accelerationStructure, 8, &as_state->opaque_handle);
}
}
}
// Modify the pipeline layout to include our debug descriptor set and any needed padding with the dummy descriptor set.
void GpuAssisted::PreCallRecordCreatePipelineLayout(VkDevice device, const VkPipelineLayoutCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkPipelineLayout *pPipelineLayout,
void *cpl_state_data) {
if (aborted) {
return;
}
create_pipeline_layout_api_state *cpl_state = reinterpret_cast<create_pipeline_layout_api_state *>(cpl_state_data);
if (cpl_state->modified_create_info.setLayoutCount >= adjusted_max_desc_sets) {
std::ostringstream strm;
strm << "Pipeline Layout conflict with validation's descriptor set at slot " << desc_set_bind_index << ". "
<< "Application has too many descriptor sets in the pipeline layout to continue with gpu validation. "
<< "Validation is not modifying the pipeline layout. "
<< "Instrumented shaders are replaced with non-instrumented shaders.";
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device), strm.str().c_str());
} else {
// Modify the pipeline layout by:
// 1. Copying the caller's descriptor set desc_layouts
// 2. Fill in dummy descriptor layouts up to the max binding
// 3. Fill in with the debug descriptor layout at the max binding slot
cpl_state->new_layouts.reserve(adjusted_max_desc_sets);
cpl_state->new_layouts.insert(cpl_state->new_layouts.end(), &pCreateInfo->pSetLayouts[0],
&pCreateInfo->pSetLayouts[pCreateInfo->setLayoutCount]);
for (uint32_t i = pCreateInfo->setLayoutCount; i < adjusted_max_desc_sets - 1; ++i) {
cpl_state->new_layouts.push_back(dummy_desc_layout);
}
cpl_state->new_layouts.push_back(debug_desc_layout);
cpl_state->modified_create_info.pSetLayouts = cpl_state->new_layouts.data();
cpl_state->modified_create_info.setLayoutCount = adjusted_max_desc_sets;
}
}
void GpuAssisted::PostCallRecordCreatePipelineLayout(VkDevice device, const VkPipelineLayoutCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkPipelineLayout *pPipelineLayout,
VkResult result) {
ValidationStateTracker::PostCallRecordCreatePipelineLayout(device, pCreateInfo, pAllocator, pPipelineLayout, result);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"Unable to create pipeline layout. Device could become unstable.");
aborted = true;
}
}
// Free the device memory and descriptor set associated with a command buffer.
void GpuAssisted::ResetCommandBuffer(VkCommandBuffer commandBuffer) {
if (aborted) {
return;
}
auto gpuav_buffer_list = GetGpuAssistedBufferInfo(commandBuffer);
for (auto buffer_info : gpuav_buffer_list) {
vmaDestroyBuffer(vmaAllocator, buffer_info.output_mem_block.buffer, buffer_info.output_mem_block.allocation);
if (buffer_info.di_input_mem_block.buffer) {
vmaDestroyBuffer(vmaAllocator, buffer_info.di_input_mem_block.buffer, buffer_info.di_input_mem_block.allocation);
}
if (buffer_info.bda_input_mem_block.buffer) {
vmaDestroyBuffer(vmaAllocator, buffer_info.bda_input_mem_block.buffer, buffer_info.bda_input_mem_block.allocation);
}
if (buffer_info.desc_set != VK_NULL_HANDLE) {
desc_set_manager->PutBackDescriptorSet(buffer_info.desc_pool, buffer_info.desc_set);
}
}
command_buffer_map.erase(commandBuffer);
auto &as_validation_info = acceleration_structure_validation_state;
auto &as_validation_buffer_infos = as_validation_info.validation_buffers[commandBuffer];
for (auto &as_validation_buffer_info : as_validation_buffer_infos) {
vmaDestroyBuffer(vmaAllocator, as_validation_buffer_info.validation_buffer,
as_validation_buffer_info.validation_buffer_allocation);
if (as_validation_buffer_info.descriptor_set != VK_NULL_HANDLE) {
desc_set_manager->PutBackDescriptorSet(as_validation_buffer_info.descriptor_pool,
as_validation_buffer_info.descriptor_set);
}
}
as_validation_info.validation_buffers.erase(commandBuffer);
}
// Just gives a warning about a possible deadlock.
bool GpuAssisted::PreCallValidateCmdWaitEvents(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask,
uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers) const {
if (srcStageMask & VK_PIPELINE_STAGE_HOST_BIT) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, HandleToUint64(commandBuffer),
"CmdWaitEvents recorded with VK_PIPELINE_STAGE_HOST_BIT set. "
"GPU_Assisted validation waits on queue completion. "
"This wait could block the host's signaling of this event, resulting in deadlock.");
}
return false;
}
void GpuAssisted::PostCallRecordGetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties *pPhysicalDeviceProperties) {
// There is an implicit layer that can cause this call to return 0 for maxBoundDescriptorSets - Ignore such calls
if (enabled.gpu_validation_reserve_binding_slot && pPhysicalDeviceProperties->limits.maxBoundDescriptorSets > 0) {
if (pPhysicalDeviceProperties->limits.maxBoundDescriptorSets > 1) {
pPhysicalDeviceProperties->limits.maxBoundDescriptorSets -= 1;
} else {
log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT,
HandleToUint64(physicalDevice), "UNASSIGNED-GPU-Assisted Validation Setup Error.",
"Unable to reserve descriptor binding slot on a device with only one slot.");
}
}
}
void GpuAssisted::PostCallRecordGetPhysicalDeviceProperties2(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties2 *pPhysicalDeviceProperties2) {
// There is an implicit layer that can cause this call to return 0 for maxBoundDescriptorSets - Ignore such calls
if (enabled.gpu_validation_reserve_binding_slot && pPhysicalDeviceProperties2->properties.limits.maxBoundDescriptorSets > 0) {
if (pPhysicalDeviceProperties2->properties.limits.maxBoundDescriptorSets > 1) {
pPhysicalDeviceProperties2->properties.limits.maxBoundDescriptorSets -= 1;
} else {
log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT,
HandleToUint64(physicalDevice), "UNASSIGNED-GPU-Assisted Validation Setup Error.",
"Unable to reserve descriptor binding slot on a device with only one slot.");
}
}
}
void GpuAssisted::PreCallRecordCreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkGraphicsPipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
void *cgpl_state_data) {
std::vector<safe_VkGraphicsPipelineCreateInfo> new_pipeline_create_infos;
create_graphics_pipeline_api_state *cgpl_state = reinterpret_cast<create_graphics_pipeline_api_state *>(cgpl_state_data);
PreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, cgpl_state->pipe_state, &new_pipeline_create_infos,
VK_PIPELINE_BIND_POINT_GRAPHICS);
cgpl_state->gpu_create_infos = new_pipeline_create_infos;
cgpl_state->pCreateInfos = reinterpret_cast<VkGraphicsPipelineCreateInfo *>(cgpl_state->gpu_create_infos.data());
}
void GpuAssisted::PreCallRecordCreateComputePipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkComputePipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
void *ccpl_state_data) {
std::vector<safe_VkComputePipelineCreateInfo> new_pipeline_create_infos;
auto *ccpl_state = reinterpret_cast<create_compute_pipeline_api_state *>(ccpl_state_data);
PreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, ccpl_state->pipe_state, &new_pipeline_create_infos,
VK_PIPELINE_BIND_POINT_COMPUTE);
ccpl_state->gpu_create_infos = new_pipeline_create_infos;
