blob: 539a711bae34ea08133191fcee9156d3c7d6d713 [file] [log] [blame]
/* Copyright (c) 2015-2019 The Khronos Group Inc.
* Copyright (c) 2015-2019 Valve Corporation
* Copyright (c) 2015-2019 LunarG, Inc.
* Copyright (C) 2015-2019 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Chris Forbes <chrisf@ijw.co.nz>
* Author: Dave Houlton <daveh@lunarg.com>
*/
#define NOMINMAX
#include "shader_validation.h"
#include <cassert>
#include <chrono>
#include <cinttypes>
#include <cmath>
#include <map>
#include <sstream>
#include <string>
#include <unordered_map>
#include <vector>
#include <SPIRV/spirv.hpp>
#include "vk_loader_platform.h"
#include "vk_enum_string_helper.h"
#include "vk_layer_data.h"
#include "vk_layer_extension_utils.h"
#include "vk_layer_utils.h"
#include "chassis.h"
#include "core_validation.h"
#include "spirv-tools/libspirv.h"
#include "xxhash.h"
void decoration_set::add(uint32_t decoration, uint32_t value) {
switch (decoration) {
case spv::DecorationLocation:
flags |= location_bit;
location = value;
break;
case spv::DecorationPatch:
flags |= patch_bit;
break;
case spv::DecorationRelaxedPrecision:
flags |= relaxed_precision_bit;
break;
case spv::DecorationBlock:
flags |= block_bit;
break;
case spv::DecorationBufferBlock:
flags |= buffer_block_bit;
break;
case spv::DecorationComponent:
flags |= component_bit;
component = value;
break;
case spv::DecorationInputAttachmentIndex:
flags |= input_attachment_index_bit;
input_attachment_index = value;
break;
case spv::DecorationDescriptorSet:
flags |= descriptor_set_bit;
descriptor_set = value;
break;
case spv::DecorationBinding:
flags |= binding_bit;
binding = value;
break;
case spv::DecorationNonWritable:
flags |= nonwritable_bit;
break;
case spv::DecorationBuiltIn:
flags |= builtin_bit;
builtin = value;
break;
}
}
enum FORMAT_TYPE {
FORMAT_TYPE_FLOAT = 1, // UNORM, SNORM, FLOAT, USCALED, SSCALED, SRGB -- anything we consider float in the shader
FORMAT_TYPE_SINT = 2,
FORMAT_TYPE_UINT = 4,
};
typedef std::pair<unsigned, unsigned> location_t;
struct shader_stage_attributes {
char const *const name;
bool arrayed_input;
bool arrayed_output;
VkShaderStageFlags stage;
};
static shader_stage_attributes shader_stage_attribs[] = {
{"vertex shader", false, false, VK_SHADER_STAGE_VERTEX_BIT},
{"tessellation control shader", true, true, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT},
{"tessellation evaluation shader", true, false, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT},
{"geometry shader", true, false, VK_SHADER_STAGE_GEOMETRY_BIT},
{"fragment shader", false, false, VK_SHADER_STAGE_FRAGMENT_BIT},
};
unsigned ExecutionModelToShaderStageFlagBits(unsigned mode);
// SPIRV utility functions
void SHADER_MODULE_STATE::BuildDefIndex() {
for (auto insn : *this) {
switch (insn.opcode()) {
// Types
case spv::OpTypeVoid:
case spv::OpTypeBool:
case spv::OpTypeInt:
case spv::OpTypeFloat:
case spv::OpTypeVector:
case spv::OpTypeMatrix:
case spv::OpTypeImage:
case spv::OpTypeSampler:
case spv::OpTypeSampledImage:
case spv::OpTypeArray:
case spv::OpTypeRuntimeArray:
case spv::OpTypeStruct:
case spv::OpTypeOpaque:
case spv::OpTypePointer:
case spv::OpTypeFunction:
case spv::OpTypeEvent:
case spv::OpTypeDeviceEvent:
case spv::OpTypeReserveId:
case spv::OpTypeQueue:
case spv::OpTypePipe:
case spv::OpTypeAccelerationStructureNV:
case spv::OpTypeCooperativeMatrixNV:
def_index[insn.word(1)] = insn.offset();
break;
// Fixed constants
case spv::OpConstantTrue:
case spv::OpConstantFalse:
case spv::OpConstant:
case spv::OpConstantComposite:
case spv::OpConstantSampler:
case spv::OpConstantNull:
def_index[insn.word(2)] = insn.offset();
break;
// Specialization constants
case spv::OpSpecConstantTrue:
case spv::OpSpecConstantFalse:
case spv::OpSpecConstant:
case spv::OpSpecConstantComposite:
case spv::OpSpecConstantOp:
def_index[insn.word(2)] = insn.offset();
break;
// Variables
case spv::OpVariable:
def_index[insn.word(2)] = insn.offset();
break;
// Functions
case spv::OpFunction:
def_index[insn.word(2)] = insn.offset();
break;
// Decorations
case spv::OpDecorate: {
auto targetId = insn.word(1);
decorations[targetId].add(insn.word(2), insn.len() > 3u ? insn.word(3) : 0u);
} break;
case spv::OpGroupDecorate: {
auto const &src = decorations[insn.word(1)];
for (auto i = 2u; i < insn.len(); i++) decorations[insn.word(i)].merge(src);
} break;
// Entry points ... add to the entrypoint table
case spv::OpEntryPoint: {
// Entry points do not have an id (the id is the function id) and thus need their own table
auto entrypoint_name = (char const *)&insn.word(3);
auto execution_model = insn.word(1);
auto entrypoint_stage = ExecutionModelToShaderStageFlagBits(execution_model);
entry_points.emplace(entrypoint_name, EntryPoint{insn.offset(), entrypoint_stage});
break;
}
default:
// We don't care about any other defs for now.
break;
}
}
}
unsigned ExecutionModelToShaderStageFlagBits(unsigned mode) {
switch (mode) {
case spv::ExecutionModelVertex:
return VK_SHADER_STAGE_VERTEX_BIT;
case spv::ExecutionModelTessellationControl:
return VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
case spv::ExecutionModelTessellationEvaluation:
return VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
case spv::ExecutionModelGeometry:
return VK_SHADER_STAGE_GEOMETRY_BIT;
case spv::ExecutionModelFragment:
return VK_SHADER_STAGE_FRAGMENT_BIT;
case spv::ExecutionModelGLCompute:
return VK_SHADER_STAGE_COMPUTE_BIT;
case spv::ExecutionModelRayGenerationNV:
return VK_SHADER_STAGE_RAYGEN_BIT_NV;
case spv::ExecutionModelAnyHitNV:
return VK_SHADER_STAGE_ANY_HIT_BIT_NV;
case spv::ExecutionModelClosestHitNV:
return VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV;
case spv::ExecutionModelMissNV:
return VK_SHADER_STAGE_MISS_BIT_NV;
case spv::ExecutionModelIntersectionNV:
return VK_SHADER_STAGE_INTERSECTION_BIT_NV;
case spv::ExecutionModelCallableNV:
return VK_SHADER_STAGE_CALLABLE_BIT_NV;
case spv::ExecutionModelTaskNV:
return VK_SHADER_STAGE_TASK_BIT_NV;
case spv::ExecutionModelMeshNV:
return VK_SHADER_STAGE_MESH_BIT_NV;
default:
return 0;
}
}
spirv_inst_iter FindEntrypoint(SHADER_MODULE_STATE const *src, char const *name, VkShaderStageFlagBits stageBits) {
auto range = src->entry_points.equal_range(name);
for (auto it = range.first; it != range.second; ++it) {
if (it->second.stage == stageBits) {
return src->at(it->second.offset);
}
}
return src->end();
}
static char const *StorageClassName(unsigned sc) {
switch (sc) {
case spv::StorageClassInput:
return "input";
case spv::StorageClassOutput:
return "output";
case spv::StorageClassUniformConstant:
return "const uniform";
case spv::StorageClassUniform:
return "uniform";
case spv::StorageClassWorkgroup:
return "workgroup local";
case spv::StorageClassCrossWorkgroup:
return "workgroup global";
case spv::StorageClassPrivate:
return "private global";
case spv::StorageClassFunction:
return "function";
case spv::StorageClassGeneric:
return "generic";
case spv::StorageClassAtomicCounter:
return "atomic counter";
case spv::StorageClassImage:
return "image";
case spv::StorageClassPushConstant:
return "push constant";
case spv::StorageClassStorageBuffer:
return "storage buffer";
default:
return "unknown";
}
}
// Get the value of an integral constant
unsigned GetConstantValue(SHADER_MODULE_STATE const *src, unsigned id) {
auto value = src->get_def(id);
assert(value != src->end());
if (value.opcode() != spv::OpConstant) {
// TODO: Either ensure that the specialization transform is already performed on a module we're
// considering here, OR -- specialize on the fly now.
return 1;
}
return value.word(3);
}
static void DescribeTypeInner(std::ostringstream &ss, SHADER_MODULE_STATE const *src, unsigned type) {
auto insn = src->get_def(type);
assert(insn != src->end());
switch (insn.opcode()) {
case spv::OpTypeBool:
ss << "bool";
break;
case spv::OpTypeInt:
ss << (insn.word(3) ? 's' : 'u') << "int" << insn.word(2);
break;
case spv::OpTypeFloat:
ss << "float" << insn.word(2);
break;
case spv::OpTypeVector:
ss << "vec" << insn.word(3) << " of ";
DescribeTypeInner(ss, src, insn.word(2));
break;
case spv::OpTypeMatrix:
ss << "mat" << insn.word(3) << " of ";
DescribeTypeInner(ss, src, insn.word(2));
break;
case spv::OpTypeArray:
ss << "arr[" << GetConstantValue(src, insn.word(3)) << "] of ";
DescribeTypeInner(ss, src, insn.word(2));
break;
case spv::OpTypeRuntimeArray:
ss << "runtime arr[] of ";
DescribeTypeInner(ss, src, insn.word(2));
break;
case spv::OpTypePointer:
ss << "ptr to " << StorageClassName(insn.word(2)) << " ";
DescribeTypeInner(ss, src, insn.word(3));
break;
case spv::OpTypeStruct: {
ss << "struct of (";
for (unsigned i = 2; i < insn.len(); i++) {
DescribeTypeInner(ss, src, insn.word(i));
if (i == insn.len() - 1) {
ss << ")";
} else {
ss << ", ";
}
}
break;
}
case spv::OpTypeSampler:
ss << "sampler";
break;
case spv::OpTypeSampledImage:
ss << "sampler+";
DescribeTypeInner(ss, src, insn.word(2));
break;
case spv::OpTypeImage:
ss << "image(dim=" << insn.word(3) << ", sampled=" << insn.word(7) << ")";
break;
case spv::OpTypeAccelerationStructureNV:
ss << "accelerationStruture";
break;
default:
ss << "oddtype";
break;
}
}
static std::string DescribeType(SHADER_MODULE_STATE const *src, unsigned type) {
std::ostringstream ss;
DescribeTypeInner(ss, src, type);
return ss.str();
}
static bool IsNarrowNumericType(spirv_inst_iter type) {
if (type.opcode() != spv::OpTypeInt && type.opcode() != spv::OpTypeFloat) return false;
return type.word(2) < 64;
}
static bool TypesMatch(SHADER_MODULE_STATE const *a, SHADER_MODULE_STATE const *b, unsigned a_type, unsigned b_type, bool a_arrayed,
bool b_arrayed, bool relaxed) {
// Walk two type trees together, and complain about differences
auto a_insn = a->get_def(a_type);
auto b_insn = b->get_def(b_type);
assert(a_insn != a->end());
assert(b_insn != b->end());
// Ignore runtime-sized arrays-- they cannot appear in these interfaces.
if (a_arrayed && a_insn.opcode() == spv::OpTypeArray) {
return TypesMatch(a, b, a_insn.word(2), b_type, false, b_arrayed, relaxed);
}
if (b_arrayed && b_insn.opcode() == spv::OpTypeArray) {
// We probably just found the extra level of arrayness in b_type: compare the type inside it to a_type
return TypesMatch(a, b, a_type, b_insn.word(2), a_arrayed, false, relaxed);
}
if (a_insn.opcode() == spv::OpTypeVector && relaxed && IsNarrowNumericType(b_insn)) {
return TypesMatch(a, b, a_insn.word(2), b_type, a_arrayed, b_arrayed, false);
}
if (a_insn.opcode() != b_insn.opcode()) {
return false;
}
if (a_insn.opcode() == spv::OpTypePointer) {
// Match on pointee type. storage class is expected to differ
return TypesMatch(a, b, a_insn.word(3), b_insn.word(3), a_arrayed, b_arrayed, relaxed);
}
if (a_arrayed || b_arrayed) {
// If we havent resolved array-of-verts by here, we're not going to.
return false;
}
switch (a_insn.opcode()) {
case spv::OpTypeBool:
return true;
case spv::OpTypeInt:
// Match on width, signedness
return a_insn.word(2) == b_insn.word(2) && a_insn.word(3) == b_insn.word(3);
case spv::OpTypeFloat:
// Match on width
return a_insn.word(2) == b_insn.word(2);
case spv::OpTypeVector:
// Match on element type, count.
if (!TypesMatch(a, b, a_insn.word(2), b_insn.word(2), a_arrayed, b_arrayed, false)) return false;
if (relaxed && IsNarrowNumericType(a->get_def(a_insn.word(2)))) {
return a_insn.word(3) >= b_insn.word(3);
} else {
return a_insn.word(3) == b_insn.word(3);
}
case spv::OpTypeMatrix:
// Match on element type, count.
return TypesMatch(a, b, a_insn.word(2), b_insn.word(2), a_arrayed, b_arrayed, false) &&
a_insn.word(3) == b_insn.word(3);
case spv::OpTypeArray:
// Match on element type, count. these all have the same layout. we don't get here if b_arrayed. This differs from
// vector & matrix types in that the array size is the id of a constant instruction, * not a literal within OpTypeArray
return TypesMatch(a, b, a_insn.word(2), b_insn.word(2), a_arrayed, b_arrayed, false) &&
GetConstantValue(a, a_insn.word(3)) == GetConstantValue(b, b_insn.word(3));
case spv::OpTypeStruct:
// Match on all element types
{
if (a_insn.len() != b_insn.len()) {
return false; // Structs cannot match if member counts differ
}
for (unsigned i = 2; i < a_insn.len(); i++) {
if (!TypesMatch(a, b, a_insn.word(i), b_insn.word(i), a_arrayed, b_arrayed, false)) {
return false;
}
}
return true;
}
default:
// Remaining types are CLisms, or may not appear in the interfaces we are interested in. Just claim no match.
return false;
}
}
static unsigned ValueOrDefault(std::unordered_map<unsigned, unsigned> const &map, unsigned id, unsigned def) {
auto it = map.find(id);
if (it == map.end())
return def;
else
return it->second;
}
static unsigned GetLocationsConsumedByType(SHADER_MODULE_STATE const *src, unsigned type, bool strip_array_level) {
auto insn = src->get_def(type);
assert(insn != src->end());
switch (insn.opcode()) {
case spv::OpTypePointer:
// See through the ptr -- this is only ever at the toplevel for graphics shaders we're never actually passing
// pointers around.
return GetLocationsConsumedByType(src, insn.word(3), strip_array_level);
case spv::OpTypeArray:
if (strip_array_level) {
return GetLocationsConsumedByType(src, insn.word(2), false);
} else {
return GetConstantValue(src, insn.word(3)) * GetLocationsConsumedByType(src, insn.word(2), false);
}
case spv::OpTypeMatrix:
// Num locations is the dimension * element size
return insn.word(3) * GetLocationsConsumedByType(src, insn.word(2), false);
case spv::OpTypeVector: {
auto scalar_type = src->get_def(insn.word(2));
auto bit_width =
(scalar_type.opcode() == spv::OpTypeInt || scalar_type.opcode() == spv::OpTypeFloat) ? scalar_type.word(2) : 32;
// Locations are 128-bit wide; 3- and 4-component vectors of 64 bit types require two.
return (bit_width * insn.word(3) + 127) / 128;
}
default:
// Everything else is just 1.
return 1;
// TODO: extend to handle 64bit scalar types, whose vectors may need multiple locations.
}
}
static unsigned GetComponentsConsumedByType(SHADER_MODULE_STATE const *src, unsigned type, bool strip_array_level) {
auto insn = src->get_def(type);
assert(insn != src->end());
switch (insn.opcode()) {
case spv::OpTypePointer:
// See through the ptr -- this is only ever at the toplevel for graphics shaders we're never actually passing
// pointers around.
return GetComponentsConsumedByType(src, insn.word(3), strip_array_level);
case spv::OpTypeStruct: {
uint32_t sum = 0;
for (uint32_t i = 2; i < insn.len(); i++) { // i=2 to skip word(0) and word(1)=ID of struct
sum += GetComponentsConsumedByType(src, insn.word(i), false);
}
return sum;
}
case spv::OpTypeArray:
if (strip_array_level) {
return GetComponentsConsumedByType(src, insn.word(2), false);
} else {
return GetConstantValue(src, insn.word(3)) * GetComponentsConsumedByType(src, insn.word(2), false);
}
case spv::OpTypeMatrix:
// Num locations is the dimension * element size
return insn.word(3) * GetComponentsConsumedByType(src, insn.word(2), false);
case spv::OpTypeVector: {
auto scalar_type = src->get_def(insn.word(2));
auto bit_width =
(scalar_type.opcode() == spv::OpTypeInt || scalar_type.opcode() == spv::OpTypeFloat) ? scalar_type.word(2) : 32;
// One component is 32-bit
return (bit_width * insn.word(3) + 31) / 32;
}
case spv::OpTypeFloat: {
auto bit_width = insn.word(2);
return (bit_width + 31) / 32;
}
case spv::OpTypeInt: {
auto bit_width = insn.word(2);
return (bit_width + 31) / 32;
}
case spv::OpConstant:
return GetComponentsConsumedByType(src, insn.word(1), false);
default:
return 0;
}
}
static unsigned GetLocationsConsumedByFormat(VkFormat format) {
switch (format) {
case VK_FORMAT_R64G64B64A64_SFLOAT:
case VK_FORMAT_R64G64B64A64_SINT:
case VK_FORMAT_R64G64B64A64_UINT:
case VK_FORMAT_R64G64B64_SFLOAT:
case VK_FORMAT_R64G64B64_SINT:
case VK_FORMAT_R64G64B64_UINT:
return 2;
default:
return 1;
}
}
static unsigned GetFormatType(VkFormat fmt) {
if (FormatIsSInt(fmt)) return FORMAT_TYPE_SINT;
if (FormatIsUInt(fmt)) return FORMAT_TYPE_UINT;
if (FormatIsDepthAndStencil(fmt)) return FORMAT_TYPE_FLOAT | FORMAT_TYPE_UINT;
if (fmt == VK_FORMAT_UNDEFINED) return 0;
// everything else -- UNORM/SNORM/FLOAT/USCALED/SSCALED is all float in the shader.
return FORMAT_TYPE_FLOAT;
}
// characterizes a SPIR-V type appearing in an interface to a FF stage, for comparison to a VkFormat's characterization above.
