blob: 300392de8a8cbf62b6cb11601c38913c41ae9e3e [file] [log] [blame]
/*
* Copyright (c) 2015-2019 The Khronos Group Inc.
* Copyright (c) 2015-2019 Valve Corporation
* Copyright (c) 2015-2019 LunarG, Inc.
* Copyright (c) 2015-2019 Google, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Author: Chia-I Wu <olvaffe@gmail.com>
* Author: Chris Forbes <chrisf@ijw.co.nz>
* Author: Courtney Goeltzenleuchter <courtney@LunarG.com>
* Author: Mark Lobodzinski <mark@lunarg.com>
* Author: Mike Stroyan <mike@LunarG.com>
* Author: Tobin Ehlis <tobine@google.com>
* Author: Tony Barbour <tony@LunarG.com>
* Author: Cody Northrop <cnorthrop@google.com>
* Author: Dave Houlton <daveh@lunarg.com>
* Author: Jeremy Kniager <jeremyk@lunarg.com>
* Author: Shannon McPherson <shannon@lunarg.com>
* Author: John Zulauf <jzulauf@lunarg.com>
*/
#include "cast_utils.h"
#include "layer_validation_tests.h"
TEST_F(VkLayerTest, BufferExtents) {
TEST_DESCRIPTION("Perform copies across a buffer, provoking out-of-range errors.");
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
ASSERT_NO_FATAL_FAILURE(InitState());
const VkDeviceSize buffer_size = 2048;
VkBufferObj buffer_one;
VkBufferObj buffer_two;
VkMemoryPropertyFlags reqs = 0;
buffer_one.init_as_src_and_dst(*m_device, buffer_size, reqs);
buffer_two.init_as_src_and_dst(*m_device, buffer_size, reqs);
m_commandBuffer->begin();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdCopyBuffer-srcOffset-00113");
VkBufferCopy copy_info = {4096, 256, 256};
vk::CmdCopyBuffer(m_commandBuffer->handle(), buffer_one.handle(), buffer_two.handle(), 1, &copy_info);
m_errorMonitor->VerifyFound();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdCopyBuffer-dstOffset-00114");
copy_info = {256, 4096, 256};
vk::CmdCopyBuffer(m_commandBuffer->handle(), buffer_one.handle(), buffer_two.handle(), 1, &copy_info);
m_errorMonitor->VerifyFound();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdCopyBuffer-size-00115");
copy_info = {1024, 256, 1280};
vk::CmdCopyBuffer(m_commandBuffer->handle(), buffer_one.handle(), buffer_two.handle(), 1, &copy_info);
m_errorMonitor->VerifyFound();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdCopyBuffer-size-00116");
copy_info = {256, 1024, 1280};
vk::CmdCopyBuffer(m_commandBuffer->handle(), buffer_one.handle(), buffer_two.handle(), 1, &copy_info);
m_errorMonitor->VerifyFound();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdCopyBuffer-pRegions-00117");
copy_info = {256, 512, 512};
vk::CmdCopyBuffer(m_commandBuffer->handle(), buffer_two.handle(), buffer_two.handle(), 1, &copy_info);
m_errorMonitor->VerifyFound();
m_commandBuffer->end();
}
TEST_F(VkLayerTest, MirrorClampToEdgeNotEnabled) {
TEST_DESCRIPTION("Validation should catch using CLAMP_TO_EDGE addressing mode if the extension is not enabled.");
ASSERT_NO_FATAL_FAILURE(Init());
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkSamplerCreateInfo-addressModeU-01079");
VkSampler sampler = VK_NULL_HANDLE;
VkSamplerCreateInfo sampler_info = SafeSaneSamplerCreateInfo();
// Set the modes to cause the error
sampler_info.addressModeU = VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE;
sampler_info.addressModeV = VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE;
sampler_info.addressModeW = VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE;
vk::CreateSampler(m_device->device(), &sampler_info, NULL, &sampler);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, AnisotropyFeatureDisabled) {
TEST_DESCRIPTION("Validation should check anisotropy parameters are correct with samplerAnisotropy disabled.");
// Determine if required device features are available
VkPhysicalDeviceFeatures device_features = {};
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
ASSERT_NO_FATAL_FAILURE(GetPhysicalDeviceFeatures(&device_features));
device_features.samplerAnisotropy = VK_FALSE; // force anisotropy off
ASSERT_NO_FATAL_FAILURE(InitState(&device_features));
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkSamplerCreateInfo-anisotropyEnable-01070");
VkSamplerCreateInfo sampler_info = SafeSaneSamplerCreateInfo();
// With the samplerAnisotropy disable, the sampler must not enable it.
sampler_info.anisotropyEnable = VK_TRUE;
VkSampler sampler = VK_NULL_HANDLE;
VkResult err;
err = vk::CreateSampler(m_device->device(), &sampler_info, NULL, &sampler);
m_errorMonitor->VerifyFound();
if (VK_SUCCESS == err) {
vk::DestroySampler(m_device->device(), sampler, NULL);
}
sampler = VK_NULL_HANDLE;
}
TEST_F(VkLayerTest, AnisotropyFeatureEnabled) {
TEST_DESCRIPTION("Validation must check several conditions that apply only when Anisotropy is enabled.");
// Determine if required device features are available
VkPhysicalDeviceFeatures device_features = {};
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
ASSERT_NO_FATAL_FAILURE(GetPhysicalDeviceFeatures(&device_features));
// These tests require that the device support anisotropic filtering
if (VK_TRUE != device_features.samplerAnisotropy) {
printf("%s Test requires unsupported samplerAnisotropy feature. Skipped.\n", kSkipPrefix);
return;
}
bool cubic_support = false;
if (DeviceExtensionSupported(gpu(), nullptr, "VK_IMG_filter_cubic")) {
m_device_extension_names.push_back("VK_IMG_filter_cubic");
cubic_support = true;
}
VkSamplerCreateInfo sampler_info_ref = SafeSaneSamplerCreateInfo();
sampler_info_ref.anisotropyEnable = VK_TRUE;
VkSamplerCreateInfo sampler_info = sampler_info_ref;
ASSERT_NO_FATAL_FAILURE(InitState());
// maxAnisotropy out-of-bounds low.
sampler_info.maxAnisotropy = NearestSmaller(1.0F);
CreateSamplerTest(*this, &sampler_info, "VUID-VkSamplerCreateInfo-anisotropyEnable-01071");
sampler_info.maxAnisotropy = sampler_info_ref.maxAnisotropy;
// maxAnisotropy out-of-bounds high.
sampler_info.maxAnisotropy = NearestGreater(m_device->phy().properties().limits.maxSamplerAnisotropy);
CreateSamplerTest(*this, &sampler_info, "VUID-VkSamplerCreateInfo-anisotropyEnable-01071");
sampler_info.maxAnisotropy = sampler_info_ref.maxAnisotropy;
// Both anisotropy and unnormalized coords enabled
sampler_info.unnormalizedCoordinates = VK_TRUE;
// If unnormalizedCoordinates is VK_TRUE, minLod and maxLod must be zero
sampler_info.minLod = 0;
sampler_info.maxLod = 0;
CreateSamplerTest(*this, &sampler_info, "VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01076");
sampler_info.unnormalizedCoordinates = sampler_info_ref.unnormalizedCoordinates;
// Both anisotropy and cubic filtering enabled
if (cubic_support) {
sampler_info.minFilter = VK_FILTER_CUBIC_IMG;
CreateSamplerTest(*this, &sampler_info, "VUID-VkSamplerCreateInfo-magFilter-01081");
sampler_info.minFilter = sampler_info_ref.minFilter;
sampler_info.magFilter = VK_FILTER_CUBIC_IMG;
CreateSamplerTest(*this, &sampler_info, "VUID-VkSamplerCreateInfo-magFilter-01081");
sampler_info.magFilter = sampler_info_ref.magFilter;
} else {
printf("%s Test requires unsupported extension \"VK_IMG_filter_cubic\". Skipped.\n", kSkipPrefix);
}
}
TEST_F(VkLayerTest, UnnormalizedCoordinatesEnabled) {
TEST_DESCRIPTION("Validate restrictions on sampler parameters when unnormalizedCoordinates is true.");
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
VkSamplerCreateInfo sampler_info_ref = SafeSaneSamplerCreateInfo();
sampler_info_ref.unnormalizedCoordinates = VK_TRUE;
sampler_info_ref.minLod = 0.0f;
sampler_info_ref.maxLod = 0.0f;
VkSamplerCreateInfo sampler_info = sampler_info_ref;
ASSERT_NO_FATAL_FAILURE(InitState());
// min and mag filters must be the same
sampler_info.minFilter = VK_FILTER_NEAREST;
sampler_info.magFilter = VK_FILTER_LINEAR;
CreateSamplerTest(*this, &sampler_info, "VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01072");
std::swap(sampler_info.minFilter, sampler_info.magFilter);
CreateSamplerTest(*this, &sampler_info, "VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01072");
sampler_info = sampler_info_ref;
// mipmapMode must be NEAREST
sampler_info.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
CreateSamplerTest(*this, &sampler_info, "VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01073");
sampler_info = sampler_info_ref;
// minlod and maxlod must be zero
sampler_info.maxLod = 3.14159f;
CreateSamplerTest(*this, &sampler_info, "VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01074");
sampler_info.minLod = 2.71828f;
CreateSamplerTest(*this, &sampler_info, "VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01074");
sampler_info = sampler_info_ref;
// addressModeU and addressModeV must both be CLAMP_TO_EDGE or CLAMP_TO_BORDER
// checks all 12 invalid combinations out of 16 total combinations
const std::array<VkSamplerAddressMode, 4> kAddressModes = {{
VK_SAMPLER_ADDRESS_MODE_REPEAT,
VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT,
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE,
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER,
}};
for (const auto umode : kAddressModes) {
for (const auto vmode : kAddressModes) {
if ((umode != VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE && umode != VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER) ||
(vmode != VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE && vmode != VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER)) {
sampler_info.addressModeU = umode;
sampler_info.addressModeV = vmode;
CreateSamplerTest(*this, &sampler_info, "VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01075");
}
}
}
sampler_info = sampler_info_ref;
// VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01076 is tested in AnisotropyFeatureEnabled above
// Since it requires checking/enabling the anisotropic filtering feature, it's easier to do it
// with the other anisotropic tests.