ccpl_state->pCreateInfos = reinterpret_cast<VkComputePipelineCreateInfo *>(ccpl_state->gpu_create_infos.data());
}
void GpuAssisted::PreCallRecordCreateRayTracingPipelinesNV(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkRayTracingPipelineCreateInfoNV *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
void *crtpl_state_data) {
std::vector<safe_VkRayTracingPipelineCreateInfoNV> new_pipeline_create_infos;
auto *crtpl_state = reinterpret_cast<create_ray_tracing_pipeline_api_state *>(crtpl_state_data);
PreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, crtpl_state->pipe_state, &new_pipeline_create_infos,
VK_PIPELINE_BIND_POINT_RAY_TRACING_NV);
crtpl_state->gpu_create_infos = new_pipeline_create_infos;
crtpl_state->pCreateInfos = reinterpret_cast<VkRayTracingPipelineCreateInfoNV *>(crtpl_state->gpu_create_infos.data());
}
template <typename CreateInfo>
struct CreatePipelineTraits {};
template <>
struct CreatePipelineTraits<VkGraphicsPipelineCreateInfo> {
using SafeType = safe_VkGraphicsPipelineCreateInfo;
static const SafeType &GetPipelineCI(const PIPELINE_STATE *pipeline_state) { return pipeline_state->graphicsPipelineCI; }
static uint32_t GetStageCount(const VkGraphicsPipelineCreateInfo &createInfo) { return createInfo.stageCount; }
static VkShaderModule GetShaderModule(const VkGraphicsPipelineCreateInfo &createInfo, uint32_t stage) {
return createInfo.pStages[stage].module;
}
static void SetShaderModule(SafeType *createInfo, VkShaderModule shader_module, uint32_t stage) {
createInfo->pStages[stage].module = shader_module;
}
};
template <>
struct CreatePipelineTraits<VkComputePipelineCreateInfo> {
using SafeType = safe_VkComputePipelineCreateInfo;
static const SafeType &GetPipelineCI(const PIPELINE_STATE *pipeline_state) { return pipeline_state->computePipelineCI; }
static uint32_t GetStageCount(const VkComputePipelineCreateInfo &createInfo) { return 1; }
static VkShaderModule GetShaderModule(const VkComputePipelineCreateInfo &createInfo, uint32_t stage) {
return createInfo.stage.module;
}
static void SetShaderModule(SafeType *createInfo, VkShaderModule shader_module, uint32_t stage) {
assert(stage == 0);
createInfo->stage.module = shader_module;
}
};
template <>
struct CreatePipelineTraits<VkRayTracingPipelineCreateInfoNV> {
using SafeType = safe_VkRayTracingPipelineCreateInfoNV;
static const SafeType &GetPipelineCI(const PIPELINE_STATE *pipeline_state) { return pipeline_state->raytracingPipelineCI; }
static uint32_t GetStageCount(const VkRayTracingPipelineCreateInfoNV &createInfo) { return createInfo.stageCount; }
static VkShaderModule GetShaderModule(const VkRayTracingPipelineCreateInfoNV &createInfo, uint32_t stage) {
return createInfo.pStages[stage].module;
}
static void SetShaderModule(SafeType *createInfo, VkShaderModule shader_module, uint32_t stage) {
createInfo->pStages[stage].module = shader_module;
}
};
// Examine the pipelines to see if they use the debug descriptor set binding index.
// If any do, create new non-instrumented shader modules and use them to replace the instrumented
// shaders in the pipeline. Return the (possibly) modified create infos to the caller.
template <typename CreateInfo, typename SafeCreateInfo>
void GpuAssisted::PreCallRecordPipelineCreations(uint32_t count, const CreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
std::vector<std::shared_ptr<PIPELINE_STATE>> &pipe_state,
std::vector<SafeCreateInfo> *new_pipeline_create_infos,
const VkPipelineBindPoint bind_point) {
using Accessor = CreatePipelineTraits<CreateInfo>;
if (bind_point != VK_PIPELINE_BIND_POINT_GRAPHICS && bind_point != VK_PIPELINE_BIND_POINT_COMPUTE &&
bind_point != VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
return;
}
// Walk through all the pipelines, make a copy of each and flag each pipeline that contains a shader that uses the debug
// descriptor set index.
for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
uint32_t stageCount = Accessor::GetStageCount(pCreateInfos[pipeline]);
new_pipeline_create_infos->push_back(Accessor::GetPipelineCI(pipe_state[pipeline].get()));
bool replace_shaders = false;
if (pipe_state[pipeline]->active_slots.find(desc_set_bind_index) != pipe_state[pipeline]->active_slots.end()) {
replace_shaders = true;
}
// If the app requests all available sets, the pipeline layout was not modified at pipeline layout creation and the already
// instrumented shaders need to be replaced with uninstrumented shaders
if (pipe_state[pipeline]->pipeline_layout->set_layouts.size() >= adjusted_max_desc_sets) {
replace_shaders = true;
}
if (replace_shaders) {
for (uint32_t stage = 0; stage < stageCount; ++stage) {
const SHADER_MODULE_STATE *shader = GetShaderModuleState(Accessor::GetShaderModule(pCreateInfos[pipeline], stage));
VkShaderModuleCreateInfo create_info = {};
VkShaderModule shader_module;
create_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
create_info.pCode = shader->words.data();
create_info.codeSize = shader->words.size() * sizeof(uint32_t);
VkResult result = DispatchCreateShaderModule(device, &create_info, pAllocator, &shader_module);
if (result == VK_SUCCESS) {
Accessor::SetShaderModule(&(*new_pipeline_create_infos)[pipeline], shader_module, stage);
} else {
uint64_t moduleHandle = HandleToUint64(Accessor::GetShaderModule(pCreateInfos[pipeline], stage));
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, moduleHandle,
"Unable to replace instrumented shader with non-instrumented one. "
"Device could become unstable.");
}
}
}
}
}
void GpuAssisted::PostCallRecordCreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkGraphicsPipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
VkResult result, void *cgpl_state_data) {
ValidationStateTracker::PostCallRecordCreateGraphicsPipelines(device, pipelineCache, count, pCreateInfos, pAllocator,
pPipelines, result, cgpl_state_data);
PostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void GpuAssisted::PostCallRecordCreateComputePipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkComputePipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
VkResult result, void *ccpl_state_data) {
ValidationStateTracker::PostCallRecordCreateComputePipelines(device, pipelineCache, count, pCreateInfos, pAllocator, pPipelines,
result, ccpl_state_data);
PostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_COMPUTE);
}
void GpuAssisted::PostCallRecordCreateRayTracingPipelinesNV(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkRayTracingPipelineCreateInfoNV *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
VkResult result, void *crtpl_state_data) {
ValidationStateTracker::PostCallRecordCreateRayTracingPipelinesNV(device, pipelineCache, count, pCreateInfos, pAllocator,
pPipelines, result, crtpl_state_data);
PostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_RAY_TRACING_NV);
}
// For every pipeline:
// - For every shader in a pipeline:
// - If the shader had to be replaced in PreCallRecord (because the pipeline is using the debug desc set index):
// - Destroy it since it has been bound into the pipeline by now. This is our only chance to delete it.