// also used for input attachments, as we statically know their format.
static unsigned GetFundamentalType(SHADER_MODULE_STATE const *src, unsigned type) {
auto insn = src->get_def(type);
assert(insn != src->end());
switch (insn.opcode()) {
case spv::OpTypeInt:
return insn.word(3) ? FORMAT_TYPE_SINT : FORMAT_TYPE_UINT;
case spv::OpTypeFloat:
return FORMAT_TYPE_FLOAT;
case spv::OpTypeVector:
case spv::OpTypeMatrix:
case spv::OpTypeArray:
case spv::OpTypeRuntimeArray:
case spv::OpTypeImage:
return GetFundamentalType(src, insn.word(2));
case spv::OpTypePointer:
return GetFundamentalType(src, insn.word(3));
default:
return 0;
}
}
static uint32_t GetShaderStageId(VkShaderStageFlagBits stage) {
uint32_t bit_pos = uint32_t(u_ffs(stage));
return bit_pos - 1;
}
static spirv_inst_iter GetStructType(SHADER_MODULE_STATE const *src, spirv_inst_iter def, bool is_array_of_verts) {
while (true) {
if (def.opcode() == spv::OpTypePointer) {
def = src->get_def(def.word(3));
} else if (def.opcode() == spv::OpTypeArray && is_array_of_verts) {
def = src->get_def(def.word(2));
is_array_of_verts = false;
} else if (def.opcode() == spv::OpTypeStruct) {
return def;
} else {
return src->end();
}
}
}
static bool CollectInterfaceBlockMembers(SHADER_MODULE_STATE const *src, std::map<location_t, interface_var> *out,
bool is_array_of_verts, uint32_t id, uint32_t type_id, bool is_patch,
int /*first_location*/) {
// Walk down the type_id presented, trying to determine whether it's actually an interface block.
auto type = GetStructType(src, src->get_def(type_id), is_array_of_verts && !is_patch);
if (type == src->end() || !(src->get_decorations(type.word(1)).flags & decoration_set::block_bit)) {
// This isn't an interface block.
return false;
}
std::unordered_map<unsigned, unsigned> member_components;
std::unordered_map<unsigned, unsigned> member_relaxed_precision;
std::unordered_map<unsigned, unsigned> member_patch;
// Walk all the OpMemberDecorate for type's result id -- first pass, collect components.
for (auto insn : *src) {
if (insn.opcode() == spv::OpMemberDecorate && insn.word(1) == type.word(1)) {
unsigned member_index = insn.word(2);
if (insn.word(3) == spv::DecorationComponent) {
unsigned component = insn.word(4);
member_components[member_index] = component;
}
if (insn.word(3) == spv::DecorationRelaxedPrecision) {
member_relaxed_precision[member_index] = 1;
}
if (insn.word(3) == spv::DecorationPatch) {
member_patch[member_index] = 1;
}
}
}
// TODO: correctly handle location assignment from outside
// Second pass -- produce the output, from Location decorations
for (auto insn : *src) {
if (insn.opcode() == spv::OpMemberDecorate && insn.word(1) == type.word(1)) {
unsigned member_index = insn.word(2);
unsigned member_type_id = type.word(2 + member_index);
if (insn.word(3) == spv::DecorationLocation) {
unsigned location = insn.word(4);
unsigned num_locations = GetLocationsConsumedByType(src, member_type_id, false);
auto component_it = member_components.find(member_index);
unsigned component = component_it == member_components.end() ? 0 : component_it->second;
bool is_relaxed_precision = member_relaxed_precision.find(member_index) != member_relaxed_precision.end();
bool member_is_patch = is_patch || member_patch.count(member_index) > 0;
for (unsigned int offset = 0; offset < num_locations; offset++) {
interface_var v = {};
v.id = id;
// TODO: member index in interface_var too?
v.type_id = member_type_id;
v.offset = offset;
v.is_patch = member_is_patch;
v.is_block_member = true;
v.is_relaxed_precision = is_relaxed_precision;
(*out)[std::make_pair(location + offset, component)] = v;
}
}
}
}
return true;
}
static std::vector<uint32_t> FindEntrypointInterfaces(spirv_inst_iter entrypoint) {
assert(entrypoint.opcode() == spv::OpEntryPoint);
std::vector<uint32_t> interfaces;
// Find the end of the entrypoint's name string. additional zero bytes follow the actual null terminator, to fill out the
// rest of the word - so we only need to look at the last byte in the word to determine which word contains the terminator.
uint32_t word = 3;
while (entrypoint.word(word) & 0xff000000u) {
++word;
}
++word;
for (; word < entrypoint.len(); word++) interfaces.push_back(entrypoint.word(word));
return interfaces;
}
static std::map<location_t, interface_var> CollectInterfaceByLocation(SHADER_MODULE_STATE const *src, spirv_inst_iter entrypoint,
spv::StorageClass sinterface, bool is_array_of_verts) {
// TODO: handle index=1 dual source outputs from FS -- two vars will have the same location, and we DON'T want to clobber.
std::map<location_t, interface_var> out;
for (uint32_t iid : FindEntrypointInterfaces(entrypoint)) {
auto insn = src->get_def(iid);
assert(insn != src->end());
assert(insn.opcode() == spv::OpVariable);
if (insn.word(3) == static_cast<uint32_t>(sinterface)) {
auto d = src->get_decorations(iid);
unsigned id = insn.word(2);
unsigned type = insn.word(1);
int location = d.location;
int builtin = d.builtin;
unsigned component = d.component;
bool is_patch = (d.flags & decoration_set::patch_bit) != 0;
bool is_relaxed_precision = (d.flags & decoration_set::relaxed_precision_bit) != 0;
if (builtin != -1)
continue;
else if (!CollectInterfaceBlockMembers(src, &out, is_array_of_verts, id, type, is_patch, location)) {
// A user-defined interface variable, with a location. Where a variable occupied multiple locations, emit
// one result for each.
unsigned num_locations = GetLocationsConsumedByType(src, type, is_array_of_verts && !is_patch);
for (unsigned int offset = 0; offset < num_locations; offset++) {
interface_var v = {};
v.id = id;
v.type_id = type;
v.offset = offset;
v.is_patch = is_patch;
v.is_relaxed_precision = is_relaxed_precision;
out[std::make_pair(location + offset, component)] = v;
}
}
}
}
return out;
}
static std::vector<uint32_t> CollectBuiltinBlockMembers(SHADER_MODULE_STATE const *src, spirv_inst_iter entrypoint,
uint32_t storageClass) {
std::vector<uint32_t> variables;
std::vector<uint32_t> builtinStructMembers;
std::vector<uint32_t> builtinDecorations;
for (auto insn : *src) {
switch (insn.opcode()) {
// Find all built-in member decorations
case spv::OpMemberDecorate:
if (insn.word(3) == spv::DecorationBuiltIn) {
builtinStructMembers.push_back(insn.word(1));
}
break;
// Find all built-in decorations
case spv::OpDecorate:
switch (insn.word(2)) {
case spv::DecorationBlock: {
uint32_t blockID = insn.word(1);
for (auto builtInBlockID : builtinStructMembers) {
// Check if one of the members of the block are built-in -> the block is built-in
if (blockID == builtInBlockID) {
builtinDecorations.push_back(blockID);
break;
}
}
break;
}
case spv::DecorationBuiltIn:
builtinDecorations.push_back(insn.word(1));
break;
default:
break;
}
break;
default:
break;
}
}
// Find all interface variables belonging to the entrypoint and matching the storage class
for (uint32_t id : FindEntrypointInterfaces(entrypoint)) {
auto def = src->get_def(id);
assert(def != src->end());
assert(def.opcode() == spv::OpVariable);
if (def.word(3) == storageClass) variables.push_back(def.word(1));
}
// Find all members belonging to the builtin block selected
std::vector<uint32_t> builtinBlockMembers;
for (auto &var : variables) {
auto def = src->get_def(src->get_def(var).word(3));
// It could be an array of IO blocks. The element type should be the struct defining the block contents
if (def.opcode() == spv::OpTypeArray) def = src->get_def(def.word(2));
// Now find all members belonging to the struct defining the IO block
if (def.opcode() == spv::OpTypeStruct) {
for (auto builtInID : builtinDecorations) {
if (builtInID == def.word(1)) {
for (int i = 2; i < (int)def.len(); i++)
builtinBlockMembers.push_back(spv::BuiltInMax); // Start with undefined builtin for each struct member.
// These shouldn't be left after replacing.
for (auto insn : *src) {
if (insn.opcode() == spv::OpMemberDecorate && insn.word(1) == builtInID &&
insn.word(3) == spv::DecorationBuiltIn) {
auto structIndex = insn.word(2);
assert(structIndex < builtinBlockMembers.size());
builtinBlockMembers[structIndex] = insn.word(4);
}
}
}
}
}
}
return builtinBlockMembers;
}
static std::vector<std::pair<uint32_t, interface_var>> CollectInterfaceByInputAttachmentIndex(
SHADER_MODULE_STATE const *src, std::unordered_set<uint32_t> const &accessible_ids) {
std::vector<std::pair<uint32_t, interface_var>> out;
for (auto insn : *src) {
if (insn.opcode() == spv::OpDecorate) {
if (insn.word(2) == spv::DecorationInputAttachmentIndex) {
auto attachment_index = insn.word(3);
auto id = insn.word(1);
if (accessible_ids.count(id)) {
auto def = src->get_def(id);
assert(def != src->end());
if (def.opcode() == spv::OpVariable && insn.word(3) == spv::StorageClassUniformConstant) {
auto num_locations = GetLocationsConsumedByType(src, def.word(1), false);
for (unsigned int offset = 0; offset < num_locations; offset++) {
interface_var v = {};
v.id = id;
v.type_id = def.word(1);
v.offset = offset;
out.emplace_back(attachment_index + offset, v);
}
}
}
}
}
}
return out;
}
static bool IsWritableDescriptorType(SHADER_MODULE_STATE const *module, uint32_t type_id, bool is_storage_buffer) {
auto type = module->get_def(type_id);
// Strip off any array or ptrs. Where we remove array levels, adjust the descriptor count for each dimension.
while (type.opcode() == spv::OpTypeArray || type.opcode() == spv::OpTypePointer || type.opcode() == spv::OpTypeRuntimeArray) {
if (type.opcode() == spv::OpTypeArray || type.opcode() == spv::OpTypeRuntimeArray) {
type = module->get_def(type.word(2)); // Element type
} else {
type = module->get_def(type.word(3)); // Pointee type
}
}
switch (type.opcode()) {
case spv::OpTypeImage: {
auto dim = type.word(3);
auto sampled = type.word(7);
return sampled == 2 && dim != spv::DimSubpassData;
}
case spv::OpTypeStruct: {
std::unordered_set<unsigned> nonwritable_members;
if (module->get_decorations(type.word(1)).flags & decoration_set::buffer_block_bit) is_storage_buffer = true;
for (auto insn : *module) {
if (insn.opcode() == spv::OpMemberDecorate && insn.word(1) == type.word(1) &&
insn.word(3) == spv::DecorationNonWritable) {
nonwritable_members.insert(insn.word(2));
}
}
// A buffer is writable if it's either flavor of storage buffer, and has any member not decorated
// as nonwritable.
return is_storage_buffer && nonwritable_members.size() != type.len() - 2;
}
}
return false;
}
std::vector<std::pair<descriptor_slot_t, interface_var>> CollectInterfaceByDescriptorSlot(
debug_report_data const *report_data, SHADER_MODULE_STATE const *src, std::unordered_set<uint32_t> const &accessible_ids,
bool *has_writable_descriptor) {
std::vector<std::pair<descriptor_slot_t, interface_var>> out;
for (auto id : accessible_ids) {
auto insn = src->get_def(id);
assert(insn != src->end());
if (insn.opcode() == spv::OpVariable &&
(insn.word(3) == spv::StorageClassUniform || insn.word(3) == spv::StorageClassUniformConstant ||
insn.word(3) == spv::StorageClassStorageBuffer)) {
auto d = src->get_decorations(insn.word(2));
unsigned set = d.descriptor_set;
unsigned binding = d.binding;
interface_var v = {};
v.id = insn.word(2);
v.type_id = insn.word(1);
out.emplace_back(std::make_pair(set, binding), v);
if (!(d.flags & decoration_set::nonwritable_bit) &&
IsWritableDescriptorType(src, insn.word(1), insn.word(3) == spv::StorageClassStorageBuffer)) {
*has_writable_descriptor = true;
}
}
}
return out;
}
static bool ValidateViConsistency(debug_report_data const *report_data, VkPipelineVertexInputStateCreateInfo const *vi) {
// Walk the binding descriptions, which describe the step rate and stride of each vertex buffer. Each binding should
// be specified only once.
std::unordered_map<uint32_t, VkVertexInputBindingDescription const *> bindings;
bool skip = false;
for (unsigned i = 0; i < vi->vertexBindingDescriptionCount; i++) {
auto desc = &vi->pVertexBindingDescriptions[i];
auto &binding = bindings[desc->binding];
if (binding) {
// TODO: "VUID-VkGraphicsPipelineCreateInfo-pStages-00742" perhaps?
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUID_Core_Shader_InconsistentVi, "Duplicate vertex input binding descriptions for binding %d",
desc->binding);
} else {
binding = desc;
}
}
return skip;
}
static bool ValidateViAgainstVsInputs(debug_report_data const *report_data, VkPipelineVertexInputStateCreateInfo const *vi,
SHADER_MODULE_STATE const *vs, spirv_inst_iter entrypoint) {
bool skip = false;
const auto inputs = CollectInterfaceByLocation(vs, entrypoint, spv::StorageClassInput, false);
// Build index by location
std::map<uint32_t, const VkVertexInputAttributeDescription *> attribs;
if (vi) {
for (uint32_t i = 0; i < vi->vertexAttributeDescriptionCount; ++i) {
const auto num_locations = GetLocationsConsumedByFormat(vi->pVertexAttributeDescriptions[i].format);
for (uint32_t j = 0; j < num_locations; ++j) {
attribs[vi->pVertexAttributeDescriptions[i].location + j] = &vi->pVertexAttributeDescriptions[i];
}
}
}
struct AttribInputPair {
const VkVertexInputAttributeDescription *attrib = nullptr;
const interface_var *input = nullptr;
};
std::map<uint32_t, AttribInputPair> location_map;
for (const auto &attrib_it : attribs) location_map[attrib_it.first].attrib = attrib_it.second;
for (const auto &input_it : inputs) location_map[input_it.first.first].input = &input_it.second;
for (const auto location_it : location_map) {
const auto location = location_it.first;
const auto attrib = location_it.second.attrib;
const auto input = location_it.second.input;
if (attrib && !input) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(vs->vk_shader_module), kVUID_Core_Shader_OutputNotConsumed,
"Vertex attribute at location %" PRIu32 " not consumed by vertex shader", location);
} else if (!attrib && input) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(vs->vk_shader_module), kVUID_Core_Shader_InputNotProduced,
"Vertex shader consumes input at location %" PRIu32 " but not provided", location);
} else if (attrib && input) {
const auto attrib_type = GetFormatType(attrib->format);
const auto input_type = GetFundamentalType(vs, input->type_id);
// Type checking
if (!(attrib_type & input_type)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(vs->vk_shader_module), kVUID_Core_Shader_InterfaceTypeMismatch,
"Attribute type of `%s` at location %" PRIu32 " does not match vertex shader input type of `%s`",
string_VkFormat(attrib->format), location, DescribeType(vs, input->type_id).c_str());
}
} else { // !attrib && !input
assert(false); // at least one exists in the map
}
}
return skip;
}
static bool ValidateFsOutputsAgainstRenderPass(debug_report_data const *report_data, SHADER_MODULE_STATE const *fs,
spirv_inst_iter entrypoint, PIPELINE_STATE const *pipeline, uint32_t subpass_index) {
bool skip = false;
const auto rpci = pipeline->rp_state->createInfo.ptr();
struct Attachment {
const VkAttachmentReference2KHR *reference = nullptr;
const VkAttachmentDescription2KHR *attachment = nullptr;
const interface_var *output = nullptr;
};
std::map<uint32_t, Attachment> location_map;
const auto subpass = rpci->pSubpasses[subpass_index];
for (uint32_t i = 0; i < subpass.colorAttachmentCount; ++i) {
auto const &reference = subpass.pColorAttachments[i];
location_map[i].reference = &reference;
if (reference.attachment != VK_ATTACHMENT_UNUSED &&
rpci->pAttachments[reference.attachment].format != VK_FORMAT_UNDEFINED) {
location_map[i].attachment = &rpci->pAttachments[reference.attachment];
}
}
// TODO: dual source blend index (spv::DecIndex, zero if not provided)
const auto outputs = CollectInterfaceByLocation(fs, entrypoint, spv::StorageClassOutput, false);
for (const auto &output_it : outputs) {
auto const location = output_it.first.first;
location_map[location].output = &output_it.second;
}
const bool alphaToCoverageEnabled = pipeline->graphicsPipelineCI.pMultisampleState != NULL &&
pipeline->graphicsPipelineCI.pMultisampleState->alphaToCoverageEnable == VK_TRUE;
for (const auto location_it : location_map) {
const auto reference = location_it.second.reference;
if (reference != nullptr && reference->attachment == VK_ATTACHMENT_UNUSED) {
continue;
}
const auto location = location_it.first;
const auto attachment = location_it.second.attachment;
const auto output = location_it.second.output;
if (attachment && !output) {
if (pipeline->attachments[location].colorWriteMask != 0) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(fs->vk_shader_module), kVUID_Core_Shader_InputNotProduced,
"Attachment %" PRIu32 " not written by fragment shader; undefined values will be written to attachment",
location);
}
} else if (!attachment && output) {
if (!(alphaToCoverageEnabled && location == 0)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(fs->vk_shader_module), kVUID_Core_Shader_OutputNotConsumed,
"fragment shader writes to output location %" PRIu32 " with no matching attachment", location);
}
} else if (attachment && output) {
const auto attachment_type = GetFormatType(attachment->format);
const auto output_type = GetFundamentalType(fs, output->type_id);
// Type checking
if (!(output_type & attachment_type)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(fs->vk_shader_module), kVUID_Core_Shader_InterfaceTypeMismatch,
"Attachment %" PRIu32
" of type `%s` does not match fragment shader output type of `%s`; resulting values are undefined",
location, string_VkFormat(attachment->format), DescribeType(fs, output->type_id).c_str());
}
} else { // !attachment && !output
assert(false); // at least one exists in the map
}
}
const auto output_zero = location_map.count(0) ? location_map[0].output : nullptr;
bool locationZeroHasAlpha = output_zero && fs->get_def(output_zero->type_id) != fs->end() &&
GetComponentsConsumedByType(fs, output_zero->type_id, false) == 4;
if (alphaToCoverageEnabled && !locationZeroHasAlpha) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(fs->vk_shader_module), kVUID_Core_Shader_NoAlphaAtLocation0WithAlphaToCoverage,
"fragment shader doesn't declare alpha output at location 0 even though alpha to coverage is enabled.");
}
return skip;
}
// For PointSize analysis we need to know if the variable decorated with the PointSize built-in was actually written to.