// compareEnable must be VK_FALSE
sampler_info.compareEnable = VK_TRUE;
CreateSamplerTest(*this, &sampler_info, "VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01077");
sampler_info = sampler_info_ref;
}
TEST_F(VkLayerTest, UpdateBufferAlignment) {
TEST_DESCRIPTION("Check alignment parameters for vkCmdUpdateBuffer");
uint32_t updateData[] = {1, 2, 3, 4, 5, 6, 7, 8};
ASSERT_NO_FATAL_FAILURE(Init());
VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
VkBufferObj buffer;
buffer.init_as_dst(*m_device, (VkDeviceSize)20, reqs);
m_commandBuffer->begin();
// Introduce failure by using dstOffset that is not multiple of 4
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, " is not a multiple of 4");
m_commandBuffer->UpdateBuffer(buffer.handle(), 1, 4, updateData);
m_errorMonitor->VerifyFound();
// Introduce failure by using dataSize that is not multiple of 4
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, " is not a multiple of 4");
m_commandBuffer->UpdateBuffer(buffer.handle(), 0, 6, updateData);
m_errorMonitor->VerifyFound();
// Introduce failure by using dataSize that is < 0
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"must be greater than zero and less than or equal to 65536");
m_commandBuffer->UpdateBuffer(buffer.handle(), 0, (VkDeviceSize)-44, updateData);
m_errorMonitor->VerifyFound();
// Introduce failure by using dataSize that is > 65536
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"must be greater than zero and less than or equal to 65536");
m_commandBuffer->UpdateBuffer(buffer.handle(), 0, (VkDeviceSize)80000, updateData);
m_errorMonitor->VerifyFound();
m_commandBuffer->end();
}
TEST_F(VkLayerTest, FillBufferAlignmentAndSize) {
TEST_DESCRIPTION("Check alignment and size parameters for vkCmdFillBuffer");
ASSERT_NO_FATAL_FAILURE(Init());
VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
VkBufferObj buffer;
buffer.init_as_dst(*m_device, (VkDeviceSize)20, reqs);
m_commandBuffer->begin();
// Introduce failure by using dstOffset greater than bufferSize
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdFillBuffer-dstOffset-00024");
m_commandBuffer->FillBuffer(buffer.handle(), 40, 4, 0x11111111);
m_errorMonitor->VerifyFound();
// Introduce failure by using size <= buffersize minus dstoffset
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdFillBuffer-size-00027");
m_commandBuffer->FillBuffer(buffer.handle(), 16, 12, 0x11111111);
m_errorMonitor->VerifyFound();
// Introduce failure by using dstOffset that is not multiple of 4
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, " is not a multiple of 4");
m_commandBuffer->FillBuffer(buffer.handle(), 1, 4, 0x11111111);
m_errorMonitor->VerifyFound();
// Introduce failure by using size that is not multiple of 4
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, " is not a multiple of 4");
m_commandBuffer->FillBuffer(buffer.handle(), 0, 6, 0x11111111);
m_errorMonitor->VerifyFound();
// Introduce failure by using size that is zero
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "must be greater than zero");
m_commandBuffer->FillBuffer(buffer.handle(), 0, 0, 0x11111111);
m_errorMonitor->VerifyFound();
m_commandBuffer->end();
}
TEST_F(VkLayerTest, SparseBindingImageBufferCreate) {
TEST_DESCRIPTION("Create buffer/image with sparse attributes but without the sparse_binding bit set");
ASSERT_NO_FATAL_FAILURE(Init());
VkBufferCreateInfo buf_info = {};
buf_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buf_info.pNext = NULL;
buf_info.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
buf_info.size = 2048;
buf_info.queueFamilyIndexCount = 0;
buf_info.pQueueFamilyIndices = NULL;
buf_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
if (m_device->phy().features().sparseResidencyBuffer) {
buf_info.flags = VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT;
CreateBufferTest(*this, &buf_info, "VUID-VkBufferCreateInfo-flags-00918");
} else {
printf("%s Test requires unsupported sparseResidencyBuffer feature. Skipped.\n", kSkipPrefix);
return;
}
if (m_device->phy().features().sparseResidencyAliased) {
buf_info.flags = VK_BUFFER_CREATE_SPARSE_ALIASED_BIT;
CreateBufferTest(*this, &buf_info, "VUID-VkBufferCreateInfo-flags-00918");
} else {
printf("%s Test requires unsupported sparseResidencyAliased feature. Skipped.\n", kSkipPrefix);
return;
}
VkImageCreateInfo image_create_info = {};
image_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_create_info.pNext = NULL;
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = VK_FORMAT_R8G8B8A8_UNORM;
image_create_info.extent.width = 512;
image_create_info.extent.height = 64;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
image_create_info.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
image_create_info.queueFamilyIndexCount = 0;
image_create_info.pQueueFamilyIndices = NULL;
image_create_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
if (m_device->phy().features().sparseResidencyImage2D) {
image_create_info.flags = VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT;
CreateImageTest(*this, &image_create_info, "VUID-VkImageCreateInfo-flags-00987");
} else {
printf("%s Test requires unsupported sparseResidencyImage2D feature. Skipped.\n", kSkipPrefix);
return;
}
if (m_device->phy().features().sparseResidencyAliased) {
image_create_info.flags = VK_IMAGE_CREATE_SPARSE_ALIASED_BIT;
CreateImageTest(*this, &image_create_info, "VUID-VkImageCreateInfo-flags-00987");
} else {
printf("%s Test requires unsupported sparseResidencyAliased feature. Skipped.\n", kSkipPrefix);
return;
}
}
TEST_F(VkLayerTest, SparseResidencyImageCreateUnsupportedTypes) {
TEST_DESCRIPTION("Create images with sparse residency with unsupported types");
// Determine which device feature are available
VkPhysicalDeviceFeatures device_features = {};
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
ASSERT_NO_FATAL_FAILURE(GetPhysicalDeviceFeatures(&device_features));
// Mask out device features we don't want and initialize device state
device_features.sparseResidencyImage2D = VK_FALSE;
device_features.sparseResidencyImage3D = VK_FALSE;
ASSERT_NO_FATAL_FAILURE(InitState(&device_features));
if (!m_device->phy().features().sparseBinding) {
printf("%s Test requires unsupported sparseBinding feature. Skipped.\n", kSkipPrefix);
return;
}
VkImageCreateInfo image_create_info = {};
image_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_create_info.pNext = NULL;
image_create_info.imageType = VK_IMAGE_TYPE_1D;
image_create_info.format = VK_FORMAT_R8G8B8A8_UNORM;
image_create_info.extent.width = 512;
image_create_info.extent.height = 1;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
image_create_info.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
image_create_info.queueFamilyIndexCount = 0;
image_create_info.pQueueFamilyIndices = NULL;
image_create_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
image_create_info.flags = VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT | VK_BUFFER_CREATE_SPARSE_BINDING_BIT;
// 1D image w/ sparse residency is an error
CreateImageTest(*this, &image_create_info, "VUID-VkImageCreateInfo-imageType-00970");
// 2D image w/ sparse residency when feature isn't available
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.extent.height = 64;
CreateImageTest(*this, &image_create_info, "VUID-VkImageCreateInfo-imageType-00971");
// 3D image w/ sparse residency when feature isn't available
image_create_info.imageType = VK_IMAGE_TYPE_3D;
image_create_info.extent.depth = 8;
CreateImageTest(*this, &image_create_info, "VUID-VkImageCreateInfo-imageType-00972");
}
TEST_F(VkLayerTest, SparseResidencyImageCreateUnsupportedSamples) {
TEST_DESCRIPTION("Create images with sparse residency with unsupported tiling or sample counts");
// Determine which device feature are available
VkPhysicalDeviceFeatures device_features = {};
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
ASSERT_NO_FATAL_FAILURE(GetPhysicalDeviceFeatures(&device_features));
// These tests require that the device support sparse residency for 2D images
if (VK_TRUE != device_features.sparseResidencyImage2D) {
printf("%s Test requires unsupported SparseResidencyImage2D feature. Skipped.\n", kSkipPrefix);
return;
}
// Mask out device features we don't want and initialize device state
device_features.sparseResidency2Samples = VK_FALSE;
device_features.sparseResidency4Samples = VK_FALSE;
device_features.sparseResidency8Samples = VK_FALSE;
device_features.sparseResidency16Samples = VK_FALSE;