// - Track the shader in the shader_map
// - Save the shader binary if it contains debug code
template <typename CreateInfo>
void GpuAssisted::PostCallRecordPipelineCreations(const uint32_t count, const CreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
const VkPipelineBindPoint bind_point) {
using Accessor = CreatePipelineTraits<CreateInfo>;
if (bind_point != VK_PIPELINE_BIND_POINT_GRAPHICS && bind_point != VK_PIPELINE_BIND_POINT_COMPUTE &&
bind_point != VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
return;
}
for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
auto pipeline_state = ValidationStateTracker::GetPipelineState(pPipelines[pipeline]);
if (nullptr == pipeline_state) continue;
uint32_t stageCount = 0;
if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
stageCount = pipeline_state->graphicsPipelineCI.stageCount;
} else if (bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
stageCount = 1;
} else if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
stageCount = pipeline_state->raytracingPipelineCI.stageCount;
} else {
assert(false);
}
for (uint32_t stage = 0; stage < stageCount; ++stage) {
if (pipeline_state->active_slots.find(desc_set_bind_index) != pipeline_state->active_slots.end()) {
DispatchDestroyShaderModule(device, Accessor::GetShaderModule(pCreateInfos[pipeline], stage), pAllocator);
}
const SHADER_MODULE_STATE *shader_state = nullptr;
if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
shader_state = GetShaderModuleState(pipeline_state->graphicsPipelineCI.pStages[stage].module);
} else if (bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
assert(stage == 0);
shader_state = GetShaderModuleState(pipeline_state->computePipelineCI.stage.module);
} else if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
shader_state = GetShaderModuleState(pipeline_state->raytracingPipelineCI.pStages[stage].module);
} else {
assert(false);
}
if (shader_state) {
std::vector<unsigned int> code;
// Save the shader binary if debug info is present.
// The core_validation ShaderModule tracker saves the binary too, but discards it when the ShaderModule
// is destroyed. Applications may destroy ShaderModules after they are placed in a pipeline and before
// the pipeline is used, so we have to keep another copy.
if (shader_state->has_valid_spirv) { // really checking for presense of SPIR-V code.
for (auto insn : *shader_state) {
if (insn.opcode() == spv::OpLine) {
code = shader_state->words;
break;
}
}
}
shader_map[shader_state->gpu_validation_shader_id].pipeline = pipeline_state->pipeline;
// Be careful to use the originally bound (instrumented) shader here, even if PreCallRecord had to back it
// out with a non-instrumented shader. The non-instrumented shader (found in pCreateInfo) was destroyed above.
VkShaderModule shader_module = VK_NULL_HANDLE;
if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
shader_module = pipeline_state->graphicsPipelineCI.pStages[stage].module;
} else if (bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
assert(stage == 0);
shader_module = pipeline_state->computePipelineCI.stage.module;
} else if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
shader_module = pipeline_state->raytracingPipelineCI.pStages[stage].module;
} else {
assert(false);
}
shader_map[shader_state->gpu_validation_shader_id].shader_module = shader_module;
shader_map[shader_state->gpu_validation_shader_id].pgm = std::move(code);
}
}
}
}
// Remove all the shader trackers associated with this destroyed pipeline.
void GpuAssisted::PreCallRecordDestroyPipeline(VkDevice device, VkPipeline pipeline, const VkAllocationCallbacks *pAllocator) {
for (auto it = shader_map.begin(); it != shader_map.end();) {
if (it->second.pipeline == pipeline) {
it = shader_map.erase(it);
} else {
++it;
}
}
ValidationStateTracker::PreCallRecordDestroyPipeline(device, pipeline, pAllocator);
}
// Call the SPIR-V Optimizer to run the instrumentation pass on the shader.
bool GpuAssisted::InstrumentShader(const VkShaderModuleCreateInfo *pCreateInfo, std::vector<unsigned int> &new_pgm,
uint32_t *unique_shader_id) {
if (aborted) return false;
if (pCreateInfo->pCode[0] != spv::MagicNumber) return false;
// Load original shader SPIR-V
uint32_t num_words = static_cast<uint32_t>(pCreateInfo->codeSize / 4);
new_pgm.clear();
new_pgm.reserve(num_words);
new_pgm.insert(new_pgm.end(), &pCreateInfo->pCode[0], &pCreateInfo->pCode[num_words]);
// Call the optimizer to instrument the shader.
// Use the unique_shader_module_id as a shader ID so we can look up its handle later in the shader_map.
// If descriptor indexing is enabled, enable length checks and updated descriptor checks
const bool descriptor_indexing = IsExtEnabled(device_extensions.vk_ext_descriptor_indexing);
using namespace spvtools;
spv_target_env target_env = SPV_ENV_VULKAN_1_1;
Optimizer optimizer(target_env);
optimizer.RegisterPass(
CreateInstBindlessCheckPass(desc_set_bind_index, unique_shader_module_id, descriptor_indexing, descriptor_indexing, 2));
optimizer.RegisterPass(CreateAggressiveDCEPass());
if (device_extensions.vk_ext_buffer_device_address && shaderInt64)
optimizer.RegisterPass(CreateInstBuffAddrCheckPass(desc_set_bind_index, unique_shader_module_id));
bool pass = optimizer.Run(new_pgm.data(), new_pgm.size(), &new_pgm);
if (!pass) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, VK_NULL_HANDLE,
"Failure to instrument shader. Proceeding with non-instrumented shader.");
}
*unique_shader_id = unique_shader_module_id++;
return pass;
}
// Create the instrumented shader data to provide to the driver.
void GpuAssisted::PreCallRecordCreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkShaderModule *pShaderModule,
void *csm_state_data) {
create_shader_module_api_state *csm_state = reinterpret_cast<create_shader_module_api_state *>(csm_state_data);
bool pass = InstrumentShader(pCreateInfo, csm_state->instrumented_pgm, &csm_state->unique_shader_id);
if (pass) {
csm_state->instrumented_create_info.pCode = csm_state->instrumented_pgm.data();
csm_state->instrumented_create_info.codeSize = csm_state->instrumented_pgm.size() * sizeof(unsigned int);
}
}
// Generate the stage-specific part of the message.
static void GenerateStageMessage(const uint32_t *debug_record, std::string &msg) {
using namespace spvtools;
std::ostringstream strm;
switch (debug_record[kInstCommonOutStageIdx]) {
case spv::ExecutionModelVertex: {
strm << "Stage = Vertex. Vertex Index = " << debug_record[kInstVertOutVertexIndex]
<< " Instance Index = " << debug_record[kInstVertOutInstanceIndex] << ". ";
} break;
case spv::ExecutionModelTessellationControl: {
strm << "Stage = Tessellation Control. Invocation ID = " << debug_record[kInstTessCtlOutInvocationId]
<< ", Primitive ID = " << debug_record[kInstTessCtlOutPrimitiveId];
} break;
case spv::ExecutionModelTessellationEvaluation: {
strm << "Stage = Tessellation Eval. Primitive ID = " << debug_record[kInstTessEvalOutPrimitiveId]
<< ", TessCoord (u, v) = (" << debug_record[kInstTessEvalOutTessCoordU] << ", "
<< debug_record[kInstTessEvalOutTessCoordV] << "). ";
} break;
case spv::ExecutionModelGeometry: {
strm << "Stage = Geometry. Primitive ID = " << debug_record[kInstGeomOutPrimitiveId]
<< " Invocation ID = " << debug_record[kInstGeomOutInvocationId] << ". ";
} break;
case spv::ExecutionModelFragment: {
strm << "Stage = Fragment. Fragment coord (x,y) = ("
<< *reinterpret_cast<const float *>(&debug_record[kInstFragOutFragCoordX]) << ", "
<< *reinterpret_cast<const float *>(&debug_record[kInstFragOutFragCoordY]) << "). ";
} break;
case spv::ExecutionModelGLCompute: {
strm << "Stage = Compute. Global invocation ID (x, y, z) = (" << debug_record[kInstCompOutGlobalInvocationIdX] << ", "
<< debug_record[kInstCompOutGlobalInvocationIdY] << ", " << debug_record[kInstCompOutGlobalInvocationIdZ] << " )";
} break;
case spv::ExecutionModelRayGenerationNV: {
strm << "Stage = Ray Generation. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelIntersectionNV: {
strm << "Stage = Intersection. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelAnyHitNV: {
strm << "Stage = Any Hit. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelClosestHitNV: {
strm << "Stage = Closest Hit. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelMissNV: {
strm << "Stage = Miss. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelCallableNV: {
strm << "Stage = Callable. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
default: {
strm << "Internal Error (unexpected stage = " << debug_record[kInstCommonOutStageIdx] << "). ";
assert(false);
} break;
}
msg = strm.str();
}
// Generate the part of the message describing the violation.