// This function examines instructions in the static call tree for a write to this variable.
static bool IsPointSizeWritten(SHADER_MODULE_STATE const *src, spirv_inst_iter builtin_instr, spirv_inst_iter entrypoint) {
auto type = builtin_instr.opcode();
uint32_t target_id = builtin_instr.word(1);
bool init_complete = false;
if (type == spv::OpMemberDecorate) {
// Built-in is part of a structure -- examine instructions up to first function body to get initial IDs
auto insn = entrypoint;
while (!init_complete && (insn.opcode() != spv::OpFunction)) {
switch (insn.opcode()) {
case spv::OpTypePointer:
if ((insn.word(3) == target_id) && (insn.word(2) == spv::StorageClassOutput)) {
target_id = insn.word(1);
}
break;
case spv::OpVariable:
if (insn.word(1) == target_id) {
target_id = insn.word(2);
init_complete = true;
}
break;
}
insn++;
}
}
if (!init_complete && (type == spv::OpMemberDecorate)) return false;
bool found_write = false;
std::unordered_set<uint32_t> worklist;
worklist.insert(entrypoint.word(2));
// Follow instructions in call graph looking for writes to target
while (!worklist.empty() && !found_write) {
auto id_iter = worklist.begin();
auto id = *id_iter;
worklist.erase(id_iter);
auto insn = src->get_def(id);
if (insn == src->end()) {
continue;
}
if (insn.opcode() == spv::OpFunction) {
// Scan body of function looking for other function calls or items in our ID chain
while (++insn, insn.opcode() != spv::OpFunctionEnd) {
switch (insn.opcode()) {
case spv::OpAccessChain:
if (insn.word(3) == target_id) {
if (type == spv::OpMemberDecorate) {
auto value = GetConstantValue(src, insn.word(4));
if (value == builtin_instr.word(2)) {
target_id = insn.word(2);
}
} else {
target_id = insn.word(2);
}
}
break;
case spv::OpStore:
if (insn.word(1) == target_id) {
found_write = true;
}
break;
case spv::OpFunctionCall:
worklist.insert(insn.word(3));
break;
}
}
}
}
return found_write;
}
// For some analyses, we need to know about all ids referenced by the static call tree of a particular entrypoint. This is
// important for identifying the set of shader resources actually used by an entrypoint, for example.
// Note: we only explore parts of the image which might actually contain ids we care about for the above analyses.
// - NOT the shader input/output interfaces.
//
// TODO: The set of interesting opcodes here was determined by eyeballing the SPIRV spec. It might be worth
// converting parts of this to be generated from the machine-readable spec instead.
std::unordered_set<uint32_t> MarkAccessibleIds(SHADER_MODULE_STATE const *src, spirv_inst_iter entrypoint) {
std::unordered_set<uint32_t> ids;
std::unordered_set<uint32_t> worklist;
worklist.insert(entrypoint.word(2));
while (!worklist.empty()) {
auto id_iter = worklist.begin();
auto id = *id_iter;
worklist.erase(id_iter);
auto insn = src->get_def(id);
if (insn == src->end()) {
// ID is something we didn't collect in BuildDefIndex. that's OK -- we'll stumble across all kinds of things here
// that we may not care about.
continue;
}
// Try to add to the output set
if (!ids.insert(id).second) {
continue; // If we already saw this id, we don't want to walk it again.
}
switch (insn.opcode()) {
case spv::OpFunction:
// Scan whole body of the function, enlisting anything interesting
while (++insn, insn.opcode() != spv::OpFunctionEnd) {
switch (insn.opcode()) {
case spv::OpLoad:
case spv::OpAtomicLoad:
case spv::OpAtomicExchange:
case spv::OpAtomicCompareExchange:
case spv::OpAtomicCompareExchangeWeak:
case spv::OpAtomicIIncrement:
case spv::OpAtomicIDecrement:
case spv::OpAtomicIAdd:
case spv::OpAtomicISub:
case spv::OpAtomicSMin:
case spv::OpAtomicUMin:
case spv::OpAtomicSMax:
case spv::OpAtomicUMax:
case spv::OpAtomicAnd:
case spv::OpAtomicOr:
case spv::OpAtomicXor:
worklist.insert(insn.word(3)); // ptr
break;
case spv::OpStore:
case spv::OpAtomicStore:
worklist.insert(insn.word(1)); // ptr
break;
case spv::OpAccessChain:
case spv::OpInBoundsAccessChain:
worklist.insert(insn.word(3)); // base ptr
break;
case spv::OpSampledImage:
case spv::OpImageSampleImplicitLod:
case spv::OpImageSampleExplicitLod:
case spv::OpImageSampleDrefImplicitLod:
case spv::OpImageSampleDrefExplicitLod:
case spv::OpImageSampleProjImplicitLod:
case spv::OpImageSampleProjExplicitLod:
case spv::OpImageSampleProjDrefImplicitLod:
case spv::OpImageSampleProjDrefExplicitLod:
case spv::OpImageFetch:
case spv::OpImageGather:
case spv::OpImageDrefGather:
case spv::OpImageRead:
case spv::OpImage:
case spv::OpImageQueryFormat:
case spv::OpImageQueryOrder:
case spv::OpImageQuerySizeLod:
case spv::OpImageQuerySize:
case spv::OpImageQueryLod:
case spv::OpImageQueryLevels:
case spv::OpImageQuerySamples:
case spv::OpImageSparseSampleImplicitLod:
case spv::OpImageSparseSampleExplicitLod:
case spv::OpImageSparseSampleDrefImplicitLod:
case spv::OpImageSparseSampleDrefExplicitLod:
case spv::OpImageSparseSampleProjImplicitLod:
case spv::OpImageSparseSampleProjExplicitLod:
case spv::OpImageSparseSampleProjDrefImplicitLod:
case spv::OpImageSparseSampleProjDrefExplicitLod:
case spv::OpImageSparseFetch:
case spv::OpImageSparseGather:
case spv::OpImageSparseDrefGather:
case spv::OpImageTexelPointer:
worklist.insert(insn.word(3)); // Image or sampled image
break;
case spv::OpImageWrite:
worklist.insert(insn.word(1)); // Image -- different operand order to above
break;
case spv::OpFunctionCall:
for (uint32_t i = 3; i < insn.len(); i++) {
worklist.insert(insn.word(i)); // fn itself, and all args
}
break;
case spv::OpExtInst:
for (uint32_t i = 5; i < insn.len(); i++) {
worklist.insert(insn.word(i)); // Operands to ext inst
}
break;
}
}
break;
}
}
return ids;
}
static bool ValidatePushConstantBlockAgainstPipeline(debug_report_data const *report_data,
std::vector<VkPushConstantRange> const *push_constant_ranges,
SHADER_MODULE_STATE const *src, spirv_inst_iter type,
VkShaderStageFlagBits stage) {
bool skip = false;
// Strip off ptrs etc
type = GetStructType(src, type, false);
assert(type != src->end());
// Validate directly off the offsets. this isn't quite correct for arrays and matrices, but is a good first step.
// TODO: arrays, matrices, weird sizes
for (auto insn : *src) {
if (insn.opcode() == spv::OpMemberDecorate && insn.word(1) == type.word(1)) {
if (insn.word(3) == spv::DecorationOffset) {
unsigned offset = insn.word(4);
auto size = 4; // Bytes; TODO: calculate this based on the type
bool found_range = false;
for (auto const &range : *push_constant_ranges) {
if ((range.offset <= offset) && ((range.offset + range.size) >= (offset + size)) &&
(range.stageFlags & stage)) {
found_range = true;
break;
}
}
if (!found_range) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUID_Core_Shader_PushConstantOutOfRange,
"Push constant range covering variable starting at offset %u not declared in layout", offset);
}
}
}
}
return skip;
}
static bool ValidatePushConstantUsage(debug_report_data const *report_data,
std::vector<VkPushConstantRange> const *push_constant_ranges, SHADER_MODULE_STATE const *src,
std::unordered_set<uint32_t> accessible_ids, VkShaderStageFlagBits stage) {
bool skip = false;
for (auto id : accessible_ids) {
auto def_insn = src->get_def(id);
if (def_insn.opcode() == spv::OpVariable && def_insn.word(3) == spv::StorageClassPushConstant) {
skip |= ValidatePushConstantBlockAgainstPipeline(report_data, push_constant_ranges, src, src->get_def(def_insn.word(1)),
stage);
}
}
return skip;
}
// Validate that data for each specialization entry is fully contained within the buffer.
static bool ValidateSpecializationOffsets(debug_report_data const *report_data, VkPipelineShaderStageCreateInfo const *info) {
bool skip = false;
VkSpecializationInfo const *spec = info->pSpecializationInfo;
if (spec) {
for (auto i = 0u; i < spec->mapEntryCount; i++) {
if (spec->pMapEntries[i].offset >= spec->dataSize) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, 0,
"VUID-VkSpecializationInfo-offset-00773",
"Specialization entry %u (for constant id %u) references memory outside provided specialization "
"data (bytes %u.." PRINTF_SIZE_T_SPECIFIER "; " PRINTF_SIZE_T_SPECIFIER " bytes provided)..",
i, spec->pMapEntries[i].constantID, spec->pMapEntries[i].offset,
spec->pMapEntries[i].offset + spec->dataSize - 1, spec->dataSize);
continue;
}
if (spec->pMapEntries[i].offset + spec->pMapEntries[i].size > spec->dataSize) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, 0,
"VUID-VkSpecializationInfo-pMapEntries-00774",
"Specialization entry %u (for constant id %u) references memory outside provided specialization "
"data (bytes %u.." PRINTF_SIZE_T_SPECIFIER "; " PRINTF_SIZE_T_SPECIFIER " bytes provided)..",
i, spec->pMapEntries[i].constantID, spec->pMapEntries[i].offset,
spec->pMapEntries[i].offset + spec->pMapEntries[i].size - 1, spec->dataSize);
}
}
}
return skip;
}
// TODO (jbolz): Can this return a const reference?
static std::set<uint32_t> TypeToDescriptorTypeSet(SHADER_MODULE_STATE const *module, uint32_t type_id, unsigned &descriptor_count) {
auto type = module->get_def(type_id);
bool is_storage_buffer = false;
descriptor_count = 1;
std::set<uint32_t> ret;
// Strip off any array or ptrs. Where we remove array levels, adjust the descriptor count for each dimension.
while (type.opcode() == spv::OpTypeArray || type.opcode() == spv::OpTypePointer || type.opcode() == spv::OpTypeRuntimeArray) {
if (type.opcode() == spv::OpTypeRuntimeArray) {
descriptor_count = 0;
type = module->get_def(type.word(2));
} else if (type.opcode() == spv::OpTypeArray) {
descriptor_count *= GetConstantValue(module, type.word(3));
type = module->get_def(type.word(2));
} else {
if (type.word(2) == spv::StorageClassStorageBuffer) {
is_storage_buffer = true;
}
type = module->get_def(type.word(3));
}
}
switch (type.opcode()) {
case spv::OpTypeStruct: {
for (auto insn : *module) {
if (insn.opcode() == spv::OpDecorate && insn.word(1) == type.word(1)) {
if (insn.word(2) == spv::DecorationBlock) {
if (is_storage_buffer) {
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC);
return ret;
} else {
ret.insert(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
ret.insert(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
ret.insert(VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT);
return ret;
}
} else if (insn.word(2) == spv::DecorationBufferBlock) {
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC);
return ret;
}
}
}
// Invalid
return ret;
}
case spv::OpTypeSampler:
ret.insert(VK_DESCRIPTOR_TYPE_SAMPLER);
ret.insert(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
return ret;
case spv::OpTypeSampledImage: {
// Slight relaxation for some GLSL historical madness: samplerBuffer doesn't really have a sampler, and a texel
// buffer descriptor doesn't really provide one. Allow this slight mismatch.
auto image_type = module->get_def(type.word(2));
auto dim = image_type.word(3);
auto sampled = image_type.word(7);
if (dim == spv::DimBuffer && sampled == 1) {
ret.insert(VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER);
return ret;
}
}
ret.insert(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
return ret;
case spv::OpTypeImage: {
// Many descriptor types backing image types-- depends on dimension and whether the image will be used with a sampler.
// SPIRV for Vulkan requires that sampled be 1 or 2 -- leaving the decision to runtime is unacceptable.
auto dim = type.word(3);
auto sampled = type.word(7);
if (dim == spv::DimSubpassData) {
ret.insert(VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT);
return ret;
} else if (dim == spv::DimBuffer) {
if (sampled == 1) {
ret.insert(VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER);
return ret;
} else {
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER);
return ret;
}
} else if (sampled == 1) {
ret.insert(VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE);
ret.insert(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
return ret;
} else {
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE);
return ret;
}
}
case spv::OpTypeAccelerationStructureNV:
ret.insert(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_NV);
return ret;
// We shouldn't really see any other junk types -- but if we do, they're a mismatch.
default:
return ret; // Matches nothing
}
}
static std::string string_descriptorTypes(const std::set<uint32_t> &descriptor_types) {
std::stringstream ss;
for (auto it = descriptor_types.begin(); it != descriptor_types.end(); ++it) {
if (ss.tellp()) ss << ", ";
ss << string_VkDescriptorType(VkDescriptorType(*it));
}
return ss.str();
}
static bool RequirePropertyFlag(debug_report_data const *report_data, VkBool32 check, char const *flag, char const *structure) {
if (!check) {
if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUID_Core_Shader_ExceedDeviceLimit, "Shader requires flag %s set in %s but it is not set on the device", flag,
structure)) {
return true;
}
}
return false;
}
static bool RequireFeature(debug_report_data const *report_data, VkBool32 feature, char const *feature_name) {
if (!feature) {
if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUID_Core_Shader_FeatureNotEnabled, "Shader requires %s but is not enabled on the device", feature_name)) {
return true;
}
}
return false;
}
static bool RequireExtension(debug_report_data const *report_data, bool extension, char const *extension_name) {
if (!extension) {
if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUID_Core_Shader_FeatureNotEnabled, "Shader requires extension %s but is not enabled on the device",
extension_name)) {
return true;
}
}
return false;
}
bool CoreChecks::ValidateShaderCapabilities(SHADER_MODULE_STATE const *src, VkShaderStageFlagBits stage) const {
bool skip = false;
struct FeaturePointer {
// Callable object to test if this feature is enabled in the given aggregate feature struct
const std::function<VkBool32(const DeviceFeatures &)> IsEnabled;
// Test if feature pointer is populated
explicit operator bool() const { return static_cast<bool>(IsEnabled); }
// Default and nullptr constructor to create an empty FeaturePointer
FeaturePointer() : IsEnabled(nullptr) {}
FeaturePointer(std::nullptr_t ptr) : IsEnabled(nullptr) {}
// Constructors to populate FeaturePointer based on given pointer to member
FeaturePointer(VkBool32 VkPhysicalDeviceFeatures::*ptr)
: IsEnabled([=](const DeviceFeatures &features) { return features.core.*ptr; }) {}
FeaturePointer(VkBool32 VkPhysicalDeviceDescriptorIndexingFeaturesEXT::*ptr)
: IsEnabled([=](const DeviceFeatures &features) { return features.descriptor_indexing.*ptr; }) {}
FeaturePointer(VkBool32 VkPhysicalDevice8BitStorageFeaturesKHR::*ptr)
: IsEnabled([=](const DeviceFeatures &features) { return features.eight_bit_storage.*ptr; }) {}
FeaturePointer(VkBool32 VkPhysicalDeviceTransformFeedbackFeaturesEXT::*ptr)
: IsEnabled([=](const DeviceFeatures &features) { return features.transform_feedback_features.*ptr; }) {}
FeaturePointer(VkBool32 VkPhysicalDeviceFloat16Int8FeaturesKHR::*ptr)
: IsEnabled([=](const DeviceFeatures &features) { return features.float16_int8.*ptr; }) {}
FeaturePointer(VkBool32 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT::*ptr)
: IsEnabled([=](const DeviceFeatures &features) { return features.scalar_block_layout_features.*ptr; }) {}
FeaturePointer(VkBool32 VkPhysicalDeviceCooperativeMatrixFeaturesNV::*ptr)
: IsEnabled([=](const DeviceFeatures &features) { return features.cooperative_matrix_features.*ptr; }) {}
FeaturePointer(VkBool32 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR::*ptr)
: IsEnabled([=](const DeviceFeatures &features) { return features.uniform_buffer_standard_layout.*ptr; }) {}
FeaturePointer(VkBool32 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV::*ptr)
: IsEnabled([=](const DeviceFeatures &features) { return features.compute_shader_derivatives_features.*ptr; }) {}
FeaturePointer(VkBool32 VkPhysicalDeviceFragmentShaderBarycentricFeaturesNV::*ptr)
: IsEnabled([=](const DeviceFeatures &features) { return features.fragment_shader_barycentric_features.*ptr; }) {}
FeaturePointer(VkBool32 VkPhysicalDeviceShaderImageFootprintFeaturesNV::*ptr)
: IsEnabled([=](const DeviceFeatures &features) { return features.shader_image_footprint_features.*ptr; }) {}
FeaturePointer(VkBool32 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT::*ptr)
: IsEnabled([=](const DeviceFeatures &features) { return features.fragment_shader_interlock_features.*ptr; }) {}
FeaturePointer(VkBool32 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT::*ptr)
: IsEnabled([=](const DeviceFeatures &features) { return features.demote_to_helper_invocation_features.*ptr; }) {}
FeaturePointer(VkBool32 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT::*ptr)
: IsEnabled([=](const DeviceFeatures &features) { return features.buffer_device_address_ext.*ptr; }) {}
FeaturePointer(VkBool32 VkPhysicalDeviceBufferDeviceAddressFeaturesKHR::*ptr)
: IsEnabled([=](const DeviceFeatures &features) { return features.buffer_device_address.*ptr; }) {}
};
struct CapabilityInfo {
char const *name;
FeaturePointer feature;
ExtEnabled DeviceExtensions::*extension;
};
// clang-format off
static const std::unordered_multimap<uint32_t, CapabilityInfo> capabilities = {
// Capabilities always supported by a Vulkan 1.0 implementation -- no
// feature bits.