ASSERT_NO_FATAL_FAILURE(InitState(&device_features));
VkImageCreateInfo image_create_info = {};
image_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_create_info.pNext = NULL;
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = VK_FORMAT_R8G8B8A8_UNORM;
image_create_info.extent.width = 64;
image_create_info.extent.height = 64;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_LINEAR;
image_create_info.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
image_create_info.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
image_create_info.queueFamilyIndexCount = 0;
image_create_info.pQueueFamilyIndices = NULL;
image_create_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
image_create_info.flags = VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT | VK_BUFFER_CREATE_SPARSE_BINDING_BIT;
// 2D image w/ sparse residency and linear tiling is an error
CreateImageTest(*this, &image_create_info,
"VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT then image tiling of VK_IMAGE_TILING_LINEAR is not supported");
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
// Multi-sample image w/ sparse residency when feature isn't available (4 flavors)
image_create_info.samples = VK_SAMPLE_COUNT_2_BIT;
CreateImageTest(*this, &image_create_info, "VUID-VkImageCreateInfo-imageType-00973");
image_create_info.samples = VK_SAMPLE_COUNT_4_BIT;
CreateImageTest(*this, &image_create_info, "VUID-VkImageCreateInfo-imageType-00974");
image_create_info.samples = VK_SAMPLE_COUNT_8_BIT;
CreateImageTest(*this, &image_create_info, "VUID-VkImageCreateInfo-imageType-00975");
image_create_info.samples = VK_SAMPLE_COUNT_16_BIT;
CreateImageTest(*this, &image_create_info, "VUID-VkImageCreateInfo-imageType-00976");
}
TEST_F(VkLayerTest, InvalidMemoryMapping) {
TEST_DESCRIPTION("Attempt to map memory in a number of incorrect ways");
VkResult err;
bool pass;
ASSERT_NO_FATAL_FAILURE(Init());
VkBuffer buffer;
VkDeviceMemory mem;
VkMemoryRequirements mem_reqs;
const VkDeviceSize atom_size = m_device->props.limits.nonCoherentAtomSize;
VkBufferCreateInfo buf_info = {};
buf_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buf_info.pNext = NULL;
buf_info.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
buf_info.size = 256;
buf_info.queueFamilyIndexCount = 0;
buf_info.pQueueFamilyIndices = NULL;
buf_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
buf_info.flags = 0;
err = vk::CreateBuffer(m_device->device(), &buf_info, NULL, &buffer);
ASSERT_VK_SUCCESS(err);
vk::GetBufferMemoryRequirements(m_device->device(), buffer, &mem_reqs);
VkMemoryAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
alloc_info.pNext = NULL;
alloc_info.memoryTypeIndex = 0;
// Ensure memory is big enough for both bindings
static const VkDeviceSize allocation_size = 0x10000;
alloc_info.allocationSize = allocation_size;
pass = m_device->phy().set_memory_type(mem_reqs.memoryTypeBits, &alloc_info, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
if (!pass) {
printf("%s Failed to set memory type.\n", kSkipPrefix);
vk::DestroyBuffer(m_device->device(), buffer, NULL);
return;
}
err = vk::AllocateMemory(m_device->device(), &alloc_info, NULL, &mem);
ASSERT_VK_SUCCESS(err);
uint8_t *pData;
// Attempt to map memory size 0 is invalid
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VkMapMemory: Attempting to map memory range of size zero");
err = vk::MapMemory(m_device->device(), mem, 0, 0, 0, (void **)&pData);
m_errorMonitor->VerifyFound();
// Map memory twice
err = vk::MapMemory(m_device->device(), mem, 0, mem_reqs.size, 0, (void **)&pData);
ASSERT_VK_SUCCESS(err);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "UNASSIGNED-CoreValidation-MemTrack-InvalidMap");
err = vk::MapMemory(m_device->device(), mem, 0, mem_reqs.size, 0, (void **)&pData);
m_errorMonitor->VerifyFound();
// Unmap the memory to avoid re-map error
vk::UnmapMemory(m_device->device(), mem);
// overstep allocation with VK_WHOLE_SIZE
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
" with size of VK_WHOLE_SIZE oversteps total array size 0x");
err = vk::MapMemory(m_device->device(), mem, allocation_size + 1, VK_WHOLE_SIZE, 0, (void **)&pData);
m_errorMonitor->VerifyFound();
// overstep allocation w/o VK_WHOLE_SIZE
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, " oversteps total array size 0x");
err = vk::MapMemory(m_device->device(), mem, 1, allocation_size, 0, (void **)&pData);
m_errorMonitor->VerifyFound();
// Now error due to unmapping memory that's not mapped
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "Unmapping Memory without memory being mapped: ");
vk::UnmapMemory(m_device->device(), mem);
m_errorMonitor->VerifyFound();
// Now map memory and cause errors due to flushing invalid ranges
err = vk::MapMemory(m_device->device(), mem, 4 * atom_size, VK_WHOLE_SIZE, 0, (void **)&pData);
ASSERT_VK_SUCCESS(err);
VkMappedMemoryRange mmr = {};
mmr.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
mmr.memory = mem;
mmr.offset = atom_size; // Error b/c offset less than offset of mapped mem
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkMappedMemoryRange-size-00685");
vk::FlushMappedMemoryRanges(m_device->device(), 1, &mmr);
m_errorMonitor->VerifyFound();
// Now flush range that oversteps mapped range
vk::UnmapMemory(m_device->device(), mem);
err = vk::MapMemory(m_device->device(), mem, 0, 4 * atom_size, 0, (void **)&pData);
ASSERT_VK_SUCCESS(err);
mmr.offset = atom_size;
mmr.size = 4 * atom_size; // Flushing bounds exceed mapped bounds
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkMappedMemoryRange-size-00685");
vk::FlushMappedMemoryRanges(m_device->device(), 1, &mmr);
m_errorMonitor->VerifyFound();
// Now flush range with VK_WHOLE_SIZE that oversteps offset
vk::UnmapMemory(m_device->device(), mem);
err = vk::MapMemory(m_device->device(), mem, 2 * atom_size, 4 * atom_size, 0, (void **)&pData);
ASSERT_VK_SUCCESS(err);
mmr.offset = atom_size;
mmr.size = VK_WHOLE_SIZE;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkMappedMemoryRange-size-00686");
vk::FlushMappedMemoryRanges(m_device->device(), 1, &mmr);
m_errorMonitor->VerifyFound();
// Some platforms have an atomsize of 1 which makes the test meaningless
if (atom_size > 3) {
// Now with an offset NOT a multiple of the device limit
vk::UnmapMemory(m_device->device(), mem);
err = vk::MapMemory(m_device->device(), mem, 0, 4 * atom_size, 0, (void **)&pData);
ASSERT_VK_SUCCESS(err);
mmr.offset = 3; // Not a multiple of atom_size
mmr.size = VK_WHOLE_SIZE;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkMappedMemoryRange-offset-00687");
vk::FlushMappedMemoryRanges(m_device->device(), 1, &mmr);
m_errorMonitor->VerifyFound();
// Now with a size NOT a multiple of the device limit
vk::UnmapMemory(m_device->device(), mem);
err = vk::MapMemory(m_device->device(), mem, 0, 4 * atom_size, 0, (void **)&pData);
ASSERT_VK_SUCCESS(err);
mmr.offset = atom_size;
mmr.size = 2 * atom_size + 1; // Not a multiple of atom_size
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkMappedMemoryRange-size-01390");
vk::FlushMappedMemoryRanges(m_device->device(), 1, &mmr);
m_errorMonitor->VerifyFound();
}
pass = m_device->phy().set_memory_type(mem_reqs.memoryTypeBits, &alloc_info, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
if (!pass) {
printf("%s Failed to set memory type.\n", kSkipPrefix);
vk::FreeMemory(m_device->device(), mem, NULL);
vk::DestroyBuffer(m_device->device(), buffer, NULL);
return;
}
// TODO : If we can get HOST_VISIBLE w/o HOST_COHERENT we can test cases of
// kVUID_Core_MemTrack_InvalidMap in validateAndCopyNoncoherentMemoryToDriver()
vk::DestroyBuffer(m_device->device(), buffer, NULL);
vk::FreeMemory(m_device->device(), mem, NULL);
}
TEST_F(VkLayerTest, MapMemWithoutHostVisibleBit) {
TEST_DESCRIPTION("Allocate memory that is not mappable and then attempt to map it.");
VkResult err;
bool pass;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkMapMemory-memory-00682");
ASSERT_NO_FATAL_FAILURE(Init());
VkMemoryAllocateInfo mem_alloc = {};
mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
mem_alloc.pNext = NULL;
mem_alloc.allocationSize = 1024;
pass = m_device->phy().set_memory_type(0xFFFFFFFF, &mem_alloc, 0, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
if (!pass) { // If we can't find any unmappable memory this test doesn't
// make sense
printf("%s No unmappable memory types found, skipping test\n", kSkipPrefix);
return;
}
VkDeviceMemory mem;
err = vk::AllocateMemory(m_device->device(), &mem_alloc, NULL, &mem);