static void GenerateValidationMessage(const uint32_t *debug_record, std::string &msg, std::string &vuid_msg) {
using namespace spvtools;
std::ostringstream strm;
switch (debug_record[kInst2ValidationOutError]) {
case kInstErrorBindlessBounds: {
strm << "Index of " << debug_record[kInst2BindlessBoundsOutDescIndex] << " used to index descriptor array of length "
<< debug_record[kInst2BindlessBoundsOutDescBound] << ". ";
vuid_msg = "UNASSIGNED-Descriptor index out of bounds";
} break;
case kInstErrorBindlessUninit: {
strm << "Descriptor index " << debug_record[kInst2BindlessUninitOutDescIndex] << " is uninitialized. ";
vuid_msg = "UNASSIGNED-Descriptor uninitialized";
} break;
case kInstErrorBuffAddrUnallocRef: {
uint64_t *ptr = (uint64_t *)&debug_record[kInst2BuffAddrUnallocOutDescPtrLo];
strm << "Device address 0x" << std::hex << *ptr << " access out of bounds. ";
vuid_msg = "UNASSIGNED-Device address out of bounds";
} break;
default: {
strm << "Internal Error (unexpected error type = " << debug_record[kInst2ValidationOutError] << "). ";
vuid_msg = "UNASSIGNED-Internal Error";
assert(false);
} break;
}
msg = strm.str();
}
static std::string LookupDebugUtilsName(const debug_report_data *report_data, const uint64_t object) {
auto object_label = report_data->DebugReportGetUtilsObjectName(object);
if (object_label != "") {
object_label = "(" + object_label + ")";
}
return object_label;
}
// Generate message from the common portion of the debug report record.
static void GenerateCommonMessage(const debug_report_data *report_data, const CMD_BUFFER_STATE *cb_node,
const uint32_t *debug_record, const VkShaderModule shader_module_handle,
const VkPipeline pipeline_handle, const VkPipelineBindPoint pipeline_bind_point,
const uint32_t operation_index, std::string &msg) {
using namespace spvtools;
std::ostringstream strm;
if (shader_module_handle == VK_NULL_HANDLE) {
strm << std::hex << std::showbase << "Internal Error: Unable to locate information for shader used in command buffer "
<< LookupDebugUtilsName(report_data, HandleToUint64(cb_node->commandBuffer)) << "("
<< HandleToUint64(cb_node->commandBuffer) << "). ";
assert(true);
} else {
strm << std::hex << std::showbase << "Command buffer "
<< LookupDebugUtilsName(report_data, HandleToUint64(cb_node->commandBuffer)) << "("
<< HandleToUint64(cb_node->commandBuffer) << "). ";
if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
strm << "Draw ";
} else if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
strm << "Compute ";
} else if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
strm << "Ray Trace ";
} else {
assert(false);
strm << "Unknown Pipeline Operation ";
}
strm << "Index " << operation_index << ". "
<< "Pipeline " << LookupDebugUtilsName(report_data, HandleToUint64(pipeline_handle)) << "("
<< HandleToUint64(pipeline_handle) << "). "
<< "Shader Module " << LookupDebugUtilsName(report_data, HandleToUint64(shader_module_handle)) << "("
<< HandleToUint64(shader_module_handle) << "). ";
}
strm << std::dec << std::noshowbase;
strm << "Shader Instruction Index = " << debug_record[kInstCommonOutInstructionIdx] << ". ";
msg = strm.str();
}
// Read the contents of the SPIR-V OpSource instruction and any following continuation instructions.
// Split the single string into a vector of strings, one for each line, for easier processing.
static void ReadOpSource(const SHADER_MODULE_STATE &shader, const uint32_t reported_file_id,
std::vector<std::string> &opsource_lines) {
for (auto insn : shader) {
if ((insn.opcode() == spv::OpSource) && (insn.len() >= 5) && (insn.word(3) == reported_file_id)) {
std::istringstream in_stream;
std::string cur_line;
in_stream.str((char *)&insn.word(4));
while (std::getline(in_stream, cur_line)) {
opsource_lines.push_back(cur_line);
}
while ((++insn).opcode() == spv::OpSourceContinued) {
in_stream.str((char *)&insn.word(1));
while (std::getline(in_stream, cur_line)) {
opsource_lines.push_back(cur_line);
}
}
break;
}
}
}
// The task here is to search the OpSource content to find the #line directive with the
// line number that is closest to, but still prior to the reported error line number and
// still within the reported filename.
// From this known position in the OpSource content we can add the difference between
// the #line line number and the reported error line number to determine the location
// in the OpSource content of the reported error line.
//
// Considerations:
// - Look only at #line directives that specify the reported_filename since
// the reported error line number refers to its location in the reported filename.
// - If a #line directive does not have a filename, the file is the reported filename, or
// the filename found in a prior #line directive. (This is C-preprocessor behavior)
// - It is possible (e.g., inlining) for blocks of code to get shuffled out of their
// original order and the #line directives are used to keep the numbering correct. This
// is why we need to examine the entire contents of the source, instead of leaving early
// when finding a #line line number larger than the reported error line number.
//
// GCC 4.8 has a problem with std::regex that is fixed in GCC 4.9. Provide fallback code for 4.8
#define GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
#if defined(__GNUC__) && GCC_VERSION < 40900
static bool GetLineAndFilename(const std::string string, uint32_t *linenumber, std::string &filename) {
// # line <linenumber> "<filename>" or
// #line <linenumber> "<filename>"
std::vector<std::string> tokens;
std::stringstream stream(string);
std::string temp;
uint32_t line_index = 0;
while (stream >> temp) tokens.push_back(temp);
auto size = tokens.size();
if (size > 1) {
if (tokens[0] == "#" && tokens[1] == "line") {
line_index = 2;
} else if (tokens[0] == "#line") {
line_index = 1;
}
}
if (0 == line_index) return false;
*linenumber = std::stoul(tokens[line_index]);
uint32_t filename_index = line_index + 1;
// Remove enclosing double quotes around filename
if (size > filename_index) filename = tokens[filename_index].substr(1, tokens[filename_index].size() - 2);
return true;
}
#else
static bool GetLineAndFilename(const std::string string, uint32_t *linenumber, std::string &filename) {
static const std::regex line_regex( // matches #line directives
"^" // beginning of line
"\\s*" // optional whitespace
"#" // required text
"\\s*" // optional whitespace
"line" // required text
"\\s+" // required whitespace
"([0-9]+)" // required first capture - line number
"(\\s+)?" // optional second capture - whitespace
"(\".+\")?" // optional third capture - quoted filename with at least one char inside
".*"); // rest of line (needed when using std::regex_match since the entire line is tested)
std::smatch captures;
bool found_line = std::regex_match(string, captures, line_regex);
if (!found_line) return false;
// filename is optional and considered found only if the whitespace and the filename are captured
if (captures[2].matched && captures[3].matched) {
// Remove enclosing double quotes. The regex guarantees the quotes and at least one char.
filename = captures[3].str().substr(1, captures[3].str().size() - 2);
}
*linenumber = std::stoul(captures[1]);
return true;
}
#endif // GCC_VERSION
// Extract the filename, line number, and column number from the correct OpLine and build a message string from it.