{spv::CapabilityMatrix, {nullptr}},
{spv::CapabilityShader, {nullptr}},
{spv::CapabilityInputAttachment, {nullptr}},
{spv::CapabilitySampled1D, {nullptr}},
{spv::CapabilityImage1D, {nullptr}},
{spv::CapabilitySampledBuffer, {nullptr}},
{spv::CapabilityStorageImageExtendedFormats, {nullptr}},
{spv::CapabilityImageQuery, {nullptr}},
{spv::CapabilityDerivativeControl, {nullptr}},
// Capabilities that are optionally supported, but require a feature to
// be enabled on the device
{spv::CapabilityGeometry, {"VkPhysicalDeviceFeatures::geometryShader", &VkPhysicalDeviceFeatures::geometryShader}},
{spv::CapabilityTessellation, {"VkPhysicalDeviceFeatures::tessellationShader", &VkPhysicalDeviceFeatures::tessellationShader}},
{spv::CapabilityFloat64, {"VkPhysicalDeviceFeatures::shaderFloat64", &VkPhysicalDeviceFeatures::shaderFloat64}},
{spv::CapabilityInt64, {"VkPhysicalDeviceFeatures::shaderInt64", &VkPhysicalDeviceFeatures::shaderInt64}},
{spv::CapabilityTessellationPointSize, {"VkPhysicalDeviceFeatures::shaderTessellationAndGeometryPointSize", &VkPhysicalDeviceFeatures::shaderTessellationAndGeometryPointSize}},
{spv::CapabilityGeometryPointSize, {"VkPhysicalDeviceFeatures::shaderTessellationAndGeometryPointSize", &VkPhysicalDeviceFeatures::shaderTessellationAndGeometryPointSize}},
{spv::CapabilityImageGatherExtended, {"VkPhysicalDeviceFeatures::shaderImageGatherExtended", &VkPhysicalDeviceFeatures::shaderImageGatherExtended}},
{spv::CapabilityStorageImageMultisample, {"VkPhysicalDeviceFeatures::shaderStorageImageMultisample", &VkPhysicalDeviceFeatures::shaderStorageImageMultisample}},
{spv::CapabilityUniformBufferArrayDynamicIndexing, {"VkPhysicalDeviceFeatures::shaderUniformBufferArrayDynamicIndexing", &VkPhysicalDeviceFeatures::shaderUniformBufferArrayDynamicIndexing}},
{spv::CapabilitySampledImageArrayDynamicIndexing, {"VkPhysicalDeviceFeatures::shaderSampledImageArrayDynamicIndexing", &VkPhysicalDeviceFeatures::shaderSampledImageArrayDynamicIndexing}},
{spv::CapabilityStorageBufferArrayDynamicIndexing, {"VkPhysicalDeviceFeatures::shaderStorageBufferArrayDynamicIndexing", &VkPhysicalDeviceFeatures::shaderStorageBufferArrayDynamicIndexing}},
{spv::CapabilityStorageImageArrayDynamicIndexing, {"VkPhysicalDeviceFeatures::shaderStorageImageArrayDynamicIndexing", &VkPhysicalDeviceFeatures::shaderStorageBufferArrayDynamicIndexing}},
{spv::CapabilityClipDistance, {"VkPhysicalDeviceFeatures::shaderClipDistance", &VkPhysicalDeviceFeatures::shaderClipDistance}},
{spv::CapabilityCullDistance, {"VkPhysicalDeviceFeatures::shaderCullDistance", &VkPhysicalDeviceFeatures::shaderCullDistance}},
{spv::CapabilityImageCubeArray, {"VkPhysicalDeviceFeatures::imageCubeArray", &VkPhysicalDeviceFeatures::imageCubeArray}},
{spv::CapabilitySampleRateShading, {"VkPhysicalDeviceFeatures::sampleRateShading", &VkPhysicalDeviceFeatures::sampleRateShading}},
{spv::CapabilitySparseResidency, {"VkPhysicalDeviceFeatures::shaderResourceResidency", &VkPhysicalDeviceFeatures::shaderResourceResidency}},
{spv::CapabilityMinLod, {"VkPhysicalDeviceFeatures::shaderResourceMinLod", &VkPhysicalDeviceFeatures::shaderResourceMinLod}},
{spv::CapabilitySampledCubeArray, {"VkPhysicalDeviceFeatures::imageCubeArray", &VkPhysicalDeviceFeatures::imageCubeArray}},
{spv::CapabilityImageMSArray, {"VkPhysicalDeviceFeatures::shaderStorageImageMultisample", &VkPhysicalDeviceFeatures::shaderStorageImageMultisample}},
{spv::CapabilityInterpolationFunction, {"VkPhysicalDeviceFeatures::sampleRateShading", &VkPhysicalDeviceFeatures::sampleRateShading}},
{spv::CapabilityStorageImageReadWithoutFormat, {"VkPhysicalDeviceFeatures::shaderStorageImageReadWithoutFormat", &VkPhysicalDeviceFeatures::shaderStorageImageReadWithoutFormat}},
{spv::CapabilityStorageImageWriteWithoutFormat, {"VkPhysicalDeviceFeatures::shaderStorageImageWriteWithoutFormat", &VkPhysicalDeviceFeatures::shaderStorageImageWriteWithoutFormat}},
{spv::CapabilityMultiViewport, {"VkPhysicalDeviceFeatures::multiViewport", &VkPhysicalDeviceFeatures::multiViewport}},
{spv::CapabilityShaderNonUniformEXT, {VK_EXT_DESCRIPTOR_INDEXING_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_ext_descriptor_indexing}},
{spv::CapabilityRuntimeDescriptorArrayEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::runtimeDescriptorArray", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::runtimeDescriptorArray}},
{spv::CapabilityInputAttachmentArrayDynamicIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderInputAttachmentArrayDynamicIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderInputAttachmentArrayDynamicIndexing}},
{spv::CapabilityUniformTexelBufferArrayDynamicIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderUniformTexelBufferArrayDynamicIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderUniformTexelBufferArrayDynamicIndexing}},
{spv::CapabilityStorageTexelBufferArrayDynamicIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageTexelBufferArrayDynamicIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageTexelBufferArrayDynamicIndexing}},
{spv::CapabilityUniformBufferArrayNonUniformIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderUniformBufferArrayNonUniformIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderUniformBufferArrayNonUniformIndexing}},
{spv::CapabilitySampledImageArrayNonUniformIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderSampledImageArrayNonUniformIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderSampledImageArrayNonUniformIndexing}},
{spv::CapabilityStorageBufferArrayNonUniformIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageBufferArrayNonUniformIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageBufferArrayNonUniformIndexing}},
{spv::CapabilityStorageImageArrayNonUniformIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageImageArrayNonUniformIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageImageArrayNonUniformIndexing}},
{spv::CapabilityInputAttachmentArrayNonUniformIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderInputAttachmentArrayNonUniformIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderInputAttachmentArrayNonUniformIndexing}},
{spv::CapabilityUniformTexelBufferArrayNonUniformIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderUniformTexelBufferArrayNonUniformIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderUniformTexelBufferArrayNonUniformIndexing}},
{spv::CapabilityStorageTexelBufferArrayNonUniformIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageTexelBufferArrayNonUniformIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageTexelBufferArrayNonUniformIndexing}},
// Capabilities that require an extension
{spv::CapabilityDrawParameters, {VK_KHR_SHADER_DRAW_PARAMETERS_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_khr_shader_draw_parameters}},
{spv::CapabilityGeometryShaderPassthroughNV, {VK_NV_GEOMETRY_SHADER_PASSTHROUGH_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_nv_geometry_shader_passthrough}},
{spv::CapabilitySampleMaskOverrideCoverageNV, {VK_NV_SAMPLE_MASK_OVERRIDE_COVERAGE_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_nv_sample_mask_override_coverage}},
{spv::CapabilityShaderViewportIndexLayerEXT, {VK_EXT_SHADER_VIEWPORT_INDEX_LAYER_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_ext_shader_viewport_index_layer}},
{spv::CapabilityShaderViewportIndexLayerNV, {VK_NV_VIEWPORT_ARRAY2_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_nv_viewport_array2}},
{spv::CapabilityShaderViewportMaskNV, {VK_NV_VIEWPORT_ARRAY2_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_nv_viewport_array2}},
{spv::CapabilitySubgroupBallotKHR, {VK_EXT_SHADER_SUBGROUP_BALLOT_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_ext_shader_subgroup_ballot }},
{spv::CapabilitySubgroupVoteKHR, {VK_EXT_SHADER_SUBGROUP_VOTE_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_ext_shader_subgroup_vote }},
{spv::CapabilityGroupNonUniformPartitionedNV, {VK_NV_SHADER_SUBGROUP_PARTITIONED_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_nv_shader_subgroup_partitioned}},
{spv::CapabilityInt64Atomics, {VK_KHR_SHADER_ATOMIC_INT64_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_khr_shader_atomic_int64 }},
{spv::CapabilityShaderClockKHR, {VK_KHR_SHADER_CLOCK_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_khr_shader_clock }},
{spv::CapabilityComputeDerivativeGroupQuadsNV, {"VkPhysicalDeviceComputeShaderDerivativesFeaturesNV::computeDerivativeGroupQuads", &VkPhysicalDeviceComputeShaderDerivativesFeaturesNV::computeDerivativeGroupQuads, &DeviceExtensions::vk_nv_compute_shader_derivatives}},
{spv::CapabilityComputeDerivativeGroupLinearNV, {"VkPhysicalDeviceComputeShaderDerivativesFeaturesNV::computeDerivativeGroupLinear", &VkPhysicalDeviceComputeShaderDerivativesFeaturesNV::computeDerivativeGroupLinear, &DeviceExtensions::vk_nv_compute_shader_derivatives}},
{spv::CapabilityFragmentBarycentricNV, {"VkPhysicalDeviceFragmentShaderBarycentricFeaturesNV::fragmentShaderBarycentric", &VkPhysicalDeviceFragmentShaderBarycentricFeaturesNV::fragmentShaderBarycentric, &DeviceExtensions::vk_nv_fragment_shader_barycentric}},
{spv::CapabilityStorageBuffer8BitAccess, {"VkPhysicalDevice8BitStorageFeaturesKHR::storageBuffer8BitAccess", &VkPhysicalDevice8BitStorageFeaturesKHR::storageBuffer8BitAccess, &DeviceExtensions::vk_khr_8bit_storage}},
{spv::CapabilityUniformAndStorageBuffer8BitAccess, {"VkPhysicalDevice8BitStorageFeaturesKHR::uniformAndStorageBuffer8BitAccess", &VkPhysicalDevice8BitStorageFeaturesKHR::uniformAndStorageBuffer8BitAccess, &DeviceExtensions::vk_khr_8bit_storage}},
{spv::CapabilityStoragePushConstant8, {"VkPhysicalDevice8BitStorageFeaturesKHR::storagePushConstant8", &VkPhysicalDevice8BitStorageFeaturesKHR::storagePushConstant8, &DeviceExtensions::vk_khr_8bit_storage}},
{spv::CapabilityTransformFeedback, { "VkPhysicalDeviceTransformFeedbackFeaturesEXT::transformFeedback", &VkPhysicalDeviceTransformFeedbackFeaturesEXT::transformFeedback, &DeviceExtensions::vk_ext_transform_feedback}},
{spv::CapabilityGeometryStreams, { "VkPhysicalDeviceTransformFeedbackFeaturesEXT::geometryStreams", &VkPhysicalDeviceTransformFeedbackFeaturesEXT::geometryStreams, &DeviceExtensions::vk_ext_transform_feedback}},
{spv::CapabilityFloat16, {"VkPhysicalDeviceFloat16Int8FeaturesKHR::shaderFloat16", &VkPhysicalDeviceFloat16Int8FeaturesKHR::shaderFloat16, &DeviceExtensions::vk_khr_shader_float16_int8}},
{spv::CapabilityInt8, {"VkPhysicalDeviceFloat16Int8FeaturesKHR::shaderInt8", &VkPhysicalDeviceFloat16Int8FeaturesKHR::shaderInt8, &DeviceExtensions::vk_khr_shader_float16_int8}},
{spv::CapabilityImageFootprintNV, {"VkPhysicalDeviceShaderImageFootprintFeaturesNV::imageFootprint", &VkPhysicalDeviceShaderImageFootprintFeaturesNV::imageFootprint, &DeviceExtensions::vk_nv_shader_image_footprint}},
{spv::CapabilityCooperativeMatrixNV, {"VkPhysicalDeviceCooperativeMatrixFeaturesNV::cooperativeMatrix", &VkPhysicalDeviceCooperativeMatrixFeaturesNV::cooperativeMatrix, &DeviceExtensions::vk_nv_cooperative_matrix}},
{spv::CapabilitySignedZeroInfNanPreserve, {"VkPhysicalDeviceFloatControlsPropertiesKHR::shaderSignedZeroInfNanPreserve", nullptr, &DeviceExtensions::vk_khr_shader_float_controls}},
{spv::CapabilityDenormPreserve, {"VkPhysicalDeviceFloatControlsPropertiesKHR::shaderDenormPreserve", nullptr, &DeviceExtensions::vk_khr_shader_float_controls}},
{spv::CapabilityDenormFlushToZero, {"VkPhysicalDeviceFloatControlsPropertiesKHR::shaderDenormFlushToZero", nullptr, &DeviceExtensions::vk_khr_shader_float_controls}},
{spv::CapabilityRoundingModeRTE, {"VkPhysicalDeviceFloatControlsPropertiesKHR::shaderRoundingModeRTE", nullptr, &DeviceExtensions::vk_khr_shader_float_controls}},
{spv::CapabilityRoundingModeRTZ, {"VkPhysicalDeviceFloatControlsPropertiesKHR::shaderRoundingModeRTZ", nullptr, &DeviceExtensions::vk_khr_shader_float_controls}},
{spv::CapabilityFragmentShaderSampleInterlockEXT, {"VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT::fragmentShaderSampleInterlock", &VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT::fragmentShaderSampleInterlock, &DeviceExtensions::vk_ext_fragment_shader_interlock}},
{spv::CapabilityFragmentShaderPixelInterlockEXT, {"VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT::fragmentShaderPixelInterlock", &VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT::fragmentShaderPixelInterlock, &DeviceExtensions::vk_ext_fragment_shader_interlock}},
{spv::CapabilityFragmentShaderShadingRateInterlockEXT, {"VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT::fragmentShaderShadingRateInterlock", &VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT::fragmentShaderShadingRateInterlock, &DeviceExtensions::vk_ext_fragment_shader_interlock}},
{spv::CapabilityDemoteToHelperInvocationEXT, {"VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT::shaderDemoteToHelperInvocation", &VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT::shaderDemoteToHelperInvocation, &DeviceExtensions::vk_ext_shader_demote_to_helper_invocation}},
{spv::CapabilityPhysicalStorageBufferAddressesEXT, {"VkPhysicalDeviceBufferDeviceAddressFeaturesEXT::bufferDeviceAddress", &VkPhysicalDeviceBufferDeviceAddressFeaturesEXT::bufferDeviceAddress, &DeviceExtensions::vk_ext_buffer_device_address}},
// Should be non-EXT token, but Android SPIRV-Headers are out of date, and the token value is the same anyway
{spv::CapabilityPhysicalStorageBufferAddressesEXT, {"VkPhysicalDeviceBufferDeviceAddressFeaturesKHR::bufferDeviceAddress", &VkPhysicalDeviceBufferDeviceAddressFeaturesKHR::bufferDeviceAddress, &DeviceExtensions::vk_khr_buffer_device_address}},
};
// clang-format on
for (auto insn : *src) {
if (insn.opcode() == spv::OpCapability) {
size_t n = capabilities.count(insn.word(1));
if (1 == n) { // key occurs exactly once
auto it = capabilities.find(insn.word(1));
if (it != capabilities.end()) {
if (it->second.feature) {
skip |= RequireFeature(report_data, it->second.feature.IsEnabled(enabled_features), it->second.name);
}
if (it->second.extension) {
skip |= RequireExtension(report_data, IsExtEnabled((device_extensions.*(it->second.extension))),
it->second.name);
}
}
} else if (1 < n) { // key occurs multiple times, at least one must be enabled
bool needs_feature = false, has_feature = false;
bool needs_ext = false, has_ext = false;
std::string feature_names = "(one of) [ ";
std::string extension_names = feature_names;
auto caps = capabilities.equal_range(insn.word(1));
for (auto it = caps.first; it != caps.second; ++it) {
if (it->second.feature) {
needs_feature = true;
has_feature = has_feature || it->second.feature.IsEnabled(enabled_features);
feature_names += it->second.name;
feature_names += " ";
}
if (it->second.extension) {
needs_ext = true;
has_ext = has_ext || device_extensions.*(it->second.extension);
extension_names += it->second.name;
extension_names += " ";
}
}
if (needs_feature) {
feature_names += "]";
skip |= RequireFeature(report_data, has_feature, feature_names.c_str());
}
if (needs_ext) {
extension_names += "]";
skip |= RequireExtension(report_data, has_ext, extension_names.c_str());
}
}
{ // Do group non-uniform checks
const VkSubgroupFeatureFlags supportedOperations = phys_dev_ext_props.subgroup_props.supportedOperations;
const VkSubgroupFeatureFlags supportedStages = phys_dev_ext_props.subgroup_props.supportedStages;
switch (insn.word(1)) {
default:
break;
case spv::CapabilityGroupNonUniform:
case spv::CapabilityGroupNonUniformVote:
case spv::CapabilityGroupNonUniformArithmetic:
case spv::CapabilityGroupNonUniformBallot:
case spv::CapabilityGroupNonUniformShuffle:
case spv::CapabilityGroupNonUniformShuffleRelative:
case spv::CapabilityGroupNonUniformClustered:
case spv::CapabilityGroupNonUniformQuad:
case spv::CapabilityGroupNonUniformPartitionedNV:
RequirePropertyFlag(report_data, supportedStages & stage, string_VkShaderStageFlagBits(stage),
"VkPhysicalDeviceSubgroupProperties::supportedStages");
break;
}
switch (insn.word(1)) {
default:
break;
case spv::CapabilityGroupNonUniform:
RequirePropertyFlag(report_data, supportedOperations & VK_SUBGROUP_FEATURE_BASIC_BIT,
"VK_SUBGROUP_FEATURE_BASIC_BIT",
"VkPhysicalDeviceSubgroupProperties::supportedOperations");
break;
case spv::CapabilityGroupNonUniformVote:
RequirePropertyFlag(report_data, supportedOperations & VK_SUBGROUP_FEATURE_VOTE_BIT,
"VK_SUBGROUP_FEATURE_VOTE_BIT",
"VkPhysicalDeviceSubgroupProperties::supportedOperations");
break;
case spv::CapabilityGroupNonUniformArithmetic:
RequirePropertyFlag(report_data, supportedOperations & VK_SUBGROUP_FEATURE_ARITHMETIC_BIT,
"VK_SUBGROUP_FEATURE_ARITHMETIC_BIT",
"VkPhysicalDeviceSubgroupProperties::supportedOperations");
break;
case spv::CapabilityGroupNonUniformBallot:
RequirePropertyFlag(report_data, supportedOperations & VK_SUBGROUP_FEATURE_BALLOT_BIT,
"VK_SUBGROUP_FEATURE_BALLOT_BIT",
"VkPhysicalDeviceSubgroupProperties::supportedOperations");
break;
case spv::CapabilityGroupNonUniformShuffle:
RequirePropertyFlag(report_data, supportedOperations & VK_SUBGROUP_FEATURE_SHUFFLE_BIT,
"VK_SUBGROUP_FEATURE_SHUFFLE_BIT",
"VkPhysicalDeviceSubgroupProperties::supportedOperations");
break;
case spv::CapabilityGroupNonUniformShuffleRelative:
RequirePropertyFlag(report_data, supportedOperations & VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT,
"VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT",
"VkPhysicalDeviceSubgroupProperties::supportedOperations");
break;
case spv::CapabilityGroupNonUniformClustered:
RequirePropertyFlag(report_data, supportedOperations & VK_SUBGROUP_FEATURE_CLUSTERED_BIT,
"VK_SUBGROUP_FEATURE_CLUSTERED_BIT",
"VkPhysicalDeviceSubgroupProperties::supportedOperations");
break;
case spv::CapabilityGroupNonUniformQuad:
RequirePropertyFlag(report_data, supportedOperations & VK_SUBGROUP_FEATURE_QUAD_BIT,
"VK_SUBGROUP_FEATURE_QUAD_BIT",
"VkPhysicalDeviceSubgroupProperties::supportedOperations");
break;
case spv::CapabilityGroupNonUniformPartitionedNV:
RequirePropertyFlag(report_data, supportedOperations & VK_SUBGROUP_FEATURE_PARTITIONED_BIT_NV,
"VK_SUBGROUP_FEATURE_PARTITIONED_BIT_NV",
"VkPhysicalDeviceSubgroupProperties::supportedOperations");
break;
}
}
}
}
return skip;
}
bool CoreChecks::ValidateShaderStageWritableDescriptor(VkShaderStageFlagBits stage, bool has_writable_descriptor) const {
bool skip = false;
if (has_writable_descriptor) {
switch (stage) {
case VK_SHADER_STAGE_COMPUTE_BIT:
case VK_SHADER_STAGE_RAYGEN_BIT_NV:
case VK_SHADER_STAGE_ANY_HIT_BIT_NV:
case VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV:
case VK_SHADER_STAGE_MISS_BIT_NV:
case VK_SHADER_STAGE_INTERSECTION_BIT_NV:
case VK_SHADER_STAGE_CALLABLE_BIT_NV:
case VK_SHADER_STAGE_TASK_BIT_NV:
case VK_SHADER_STAGE_MESH_BIT_NV:
/* No feature requirements for writes and atomics from compute
* raytracing, or mesh stages */
break;
case VK_SHADER_STAGE_FRAGMENT_BIT:
skip |= RequireFeature(report_data, enabled_features.core.fragmentStoresAndAtomics, "fragmentStoresAndAtomics");
break;
default:
skip |= RequireFeature(report_data, enabled_features.core.vertexPipelineStoresAndAtomics,
"vertexPipelineStoresAndAtomics");
break;
}
}
return skip;
}
bool CoreChecks::ValidateShaderStageGroupNonUniform(SHADER_MODULE_STATE const *module, VkShaderStageFlagBits stage) const {
bool skip = false;
auto const subgroup_props = phys_dev_ext_props.subgroup_props;
for (auto inst : *module) {
// Check the quad operations.
switch (inst.opcode()) {
default:
break;
case spv::OpGroupNonUniformQuadBroadcast:
case spv::OpGroupNonUniformQuadSwap:
if ((stage != VK_SHADER_STAGE_FRAGMENT_BIT) && (stage != VK_SHADER_STAGE_COMPUTE_BIT)) {
skip |= RequireFeature(report_data, subgroup_props.quadOperationsInAllStages,
"VkPhysicalDeviceSubgroupProperties::quadOperationsInAllStages");
}
break;
}
if (!enabled_features.subgroup_extended_types_features.shaderSubgroupExtendedTypes) {
switch (inst.opcode()) {
default:
break;
case spv::OpGroupNonUniformAllEqual:
case spv::OpGroupNonUniformBroadcast:
case spv::OpGroupNonUniformBroadcastFirst:
case spv::OpGroupNonUniformShuffle:
case spv::OpGroupNonUniformShuffleXor:
case spv::OpGroupNonUniformShuffleUp:
case spv::OpGroupNonUniformShuffleDown:
case spv::OpGroupNonUniformIAdd:
case spv::OpGroupNonUniformFAdd:
case spv::OpGroupNonUniformIMul:
case spv::OpGroupNonUniformFMul:
case spv::OpGroupNonUniformSMin:
case spv::OpGroupNonUniformUMin:
case spv::OpGroupNonUniformFMin:
case spv::OpGroupNonUniformSMax:
case spv::OpGroupNonUniformUMax:
case spv::OpGroupNonUniformFMax:
case spv::OpGroupNonUniformBitwiseAnd:
case spv::OpGroupNonUniformBitwiseOr:
case spv::OpGroupNonUniformBitwiseXor:
case spv::OpGroupNonUniformLogicalAnd:
case spv::OpGroupNonUniformLogicalOr:
case spv::OpGroupNonUniformLogicalXor:
case spv::OpGroupNonUniformQuadBroadcast:
case spv::OpGroupNonUniformQuadSwap: {
auto type = module->get_def(inst.word(1));
if (type.opcode() == spv::OpTypeVector) {
// Get the element type
type = module->get_def(type.word(2));
}
if (type.opcode() == spv::OpTypeBool) {
break;
}
// Both OpTypeInt and OpTypeFloat the width is in the 2nd word.
const uint32_t width = type.word(2);
if ((type.opcode() == spv::OpTypeFloat && width == 16) ||
(type.opcode() == spv::OpTypeInt && (width == 8 || width == 16 || width == 64))) {
skip |= RequireFeature(
report_data, enabled_features.subgroup_extended_types_features.shaderSubgroupExtendedTypes,
"VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR::shaderSubgroupExtendedTypes");
}
break;
}
}
}
}
return skip;
}
bool CoreChecks::ValidateShaderStageInputOutputLimits(SHADER_MODULE_STATE const *src, VkPipelineShaderStageCreateInfo const *pStage,
const PIPELINE_STATE *pipeline, spirv_inst_iter entrypoint) const {
if (pStage->stage == VK_SHADER_STAGE_COMPUTE_BIT || pStage->stage == VK_SHADER_STAGE_ALL_GRAPHICS ||
pStage->stage == VK_SHADER_STAGE_ALL) {
return false;
}
bool skip = false;
auto const &limits = phys_dev_props.limits;
std::set<uint32_t> patchIDs;
struct Variable {
uint32_t baseTypePtrID;
uint32_t ID;
uint32_t storageClass;
};
std::vector<Variable> variables;
uint32_t numVertices = 0;
auto entrypointVariables = FindEntrypointInterfaces(entrypoint);
for (auto insn : *src) {
switch (insn.opcode()) {
// Find all Patch decorations
case spv::OpDecorate:
switch (insn.word(2)) {
case spv::DecorationPatch: {
patchIDs.insert(insn.word(1));
break;
}
default:
break;
}
break;
// Find all input and output variables
case spv::OpVariable: {
Variable var = {};
var.storageClass = insn.word(3);
if ((var.storageClass == spv::StorageClassInput || var.storageClass == spv::StorageClassOutput) &&
// Only include variables in the entrypoint's interface
find(entrypointVariables.begin(), entrypointVariables.end(), insn.word(2)) != entrypointVariables.end()) {
var.baseTypePtrID = insn.word(1);
var.ID = insn.word(2);
variables.push_back(var);
}
break;
}
case spv::OpExecutionMode:
if (insn.word(1) == entrypoint.word(2)) {
switch (insn.word(2)) {
default:
break;
case spv::ExecutionModeOutputVertices:
numVertices = insn.word(3);
break;
}
}
break;
default:
break;
}
}
bool strip_output_array_level =
(pStage->stage == VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT || pStage->stage == VK_SHADER_STAGE_MESH_BIT_NV);
bool strip_input_array_level =
(pStage->stage == VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT ||
pStage->stage == VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT || pStage->stage == VK_SHADER_STAGE_GEOMETRY_BIT);
uint32_t numCompIn = 0, numCompOut = 0;
int maxCompIn = 0, maxCompOut = 0;
auto inputs = CollectInterfaceByLocation(src, entrypoint, spv::StorageClassInput, strip_input_array_level);
auto outputs = CollectInterfaceByLocation(src, entrypoint, spv::StorageClassOutput, strip_output_array_level);
// Find max component location used for input variables.
for (auto &var : inputs) {
int location = var.first.first;
int component = var.first.second;
interface_var &iv = var.second;
// Only need to look at the first location, since we use the type's whole size
if (iv.offset != 0) {
continue;
}
if (iv.is_patch) {
continue;
}
int numComponents = GetComponentsConsumedByType(src, iv.type_id, strip_input_array_level);
maxCompIn = std::max(maxCompIn, location * 4 + component + numComponents);
}
// Find max component location used for output variables.
for (auto &var : outputs) {
int location = var.first.first;
int component = var.first.second;
interface_var &iv = var.second;
// Only need to look at the first location, since we use the type's whole size
if (iv.offset != 0) {
continue;
}
if (iv.is_patch) {
continue;
}
int numComponents = GetComponentsConsumedByType(src, iv.type_id, strip_output_array_level);
maxCompOut = std::max(maxCompOut, location * 4 + component + numComponents);
}
// XXX TODO: Would be nice to rewrite this to use CollectInterfaceByLocation (or something similar),
// but that doesn't include builtins.
for (auto &var : variables) {
// Check if the variable is a patch. Patches can also be members of blocks,
// but if they are then the top-level arrayness has already been stripped
// by the time GetComponentsConsumedByType gets to it.
bool isPatch = patchIDs.find(var.ID) != patchIDs.end();
if (var.storageClass == spv::StorageClassInput) {
numCompIn += GetComponentsConsumedByType(src, var.baseTypePtrID, strip_input_array_level && !isPatch);
} else { // var.storageClass == spv::StorageClassOutput
numCompOut += GetComponentsConsumedByType(src, var.baseTypePtrID, strip_output_array_level && !isPatch);
}
}
switch (pStage->stage) {
case VK_SHADER_STAGE_VERTEX_BIT:
if (numCompOut > limits.maxVertexOutputComponents) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Vertex shader exceeds "
"VkPhysicalDeviceLimits::maxVertexOutputComponents of %u "
"components by %u components",
limits.maxVertexOutputComponents, numCompOut - limits.maxVertexOutputComponents);
}
if (maxCompOut > (int)limits.maxVertexOutputComponents) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Vertex shader output variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxVertexOutputComponents (%u)",
limits.maxVertexOutputComponents);
}
break;
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
if (numCompIn > limits.maxTessellationControlPerVertexInputComponents) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation control shader exceeds "
"VkPhysicalDeviceLimits::maxTessellationControlPerVertexInputComponents of %u "
"components by %u components",
limits.maxTessellationControlPerVertexInputComponents,
numCompIn - limits.maxTessellationControlPerVertexInputComponents);
}
if (maxCompIn > (int)limits.maxTessellationControlPerVertexInputComponents) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation control shader input variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxTessellationControlPerVertexInputComponents (%u)",
limits.maxTessellationControlPerVertexInputComponents);
}
if (numCompOut > limits.maxTessellationControlPerVertexOutputComponents) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation control shader exceeds "
"VkPhysicalDeviceLimits::maxTessellationControlPerVertexOutputComponents of %u "
"components by %u components",
limits.maxTessellationControlPerVertexOutputComponents,
numCompOut - limits.maxTessellationControlPerVertexOutputComponents);
}
if (maxCompOut > (int)limits.maxTessellationControlPerVertexOutputComponents) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation control shader output variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxTessellationControlPerVertexOutputComponents (%u)",
limits.maxTessellationControlPerVertexOutputComponents);
}
break;
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
if (numCompIn > limits.maxTessellationEvaluationInputComponents) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation evaluation shader exceeds "
"VkPhysicalDeviceLimits::maxTessellationEvaluationInputComponents of %u "
"components by %u components",
limits.maxTessellationEvaluationInputComponents,
numCompIn - limits.maxTessellationEvaluationInputComponents);
}
if (maxCompIn > (int)limits.maxTessellationEvaluationInputComponents) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation evaluation shader input variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxTessellationEvaluationInputComponents (%u)",
limits.maxTessellationEvaluationInputComponents);
}
if (numCompOut > limits.maxTessellationEvaluationOutputComponents) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation evaluation shader exceeds "
"VkPhysicalDeviceLimits::maxTessellationEvaluationOutputComponents of %u "
"components by %u components",
limits.maxTessellationEvaluationOutputComponents,
numCompOut - limits.maxTessellationEvaluationOutputComponents);
}
if (maxCompOut > (int)limits.maxTessellationEvaluationOutputComponents) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation evaluation shader output variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxTessellationEvaluationOutputComponents (%u)",
limits.maxTessellationEvaluationOutputComponents);
}
break;
case VK_SHADER_STAGE_GEOMETRY_BIT:
if (numCompIn > limits.maxGeometryInputComponents) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Geometry shader exceeds "
"VkPhysicalDeviceLimits::maxGeometryInputComponents of %u "
"components by %u components",
limits.maxGeometryInputComponents, numCompIn - limits.maxGeometryInputComponents);
}
if (maxCompIn > (int)limits.maxGeometryInputComponents) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Geometry shader input variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxGeometryInputComponents (%u)",
limits.maxGeometryInputComponents);
}
if (numCompOut > limits.maxGeometryOutputComponents) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Geometry shader exceeds "
"VkPhysicalDeviceLimits::maxGeometryOutputComponents of %u "
"components by %u components",
limits.maxGeometryOutputComponents, numCompOut - limits.maxGeometryOutputComponents);
}
if (maxCompOut > (int)limits.maxGeometryOutputComponents) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Geometry shader output variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxGeometryOutputComponents (%u)",
limits.maxGeometryOutputComponents);
}
if (numCompOut * numVertices > limits.maxGeometryTotalOutputComponents) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Geometry shader exceeds "
"VkPhysicalDeviceLimits::maxGeometryTotalOutputComponents of %u "
"components by %u components",
limits.maxGeometryTotalOutputComponents,
numCompOut * numVertices - limits.maxGeometryTotalOutputComponents);
}
break;
case VK_SHADER_STAGE_FRAGMENT_BIT:
if (numCompIn > limits.maxFragmentInputComponents) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Fragment shader exceeds "
"VkPhysicalDeviceLimits::maxFragmentInputComponents of %u "
"components by %u components",
limits.maxFragmentInputComponents, numCompIn - limits.maxFragmentInputComponents);
}
if (maxCompIn > (int)limits.maxFragmentInputComponents) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Fragment shader input variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxFragmentInputComponents (%u)",
limits.maxFragmentInputComponents);
}
break;
case VK_SHADER_STAGE_RAYGEN_BIT_NV:
case VK_SHADER_STAGE_ANY_HIT_BIT_NV:
case VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV:
case VK_SHADER_STAGE_MISS_BIT_NV:
case VK_SHADER_STAGE_INTERSECTION_BIT_NV:
case VK_SHADER_STAGE_CALLABLE_BIT_NV:
case VK_SHADER_STAGE_TASK_BIT_NV:
case VK_SHADER_STAGE_MESH_BIT_NV:
break;
default:
assert(false); // This should never happen
}
return skip;
}
// copy the specialization constant value into buf, if it is present
void GetSpecConstantValue(VkPipelineShaderStageCreateInfo const *pStage, uint32_t spec_id, void *buf) {
VkSpecializationInfo const *spec = pStage->pSpecializationInfo;
if (spec && spec_id < spec->mapEntryCount) {
memcpy(buf, (uint8_t *)spec->pData + spec->pMapEntries[spec_id].offset, spec->pMapEntries[spec_id].size);
}
}
// Fill in value with the constant or specialization constant value, if available.