ASSERT_VK_SUCCESS(err);
void *mappedAddress = NULL;
err = vk::MapMemory(m_device->device(), mem, 0, VK_WHOLE_SIZE, 0, &mappedAddress);
m_errorMonitor->VerifyFound();
vk::FreeMemory(m_device->device(), mem, NULL);
}
TEST_F(VkLayerTest, RebindMemory) {
VkResult err;
bool pass;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkBindImageMemory-image-01044");
ASSERT_NO_FATAL_FAILURE(Init());
// Create an image, allocate memory, free it, and then try to bind it
VkImage image;
VkDeviceMemory mem1;
VkDeviceMemory mem2;
VkMemoryRequirements mem_reqs;
const VkFormat tex_format = VK_FORMAT_B8G8R8A8_UNORM;
const int32_t tex_width = 32;
const int32_t tex_height = 32;
VkImageCreateInfo image_create_info = {};
image_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_create_info.pNext = NULL;
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = tex_format;
image_create_info.extent.width = tex_width;
image_create_info.extent.height = tex_height;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
image_create_info.flags = 0;
VkMemoryAllocateInfo mem_alloc = {};
mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
mem_alloc.pNext = NULL;
mem_alloc.allocationSize = 0;
mem_alloc.memoryTypeIndex = 0;
// Introduce failure, do NOT set memProps to
// VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
mem_alloc.memoryTypeIndex = 1;
err = vk::CreateImage(m_device->device(), &image_create_info, NULL, &image);
ASSERT_VK_SUCCESS(err);
vk::GetImageMemoryRequirements(m_device->device(), image, &mem_reqs);
mem_alloc.allocationSize = mem_reqs.size;
pass = m_device->phy().set_memory_type(mem_reqs.memoryTypeBits, &mem_alloc, 0);
ASSERT_TRUE(pass);
// allocate 2 memory objects
err = vk::AllocateMemory(m_device->device(), &mem_alloc, NULL, &mem1);
ASSERT_VK_SUCCESS(err);
err = vk::AllocateMemory(m_device->device(), &mem_alloc, NULL, &mem2);
ASSERT_VK_SUCCESS(err);
// Bind first memory object to Image object
err = vk::BindImageMemory(m_device->device(), image, mem1, 0);
ASSERT_VK_SUCCESS(err);
// Introduce validation failure, try to bind a different memory object to
// the same image object
err = vk::BindImageMemory(m_device->device(), image, mem2, 0);
m_errorMonitor->VerifyFound();
vk::DestroyImage(m_device->device(), image, NULL);
vk::FreeMemory(m_device->device(), mem1, NULL);
vk::FreeMemory(m_device->device(), mem2, NULL);
}
TEST_F(VkLayerTest, QueryMemoryCommitmentWithoutLazyProperty) {
TEST_DESCRIPTION("Attempt to query memory commitment on memory without lazy allocation");
ASSERT_NO_FATAL_FAILURE(Init());
auto image_ci = vk_testing::Image::create_info();
image_ci.imageType = VK_IMAGE_TYPE_2D;
image_ci.format = VK_FORMAT_B8G8R8A8_UNORM;
image_ci.extent.width = 32;
image_ci.extent.height = 32;
image_ci.tiling = VK_IMAGE_TILING_OPTIMAL;
image_ci.usage = VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
VkImageObj image(m_device);
image.init_no_mem(*m_device, image_ci);
auto mem_reqs = image.memory_requirements();
// memory_type_index is set to 0 here, but is set properly below
auto image_alloc_info = vk_testing::DeviceMemory::alloc_info(mem_reqs.size, 0);
bool pass;
// the last argument is the "forbid" argument for set_memory_type, disallowing
// that particular memory type rather than requiring it
pass = m_device->phy().set_memory_type(mem_reqs.memoryTypeBits, &image_alloc_info, 0, VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT);
if (!pass) {
printf("%s Failed to set memory type.\n", kSkipPrefix);
return;
}
vk_testing::DeviceMemory mem;
mem.init(*m_device, image_alloc_info);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkGetDeviceMemoryCommitment-memory-00690");
VkDeviceSize size;
vk::GetDeviceMemoryCommitment(m_device->device(), mem.handle(), &size);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, InvalidUsageBits) {
TEST_DESCRIPTION(
"Specify wrong usage for image then create conflicting view of image Initialize buffer with wrong usage then perform copy "
"expecting errors from both the image and the buffer (2 calls)");
ASSERT_NO_FATAL_FAILURE(Init());
auto format = FindSupportedDepthStencilFormat(gpu());
if (!format) {
printf("%s No Depth + Stencil format found. Skipped.\n", kSkipPrefix);
return;
}
VkImageObj image(m_device);
// Initialize image with transfer source usage
image.Init(128, 128, 1, format, VK_IMAGE_USAGE_TRANSFER_SRC_BIT, VK_IMAGE_TILING_OPTIMAL, 0);
ASSERT_TRUE(image.initialized());
VkImageView dsv;
VkImageViewCreateInfo dsvci = {};
dsvci.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
dsvci.image = image.handle();
dsvci.viewType = VK_IMAGE_VIEW_TYPE_2D;
dsvci.format = format;
dsvci.subresourceRange.layerCount = 1;
dsvci.subresourceRange.baseMipLevel = 0;
dsvci.subresourceRange.levelCount = 1;
dsvci.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
// Create a view with depth / stencil aspect for image with different usage
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "UNASSIGNED-CoreValidation-MemTrack-InvalidUsageFlag");
vk::CreateImageView(m_device->device(), &dsvci, NULL, &dsv);
m_errorMonitor->VerifyFound();
// Initialize buffer with TRANSFER_DST usage
VkBufferObj buffer;
VkMemoryPropertyFlags reqs = 0;
buffer.init_as_dst(*m_device, 128 * 128, reqs);
VkBufferImageCopy region = {};
region.bufferRowLength = 128;
region.bufferImageHeight = 128;
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
region.imageSubresource.layerCount = 1;
region.imageExtent.height = 16;
region.imageExtent.width = 16;
region.imageExtent.depth = 1;
// Buffer usage not set to TRANSFER_SRC and image usage not set to TRANSFER_DST
m_commandBuffer->begin();
// two separate errors from this call:
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdCopyBufferToImage-dstImage-00177");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdCopyBufferToImage-srcBuffer-00174");
vk::CmdCopyBufferToImage(m_commandBuffer->handle(), buffer.handle(), image.handle(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1,
&region);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, CopyBufferToCompressedImage) {
TEST_DESCRIPTION("Copy buffer to compressed image when buffer is larger than image.");
ASSERT_NO_FATAL_FAILURE(Init());
// Verify format support
if (!ImageFormatAndFeaturesSupported(gpu(), VK_FORMAT_BC1_RGBA_SRGB_BLOCK, VK_IMAGE_TILING_OPTIMAL,
VK_FORMAT_FEATURE_TRANSFER_DST_BIT_KHR)) {
printf("%s Required formats/features not supported - CopyBufferToCompressedImage skipped.\n", kSkipPrefix);
return;
}
VkImageObj width_image(m_device);
VkImageObj height_image(m_device);
VkBufferObj buffer;
VkMemoryPropertyFlags reqs = 0;
buffer.init_as_src(*m_device, 8 * 4 * 2, reqs);
VkBufferImageCopy region = {};
region.bufferRowLength = 0;
region.bufferImageHeight = 0;
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.imageSubresource.layerCount = 1;
region.imageExtent.width = 8;
region.imageExtent.height = 4;
region.imageExtent.depth = 1;
width_image.Init(5, 4, 1, VK_FORMAT_BC1_RGBA_SRGB_BLOCK, VK_IMAGE_USAGE_TRANSFER_DST_BIT, VK_IMAGE_TILING_OPTIMAL);
height_image.Init(8, 3, 1, VK_FORMAT_BC1_RGBA_SRGB_BLOCK, VK_IMAGE_USAGE_TRANSFER_DST_BIT, VK_IMAGE_TILING_OPTIMAL);
if (!width_image.initialized() || (!height_image.initialized())) {
printf("%s Unable to initialize surfaces - UncompressedToCompressedImageCopy skipped.\n", kSkipPrefix);
return;
}
m_commandBuffer->begin();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkBufferImageCopy-imageOffset-00197");
vk::CmdCopyBufferToImage(m_commandBuffer->handle(), buffer.handle(), width_image.handle(), VK_IMAGE_LAYOUT_GENERAL, 1, &region);
m_errorMonitor->VerifyFound();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkBufferImageCopy-imageOffset-00200");
m_errorMonitor->SetUnexpectedError("VUID-vkCmdCopyBufferToImage-pRegions-00172");
VkResult err;
VkImageCreateInfo depth_image_create_info = {};
depth_image_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
depth_image_create_info.pNext = NULL;
depth_image_create_info.imageType = VK_IMAGE_TYPE_3D;
depth_image_create_info.format = VK_FORMAT_BC1_RGBA_SRGB_BLOCK;
depth_image_create_info.extent.width = 8;
depth_image_create_info.extent.height = 4;
depth_image_create_info.extent.depth = 1;
depth_image_create_info.mipLevels = 1;
depth_image_create_info.arrayLayers = 1;
depth_image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
depth_image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
depth_image_create_info.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
depth_image_create_info.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT;