// Scan the source (from OpSource) to find the line of source at the reported line number and place it in another message string.
static void GenerateSourceMessages(const std::vector<unsigned int> &pgm, const uint32_t *debug_record, std::string &filename_msg,
std::string &source_msg) {
using namespace spvtools;
std::ostringstream filename_stream;
std::ostringstream source_stream;
SHADER_MODULE_STATE shader;
shader.words = pgm;
// Find the OpLine just before the failing instruction indicated by the debug info.
// SPIR-V can only be iterated in the forward direction due to its opcode/length encoding.
uint32_t instruction_index = 0;
uint32_t reported_file_id = 0;
uint32_t reported_line_number = 0;
uint32_t reported_column_number = 0;
if (shader.words.size() > 0) {
for (auto insn : shader) {
if (insn.opcode() == spv::OpLine) {
reported_file_id = insn.word(1);
reported_line_number = insn.word(2);
reported_column_number = insn.word(3);
}
if (instruction_index == debug_record[kInstCommonOutInstructionIdx]) {
break;
}
instruction_index++;
}
}
// Create message with file information obtained from the OpString pointed to by the discovered OpLine.
std::string reported_filename;
if (reported_file_id == 0) {
filename_stream
<< "Unable to find SPIR-V OpLine for source information. Build shader with debug info to get source information.";
} else {
bool found_opstring = false;
for (auto insn : shader) {
if ((insn.opcode() == spv::OpString) && (insn.len() >= 3) && (insn.word(1) == reported_file_id)) {
found_opstring = true;
reported_filename = (char *)&insn.word(2);
if (reported_filename.empty()) {
filename_stream << "Shader validation error occurred at line " << reported_line_number;
} else {
filename_stream << "Shader validation error occurred in file: " << reported_filename << " at line "
<< reported_line_number;
}
if (reported_column_number > 0) {
filename_stream << ", column " << reported_column_number;
}
filename_stream << ".";
break;
}
}
if (!found_opstring) {
filename_stream << "Unable to find SPIR-V OpString for file id " << reported_file_id << " from OpLine instruction.";
}
}
filename_msg = filename_stream.str();
// Create message to display source code line containing error.
if ((reported_file_id != 0)) {
// Read the source code and split it up into separate lines.
std::vector<std::string> opsource_lines;
ReadOpSource(shader, reported_file_id, opsource_lines);
// Find the line in the OpSource content that corresponds to the reported error file and line.
if (!opsource_lines.empty()) {
uint32_t saved_line_number = 0;
std::string current_filename = reported_filename; // current "preprocessor" filename state.
std::vector<std::string>::size_type saved_opsource_offset = 0;
bool found_best_line = false;
for (auto it = opsource_lines.begin(); it != opsource_lines.end(); ++it) {
uint32_t parsed_line_number;
std::string parsed_filename;
bool found_line = GetLineAndFilename(*it, &parsed_line_number, parsed_filename);
if (!found_line) continue;
bool found_filename = parsed_filename.size() > 0;
if (found_filename) {
current_filename = parsed_filename;
}
if ((!found_filename) || (current_filename == reported_filename)) {
// Update the candidate best line directive, if the current one is prior and closer to the reported line
if (reported_line_number >= parsed_line_number) {
if (!found_best_line ||
(reported_line_number - parsed_line_number <= reported_line_number - saved_line_number)) {
saved_line_number = parsed_line_number;
saved_opsource_offset = std::distance(opsource_lines.begin(), it);
found_best_line = true;
}
}
}
}
if (found_best_line) {
assert(reported_line_number >= saved_line_number);
std::vector<std::string>::size_type opsource_index =
(reported_line_number - saved_line_number) + 1 + saved_opsource_offset;
if (opsource_index < opsource_lines.size()) {
source_stream << "\n" << reported_line_number << ": " << opsource_lines[opsource_index].c_str();
} else {
source_stream << "Internal error: calculated source line of " << opsource_index << " for source size of "
<< opsource_lines.size() << " lines.";
}
} else {
source_stream << "Unable to find suitable #line directive in SPIR-V OpSource.";
}
} else {
source_stream << "Unable to find SPIR-V OpSource.";
}
}
source_msg = source_stream.str();
}
// Pull together all the information from the debug record to build the error message strings,
// and then assemble them into a single message string.
// Retrieve the shader program referenced by the unique shader ID provided in the debug record.
// We had to keep a copy of the shader program with the same lifecycle as the pipeline to make
// sure it is available when the pipeline is submitted. (The ShaderModule tracking object also
// keeps a copy, but it can be destroyed after the pipeline is created and before it is submitted.)
//
void GpuAssisted::AnalyzeAndReportError(CMD_BUFFER_STATE *cb_node, VkQueue queue, VkPipelineBindPoint pipeline_bind_point,
uint32_t operation_index, uint32_t *const debug_output_buffer) {
using namespace spvtools;
const uint32_t total_words = debug_output_buffer[0];
// A zero here means that the shader instrumentation didn't write anything.
// If you have nothing to say, don't say it here.
if (0 == total_words) {
return;
}
// The first word in the debug output buffer is the number of words that would have
// been written by the shader instrumentation, if there was enough room in the buffer we provided.
// The number of words actually written by the shaders is determined by the size of the buffer
// we provide via the descriptor. So, we process only the number of words that can fit in the
// buffer.
// Each "report" written by the shader instrumentation is considered a "record". This function
// is hard-coded to process only one record because it expects the buffer to be large enough to
// hold only one record. If there is a desire to process more than one record, this function needs
// to be modified to loop over records and the buffer size increased.
std::string validation_message;
std::string stage_message;
std::string common_message;
std::string filename_message;
std::string source_message;
std::string vuid_msg;
VkShaderModule shader_module_handle = VK_NULL_HANDLE;
VkPipeline pipeline_handle = VK_NULL_HANDLE;
std::vector<unsigned int> pgm;
// The first record starts at this offset after the total_words.
const uint32_t *debug_record = &debug_output_buffer[kDebugOutputDataOffset];
// Lookup the VkShaderModule handle and SPIR-V code used to create the shader, using the unique shader ID value returned
// by the instrumented shader.
auto it = shader_map.find(debug_record[kInstCommonOutShaderId]);
if (it != shader_map.end()) {
shader_module_handle = it->second.shader_module;
pipeline_handle = it->second.pipeline;
pgm = it->second.pgm;
}
GenerateValidationMessage(debug_record, validation_message, vuid_msg);
GenerateStageMessage(debug_record, stage_message);
GenerateCommonMessage(report_data, cb_node, debug_record, shader_module_handle, pipeline_handle, pipeline_bind_point,
operation_index, common_message);
GenerateSourceMessages(pgm, debug_record, filename_message, source_message);
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, HandleToUint64(queue),
vuid_msg.c_str(), "%s %s %s %s%s", validation_message.c_str(), common_message.c_str(), stage_message.c_str(),
filename_message.c_str(), source_message.c_str());
// The debug record at word kInstCommonOutSize is the number of words in the record
// written by the shader. Clear the entire record plus the total_words word at the start.