// Returns true if the value has been accurately filled out.
static bool GetIntConstantValue(spirv_inst_iter insn, SHADER_MODULE_STATE const *src, VkPipelineShaderStageCreateInfo const *pStage,
const std::unordered_map<uint32_t, uint32_t> &id_to_spec_id, uint32_t *value) {
auto type_id = src->get_def(insn.word(1));
if (type_id.opcode() != spv::OpTypeInt || type_id.word(2) != 32) {
return false;
}
switch (insn.opcode()) {
case spv::OpSpecConstant:
*value = insn.word(3);
GetSpecConstantValue(pStage, id_to_spec_id.at(insn.word(2)), value);
return true;
case spv::OpConstant:
*value = insn.word(3);
return true;
default:
return false;
}
}
// Map SPIR-V type to VK_COMPONENT_TYPE enum
VkComponentTypeNV GetComponentType(spirv_inst_iter insn, SHADER_MODULE_STATE const *src) {
switch (insn.opcode()) {
case spv::OpTypeInt:
switch (insn.word(2)) {
case 8:
return insn.word(3) != 0 ? VK_COMPONENT_TYPE_SINT8_NV : VK_COMPONENT_TYPE_UINT8_NV;
case 16:
return insn.word(3) != 0 ? VK_COMPONENT_TYPE_SINT16_NV : VK_COMPONENT_TYPE_UINT16_NV;
case 32:
return insn.word(3) != 0 ? VK_COMPONENT_TYPE_SINT32_NV : VK_COMPONENT_TYPE_UINT32_NV;
case 64:
return insn.word(3) != 0 ? VK_COMPONENT_TYPE_SINT64_NV : VK_COMPONENT_TYPE_UINT64_NV;
default:
return VK_COMPONENT_TYPE_MAX_ENUM_NV;
}
case spv::OpTypeFloat:
switch (insn.word(2)) {
case 16:
return VK_COMPONENT_TYPE_FLOAT16_NV;
case 32:
return VK_COMPONENT_TYPE_FLOAT32_NV;
case 64:
return VK_COMPONENT_TYPE_FLOAT64_NV;
default:
return VK_COMPONENT_TYPE_MAX_ENUM_NV;
}
default:
return VK_COMPONENT_TYPE_MAX_ENUM_NV;
}
}
// Validate SPV_NV_cooperative_matrix behavior that can't be statically validated
// in SPIRV-Tools (e.g. due to specialization constant usage).
bool CoreChecks::ValidateCooperativeMatrix(SHADER_MODULE_STATE const *src, VkPipelineShaderStageCreateInfo const *pStage,
const PIPELINE_STATE *pipeline) const {
bool skip = false;
// Map SPIR-V result ID to specialization constant id (SpecId decoration value)
std::unordered_map<uint32_t, uint32_t> id_to_spec_id;
// Map SPIR-V result ID to the ID of its type.
std::unordered_map<uint32_t, uint32_t> id_to_type_id;
struct CoopMatType {
uint32_t scope, rows, cols;
VkComponentTypeNV component_type;
bool all_constant;
CoopMatType() : scope(0), rows(0), cols(0), component_type(VK_COMPONENT_TYPE_MAX_ENUM_NV), all_constant(false) {}
void Init(uint32_t id, SHADER_MODULE_STATE const *src, VkPipelineShaderStageCreateInfo const *pStage,
const std::unordered_map<uint32_t, uint32_t> &id_to_spec_id) {
spirv_inst_iter insn = src->get_def(id);
uint32_t component_type_id = insn.word(2);
uint32_t scope_id = insn.word(3);
uint32_t rows_id = insn.word(4);
uint32_t cols_id = insn.word(5);
auto component_type_iter = src->get_def(component_type_id);
auto scope_iter = src->get_def(scope_id);
auto rows_iter = src->get_def(rows_id);
auto cols_iter = src->get_def(cols_id);
all_constant = true;
if (!GetIntConstantValue(scope_iter, src, pStage, id_to_spec_id, &scope)) {
all_constant = false;
}
if (!GetIntConstantValue(rows_iter, src, pStage, id_to_spec_id, &rows)) {
all_constant = false;
}
if (!GetIntConstantValue(cols_iter, src, pStage, id_to_spec_id, &cols)) {
all_constant = false;
}
component_type = GetComponentType(component_type_iter, src);
}
};
bool seen_coopmat_capability = false;
for (auto insn : *src) {
// Whitelist instructions whose result can be a cooperative matrix type, and
// keep track of their types. It would be nice if SPIRV-Headers generated code
// to identify which instructions have a result type and result id. Lacking that,
// this whitelist is based on the set of instructions that
// SPV_NV_cooperative_matrix says can be used with cooperative matrix types.
switch (insn.opcode()) {
case spv::OpLoad:
case spv::OpCooperativeMatrixLoadNV:
case spv::OpCooperativeMatrixMulAddNV:
case spv::OpSNegate:
case spv::OpFNegate:
case spv::OpIAdd:
case spv::OpFAdd:
case spv::OpISub:
case spv::OpFSub:
case spv::OpFDiv:
case spv::OpSDiv:
case spv::OpUDiv:
case spv::OpMatrixTimesScalar:
case spv::OpConstantComposite:
case spv::OpCompositeConstruct:
case spv::OpConvertFToU:
case spv::OpConvertFToS:
case spv::OpConvertSToF:
case spv::OpConvertUToF:
case spv::OpUConvert:
case spv::OpSConvert:
case spv::OpFConvert:
id_to_type_id[insn.word(2)] = insn.word(1);
break;
default:
break;
}
switch (insn.opcode()) {
case spv::OpDecorate:
if (insn.word(2) == spv::DecorationSpecId) {
id_to_spec_id[insn.word(1)] = insn.word(3);
}
break;
case spv::OpCapability:
if (insn.word(1) == spv::CapabilityCooperativeMatrixNV) {
seen_coopmat_capability = true;
if (!(pStage->stage & phys_dev_ext_props.cooperative_matrix_props.cooperativeMatrixSupportedStages)) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_CooperativeMatrixSupportedStages,
"OpTypeCooperativeMatrixNV used in shader stage not in cooperativeMatrixSupportedStages (= %u)",
phys_dev_ext_props.cooperative_matrix_props.cooperativeMatrixSupportedStages);
}
}
break;
case spv::OpMemoryModel:
// If the capability isn't enabled, don't bother with the rest of this function.
// OpMemoryModel is the first required instruction after all OpCapability instructions.
if (!seen_coopmat_capability) {
return skip;
}
break;
case spv::OpTypeCooperativeMatrixNV: {
CoopMatType M;
M.Init(insn.word(1), src, pStage, id_to_spec_id);
if (M.all_constant) {
// Validate that the type parameters are all supported for one of the
// operands of a cooperative matrix property.
bool valid = false;
for (unsigned i = 0; i < cooperative_matrix_properties.size(); ++i) {
if (cooperative_matrix_properties[i].AType == M.component_type &&
cooperative_matrix_properties[i].MSize == M.rows && cooperative_matrix_properties[i].KSize == M.cols &&
cooperative_matrix_properties[i].scope == M.scope) {
valid = true;
break;
}
if (cooperative_matrix_properties[i].BType == M.component_type &&
cooperative_matrix_properties[i].KSize == M.rows && cooperative_matrix_properties[i].NSize == M.cols &&
cooperative_matrix_properties[i].scope == M.scope) {
valid = true;
break;
}
if (cooperative_matrix_properties[i].CType == M.component_type &&
cooperative_matrix_properties[i].MSize == M.rows && cooperative_matrix_properties[i].NSize == M.cols &&
cooperative_matrix_properties[i].scope == M.scope) {
valid = true;
break;
}
if (cooperative_matrix_properties[i].DType == M.component_type &&
cooperative_matrix_properties[i].MSize == M.rows && cooperative_matrix_properties[i].NSize == M.cols &&
cooperative_matrix_properties[i].scope == M.scope) {
valid = true;
break;
}
}
if (!valid) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_CooperativeMatrixType,
"OpTypeCooperativeMatrixNV (result id = %u) operands don't match a supported matrix type",
insn.word(1));
}
}
break;
}
case spv::OpCooperativeMatrixMulAddNV: {
CoopMatType A, B, C, D;
if (id_to_type_id.find(insn.word(2)) == id_to_type_id.end() ||
id_to_type_id.find(insn.word(3)) == id_to_type_id.end() ||
id_to_type_id.find(insn.word(4)) == id_to_type_id.end() ||
id_to_type_id.find(insn.word(5)) == id_to_type_id.end()) {
// Couldn't find type of matrix
assert(false);
break;
}
D.Init(id_to_type_id[insn.word(2)], src, pStage, id_to_spec_id);
A.Init(id_to_type_id[insn.word(3)], src, pStage, id_to_spec_id);
B.Init(id_to_type_id[insn.word(4)], src, pStage, id_to_spec_id);
C.Init(id_to_type_id[insn.word(5)], src, pStage, id_to_spec_id);
if (A.all_constant && B.all_constant && C.all_constant && D.all_constant) {
// Validate that the type parameters are all supported for the same
// cooperative matrix property.
bool valid = false;
for (unsigned i = 0; i < cooperative_matrix_properties.size(); ++i) {
if (cooperative_matrix_properties[i].AType == A.component_type &&
cooperative_matrix_properties[i].MSize == A.rows && cooperative_matrix_properties[i].KSize == A.cols &&
cooperative_matrix_properties[i].scope == A.scope &&
cooperative_matrix_properties[i].BType == B.component_type &&
cooperative_matrix_properties[i].KSize == B.rows && cooperative_matrix_properties[i].NSize == B.cols &&
cooperative_matrix_properties[i].scope == B.scope &&
cooperative_matrix_properties[i].CType == C.component_type &&
cooperative_matrix_properties[i].MSize == C.rows && cooperative_matrix_properties[i].NSize == C.cols &&
cooperative_matrix_properties[i].scope == C.scope &&
cooperative_matrix_properties[i].DType == D.component_type &&
cooperative_matrix_properties[i].MSize == D.rows && cooperative_matrix_properties[i].NSize == D.cols &&
cooperative_matrix_properties[i].scope == D.scope) {
valid = true;
break;
}
}
if (!valid) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_CooperativeMatrixMulAdd,
"OpCooperativeMatrixMulAddNV (result id = %u) operands don't match a supported matrix "
"VkCooperativeMatrixPropertiesNV",
insn.word(2));
}
}
break;
}
default:
break;
}
}
return skip;
}
bool CoreChecks::ValidateExecutionModes(SHADER_MODULE_STATE const *src, spirv_inst_iter entrypoint) const {
auto entrypoint_id = entrypoint.word(2);
// The first denorm execution mode encountered, along with its bit width.
// Used to check if SeparateDenormSettings is respected.
std::pair<spv::ExecutionMode, uint32_t> first_denorm_execution_mode = std::make_pair(spv::ExecutionModeMax, 0);
// The first rounding mode encountered, along with its bit width.
// Used to check if SeparateRoundingModeSettings is respected.
std::pair<spv::ExecutionMode, uint32_t> first_rounding_mode = std::make_pair(spv::ExecutionModeMax, 0);
bool skip = false;
uint32_t verticesOut = 0;
uint32_t invocations = 0;
for (auto insn : *src) {
if (insn.opcode() == spv::OpExecutionMode && insn.word(1) == entrypoint_id) {
auto mode = insn.word(2);
switch (mode) {
case spv::ExecutionModeSignedZeroInfNanPreserve: {
auto bit_width = insn.word(3);
if ((bit_width == 16 && !phys_dev_ext_props.float_controls_props.shaderSignedZeroInfNanPreserveFloat16) ||
(bit_width == 32 && !phys_dev_ext_props.float_controls_props.shaderSignedZeroInfNanPreserveFloat32) ||
(bit_width == 64 && !phys_dev_ext_props.float_controls_props.shaderSignedZeroInfNanPreserveFloat64)) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUID_Core_Shader_FeatureNotEnabled,
"Shader requires SignedZeroInfNanPreserve for bit width %d but it is not enabled on the device",
bit_width);
}
break;
}
case spv::ExecutionModeDenormPreserve: {
auto bit_width = insn.word(3);
if ((bit_width == 16 && !phys_dev_ext_props.float_controls_props.shaderDenormPreserveFloat16) ||
(bit_width == 32 && !phys_dev_ext_props.float_controls_props.shaderDenormPreserveFloat32) ||
(bit_width == 64 && !phys_dev_ext_props.float_controls_props.shaderDenormPreserveFloat64)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUID_Core_Shader_FeatureNotEnabled,
"Shader requires DenormPreserve for bit width %d but it is not enabled on the device",
bit_width);
}
if (first_denorm_execution_mode.first == spv::ExecutionModeMax) {
// Register the first denorm execution mode found
first_denorm_execution_mode = std::make_pair(static_cast<spv::ExecutionMode>(mode), bit_width);
} else if (first_denorm_execution_mode.first != mode && first_denorm_execution_mode.second != bit_width) {
switch (phys_dev_ext_props.float_controls_props.denormBehaviorIndependence) {
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY_KHR:
if (first_rounding_mode.second != 32 && bit_width != 32) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, kVUID_Core_Shader_FeatureNotEnabled,
"Shader uses different denorm execution modes for 16 and 64-bit but "
"denormBehaviorIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY_KHR on the device");
}
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR:
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR:
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
0, kVUID_Core_Shader_FeatureNotEnabled,
"Shader uses different denorm execution modes for different bit widths but "
"denormBehaviorIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR on the device");
break;
default:
break;
}
}
break;
}
case spv::ExecutionModeDenormFlushToZero: {
auto bit_width = insn.word(3);
if ((bit_width == 16 && !phys_dev_ext_props.float_controls_props.shaderDenormFlushToZeroFloat16) ||
(bit_width == 32 && !phys_dev_ext_props.float_controls_props.shaderDenormFlushToZeroFloat32) ||
(bit_width == 64 && !phys_dev_ext_props.float_controls_props.shaderDenormFlushToZeroFloat64)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUID_Core_Shader_FeatureNotEnabled,
"Shader requires DenormFlushToZero for bit width %d but it is not enabled on the device",
bit_width);
}
if (first_denorm_execution_mode.first == spv::ExecutionModeMax) {
// Register the first denorm execution mode found
first_denorm_execution_mode = std::make_pair(static_cast<spv::ExecutionMode>(mode), bit_width);
} else if (first_denorm_execution_mode.first != mode && first_denorm_execution_mode.second != bit_width) {
switch (phys_dev_ext_props.float_controls_props.denormBehaviorIndependence) {
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY_KHR:
if (first_rounding_mode.second != 32 && bit_width != 32) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, kVUID_Core_Shader_FeatureNotEnabled,
"Shader uses different denorm execution modes for 16 and 64-bit but "
"denormBehaviorIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY_KHR on the device");
}
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR:
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR:
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
0, kVUID_Core_Shader_FeatureNotEnabled,
"Shader uses different denorm execution modes for different bit widths but "
"denormBehaviorIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR on the device");
break;
default:
break;
}
}
break;
}
case spv::ExecutionModeRoundingModeRTE: {
auto bit_width = insn.word(3);
if ((bit_width == 16 && !phys_dev_ext_props.float_controls_props.shaderRoundingModeRTEFloat16) ||
(bit_width == 32 && !phys_dev_ext_props.float_controls_props.shaderRoundingModeRTEFloat32) ||
(bit_width == 64 && !phys_dev_ext_props.float_controls_props.shaderRoundingModeRTEFloat64)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUID_Core_Shader_FeatureNotEnabled,
"Shader requires RoundingModeRTE for bit width %d but it is not enabled on the device",
bit_width);
}
if (first_rounding_mode.first == spv::ExecutionModeMax) {
// Register the first rounding mode found
first_rounding_mode = std::make_pair(static_cast<spv::ExecutionMode>(mode), bit_width);
} else if (first_rounding_mode.first != mode && first_rounding_mode.second != bit_width) {
switch (phys_dev_ext_props.float_controls_props.roundingModeIndependence) {
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY_KHR:
if (first_rounding_mode.second != 32 && bit_width != 32) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, kVUID_Core_Shader_FeatureNotEnabled,
"Shader uses different rounding modes for 16 and 64-bit but "
"roundingModeIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY_KHR on the device");
}
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR:
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR:
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
0, kVUID_Core_Shader_FeatureNotEnabled,
"Shader uses different rounding modes for different bit widths but "
"roundingModeIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR on the device");
break;
default:
break;
}
}
break;
}
case spv::ExecutionModeRoundingModeRTZ: {
auto bit_width = insn.word(3);
if ((bit_width == 16 && !phys_dev_ext_props.float_controls_props.shaderRoundingModeRTZFloat16) ||
(bit_width == 32 && !phys_dev_ext_props.float_controls_props.shaderRoundingModeRTZFloat32) ||
(bit_width == 64 && !phys_dev_ext_props.float_controls_props.shaderRoundingModeRTZFloat64)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUID_Core_Shader_FeatureNotEnabled,
"Shader requires RoundingModeRTZ for bit width %d but it is not enabled on the device",
bit_width);
}
if (first_rounding_mode.first == spv::ExecutionModeMax) {
// Register the first rounding mode found
first_rounding_mode = std::make_pair(static_cast<spv::ExecutionMode>(mode), bit_width);
} else if (first_rounding_mode.first != mode && first_rounding_mode.second != bit_width) {
switch (phys_dev_ext_props.float_controls_props.roundingModeIndependence) {
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY_KHR:
if (first_rounding_mode.second != 32 && bit_width != 32) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, kVUID_Core_Shader_FeatureNotEnabled,
"Shader uses different rounding modes for 16 and 64-bit but "
"roundingModeIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY_KHR on the device");
}
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR:
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR:
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
0, kVUID_Core_Shader_FeatureNotEnabled,
"Shader uses different rounding modes for different bit widths but "
"roundingModeIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR on the device");
break;
default:
break;
}
}
break;
}
case spv::ExecutionModeOutputVertices: {
verticesOut = insn.word(3);
break;
}
case spv::ExecutionModeInvocations: {
invocations = insn.word(3);
break;
}
}
}
}
if (entrypoint.word(1) == spv::ExecutionModelGeometry) {
if (verticesOut == 0 || verticesOut > phys_dev_props.limits.maxGeometryOutputVertices) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
"VUID-VkPipelineShaderStageCreateInfo-stage-00714",
"Geometry shader entry point must have an OpExecutionMode instruction that "
"specifies a maximum output vertex count that is greater than 0 and less "
"than or equal to maxGeometryOutputVertices. "
"OutputVertices=%d, maxGeometryOutputVertices=%d",
verticesOut, phys_dev_props.limits.maxGeometryOutputVertices);
}
if (invocations == 0 || invocations > phys_dev_props.limits.maxGeometryShaderInvocations) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
"VUID-VkPipelineShaderStageCreateInfo-stage-00715",
"Geometry shader entry point must have an OpExecutionMode instruction that "
"specifies an invocation count that is greater than 0 and less "
"than or equal to maxGeometryShaderInvocations. "
"Invocations=%d, maxGeometryShaderInvocations=%d",
invocations, phys_dev_props.limits.maxGeometryShaderInvocations);
}
}
return skip;
}
uint32_t DescriptorTypeToReqs(SHADER_MODULE_STATE const *module, uint32_t type_id) {
auto type = module->get_def(type_id);
while (true) {
switch (type.opcode()) {
case spv::OpTypeArray:
case spv::OpTypeRuntimeArray:
case spv::OpTypeSampledImage:
type = module->get_def(type.word(2));
break;
case spv::OpTypePointer:
type = module->get_def(type.word(3));
break;
case spv::OpTypeImage: {
auto dim = type.word(3);
auto arrayed = type.word(5);
auto msaa = type.word(6);
uint32_t bits = 0;
switch (GetFundamentalType(module, type.word(2))) {
case FORMAT_TYPE_FLOAT:
bits = DESCRIPTOR_REQ_COMPONENT_TYPE_FLOAT;
break;
case FORMAT_TYPE_UINT:
bits = DESCRIPTOR_REQ_COMPONENT_TYPE_UINT;
break;
case FORMAT_TYPE_SINT:
bits = DESCRIPTOR_REQ_COMPONENT_TYPE_SINT;
break;
default:
break;
}
switch (dim) {
case spv::Dim1D:
bits |= arrayed ? DESCRIPTOR_REQ_VIEW_TYPE_1D_ARRAY : DESCRIPTOR_REQ_VIEW_TYPE_1D;
return bits;
case spv::Dim2D:
bits |= msaa ? DESCRIPTOR_REQ_MULTI_SAMPLE : DESCRIPTOR_REQ_SINGLE_SAMPLE;
bits |= arrayed ? DESCRIPTOR_REQ_VIEW_TYPE_2D_ARRAY : DESCRIPTOR_REQ_VIEW_TYPE_2D;
return bits;
case spv::Dim3D:
bits |= DESCRIPTOR_REQ_VIEW_TYPE_3D;
return bits;
case spv::DimCube:
bits |= arrayed ? DESCRIPTOR_REQ_VIEW_TYPE_CUBE_ARRAY : DESCRIPTOR_REQ_VIEW_TYPE_CUBE;
return bits;
case spv::DimSubpassData:
bits |= msaa ? DESCRIPTOR_REQ_MULTI_SAMPLE : DESCRIPTOR_REQ_SINGLE_SAMPLE;
return bits;
default: // buffer, etc.