depth_image_create_info.queueFamilyIndexCount = 0;
depth_image_create_info.pQueueFamilyIndices = NULL;
VkImage depth_image = VK_NULL_HANDLE;
err = vk::CreateImage(m_device->handle(), &depth_image_create_info, NULL, &depth_image);
ASSERT_VK_SUCCESS(err);
VkDeviceMemory mem1;
VkMemoryRequirements mem_reqs;
mem_reqs.memoryTypeBits = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
VkMemoryAllocateInfo mem_alloc = {};
mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
mem_alloc.pNext = NULL;
mem_alloc.allocationSize = 0;
mem_alloc.memoryTypeIndex = 0;
mem_alloc.memoryTypeIndex = 1;
vk::GetImageMemoryRequirements(m_device->device(), depth_image, &mem_reqs);
mem_alloc.allocationSize = mem_reqs.size;
bool pass = m_device->phy().set_memory_type(mem_reqs.memoryTypeBits, &mem_alloc, 0);
ASSERT_TRUE(pass);
err = vk::AllocateMemory(m_device->device(), &mem_alloc, NULL, &mem1);
ASSERT_VK_SUCCESS(err);
err = vk::BindImageMemory(m_device->device(), depth_image, mem1, 0);
region.imageExtent.depth = 2;
vk::CmdCopyBufferToImage(m_commandBuffer->handle(), buffer.handle(), depth_image, VK_IMAGE_LAYOUT_GENERAL, 1, &region);
m_errorMonitor->VerifyFound();
vk::DestroyImage(m_device->device(), depth_image, NULL);
vk::FreeMemory(m_device->device(), mem1, NULL);
m_commandBuffer->end();
}
TEST_F(VkLayerTest, CreateUnknownObject) {
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkGetImageMemoryRequirements-image-parameter");
TEST_DESCRIPTION("Pass an invalid image object handle into a Vulkan API call.");
ASSERT_NO_FATAL_FAILURE(Init());
// Pass bogus handle into GetImageMemoryRequirements
VkMemoryRequirements mem_reqs;
uint64_t fakeImageHandle = 0xCADECADE;
VkImage fauxImage = reinterpret_cast<VkImage &>(fakeImageHandle);
vk::GetImageMemoryRequirements(m_device->device(), fauxImage, &mem_reqs);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, BindImageInvalidMemoryType) {
VkResult err;
TEST_DESCRIPTION("Test validation check for an invalid memory type index during bind[Buffer|Image]Memory time");
ASSERT_NO_FATAL_FAILURE(Init());
// Create an image, allocate memory, set a bad typeIndex and then try to
// bind it
VkImage image;
VkDeviceMemory mem;
VkMemoryRequirements mem_reqs;
const VkFormat tex_format = VK_FORMAT_B8G8R8A8_UNORM;
const int32_t tex_width = 32;
const int32_t tex_height = 32;
VkImageCreateInfo image_create_info = {};
image_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_create_info.pNext = NULL;
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = tex_format;
image_create_info.extent.width = tex_width;
image_create_info.extent.height = tex_height;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
image_create_info.flags = 0;
VkMemoryAllocateInfo mem_alloc = {};
mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
mem_alloc.pNext = NULL;
mem_alloc.allocationSize = 0;
mem_alloc.memoryTypeIndex = 0;
err = vk::CreateImage(m_device->device(), &image_create_info, NULL, &image);
ASSERT_VK_SUCCESS(err);
vk::GetImageMemoryRequirements(m_device->device(), image, &mem_reqs);
mem_alloc.allocationSize = mem_reqs.size;
// Introduce Failure, select invalid TypeIndex
VkPhysicalDeviceMemoryProperties memory_info;
vk::GetPhysicalDeviceMemoryProperties(gpu(), &memory_info);
unsigned int i;
for (i = 0; i < memory_info.memoryTypeCount; i++) {
if ((mem_reqs.memoryTypeBits & (1 << i)) == 0) {
mem_alloc.memoryTypeIndex = i;
break;
}
}
if (i >= memory_info.memoryTypeCount) {
printf("%s No invalid memory type index could be found; skipped.\n", kSkipPrefix);
vk::DestroyImage(m_device->device(), image, NULL);
return;
}
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "for this object type are not compatible with the memory");
err = vk::AllocateMemory(m_device->device(), &mem_alloc, NULL, &mem);
ASSERT_VK_SUCCESS(err);
err = vk::BindImageMemory(m_device->device(), image, mem, 0);
(void)err;
m_errorMonitor->VerifyFound();
vk::DestroyImage(m_device->device(), image, NULL);
vk::FreeMemory(m_device->device(), mem, NULL);
}
TEST_F(VkLayerTest, BindInvalidMemory) {
VkResult err;
bool pass;
ASSERT_NO_FATAL_FAILURE(Init());
const VkFormat tex_format = VK_FORMAT_R8G8B8A8_UNORM;
const int32_t tex_width = 256;
const int32_t tex_height = 256;
VkImageCreateInfo image_create_info = {};
image_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_create_info.pNext = NULL;
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = tex_format;
image_create_info.extent.width = tex_width;
image_create_info.extent.height = tex_height;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
image_create_info.flags = 0;
VkBufferCreateInfo buffer_create_info = {};
buffer_create_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buffer_create_info.pNext = NULL;
buffer_create_info.flags = 0;
buffer_create_info.size = 4 * 1024 * 1024;
buffer_create_info.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
buffer_create_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
// Create an image/buffer, allocate memory, free it, and then try to bind it
{
VkImage image = VK_NULL_HANDLE;
VkBuffer buffer = VK_NULL_HANDLE;
err = vk::CreateImage(device(), &image_create_info, NULL, &image);
ASSERT_VK_SUCCESS(err);
err = vk::CreateBuffer(device(), &buffer_create_info, NULL, &buffer);
ASSERT_VK_SUCCESS(err);
VkMemoryRequirements image_mem_reqs = {}, buffer_mem_reqs = {};
vk::GetImageMemoryRequirements(device(), image, &image_mem_reqs);
vk::GetBufferMemoryRequirements(device(), buffer, &buffer_mem_reqs);
VkMemoryAllocateInfo image_mem_alloc = {}, buffer_mem_alloc = {};
image_mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
image_mem_alloc.allocationSize = image_mem_reqs.size;
pass = m_device->phy().set_memory_type(image_mem_reqs.memoryTypeBits, &image_mem_alloc, 0);
ASSERT_TRUE(pass);
buffer_mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
buffer_mem_alloc.allocationSize = buffer_mem_reqs.size;
pass = m_device->phy().set_memory_type(buffer_mem_reqs.memoryTypeBits, &buffer_mem_alloc, 0);
ASSERT_TRUE(pass);
VkDeviceMemory image_mem = VK_NULL_HANDLE, buffer_mem = VK_NULL_HANDLE;
err = vk::AllocateMemory(device(), &image_mem_alloc, NULL, &image_mem);
ASSERT_VK_SUCCESS(err);
err = vk::AllocateMemory(device(), &buffer_mem_alloc, NULL, &buffer_mem);
ASSERT_VK_SUCCESS(err);
vk::FreeMemory(device(), image_mem, NULL);
vk::FreeMemory(device(), buffer_mem, NULL);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkBindImageMemory-memory-parameter");
err = vk::BindImageMemory(device(), image, image_mem, 0);
(void)err; // This may very well return an error.
m_errorMonitor->VerifyFound();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkBindBufferMemory-memory-parameter");
err = vk::BindBufferMemory(device(), buffer, buffer_mem, 0);
(void)err; // This may very well return an error.
m_errorMonitor->VerifyFound();
vk::DestroyImage(m_device->device(), image, NULL);
vk::DestroyBuffer(m_device->device(), buffer, NULL);
}
// Try to bind memory to an object that already has a memory binding
{
VkImage image = VK_NULL_HANDLE;
err = vk::CreateImage(device(), &image_create_info, NULL, &image);
ASSERT_VK_SUCCESS(err);
VkBuffer buffer = VK_NULL_HANDLE;
err = vk::CreateBuffer(device(), &buffer_create_info, NULL, &buffer);
ASSERT_VK_SUCCESS(err);
VkMemoryRequirements image_mem_reqs = {}, buffer_mem_reqs = {};
vk::GetImageMemoryRequirements(device(), image, &image_mem_reqs);
vk::GetBufferMemoryRequirements(device(), buffer, &buffer_mem_reqs);
VkMemoryAllocateInfo image_alloc_info = {}, buffer_alloc_info = {};
image_alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
image_alloc_info.allocationSize = image_mem_reqs.size;
buffer_alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
buffer_alloc_info.allocationSize = buffer_mem_reqs.size;
pass = m_device->phy().set_memory_type(image_mem_reqs.memoryTypeBits, &image_alloc_info, 0);
ASSERT_TRUE(pass);
pass = m_device->phy().set_memory_type(buffer_mem_reqs.memoryTypeBits, &buffer_alloc_info, 0);
ASSERT_TRUE(pass);
VkDeviceMemory image_mem, buffer_mem;
err = vk::AllocateMemory(device(), &image_alloc_info, NULL, &image_mem);
ASSERT_VK_SUCCESS(err);
err = vk::AllocateMemory(device(), &buffer_alloc_info, NULL, &buffer_mem);
ASSERT_VK_SUCCESS(err);
err = vk::BindImageMemory(device(), image, image_mem, 0);
ASSERT_VK_SUCCESS(err);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkBindImageMemory-image-01044");
err = vk::BindImageMemory(device(), image, image_mem, 0);
(void)err; // This may very well return an error.