const uint32_t words_to_clear = 1 + std::min(debug_record[kInstCommonOutSize], (uint32_t)kInst2MaxOutCnt);
memset(debug_output_buffer, 0, sizeof(uint32_t) * words_to_clear);
}
// For the given command buffer, map its debug data buffers and read their contents for analysis.
void GpuAssisted::ProcessInstrumentationBuffer(VkQueue queue, CMD_BUFFER_STATE *cb_node) {
if (cb_node && (cb_node->hasDrawCmd || cb_node->hasTraceRaysCmd || cb_node->hasDispatchCmd)) {
auto gpu_buffer_list = GetGpuAssistedBufferInfo(cb_node->commandBuffer);
uint32_t draw_index = 0;
uint32_t compute_index = 0;
uint32_t ray_trace_index = 0;
for (auto &buffer_info : gpu_buffer_list) {
char *pData;
VkResult result = vmaMapMemory(vmaAllocator, buffer_info.output_mem_block.allocation, (void **)&pData);
// Analyze debug output buffer
if (result == VK_SUCCESS) {
uint32_t operation_index = 0;
if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
operation_index = draw_index;
} else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
operation_index = compute_index;
} else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
operation_index = ray_trace_index;
} else {
assert(false);
}
AnalyzeAndReportError(cb_node, queue, buffer_info.pipeline_bind_point, operation_index, (uint32_t *)pData);
vmaUnmapMemory(vmaAllocator, buffer_info.output_mem_block.allocation);
}
if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
draw_index++;
} else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
compute_index++;
} else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
ray_trace_index++;
} else {
assert(false);
}
}
}
}
// For the given command buffer, map its debug data buffers and update the status of any update after bind descriptors
void GpuAssisted::UpdateInstrumentationBuffer(CMD_BUFFER_STATE *cb_node) {
auto gpu_buffer_list = GetGpuAssistedBufferInfo(cb_node->commandBuffer);
uint32_t *pData;
for (auto &buffer_info : gpu_buffer_list) {
if (buffer_info.di_input_mem_block.update_at_submit.size() > 0) {
VkResult result = vmaMapMemory(vmaAllocator, buffer_info.di_input_mem_block.allocation, (void **)&pData);
if (result == VK_SUCCESS) {
for (auto update : buffer_info.di_input_mem_block.update_at_submit) {
if (update.second->updated) pData[update.first] = 1;
}
vmaUnmapMemory(vmaAllocator, buffer_info.di_input_mem_block.allocation);
}
}
}
}
// Submit a memory barrier on graphics queues.
// Lazy-create and record the needed command buffer.
void GpuAssisted::SubmitBarrier(VkQueue queue) {
auto queue_barrier_command_info_it = queue_barrier_command_infos.emplace(queue, GpuAssistedQueueBarrierCommandInfo{});
if (queue_barrier_command_info_it.second) {
GpuAssistedQueueBarrierCommandInfo &queue_barrier_command_info = queue_barrier_command_info_it.first->second;
uint32_t queue_family_index = 0;
auto queue_state_it = queueMap.find(queue);
if (queue_state_it != queueMap.end()) {
queue_family_index = queue_state_it->second.queueFamilyIndex;
}
VkResult result = VK_SUCCESS;
VkCommandPoolCreateInfo pool_create_info = {};
pool_create_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
pool_create_info.queueFamilyIndex = queue_family_index;
result = DispatchCreateCommandPool(device, &pool_create_info, nullptr, &queue_barrier_command_info.barrier_command_pool);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"Unable to create command pool for barrier CB.");
queue_barrier_command_info.barrier_command_pool = VK_NULL_HANDLE;
return;
}
VkCommandBufferAllocateInfo buffer_alloc_info = {};
buffer_alloc_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
buffer_alloc_info.commandPool = queue_barrier_command_info.barrier_command_pool;
buffer_alloc_info.commandBufferCount = 1;
buffer_alloc_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
result = DispatchAllocateCommandBuffers(device, &buffer_alloc_info, &queue_barrier_command_info.barrier_command_buffer);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"Unable to create barrier command buffer.");
DispatchDestroyCommandPool(device, queue_barrier_command_info.barrier_command_pool, nullptr);
queue_barrier_command_info.barrier_command_pool = VK_NULL_HANDLE;
queue_barrier_command_info.barrier_command_buffer = VK_NULL_HANDLE;
return;
}
// Hook up command buffer dispatch
vkSetDeviceLoaderData(device, queue_barrier_command_info.barrier_command_buffer);
// Record a global memory barrier to force availability of device memory operations to the host domain.
VkCommandBufferBeginInfo command_buffer_begin_info = {};
command_buffer_begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
result = DispatchBeginCommandBuffer(queue_barrier_command_info.barrier_command_buffer, &command_buffer_begin_info);
if (result == VK_SUCCESS) {
VkMemoryBarrier memory_barrier = {};
memory_barrier.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER;
memory_barrier.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT;
memory_barrier.dstAccessMask = VK_ACCESS_HOST_READ_BIT;
DispatchCmdPipelineBarrier(queue_barrier_command_info.barrier_command_buffer, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_HOST_BIT, 0, 1, &memory_barrier, 0, nullptr, 0, nullptr);
DispatchEndCommandBuffer(queue_barrier_command_info.barrier_command_buffer);
}
}
GpuAssistedQueueBarrierCommandInfo &queue_barrier_command_info = queue_barrier_command_info_it.first->second;
if (queue_barrier_command_info.barrier_command_buffer != VK_NULL_HANDLE) {
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &queue_barrier_command_info.barrier_command_buffer;
DispatchQueueSubmit(queue, 1, &submit_info, VK_NULL_HANDLE);
}
}
void GpuAssisted::PreCallRecordQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits, VkFence fence) {
for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
const VkSubmitInfo *submit = &pSubmits[submit_idx];
for (uint32_t i = 0; i < submit->commandBufferCount; i++) {
auto cb_node = GetCBState(submit->pCommandBuffers[i]);
UpdateInstrumentationBuffer(cb_node);
for (auto secondaryCmdBuffer : cb_node->linkedCommandBuffers) {
UpdateInstrumentationBuffer(secondaryCmdBuffer);
}
}
}
}
// Issue a memory barrier to make GPU-written data available to host.
// Wait for the queue to complete execution.
// Check the debug buffers for all the command buffers that were submitted.