return bits;
}
}
default:
return 0;
}
}
}
// For given pipelineLayout verify that the set_layout_node at slot.first
// has the requested binding at slot.second and return ptr to that binding
static VkDescriptorSetLayoutBinding const *GetDescriptorBinding(PIPELINE_LAYOUT_STATE const *pipelineLayout,
descriptor_slot_t slot) {
if (!pipelineLayout) return nullptr;
if (slot.first >= pipelineLayout->set_layouts.size()) return nullptr;
return pipelineLayout->set_layouts[slot.first]->GetDescriptorSetLayoutBindingPtrFromBinding(slot.second);
}
static bool FindLocalSize(SHADER_MODULE_STATE const *src, uint32_t &local_size_x, uint32_t &local_size_y, uint32_t &local_size_z) {
for (auto insn : *src) {
if (insn.opcode() == spv::OpEntryPoint) {
auto executionModel = insn.word(1);
auto entrypointStageBits = ExecutionModelToShaderStageFlagBits(executionModel);
if (entrypointStageBits == VK_SHADER_STAGE_COMPUTE_BIT) {
auto entrypoint_id = insn.word(2);
for (auto insn1 : *src) {
if (insn1.opcode() == spv::OpExecutionMode && insn1.word(1) == entrypoint_id &&
insn1.word(2) == spv::ExecutionModeLocalSize) {
local_size_x = insn1.word(3);
local_size_y = insn1.word(4);
local_size_z = insn1.word(5);
return true;
}
}
}
}
}
return false;
}
void ProcessExecutionModes(SHADER_MODULE_STATE const *src, const spirv_inst_iter &entrypoint, PIPELINE_STATE *pipeline) {
auto entrypoint_id = entrypoint.word(2);
bool is_point_mode = false;
for (auto insn : *src) {
if (insn.opcode() == spv::OpExecutionMode && insn.word(1) == entrypoint_id) {
switch (insn.word(2)) {
case spv::ExecutionModePointMode:
// In tessellation shaders, PointMode is separate and trumps the tessellation topology.
is_point_mode = true;
break;
case spv::ExecutionModeOutputPoints:
pipeline->topology_at_rasterizer = VK_PRIMITIVE_TOPOLOGY_POINT_LIST;
break;
case spv::ExecutionModeIsolines:
case spv::ExecutionModeOutputLineStrip:
pipeline->topology_at_rasterizer = VK_PRIMITIVE_TOPOLOGY_LINE_STRIP;
break;
case spv::ExecutionModeTriangles:
case spv::ExecutionModeQuads:
case spv::ExecutionModeOutputTriangleStrip:
pipeline->topology_at_rasterizer = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
break;
}
}
}
if (is_point_mode) pipeline->topology_at_rasterizer = VK_PRIMITIVE_TOPOLOGY_POINT_LIST;
}
// If PointList topology is specified in the pipeline, verify that a shader geometry stage writes PointSize
// o If there is only a vertex shader : gl_PointSize must be written when using points
// o If there is a geometry or tessellation shader:
// - If shaderTessellationAndGeometryPointSize feature is enabled:
// * gl_PointSize must be written in the final geometry stage
// - If shaderTessellationAndGeometryPointSize feature is disabled:
// * gl_PointSize must NOT be written and a default of 1.0 is assumed
bool CoreChecks::ValidatePointListShaderState(const PIPELINE_STATE *pipeline, SHADER_MODULE_STATE const *src,
spirv_inst_iter entrypoint, VkShaderStageFlagBits stage) const {
if (pipeline->topology_at_rasterizer != VK_PRIMITIVE_TOPOLOGY_POINT_LIST) {
return false;
}
bool pointsize_written = false;
bool skip = false;
// Search for PointSize built-in decorations
std::vector<uint32_t> pointsize_builtin_offsets;
spirv_inst_iter insn = entrypoint;
while (!pointsize_written && (insn.opcode() != spv::OpFunction)) {
if (insn.opcode() == spv::OpMemberDecorate) {
if (insn.word(3) == spv::DecorationBuiltIn) {
if (insn.word(4) == spv::BuiltInPointSize) {
pointsize_written = IsPointSizeWritten(src, insn, entrypoint);
}
}
} else if (insn.opcode() == spv::OpDecorate) {
if (insn.word(2) == spv::DecorationBuiltIn) {
if (insn.word(3) == spv::BuiltInPointSize) {
pointsize_written = IsPointSizeWritten(src, insn, entrypoint);
}
}
}
insn++;
}
if ((stage == VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT || stage == VK_SHADER_STAGE_GEOMETRY_BIT) &&
!enabled_features.core.shaderTessellationAndGeometryPointSize) {
if (pointsize_written) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_PointSizeBuiltInOverSpecified,
"Pipeline topology is set to POINT_LIST and geometry or tessellation shaders write PointSize which "
"is prohibited when the shaderTessellationAndGeometryPointSize feature is not enabled.");
}
} else if (!pointsize_written) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_MissingPointSizeBuiltIn,
"Pipeline topology is set to POINT_LIST, but PointSize is not written to in the shader corresponding to %s.",
string_VkShaderStageFlagBits(stage));
}
return skip;
}
bool CoreChecks::ValidatePipelineShaderStage(VkPipelineShaderStageCreateInfo const *pStage, const PIPELINE_STATE *pipeline,
const PIPELINE_STATE::StageState &stage_state, const SHADER_MODULE_STATE *module,
const spirv_inst_iter &entrypoint, bool check_point_size) const {
bool skip = false;
// Check the module
if (!module->has_valid_spirv) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
"VUID-VkPipelineShaderStageCreateInfo-module-parameter", "%s does not contain valid spirv for stage %s.",
report_data->FormatHandle(module->vk_shader_module).c_str(), string_VkShaderStageFlagBits(pStage->stage));
}
// If specialization-constant values are given and specialization-constant instructions are present in the shader, the
// specializations should be applied and validated.
if (pStage->pSpecializationInfo != nullptr && pStage->pSpecializationInfo->mapEntryCount > 0 &&
pStage->pSpecializationInfo->pMapEntries != nullptr && module->has_specialization_constants) {
// Gather the specialization-constant values.
auto const &specialization_info = pStage->pSpecializationInfo;
std::unordered_map<uint32_t, std::vector<uint32_t>> id_value_map;
id_value_map.reserve(specialization_info->mapEntryCount);
for (auto i = 0u; i < specialization_info->mapEntryCount; ++i) {
auto const &map_entry = specialization_info->pMapEntries[i];
assert(map_entry.size % 4 == 0);
auto const begin = reinterpret_cast<uint32_t const *>(specialization_info->pData) + map_entry.offset / 4;
auto const end = begin + map_entry.size / 4;
id_value_map.emplace(map_entry.constantID, std::vector<uint32_t>(begin, end));
}
// Apply the specialization-constant values and revalidate the shader module.
spv_target_env const spirv_environment = ((api_version >= VK_API_VERSION_1_1) ? SPV_ENV_VULKAN_1_1 : SPV_ENV_VULKAN_1_0);
spvtools::Optimizer optimizer(spirv_environment);
spvtools::MessageConsumer consumer = [&skip, &module, &pStage, this](spv_message_level_t level, const char *source,
const spv_position_t &position, const char *message) {
skip |= log_msg(
report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
"VUID-VkPipelineShaderStageCreateInfo-module-parameter", "%s does not contain valid spirv for stage %s. %s",
report_data->FormatHandle(module->vk_shader_module).c_str(), string_VkShaderStageFlagBits(pStage->stage), message);
};
optimizer.SetMessageConsumer(consumer);
optimizer.RegisterPass(spvtools::CreateSetSpecConstantDefaultValuePass(id_value_map));
optimizer.RegisterPass(spvtools::CreateFreezeSpecConstantValuePass());
std::vector<uint32_t> specialized_spirv;
auto const optimized =
optimizer.Run(module->words.data(), module->words.size(), &specialized_spirv, spvtools::ValidatorOptions(), true);
assert(optimized == true);
if (optimized) {
spv_context ctx = spvContextCreate(spirv_environment);
spv_const_binary_t binary{specialized_spirv.data(), specialized_spirv.size()};
spv_diagnostic diag = nullptr;
spv_validator_options options = spvValidatorOptionsCreate();
if (device_extensions.vk_khr_relaxed_block_layout) {
spvValidatorOptionsSetRelaxBlockLayout(options, true);
}
if (device_extensions.vk_khr_uniform_buffer_standard_layout &&
enabled_features.uniform_buffer_standard_layout.uniformBufferStandardLayout == VK_TRUE) {
spvValidatorOptionsSetUniformBufferStandardLayout(options, true);
}
if (device_extensions.vk_ext_scalar_block_layout &&
enabled_features.scalar_block_layout_features.scalarBlockLayout == VK_TRUE) {
spvValidatorOptionsSetScalarBlockLayout(options, true);
}
auto const spv_valid = spvValidateWithOptions(ctx, options, &binary, &diag);
if (spv_valid != SPV_SUCCESS) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
"VUID-VkPipelineShaderStageCreateInfo-module-parameter",
"After specialization was applied, %s does not contain valid spirv for stage %s.",
report_data->FormatHandle(module->vk_shader_module).c_str(),
string_VkShaderStageFlagBits(pStage->stage));
}
spvValidatorOptionsDestroy(options);
spvDiagnosticDestroy(diag);
spvContextDestroy(ctx);
}
}
// Check the entrypoint
if (entrypoint == module->end()) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
"VUID-VkPipelineShaderStageCreateInfo-pName-00707", "No entrypoint found named `%s` for stage %s..",
pStage->pName, string_VkShaderStageFlagBits(pStage->stage));
}
if (skip) return true; // no point continuing beyond here, any analysis is just going to be garbage.
// Mark accessible ids
auto &accessible_ids = stage_state.accessible_ids;
// Validate descriptor set layout against what the entrypoint actually uses
bool has_writable_descriptor = stage_state.has_writable_descriptor;
auto &descriptor_uses = stage_state.descriptor_uses;
// Validate shader capabilities against enabled device features
skip |= ValidateShaderCapabilities(module, pStage->stage);
skip |= ValidateShaderStageWritableDescriptor(pStage->stage, has_writable_descriptor);
skip |= ValidateShaderStageInputOutputLimits(module, pStage, pipeline, entrypoint);
skip |= ValidateShaderStageGroupNonUniform(module, pStage->stage);
skip |= ValidateExecutionModes(module, entrypoint);
skip |= ValidateSpecializationOffsets(report_data, pStage);
skip |= ValidatePushConstantUsage(report_data, pipeline->pipeline_layout->push_constant_ranges.get(), module, accessible_ids,
pStage->stage);
if (check_point_size && !pipeline->graphicsPipelineCI.pRasterizationState->rasterizerDiscardEnable) {
skip |= ValidatePointListShaderState(pipeline, module, entrypoint, pStage->stage);
}
skip |= ValidateCooperativeMatrix(module, pStage, pipeline);
// Validate descriptor use
for (auto use : descriptor_uses) {
// Verify given pipelineLayout has requested setLayout with requested binding
const auto &binding = GetDescriptorBinding(pipeline->pipeline_layout.get(), use.first);
unsigned required_descriptor_count;
std::set<uint32_t> descriptor_types = TypeToDescriptorTypeSet(module, use.second.type_id, required_descriptor_count);
if (!binding) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUID_Core_Shader_MissingDescriptor,
"Shader uses descriptor slot %u.%u (expected `%s`) but not declared in pipeline layout",
use.first.first, use.first.second, string_descriptorTypes(descriptor_types).c_str());
} else if (~binding->stageFlags & pStage->stage) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, 0,
kVUID_Core_Shader_DescriptorNotAccessibleFromStage,
"Shader uses descriptor slot %u.%u but descriptor not accessible from stage %s", use.first.first,
use.first.second, string_VkShaderStageFlagBits(pStage->stage));
} else if (descriptor_types.find(binding->descriptorType) == descriptor_types.end()) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUID_Core_Shader_DescriptorTypeMismatch,
"Type mismatch on descriptor slot %u.%u (expected `%s`) but descriptor of type %s", use.first.first,
use.first.second, string_descriptorTypes(descriptor_types).c_str(),
string_VkDescriptorType(binding->descriptorType));
} else if (binding->descriptorCount < required_descriptor_count) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUID_Core_Shader_DescriptorTypeMismatch,
"Shader expects at least %u descriptors for binding %u.%u but only %u provided",
required_descriptor_count, use.first.first, use.first.second, binding->descriptorCount);
}
}
// Validate use of input attachments against subpass structure
if (pStage->stage == VK_SHADER_STAGE_FRAGMENT_BIT) {
auto input_attachment_uses = CollectInterfaceByInputAttachmentIndex(module, accessible_ids);
auto rpci = pipeline->rp_state->createInfo.ptr();
auto subpass = pipeline->graphicsPipelineCI.subpass;
for (auto use : input_attachment_uses) {
auto input_attachments = rpci->pSubpasses[subpass].pInputAttachments;
auto index = (input_attachments && use.first < rpci->pSubpasses[subpass].inputAttachmentCount)
? input_attachments[use.first].attachment
: VK_ATTACHMENT_UNUSED;
if (index == VK_ATTACHMENT_UNUSED) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUID_Core_Shader_MissingInputAttachment,
"Shader consumes input attachment index %d but not provided in subpass", use.first);
} else if (!(GetFormatType(rpci->pAttachments[index].format) & GetFundamentalType(module, use.second.type_id))) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUID_Core_Shader_InputAttachmentTypeMismatch,
"Subpass input attachment %u format of %s does not match type used in shader `%s`", use.first,
string_VkFormat(rpci->pAttachments[index].format), DescribeType(module, use.second.type_id).c_str());
}
}
}
if (pStage->stage == VK_SHADER_STAGE_COMPUTE_BIT) {
skip |= ValidateComputeWorkGroupSizes(module);
}
return skip;
}
static bool ValidateInterfaceBetweenStages(debug_report_data const *report_data, SHADER_MODULE_STATE const *producer,
spirv_inst_iter producer_entrypoint, shader_stage_attributes const *producer_stage,
SHADER_MODULE_STATE const *consumer, spirv_inst_iter consumer_entrypoint,
shader_stage_attributes const *consumer_stage) {
bool skip = false;
auto outputs =
CollectInterfaceByLocation(producer, producer_entrypoint, spv::StorageClassOutput, producer_stage->arrayed_output);
auto inputs = CollectInterfaceByLocation(consumer, consumer_entrypoint, spv::StorageClassInput, consumer_stage->arrayed_input);
auto a_it = outputs.begin();
auto b_it = inputs.begin();
// Maps sorted by key (location); walk them together to find mismatches
while ((outputs.size() > 0 && a_it != outputs.end()) || (inputs.size() && b_it != inputs.end())) {
bool a_at_end = outputs.size() == 0 || a_it == outputs.end();
bool b_at_end = inputs.size() == 0 || b_it == inputs.end();
auto a_first = a_at_end ? std::make_pair(0u, 0u) : a_it->first;
auto b_first = b_at_end ? std::make_pair(0u, 0u) : b_it->first;
if (b_at_end || ((!a_at_end) && (a_first < b_first))) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(producer->vk_shader_module), kVUID_Core_Shader_OutputNotConsumed,
"%s writes to output location %u.%u which is not consumed by %s", producer_stage->name, a_first.first,
a_first.second, consumer_stage->name);
a_it++;
} else if (a_at_end || a_first > b_first) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(consumer->vk_shader_module), kVUID_Core_Shader_InputNotProduced,
"%s consumes input location %u.%u which is not written by %s", consumer_stage->name, b_first.first,
b_first.second, producer_stage->name);
b_it++;
} else {
// subtleties of arrayed interfaces:
// - if is_patch, then the member is not arrayed, even though the interface may be.