m_errorMonitor->VerifyFound();
err = vk::BindBufferMemory(device(), buffer, buffer_mem, 0);
ASSERT_VK_SUCCESS(err);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkBindBufferMemory-buffer-01029");
err = vk::BindBufferMemory(device(), buffer, buffer_mem, 0);
(void)err; // This may very well return an error.
m_errorMonitor->VerifyFound();
vk::FreeMemory(device(), image_mem, NULL);
vk::FreeMemory(device(), buffer_mem, NULL);
vk::DestroyImage(device(), image, NULL);
vk::DestroyBuffer(device(), buffer, NULL);
}
// Try to bind memory to an object with an invalid memoryOffset
{
VkImage image = VK_NULL_HANDLE;
err = vk::CreateImage(device(), &image_create_info, NULL, &image);
ASSERT_VK_SUCCESS(err);
VkBuffer buffer = VK_NULL_HANDLE;
err = vk::CreateBuffer(device(), &buffer_create_info, NULL, &buffer);
ASSERT_VK_SUCCESS(err);
VkMemoryRequirements image_mem_reqs = {}, buffer_mem_reqs = {};
vk::GetImageMemoryRequirements(device(), image, &image_mem_reqs);
vk::GetBufferMemoryRequirements(device(), buffer, &buffer_mem_reqs);
VkMemoryAllocateInfo image_alloc_info = {}, buffer_alloc_info = {};
image_alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
// Leave some extra space for alignment wiggle room
image_alloc_info.allocationSize = image_mem_reqs.size + image_mem_reqs.alignment;
buffer_alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
buffer_alloc_info.allocationSize = buffer_mem_reqs.size + buffer_mem_reqs.alignment;
pass = m_device->phy().set_memory_type(image_mem_reqs.memoryTypeBits, &image_alloc_info, 0);
ASSERT_TRUE(pass);
pass = m_device->phy().set_memory_type(buffer_mem_reqs.memoryTypeBits, &buffer_alloc_info, 0);
ASSERT_TRUE(pass);
VkDeviceMemory image_mem, buffer_mem;
err = vk::AllocateMemory(device(), &image_alloc_info, NULL, &image_mem);
ASSERT_VK_SUCCESS(err);
err = vk::AllocateMemory(device(), &buffer_alloc_info, NULL, &buffer_mem);
ASSERT_VK_SUCCESS(err);
// Test unaligned memory offset
{
if (image_mem_reqs.alignment > 1) {
VkDeviceSize image_offset = 1;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkBindImageMemory-memoryOffset-01048");
err = vk::BindImageMemory(device(), image, image_mem, image_offset);
(void)err; // This may very well return an error.
m_errorMonitor->VerifyFound();
}
if (buffer_mem_reqs.alignment > 1) {
VkDeviceSize buffer_offset = 1;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkBindBufferMemory-memoryOffset-01036");
err = vk::BindBufferMemory(device(), buffer, buffer_mem, buffer_offset);
(void)err; // This may very well return an error.
m_errorMonitor->VerifyFound();
}
}
// Test memory offsets outside the memory allocation
{
VkDeviceSize image_offset =
(image_alloc_info.allocationSize + image_mem_reqs.alignment) & ~(image_mem_reqs.alignment - 1);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkBindImageMemory-memoryOffset-01046");
err = vk::BindImageMemory(device(), image, image_mem, image_offset);
(void)err; // This may very well return an error.
m_errorMonitor->VerifyFound();
VkDeviceSize buffer_offset =
(buffer_alloc_info.allocationSize + buffer_mem_reqs.alignment) & ~(buffer_mem_reqs.alignment - 1);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkBindBufferMemory-memoryOffset-01031");
err = vk::BindBufferMemory(device(), buffer, buffer_mem, buffer_offset);
(void)err; // This may very well return an error.
m_errorMonitor->VerifyFound();
}
// Test memory offsets within the memory allocation, but which leave too little memory for
// the resource.
{
VkDeviceSize image_offset = (image_mem_reqs.size - 1) & ~(image_mem_reqs.alignment - 1);
if ((image_offset > 0) && (image_mem_reqs.size < (image_alloc_info.allocationSize - image_mem_reqs.alignment))) {
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkBindImageMemory-size-01049");
err = vk::BindImageMemory(device(), image, image_mem, image_offset);
(void)err; // This may very well return an error.
m_errorMonitor->VerifyFound();
}
VkDeviceSize buffer_offset = (buffer_mem_reqs.size - 1) & ~(buffer_mem_reqs.alignment - 1);
if (buffer_offset > 0) {
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkBindBufferMemory-size-01037");
err = vk::BindBufferMemory(device(), buffer, buffer_mem, buffer_offset);
(void)err; // This may very well return an error.
m_errorMonitor->VerifyFound();
}
}
vk::FreeMemory(device(), image_mem, NULL);
vk::FreeMemory(device(), buffer_mem, NULL);
vk::DestroyImage(device(), image, NULL);
vk::DestroyBuffer(device(), buffer, NULL);
}
// Try to bind memory to an object with an invalid memory type
{
VkImage image = VK_NULL_HANDLE;
err = vk::CreateImage(device(), &image_create_info, NULL, &image);
ASSERT_VK_SUCCESS(err);
VkBuffer buffer = VK_NULL_HANDLE;
err = vk::CreateBuffer(device(), &buffer_create_info, NULL, &buffer);
ASSERT_VK_SUCCESS(err);
VkMemoryRequirements image_mem_reqs = {}, buffer_mem_reqs = {};
vk::GetImageMemoryRequirements(device(), image, &image_mem_reqs);
vk::GetBufferMemoryRequirements(device(), buffer, &buffer_mem_reqs);
VkMemoryAllocateInfo image_alloc_info = {}, buffer_alloc_info = {};
image_alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
image_alloc_info.allocationSize = image_mem_reqs.size;
buffer_alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
buffer_alloc_info.allocationSize = buffer_mem_reqs.size;
// Create a mask of available memory types *not* supported by these resources,
// and try to use one of them.
VkPhysicalDeviceMemoryProperties memory_properties = {};
vk::GetPhysicalDeviceMemoryProperties(m_device->phy().handle(), &memory_properties);
VkDeviceMemory image_mem, buffer_mem;
uint32_t image_unsupported_mem_type_bits = ((1 << memory_properties.memoryTypeCount) - 1) & ~image_mem_reqs.memoryTypeBits;
if (image_unsupported_mem_type_bits != 0) {
pass = m_device->phy().set_memory_type(image_unsupported_mem_type_bits, &image_alloc_info, 0);
ASSERT_TRUE(pass);
err = vk::AllocateMemory(device(), &image_alloc_info, NULL, &image_mem);
ASSERT_VK_SUCCESS(err);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkBindImageMemory-memory-01047");
err = vk::BindImageMemory(device(), image, image_mem, 0);
(void)err; // This may very well return an error.
m_errorMonitor->VerifyFound();
vk::FreeMemory(device(), image_mem, NULL);
}
uint32_t buffer_unsupported_mem_type_bits =
((1 << memory_properties.memoryTypeCount) - 1) & ~buffer_mem_reqs.memoryTypeBits;
if (buffer_unsupported_mem_type_bits != 0) {
pass = m_device->phy().set_memory_type(buffer_unsupported_mem_type_bits, &buffer_alloc_info, 0);
ASSERT_TRUE(pass);
err = vk::AllocateMemory(device(), &buffer_alloc_info, NULL, &buffer_mem);
ASSERT_VK_SUCCESS(err);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkBindBufferMemory-memory-01035");
err = vk::BindBufferMemory(device(), buffer, buffer_mem, 0);
(void)err; // This may very well return an error.
m_errorMonitor->VerifyFound();
vk::FreeMemory(device(), buffer_mem, NULL);
}
vk::DestroyImage(device(), image, NULL);
vk::DestroyBuffer(device(), buffer, NULL);
}
// Try to bind memory to an image created with sparse memory flags
{
VkImageCreateInfo sparse_image_create_info = image_create_info;
sparse_image_create_info.flags |= VK_IMAGE_CREATE_SPARSE_BINDING_BIT;
VkImageFormatProperties image_format_properties = {};
err = vk::GetPhysicalDeviceImageFormatProperties(m_device->phy().handle(), sparse_image_create_info.format,
sparse_image_create_info.imageType, sparse_image_create_info.tiling,
sparse_image_create_info.usage, sparse_image_create_info.flags,
&image_format_properties);
if (!m_device->phy().features().sparseResidencyImage2D || err == VK_ERROR_FORMAT_NOT_SUPPORTED) {
// most likely means sparse formats aren't supported here; skip this test.