void GpuAssisted::PostCallRecordQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits, VkFence fence,
VkResult result) {
ValidationStateTracker::PostCallRecordQueueSubmit(queue, submitCount, pSubmits, fence, result);
if (aborted) return;
bool buffers_present = false;
// Don't QueueWaitIdle if there's nothing to process
for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
const VkSubmitInfo *submit = &pSubmits[submit_idx];
for (uint32_t i = 0; i < submit->commandBufferCount; i++) {
auto cb_node = GetCBState(submit->pCommandBuffers[i]);
if (GetGpuAssistedBufferInfo(cb_node->commandBuffer).size() || cb_node->hasBuildAccelerationStructureCmd)
buffers_present = true;
for (auto secondaryCmdBuffer : cb_node->linkedCommandBuffers) {
if (GetGpuAssistedBufferInfo(secondaryCmdBuffer->commandBuffer).size() || cb_node->hasBuildAccelerationStructureCmd)
buffers_present = true;
}
}
}
if (!buffers_present) return;
SubmitBarrier(queue);
DispatchQueueWaitIdle(queue);
for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
const VkSubmitInfo *submit = &pSubmits[submit_idx];
for (uint32_t i = 0; i < submit->commandBufferCount; i++) {
auto cb_node = GetCBState(submit->pCommandBuffers[i]);
ProcessInstrumentationBuffer(queue, cb_node);
ProcessAccelerationStructureBuildValidationBuffer(queue, cb_node);
for (auto secondaryCmdBuffer : cb_node->linkedCommandBuffers) {
ProcessInstrumentationBuffer(queue, secondaryCmdBuffer);
ProcessAccelerationStructureBuildValidationBuffer(queue, cb_node);
}
}
}
}
void GpuAssisted::PreCallRecordCmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount,
uint32_t firstVertex, uint32_t firstInstance) {
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void GpuAssisted::PreCallRecordCmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount,
uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) {
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void GpuAssisted::PreCallRecordCmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, uint32_t count,
uint32_t stride) {
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void GpuAssisted::PreCallRecordCmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t count, uint32_t stride) {
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void GpuAssisted::PreCallRecordCmdDispatch(VkCommandBuffer commandBuffer, uint32_t x, uint32_t y, uint32_t z) {
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE);
}
void GpuAssisted::PreCallRecordCmdDispatchIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset) {
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE);
}
void GpuAssisted::PreCallRecordCmdTraceRaysNV(VkCommandBuffer commandBuffer, VkBuffer raygenShaderBindingTableBuffer,
VkDeviceSize raygenShaderBindingOffset, VkBuffer missShaderBindingTableBuffer,
VkDeviceSize missShaderBindingOffset, VkDeviceSize missShaderBindingStride,
VkBuffer hitShaderBindingTableBuffer, VkDeviceSize hitShaderBindingOffset,
VkDeviceSize hitShaderBindingStride, VkBuffer callableShaderBindingTableBuffer,
VkDeviceSize callableShaderBindingOffset, VkDeviceSize callableShaderBindingStride,
uint32_t width, uint32_t height, uint32_t depth) {
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_NV);
}
void GpuAssisted::PostCallRecordCmdTraceRaysNV(VkCommandBuffer commandBuffer, VkBuffer raygenShaderBindingTableBuffer,
VkDeviceSize raygenShaderBindingOffset, VkBuffer missShaderBindingTableBuffer,
VkDeviceSize missShaderBindingOffset, VkDeviceSize missShaderBindingStride,
VkBuffer hitShaderBindingTableBuffer, VkDeviceSize hitShaderBindingOffset,
VkDeviceSize hitShaderBindingStride, VkBuffer callableShaderBindingTableBuffer,
VkDeviceSize callableShaderBindingOffset, VkDeviceSize callableShaderBindingStride,
uint32_t width, uint32_t height, uint32_t depth) {
CMD_BUFFER_STATE *cb_state = GetCBState(commandBuffer);
cb_state->hasTraceRaysCmd = true;
}
void GpuAssisted::AllocateValidationResources(const VkCommandBuffer cmd_buffer, const VkPipelineBindPoint bind_point) {
if (bind_point != VK_PIPELINE_BIND_POINT_GRAPHICS && bind_point != VK_PIPELINE_BIND_POINT_COMPUTE &&
bind_point != VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
return;
}
VkResult result;
if (aborted) return;
std::vector<VkDescriptorSet> desc_sets;
VkDescriptorPool desc_pool = VK_NULL_HANDLE;
result = desc_set_manager->GetDescriptorSets(1, &desc_pool, &desc_sets);
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"Unable to allocate descriptor sets. Device could become unstable.");
aborted = true;
return;
}
VkDescriptorBufferInfo output_desc_buffer_info = {};
output_desc_buffer_info.range = output_buffer_size;
auto cb_node = GetCBState(cmd_buffer);
if (!cb_node) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device), "Unrecognized command buffer");
aborted = true;
return;
}
// Allocate memory for the output block that the gpu will use to return any error information
GpuAssistedDeviceMemoryBlock output_block = {};
VkBufferCreateInfo bufferInfo = {VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO};
bufferInfo.size = output_buffer_size;
bufferInfo.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
VmaAllocationCreateInfo allocInfo = {};
allocInfo.usage = VMA_MEMORY_USAGE_GPU_TO_CPU;
result = vmaCreateBuffer(vmaAllocator, &bufferInfo, &allocInfo, &output_block.buffer, &output_block.allocation, nullptr);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"Unable to allocate device memory. Device could become unstable.");
aborted = true;
return;
}
// Clear the output block to zeros so that only error information from the gpu will be present
uint32_t *pData;
result = vmaMapMemory(vmaAllocator, output_block.allocation, (void **)&pData);
if (result == VK_SUCCESS) {
memset(pData, 0, output_buffer_size);
vmaUnmapMemory(vmaAllocator, output_block.allocation);
}
GpuAssistedDeviceMemoryBlock di_input_block = {}, bda_input_block = {};
VkDescriptorBufferInfo di_input_desc_buffer_info = {};
VkDescriptorBufferInfo bda_input_desc_buffer_info = {};
VkWriteDescriptorSet desc_writes[3] = {};
uint32_t desc_count = 1;
auto const &state = cb_node->lastBound[bind_point];
uint32_t number_of_sets = (uint32_t)state.per_set.size();
// Figure out how much memory we need for the input block based on how many sets and bindings there are
// and how big each of the bindings is
if (number_of_sets > 0 && device_extensions.vk_ext_descriptor_indexing) {
uint32_t descriptor_count = 0; // Number of descriptors, including all array elements
uint32_t binding_count = 0; // Number of bindings based on the max binding number used
for (auto s : state.per_set) {
auto desc = s.bound_descriptor_set;
if (desc && (desc->GetBindingCount() > 0)) {
auto bindings = desc->GetLayout()->GetSortedBindingSet();
binding_count += desc->GetLayout()->GetMaxBinding() + 1;
for (auto binding : bindings) {
// Shader instrumentation is tracking inline uniform blocks as scalers. Don't try to validate inline uniform
// blocks
if (VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT == desc->GetLayout()->GetTypeFromBinding(binding)) {
descriptor_count++;
log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT,
VK_NULL_HANDLE, "UNASSIGNED-GPU-Assisted Validation Warning",
"VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT descriptors will not be validated by GPU assisted "
"validation");
} else if (binding == desc->GetLayout()->GetMaxBinding() && desc->IsVariableDescriptorCount(binding)) {
descriptor_count += desc->GetVariableDescriptorCount();
} else {
descriptor_count += desc->GetDescriptorCountFromBinding(binding);
}
}
}
}
// Note that the size of the input buffer is dependent on the maximum binding number, which
// can be very large. This is because for (set = s, binding = b, index = i), the validation
// code is going to dereference Input[ i + Input[ b + Input[ s + Input[ Input[0] ] ] ] ] to
// see if descriptors have been written. In gpu_validation.md, we note this and advise
// using densely packed bindings as a best practice when using gpu-av with descriptor indexing