// - if is_block_member, then the extra array level of an arrayed interface is not
// expressed in the member type -- it's expressed in the block type.
if (!TypesMatch(producer, consumer, a_it->second.type_id, b_it->second.type_id,
producer_stage->arrayed_output && !a_it->second.is_patch && !a_it->second.is_block_member,
consumer_stage->arrayed_input && !b_it->second.is_patch && !b_it->second.is_block_member, true)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(producer->vk_shader_module), kVUID_Core_Shader_InterfaceTypeMismatch,
"Type mismatch on location %u.%u: '%s' vs '%s'", a_first.first, a_first.second,
DescribeType(producer, a_it->second.type_id).c_str(),
DescribeType(consumer, b_it->second.type_id).c_str());
}
if (a_it->second.is_patch != b_it->second.is_patch) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(producer->vk_shader_module), kVUID_Core_Shader_InterfaceTypeMismatch,
"Decoration mismatch on location %u.%u: is per-%s in %s stage but per-%s in %s stage",
a_first.first, a_first.second, a_it->second.is_patch ? "patch" : "vertex", producer_stage->name,
b_it->second.is_patch ? "patch" : "vertex", consumer_stage->name);
}
if (a_it->second.is_relaxed_precision != b_it->second.is_relaxed_precision) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(producer->vk_shader_module), kVUID_Core_Shader_InterfaceTypeMismatch,
"Decoration mismatch on location %u.%u: %s and %s stages differ in precision", a_first.first,
a_first.second, producer_stage->name, consumer_stage->name);
}
a_it++;
b_it++;
}
}
if (consumer_stage->stage != VK_SHADER_STAGE_FRAGMENT_BIT) {
auto builtins_producer = CollectBuiltinBlockMembers(producer, producer_entrypoint, spv::StorageClassOutput);
auto builtins_consumer = CollectBuiltinBlockMembers(consumer, consumer_entrypoint, spv::StorageClassInput);
if (!builtins_producer.empty() && !builtins_consumer.empty()) {
if (builtins_producer.size() != builtins_consumer.size()) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(producer->vk_shader_module), kVUID_Core_Shader_InterfaceTypeMismatch,
"Number of elements inside builtin block differ between stages (%s %d vs %s %d).", producer_stage->name,
(int)builtins_producer.size(), consumer_stage->name, (int)builtins_consumer.size());
} else {
auto it_producer = builtins_producer.begin();
auto it_consumer = builtins_consumer.begin();
while (it_producer != builtins_producer.end() && it_consumer != builtins_consumer.end()) {
if (*it_producer != *it_consumer) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(producer->vk_shader_module), kVUID_Core_Shader_InterfaceTypeMismatch,
"Builtin variable inside block doesn't match between %s and %s.", producer_stage->name,
consumer_stage->name);
break;
}
it_producer++;
it_consumer++;
}
}
}
}
return skip;
}
static inline uint32_t DetermineFinalGeomStage(const PIPELINE_STATE *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) {
uint32_t stage_mask = 0;
if (pipeline->topology_at_rasterizer == VK_PRIMITIVE_TOPOLOGY_POINT_LIST) {
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
stage_mask |= pCreateInfo->pStages[i].stage;
}
// Determine which shader in which PointSize should be written (the final geometry stage)
if (stage_mask & VK_SHADER_STAGE_MESH_BIT_NV) {
stage_mask = VK_SHADER_STAGE_MESH_BIT_NV;
} else if (stage_mask & VK_SHADER_STAGE_GEOMETRY_BIT) {
stage_mask = VK_SHADER_STAGE_GEOMETRY_BIT;
} else if (stage_mask & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) {
stage_mask = VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
} else if (stage_mask & VK_SHADER_STAGE_VERTEX_BIT) {
stage_mask = VK_SHADER_STAGE_VERTEX_BIT;
}
}
return stage_mask;
}
// Validate that the shaders used by the given pipeline and store the active_slots
// that are actually used by the pipeline into pPipeline->active_slots
bool CoreChecks::ValidateGraphicsPipelineShaderState(const PIPELINE_STATE *pipeline) const {
auto pCreateInfo = pipeline->graphicsPipelineCI.ptr();
int vertex_stage = GetShaderStageId(VK_SHADER_STAGE_VERTEX_BIT);
int fragment_stage = GetShaderStageId(VK_SHADER_STAGE_FRAGMENT_BIT);
const SHADER_MODULE_STATE *shaders[32];
memset(shaders, 0, sizeof(shaders));
spirv_inst_iter entrypoints[32];
memset(entrypoints, 0, sizeof(entrypoints));
bool skip = false;
uint32_t pointlist_stage_mask = DetermineFinalGeomStage(pipeline, pCreateInfo);
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
auto pStage = &pCreateInfo->pStages[i];
auto stage_id = GetShaderStageId(pStage->stage);
shaders[stage_id] = GetShaderModuleState(pStage->module);
entrypoints[stage_id] = FindEntrypoint(shaders[stage_id], pStage->pName, pStage->stage);
skip |= ValidatePipelineShaderStage(pStage, pipeline, pipeline->stage_state[i], shaders[stage_id], entrypoints[stage_id],
(pointlist_stage_mask == pStage->stage));
}
// if the shader stages are no good individually, cross-stage validation is pointless.
if (skip) return true;
auto vi = pCreateInfo->pVertexInputState;
if (vi) {
skip |= ValidateViConsistency(report_data, vi);
}
if (shaders[vertex_stage] && shaders[vertex_stage]->has_valid_spirv) {
skip |= ValidateViAgainstVsInputs(report_data, vi, shaders[vertex_stage], entrypoints[vertex_stage]);
}
int producer = GetShaderStageId(VK_SHADER_STAGE_VERTEX_BIT);
int consumer = GetShaderStageId(VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT);
while (!shaders[producer] && producer != fragment_stage) {
producer++;
consumer++;
}
for (; producer != fragment_stage && consumer <= fragment_stage; consumer++) {
assert(shaders[producer]);
if (shaders[consumer]) {
if (shaders[consumer]->has_valid_spirv && shaders[producer]->has_valid_spirv) {
skip |= ValidateInterfaceBetweenStages(report_data, shaders[producer], entrypoints[producer],
&shader_stage_attribs[producer], shaders[consumer], entrypoints[consumer],
&shader_stage_attribs[consumer]);
}
producer = consumer;
}
}
if (shaders[fragment_stage] && shaders[fragment_stage]->has_valid_spirv) {
skip |= ValidateFsOutputsAgainstRenderPass(report_data, shaders[fragment_stage], entrypoints[fragment_stage], pipeline,
pCreateInfo->subpass);
}
return skip;
}
bool CoreChecks::ValidateComputePipeline(PIPELINE_STATE *pipeline) const {
const auto &stage = *pipeline->computePipelineCI.stage.ptr();
const SHADER_MODULE_STATE *module = GetShaderModuleState(stage.module);
const spirv_inst_iter entrypoint = FindEntrypoint(module, stage.pName, stage.stage);
return ValidatePipelineShaderStage(&stage, pipeline, pipeline->stage_state[0], module, entrypoint, false);
}
bool CoreChecks::ValidateRayTracingPipelineNV(PIPELINE_STATE *pipeline) const {
bool skip = false;
if (pipeline->raytracingPipelineCI.maxRecursionDepth > phys_dev_ext_props.ray_tracing_props.maxRecursionDepth) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
"VUID-VkRayTracingPipelineCreateInfoNV-maxRecursionDepth-02412", ": %d > %d",
pipeline->raytracingPipelineCI.maxRecursionDepth, phys_dev_ext_props.ray_tracing_props.maxRecursionDepth);
}
const auto *stages = pipeline->raytracingPipelineCI.ptr()->pStages;
const auto *groups = pipeline->raytracingPipelineCI.ptr()->pGroups;
uint32_t raygen_stages_found = 0;
for (uint32_t stage_index = 0; stage_index < pipeline->raytracingPipelineCI.stageCount; stage_index++) {
const auto &stage = stages[stage_index];
const SHADER_MODULE_STATE *module = GetShaderModuleState(stage.module);
const spirv_inst_iter entrypoint = FindEntrypoint(module, stage.pName, stage.stage);
skip |= ValidatePipelineShaderStage(&stage, pipeline, pipeline->stage_state[stage_index], module, entrypoint, false);
if (stage.stage == VK_SHADER_STAGE_RAYGEN_BIT_NV) {
raygen_stages_found++;
}
}
if (raygen_stages_found != 1) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
"VUID-VkRayTracingPipelineCreateInfoNV-stage-02408", " : %d raygen stages specified", raygen_stages_found);
}
for (uint32_t group_index = 0; group_index < pipeline->raytracingPipelineCI.groupCount; group_index++) {
const auto &group = groups[group_index];
if (group.type == VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_NV) {
if (group.generalShader >= pipeline->raytracingPipelineCI.stageCount ||
(stages[group.generalShader].stage != VK_SHADER_STAGE_RAYGEN_BIT_NV &&
stages[group.generalShader].stage != VK_SHADER_STAGE_MISS_BIT_NV &&
stages[group.generalShader].stage != VK_SHADER_STAGE_CALLABLE_BIT_NV)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
"VUID-VkRayTracingShaderGroupCreateInfoNV-type-02413", ": pGroups[%d]", group_index);
}
if (group.anyHitShader != VK_SHADER_UNUSED_NV || group.closestHitShader != VK_SHADER_UNUSED_NV ||
group.intersectionShader != VK_SHADER_UNUSED_NV) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
"VUID-VkRayTracingShaderGroupCreateInfoNV-type-02414", ": pGroups[%d]", group_index);
}
} else if (group.type == VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_NV) {
if (group.intersectionShader >= pipeline->raytracingPipelineCI.stageCount ||
stages[group.intersectionShader].stage != VK_SHADER_STAGE_INTERSECTION_BIT_NV) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
"VUID-VkRayTracingShaderGroupCreateInfoNV-type-02415", ": pGroups[%d]", group_index);
}
} else if (group.type == VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_NV) {
if (group.intersectionShader != VK_SHADER_UNUSED_NV) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
"VUID-VkRayTracingShaderGroupCreateInfoNV-type-02416", ": pGroups[%d]", group_index);
}
}
if (group.type == VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_NV ||
group.type == VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_NV) {
if (group.anyHitShader != VK_SHADER_UNUSED_NV && (group.anyHitShader >= pipeline->raytracingPipelineCI.stageCount ||
stages[group.anyHitShader].stage != VK_SHADER_STAGE_ANY_HIT_BIT_NV)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
"VUID-VkRayTracingShaderGroupCreateInfoNV-anyHitShader-02418", ": pGroups[%d]", group_index);
}
if (group.closestHitShader != VK_SHADER_UNUSED_NV &&
(group.closestHitShader >= pipeline->raytracingPipelineCI.stageCount ||
stages[group.closestHitShader].stage != VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
"VUID-VkRayTracingShaderGroupCreateInfoNV-closestHitShader-02417", ": pGroups[%d]", group_index);
}
}
}
return skip;
}
uint32_t ValidationCache::MakeShaderHash(VkShaderModuleCreateInfo const *smci) { return XXH32(smci->pCode, smci->codeSize, 0); }
static ValidationCache *GetValidationCacheInfo(VkShaderModuleCreateInfo const *pCreateInfo) {
const auto validation_cache_ci = lvl_find_in_chain<VkShaderModuleValidationCacheCreateInfoEXT>(pCreateInfo->pNext);
if (validation_cache_ci) {
return CastFromHandle<ValidationCache *>(validation_cache_ci->validationCache);
}
return nullptr;
}
bool CoreChecks::PreCallValidateCreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkShaderModule *pShaderModule) const {
bool skip = false;
spv_result_t spv_valid = SPV_SUCCESS;
if (disabled.shader_validation) {
return false;
}
auto have_glsl_shader = device_extensions.vk_nv_glsl_shader;
if (!have_glsl_shader && (pCreateInfo->codeSize % 4)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
"VUID-VkShaderModuleCreateInfo-pCode-01376",
"SPIR-V module not valid: Codesize must be a multiple of 4 but is " PRINTF_SIZE_T_SPECIFIER ".",
pCreateInfo->codeSize);
} else {
auto cache = GetValidationCacheInfo(pCreateInfo);
uint32_t hash = 0;
if (cache) {
hash = ValidationCache::MakeShaderHash(pCreateInfo);
if (cache->Contains(hash)) return false;
}
// Use SPIRV-Tools validator to try and catch any issues with the module itself. If specialization constants are present,
// the default values will be used during validation.
spv_target_env spirv_environment = SPV_ENV_VULKAN_1_0;
if (api_version >= VK_API_VERSION_1_1) {
if (device_extensions.vk_khr_spirv_1_4) {
spirv_environment = SPV_ENV_VULKAN_1_1_SPIRV_1_4;
} else {
spirv_environment = SPV_ENV_VULKAN_1_1;
}
}
spv_context ctx = spvContextCreate(spirv_environment);
spv_const_binary_t binary{pCreateInfo->pCode, pCreateInfo->codeSize / sizeof(uint32_t)};
spv_diagnostic diag = nullptr;
spv_validator_options options = spvValidatorOptionsCreate();
if (device_extensions.vk_khr_relaxed_block_layout) {
spvValidatorOptionsSetRelaxBlockLayout(options, true);
}
if (device_extensions.vk_khr_uniform_buffer_standard_layout &&
enabled_features.uniform_buffer_standard_layout.uniformBufferStandardLayout == VK_TRUE) {
spvValidatorOptionsSetUniformBufferStandardLayout(options, true);
}
if (device_extensions.vk_ext_scalar_block_layout &&
enabled_features.scalar_block_layout_features.scalarBlockLayout == VK_TRUE) {
spvValidatorOptionsSetScalarBlockLayout(options, true);
}
spv_valid = spvValidateWithOptions(ctx, options, &binary, &diag);
if (spv_valid != SPV_SUCCESS) {
if (!have_glsl_shader || (pCreateInfo->pCode[0] == spv::MagicNumber)) {
skip |=
log_msg(report_data, spv_valid == SPV_WARNING ? VK_DEBUG_REPORT_WARNING_BIT_EXT : VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, kVUID_Core_Shader_InconsistentSpirv,
"SPIR-V module not valid: %s", diag && diag->error ? diag->error : "(no error text)");
}
} else {
if (cache) {
cache->Insert(hash);
}
}
spvValidatorOptionsDestroy(options);
spvDiagnosticDestroy(diag);
spvContextDestroy(ctx);
}
return skip;
}
bool CoreChecks::ValidateComputeWorkGroupSizes(const SHADER_MODULE_STATE *shader) const {
bool skip = false;
uint32_t local_size_x = 0;
uint32_t local_size_y = 0;
uint32_t local_size_z = 0;
if (FindLocalSize(shader, local_size_x, local_size_y, local_size_z)) {
if (local_size_x > phys_dev_props.limits.maxComputeWorkGroupSize[0]) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(shader->vk_shader_module), "UNASSIGNED-features-limits-maxComputeWorkGroupSize",
"%s local_size_x (%" PRIu32 ") exceeds device limit maxComputeWorkGroupSize[0] (%" PRIu32 ").",
report_data->FormatHandle(shader->vk_shader_module).c_str(), local_size_x,
phys_dev_props.limits.maxComputeWorkGroupSize[0]);
}
if (local_size_y > phys_dev_props.limits.maxComputeWorkGroupSize[1]) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(shader->vk_shader_module), "UNASSIGNED-features-limits-maxComputeWorkGroupSize",
"%s local_size_y (%" PRIu32 ") exceeds device limit maxComputeWorkGroupSize[1] (%" PRIu32 ").",
report_data->FormatHandle(shader->vk_shader_module).c_str(), local_size_x,
phys_dev_props.limits.maxComputeWorkGroupSize[1]);
}
if (local_size_z > phys_dev_props.limits.maxComputeWorkGroupSize[2]) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(shader->vk_shader_module), "UNASSIGNED-features-limits-maxComputeWorkGroupSize",
"%s local_size_z (%" PRIu32 ") exceeds device limit maxComputeWorkGroupSize[2] (%" PRIu32 ").",
report_data->FormatHandle(shader->vk_shader_module).c_str(), local_size_x,
phys_dev_props.limits.maxComputeWorkGroupSize[2]);
}
uint32_t limit = phys_dev_props.limits.maxComputeWorkGroupInvocations;
uint64_t invocations = local_size_x * local_size_y;
// Prevent overflow.
bool fail = false;
if (invocations > UINT32_MAX || invocations > limit) {
fail = true;
}
if (!fail) {
invocations *= local_size_z;
if (invocations > UINT32_MAX || invocations > limit) {
fail = true;
}
}
if (fail) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(shader->vk_shader_module), "UNASSIGNED-features-limits-maxComputeWorkGroupInvocations",
"%s local_size (%" PRIu32 ", %" PRIu32 ", %" PRIu32
") exceeds device limit maxComputeWorkGroupInvocations (%" PRIu32 ").",
report_data->FormatHandle(shader->vk_shader_module).c_str(), local_size_x, local_size_y, local_size_z,
limit);
}
}
return skip;
}