} else {
ASSERT_VK_SUCCESS(err);
if (image_format_properties.maxExtent.width == 0) {
printf("%s Sparse image format not supported; skipped.\n", kSkipPrefix);
return;
} else {
VkImage sparse_image = VK_NULL_HANDLE;
err = vk::CreateImage(m_device->device(), &sparse_image_create_info, NULL, &sparse_image);
ASSERT_VK_SUCCESS(err);
VkMemoryRequirements sparse_mem_reqs = {};
vk::GetImageMemoryRequirements(m_device->device(), sparse_image, &sparse_mem_reqs);
if (sparse_mem_reqs.memoryTypeBits != 0) {
VkMemoryAllocateInfo sparse_mem_alloc = {};
sparse_mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
sparse_mem_alloc.pNext = NULL;
sparse_mem_alloc.allocationSize = sparse_mem_reqs.size;
sparse_mem_alloc.memoryTypeIndex = 0;
pass = m_device->phy().set_memory_type(sparse_mem_reqs.memoryTypeBits, &sparse_mem_alloc, 0);
ASSERT_TRUE(pass);
VkDeviceMemory sparse_mem = VK_NULL_HANDLE;
err = vk::AllocateMemory(m_device->device(), &sparse_mem_alloc, NULL, &sparse_mem);
ASSERT_VK_SUCCESS(err);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkBindImageMemory-image-01045");
err = vk::BindImageMemory(m_device->device(), sparse_image, sparse_mem, 0);
// This may very well return an error.
(void)err;
m_errorMonitor->VerifyFound();
vk::FreeMemory(m_device->device(), sparse_mem, NULL);
}
vk::DestroyImage(m_device->device(), sparse_image, NULL);
}
}
}
// Try to bind memory to a buffer created with sparse memory flags
{
VkBufferCreateInfo sparse_buffer_create_info = buffer_create_info;
sparse_buffer_create_info.flags |= VK_IMAGE_CREATE_SPARSE_BINDING_BIT;
if (!m_device->phy().features().sparseResidencyBuffer) {
// most likely means sparse formats aren't supported here; skip this test.
} else {
VkBuffer sparse_buffer = VK_NULL_HANDLE;
err = vk::CreateBuffer(m_device->device(), &sparse_buffer_create_info, NULL, &sparse_buffer);
ASSERT_VK_SUCCESS(err);
VkMemoryRequirements sparse_mem_reqs = {};
vk::GetBufferMemoryRequirements(m_device->device(), sparse_buffer, &sparse_mem_reqs);
if (sparse_mem_reqs.memoryTypeBits != 0) {
VkMemoryAllocateInfo sparse_mem_alloc = {};
sparse_mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
sparse_mem_alloc.pNext = NULL;
sparse_mem_alloc.allocationSize = sparse_mem_reqs.size;
sparse_mem_alloc.memoryTypeIndex = 0;
pass = m_device->phy().set_memory_type(sparse_mem_reqs.memoryTypeBits, &sparse_mem_alloc, 0);
ASSERT_TRUE(pass);
VkDeviceMemory sparse_mem = VK_NULL_HANDLE;
err = vk::AllocateMemory(m_device->device(), &sparse_mem_alloc, NULL, &sparse_mem);
ASSERT_VK_SUCCESS(err);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkBindBufferMemory-buffer-01030");
err = vk::BindBufferMemory(m_device->device(), sparse_buffer, sparse_mem, 0);
// This may very well return an error.
(void)err;
m_errorMonitor->VerifyFound();
vk::FreeMemory(m_device->device(), sparse_mem, NULL);
}
vk::DestroyBuffer(m_device->device(), sparse_buffer, NULL);
}
}
}
TEST_F(VkLayerTest, BindMemoryToDestroyedObject) {
VkResult err;
bool pass;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkBindImageMemory-image-parameter");
ASSERT_NO_FATAL_FAILURE(Init());
// Create an image object, allocate memory, destroy the object and then try
// to bind it
VkImage image;
VkDeviceMemory mem;
VkMemoryRequirements mem_reqs;
const VkFormat tex_format = VK_FORMAT_B8G8R8A8_UNORM;
const int32_t tex_width = 32;
const int32_t tex_height = 32;
VkImageCreateInfo image_create_info = {};
image_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_create_info.pNext = NULL;
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = tex_format;
image_create_info.extent.width = tex_width;
image_create_info.extent.height = tex_height;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
image_create_info.flags = 0;
VkMemoryAllocateInfo mem_alloc = {};
mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
mem_alloc.pNext = NULL;
mem_alloc.allocationSize = 0;
mem_alloc.memoryTypeIndex = 0;
err = vk::CreateImage(m_device->device(), &image_create_info, NULL, &image);
ASSERT_VK_SUCCESS(err);
vk::GetImageMemoryRequirements(m_device->device(), image, &mem_reqs);
mem_alloc.allocationSize = mem_reqs.size;
pass = m_device->phy().set_memory_type(mem_reqs.memoryTypeBits, &mem_alloc, 0);
ASSERT_TRUE(pass);
// Allocate memory
err = vk::AllocateMemory(m_device->device(), &mem_alloc, NULL, &mem);
ASSERT_VK_SUCCESS(err);
// Introduce validation failure, destroy Image object before binding
vk::DestroyImage(m_device->device(), image, NULL);
ASSERT_VK_SUCCESS(err);
// Now Try to bind memory to this destroyed object
err = vk::BindImageMemory(m_device->device(), image, mem, 0);
// This may very well return an error.
(void)err;
m_errorMonitor->VerifyFound();
vk::FreeMemory(m_device->device(), mem, NULL);
}
TEST_F(VkLayerTest, ExceedMemoryAllocationCount) {
VkResult err = VK_SUCCESS;
const int max_mems = 32;
VkDeviceMemory mems[max_mems + 1];
if (!EnableDeviceProfileLayer()) {
printf("%s Failed to enable device profile layer.\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
PFN_vkSetPhysicalDeviceLimitsEXT fpvkSetPhysicalDeviceLimitsEXT =
(PFN_vkSetPhysicalDeviceLimitsEXT)vk::GetInstanceProcAddr(instance(), "vkSetPhysicalDeviceLimitsEXT");
PFN_vkGetOriginalPhysicalDeviceLimitsEXT fpvkGetOriginalPhysicalDeviceLimitsEXT =
(PFN_vkGetOriginalPhysicalDeviceLimitsEXT)vk::GetInstanceProcAddr(instance(), "vkGetOriginalPhysicalDeviceLimitsEXT");
if (!(fpvkSetPhysicalDeviceLimitsEXT) || !(fpvkGetOriginalPhysicalDeviceLimitsEXT)) {
printf("%s Can't find device_profile_api functions; skipped.\n", kSkipPrefix);
return;
}
VkPhysicalDeviceProperties props;
fpvkGetOriginalPhysicalDeviceLimitsEXT(gpu(), &props.limits);
if (props.limits.maxMemoryAllocationCount > max_mems) {
props.limits.maxMemoryAllocationCount = max_mems;
fpvkSetPhysicalDeviceLimitsEXT(gpu(), &props.limits);
}
ASSERT_NO_FATAL_FAILURE(InitState());
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"Number of currently valid memory objects is not less than the maximum allowed");
VkMemoryAllocateInfo mem_alloc = {};
mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
mem_alloc.pNext = NULL;
mem_alloc.memoryTypeIndex = 0;
mem_alloc.allocationSize = 4;
int i;
for (i = 0; i <= max_mems; i++) {
err = vk::AllocateMemory(m_device->device(), &mem_alloc, NULL, &mems[i]);
if (err != VK_SUCCESS) {
break;
}
}
m_errorMonitor->VerifyFound();
for (int j = 0; j < i; j++) {
vk::FreeMemory(m_device->device(), mems[j], NULL);
}
}
TEST_F(VkLayerTest, ImageSampleCounts) {
TEST_DESCRIPTION("Use bad sample counts in image transfer calls to trigger validation errors.");
ASSERT_NO_FATAL_FAILURE(Init(nullptr, nullptr, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT));
VkMemoryPropertyFlags reqs = 0;
VkImageCreateInfo image_create_info = {};
image_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_create_info.pNext = NULL;
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = VK_FORMAT_B8G8R8A8_UNORM;
image_create_info.extent.width = 256;
image_create_info.extent.height = 256;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.flags = 0;
VkImageBlit blit_region = {};
blit_region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blit_region.srcSubresource.baseArrayLayer = 0;
blit_region.srcSubresource.layerCount = 1;
blit_region.srcSubresource.mipLevel = 0;
blit_region.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blit_region.dstSubresource.baseArrayLayer = 0;
blit_region.dstSubresource.layerCount = 1;
blit_region.dstSubresource.mipLevel = 0;
blit_region.srcOffsets[0] = {0, 0, 0};
blit_region.srcOffsets[1] = {256, 256, 1};
blit_region.dstOffsets[0] = {0, 0, 0};
blit_region.dstOffsets[1] = {128, 128, 1};
// Create two images, the source with sampleCount = 4, and attempt to blit
// between them
{
image_create_info.samples = VK_SAMPLE_COUNT_4_BIT;
image_create_info.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
VkImageObj src_image(m_device);
src_image.init(&image_create_info);
src_image.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
VkImageObj dst_image(m_device);
dst_image.init(&image_create_info);
dst_image.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
m_commandBuffer->begin();
// TODO: These 2 VUs are redundant - expect one of them to go away
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-srcImage-00233");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-srcImage-00228");
vk::CmdBlitImage(m_commandBuffer->handle(), src_image.handle(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, dst_image.handle(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &blit_region, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
m_commandBuffer->end();
}
// Create two images, the dest with sampleCount = 4, and attempt to blit
// between them
{
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
VkImageObj src_image(m_device);
src_image.init(&image_create_info);
src_image.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
image_create_info.samples = VK_SAMPLE_COUNT_4_BIT;