uint32_t words_needed = 1 + (number_of_sets * 2) + (binding_count * 2) + descriptor_count;
allocInfo.usage = VMA_MEMORY_USAGE_CPU_TO_GPU;
bufferInfo.size = words_needed * 4;
result =
vmaCreateBuffer(vmaAllocator, &bufferInfo, &allocInfo, &di_input_block.buffer, &di_input_block.allocation, nullptr);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"Unable to allocate device memory. Device could become unstable.");
aborted = true;
return;
}
// Populate input buffer first with the sizes of every descriptor in every set, then with whether
// each element of each descriptor has been written or not. See gpu_validation.md for a more thourough
// outline of the input buffer format
result = vmaMapMemory(vmaAllocator, di_input_block.allocation, (void **)&pData);
memset(pData, 0, static_cast<size_t>(bufferInfo.size));
// Pointer to a sets array that points into the sizes array
uint32_t *sets_to_sizes = pData + 1;
// Pointer to the sizes array that contains the array size of the descriptor at each binding
uint32_t *sizes = sets_to_sizes + number_of_sets;
// Pointer to another sets array that points into the bindings array that points into the written array
uint32_t *sets_to_bindings = sizes + binding_count;
// Pointer to the bindings array that points at the start of the writes in the writes array for each binding
uint32_t *bindings_to_written = sets_to_bindings + number_of_sets;
// Index of the next entry in the written array to be updated
uint32_t written_index = 1 + (number_of_sets * 2) + (binding_count * 2);
uint32_t bindCounter = number_of_sets + 1;
// Index of the start of the sets_to_bindings array
pData[0] = number_of_sets + binding_count + 1;
for (auto s : state.per_set) {
auto desc = s.bound_descriptor_set;
if (desc && (desc->GetBindingCount() > 0)) {
auto layout = desc->GetLayout();
auto bindings = layout->GetSortedBindingSet();
// For each set, fill in index of its bindings sizes in the sizes array
*sets_to_sizes++ = bindCounter;
// For each set, fill in the index of its bindings in the bindings_to_written array
*sets_to_bindings++ = bindCounter + number_of_sets + binding_count;
for (auto binding : bindings) {
// For each binding, fill in its size in the sizes array
// Shader instrumentation is tracking inline uniform blocks as scalers. Don't try to validate inline uniform
// blocks
if (VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT == desc->GetLayout()->GetTypeFromBinding(binding)) {
sizes[binding] = 1;
} else if (binding == layout->GetMaxBinding() && desc->IsVariableDescriptorCount(binding)) {
sizes[binding] = desc->GetVariableDescriptorCount();
} else {
sizes[binding] = desc->GetDescriptorCountFromBinding(binding);
}
// Fill in the starting index for this binding in the written array in the bindings_to_written array
bindings_to_written[binding] = written_index;
// Shader instrumentation is tracking inline uniform blocks as scalers. Don't try to validate inline uniform
// blocks
if (VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT == desc->GetLayout()->GetTypeFromBinding(binding)) {
pData[written_index++] = 1;
continue;
}
auto index_range = desc->GetGlobalIndexRangeFromBinding(binding, true);
// For each array element in the binding, update the written array with whether it has been written
for (uint32_t i = index_range.start; i < index_range.end; ++i) {
auto *descriptor = desc->GetDescriptorFromGlobalIndex(i);
if (descriptor->updated) {
pData[written_index] = 1;
} else if (desc->IsUpdateAfterBind(binding)) {
// If it hasn't been written now and it's update after bind, put it in a list to check at QueueSubmit
di_input_block.update_at_submit[written_index] = descriptor;
}
written_index++;
}
}
auto last = desc->GetLayout()->GetMaxBinding();
bindings_to_written += last + 1;
bindCounter += last + 1;
sizes += last + 1;
} else {
*sets_to_sizes++ = 0;
*sets_to_bindings++ = 0;
}
}
vmaUnmapMemory(vmaAllocator, di_input_block.allocation);
di_input_desc_buffer_info.range = (words_needed * 4);
di_input_desc_buffer_info.buffer = di_input_block.buffer;
di_input_desc_buffer_info.offset = 0;
desc_writes[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
desc_writes[1].dstBinding = 1;
desc_writes[1].descriptorCount = 1;
desc_writes[1].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
desc_writes[1].pBufferInfo = &di_input_desc_buffer_info;
desc_writes[1].dstSet = desc_sets[0];
desc_count = 2;
}
if (number_of_sets > 0 && device_extensions.vk_ext_buffer_device_address && buffer_map.size() && shaderInt64) {
// Example BDA input buffer assuming 2 buffers using BDA:
// Word 0 | Index of start of buffer sizes (in this case 5)
// Word 1 | 0x0000000000000000
// Word 2 | Device Address of first buffer (Addresses sorted in ascending order)
// Word 3 | Device Address of second buffer
// Word 4 | 0xffffffffffffffff
// Word 5 | 0 (size of pretend buffer at word 1)
// Word 6 | Size in bytes of first buffer
// Word 7 | Size in bytes of second buffer
// Word 8 | 0 (size of pretend buffer in word 4)
uint32_t num_buffers = static_cast<uint32_t>(buffer_map.size());
uint32_t words_needed = (num_buffers + 3) + (num_buffers + 2);
allocInfo.usage = VMA_MEMORY_USAGE_CPU_TO_GPU;
bufferInfo.size = words_needed * 8; // 64 bit words
result =
vmaCreateBuffer(vmaAllocator, &bufferInfo, &allocInfo, &bda_input_block.buffer, &bda_input_block.allocation, nullptr);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"Unable to allocate device memory. Device could become unstable.");
aborted = true;
return;
}
uint64_t *bda_data;
result = vmaMapMemory(vmaAllocator, bda_input_block.allocation, (void **)&bda_data);
uint32_t address_index = 1;
uint32_t size_index = 3 + num_buffers;
memset(bda_data, 0, static_cast<size_t>(bufferInfo.size));
bda_data[0] = size_index; // Start of buffer sizes
bda_data[address_index++] = 0; // NULL address
bda_data[size_index++] = 0;
for (auto const &value : buffer_map) {
bda_data[address_index++] = value.first;
bda_data[size_index++] = value.second;
}
bda_data[address_index] = UINTPTR_MAX;
bda_data[size_index] = 0;
vmaUnmapMemory(vmaAllocator, bda_input_block.allocation);
bda_input_desc_buffer_info.range = (words_needed * 8);
bda_input_desc_buffer_info.buffer = bda_input_block.buffer;
bda_input_desc_buffer_info.offset = 0;
desc_writes[desc_count].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
desc_writes[desc_count].dstBinding = 2;
desc_writes[desc_count].descriptorCount = 1;
desc_writes[desc_count].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
desc_writes[desc_count].pBufferInfo = &bda_input_desc_buffer_info;
desc_writes[desc_count].dstSet = desc_sets[0];
desc_count++;
}
// Write the descriptor
output_desc_buffer_info.buffer = output_block.buffer;
output_desc_buffer_info.offset = 0;
desc_writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
desc_writes[0].descriptorCount = 1;
desc_writes[0].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
desc_writes[0].pBufferInfo = &output_desc_buffer_info;
desc_writes[0].dstSet = desc_sets[0];
DispatchUpdateDescriptorSets(device, desc_count, desc_writes, 0, NULL);
auto iter = cb_node->lastBound.find(bind_point); // find() allows read-only access to cb_state
if (iter != cb_node->lastBound.end()) {
auto pipeline_state = iter->second.pipeline_state;
if (pipeline_state && (pipeline_state->pipeline_layout->set_layouts.size() <= desc_set_bind_index)) {
DispatchCmdBindDescriptorSets(cmd_buffer, bind_point, pipeline_state->pipeline_layout->layout, desc_set_bind_index, 1,
desc_sets.data(), 0, nullptr);
}
// Record buffer and memory info in CB state tracking
GetGpuAssistedBufferInfo(cmd_buffer)
.emplace_back(output_block, di_input_block, bda_input_block, desc_sets[0], desc_pool, bind_point);
} else {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device), "Unable to find pipeline state");
vmaDestroyBuffer(vmaAllocator, di_input_block.buffer, di_input_block.allocation);
vmaDestroyBuffer(vmaAllocator, bda_input_block.buffer, bda_input_block.allocation);
vmaDestroyBuffer(vmaAllocator, output_block.buffer, output_block.allocation);
aborted = true;
return;
}
}