image_create_info.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
VkImageObj dst_image(m_device);
dst_image.init(&image_create_info);
dst_image.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
m_commandBuffer->begin();
// TODO: These 2 VUs are redundant - expect one of them to go away
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-dstImage-00234");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-srcImage-00228");
vk::CmdBlitImage(m_commandBuffer->handle(), src_image.handle(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, dst_image.handle(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &blit_region, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
m_commandBuffer->end();
}
VkBufferImageCopy copy_region = {};
copy_region.bufferRowLength = 128;
copy_region.bufferImageHeight = 128;
copy_region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy_region.imageSubresource.layerCount = 1;
copy_region.imageExtent.height = 64;
copy_region.imageExtent.width = 64;
copy_region.imageExtent.depth = 1;
// Create src buffer and dst image with sampleCount = 4 and attempt to copy
// buffer to image
{
VkBufferObj src_buffer;
src_buffer.init_as_src(*m_device, 128 * 128 * 4, reqs);
image_create_info.samples = VK_SAMPLE_COUNT_4_BIT;
image_create_info.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
VkImageObj dst_image(m_device);
dst_image.init(&image_create_info);
dst_image.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
m_commandBuffer->begin();
m_errorMonitor->SetDesiredFailureMsg(
VK_DEBUG_REPORT_ERROR_BIT_EXT,
"was created with a sample count of VK_SAMPLE_COUNT_4_BIT but must be VK_SAMPLE_COUNT_1_BIT");
vk::CmdCopyBufferToImage(m_commandBuffer->handle(), src_buffer.handle(), dst_image.handle(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &copy_region);
m_errorMonitor->VerifyFound();
m_commandBuffer->end();
}
// Create dst buffer and src image with sampleCount = 4 and attempt to copy
// image to buffer
{
VkBufferObj dst_buffer;
dst_buffer.init_as_dst(*m_device, 128 * 128 * 4, reqs);
image_create_info.samples = VK_SAMPLE_COUNT_4_BIT;
image_create_info.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
vk_testing::Image src_image;
src_image.init(*m_device, (const VkImageCreateInfo &)image_create_info, reqs);
m_commandBuffer->begin();
m_errorMonitor->SetDesiredFailureMsg(
VK_DEBUG_REPORT_ERROR_BIT_EXT,
"was created with a sample count of VK_SAMPLE_COUNT_4_BIT but must be VK_SAMPLE_COUNT_1_BIT");
vk::CmdCopyImageToBuffer(m_commandBuffer->handle(), src_image.handle(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
dst_buffer.handle(), 1, &copy_region);
m_errorMonitor->VerifyFound();
m_commandBuffer->end();
}
}
TEST_F(VkLayerTest, BlitImageFormatTypes) {
ASSERT_NO_FATAL_FAILURE(Init());
VkFormat f_unsigned = VK_FORMAT_R8G8B8A8_UINT;
VkFormat f_signed = VK_FORMAT_R8G8B8A8_SINT;
VkFormat f_float = VK_FORMAT_R32_SFLOAT;
VkFormat f_depth = VK_FORMAT_D32_SFLOAT_S8_UINT;
VkFormat f_depth2 = VK_FORMAT_D32_SFLOAT;
if (!ImageFormatIsSupported(gpu(), f_unsigned, VK_IMAGE_TILING_OPTIMAL) ||
!ImageFormatIsSupported(gpu(), f_signed, VK_IMAGE_TILING_OPTIMAL) ||
!ImageFormatIsSupported(gpu(), f_float, VK_IMAGE_TILING_OPTIMAL) ||
!ImageFormatIsSupported(gpu(), f_depth, VK_IMAGE_TILING_OPTIMAL) ||
!ImageFormatIsSupported(gpu(), f_depth2, VK_IMAGE_TILING_OPTIMAL)) {
printf("%s Requested formats not supported - BlitImageFormatTypes skipped.\n", kSkipPrefix);
return;
}
// Note any missing feature bits
bool usrc = !ImageFormatAndFeaturesSupported(gpu(), f_unsigned, VK_IMAGE_TILING_OPTIMAL, VK_FORMAT_FEATURE_BLIT_SRC_BIT);
bool udst = !ImageFormatAndFeaturesSupported(gpu(), f_unsigned, VK_IMAGE_TILING_OPTIMAL, VK_FORMAT_FEATURE_BLIT_DST_BIT);
bool ssrc = !ImageFormatAndFeaturesSupported(gpu(), f_signed, VK_IMAGE_TILING_OPTIMAL, VK_FORMAT_FEATURE_BLIT_SRC_BIT);
bool sdst = !ImageFormatAndFeaturesSupported(gpu(), f_signed, VK_IMAGE_TILING_OPTIMAL, VK_FORMAT_FEATURE_BLIT_DST_BIT);
bool fsrc = !ImageFormatAndFeaturesSupported(gpu(), f_float, VK_IMAGE_TILING_OPTIMAL, VK_FORMAT_FEATURE_BLIT_SRC_BIT);
bool fdst = !ImageFormatAndFeaturesSupported(gpu(), f_float, VK_IMAGE_TILING_OPTIMAL, VK_FORMAT_FEATURE_BLIT_DST_BIT);
bool d1dst = !ImageFormatAndFeaturesSupported(gpu(), f_depth, VK_IMAGE_TILING_OPTIMAL, VK_FORMAT_FEATURE_BLIT_DST_BIT);
bool d2src = !ImageFormatAndFeaturesSupported(gpu(), f_depth2, VK_IMAGE_TILING_OPTIMAL, VK_FORMAT_FEATURE_BLIT_SRC_BIT);
VkImageObj unsigned_image(m_device);
unsigned_image.Init(64, 64, 1, f_unsigned, VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT,
VK_IMAGE_TILING_OPTIMAL, 0);
ASSERT_TRUE(unsigned_image.initialized());
unsigned_image.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_GENERAL);
VkImageObj signed_image(m_device);
signed_image.Init(64, 64, 1, f_signed, VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT,
VK_IMAGE_TILING_OPTIMAL, 0);
ASSERT_TRUE(signed_image.initialized());
signed_image.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_GENERAL);
VkImageObj float_image(m_device);
float_image.Init(64, 64, 1, f_float, VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT, VK_IMAGE_TILING_OPTIMAL,
0);
ASSERT_TRUE(float_image.initialized());
float_image.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_GENERAL);
VkImageObj depth_image(m_device);
depth_image.Init(64, 64, 1, f_depth, VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT, VK_IMAGE_TILING_OPTIMAL,
0);
ASSERT_TRUE(depth_image.initialized());
depth_image.SetLayout(VK_IMAGE_ASPECT_STENCIL_BIT | VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_LAYOUT_GENERAL);
VkImageObj depth_image2(m_device);
depth_image2.Init(64, 64, 1, f_depth2, VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT,
VK_IMAGE_TILING_OPTIMAL, 0);
ASSERT_TRUE(depth_image2.initialized());
depth_image2.SetLayout(VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_LAYOUT_GENERAL);
VkImageBlit blitRegion = {};
blitRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blitRegion.srcSubresource.baseArrayLayer = 0;
blitRegion.srcSubresource.layerCount = 1;
blitRegion.srcSubresource.mipLevel = 0;
blitRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blitRegion.dstSubresource.baseArrayLayer = 0;
blitRegion.dstSubresource.layerCount = 1;
blitRegion.dstSubresource.mipLevel = 0;
blitRegion.srcOffsets[0] = {0, 0, 0};
blitRegion.srcOffsets[1] = {64, 64, 1};
blitRegion.dstOffsets[0] = {0, 0, 0};
blitRegion.dstOffsets[1] = {32, 32, 1};
m_commandBuffer->begin();
// Unsigned int vs not an int
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-srcImage-00230");
if (usrc) m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-srcImage-01999");
if (fdst) m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-dstImage-02000");
vk::CmdBlitImage(m_commandBuffer->handle(), unsigned_image.image(), unsigned_image.Layout(), float_image.image(),
float_image.Layout(), 1, &blitRegion, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-srcImage-00230");
if (fsrc) m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-srcImage-01999");
if (udst) m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-dstImage-02000");
vk::CmdBlitImage(m_commandBuffer->handle(), float_image.image(), float_image.Layout(), unsigned_image.image(),
unsigned_image.Layout(), 1, &blitRegion, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
// Signed int vs not an int,
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-srcImage-00229");
if (ssrc) m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-srcImage-01999");
if (fdst) m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-dstImage-02000");
vk::CmdBlitImage(m_commandBuffer->handle(), signed_image.image(), signed_image.Layout(), float_image.image(),
float_image.Layout(), 1, &blitRegion, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-srcImage-00229");
if (fsrc) m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-srcImage-01999");
if (sdst) m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-dstImage-02000");
vk::CmdBlitImage(m_commandBuffer->handle(), float_image.image(), float_image.Layout(), signed_image.image(),
signed_image.Layout(), 1, &blitRegion, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
// Signed vs Unsigned int - generates both VUs
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-srcImage-00229");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-srcImage-00230");
if (ssrc) m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-srcImage-01999");
if (udst) m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-dstImage-02000");
vk::CmdBlitImage(m_commandBuffer->handle(), signed_image.image(), signed_image.Layout(), unsigned_image.image(),
unsigned_image.Layout(), 1, &blitRegion, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-srcImage-00229");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-srcImage-00230");
if (usrc) m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-srcImage-01999");
if (sdst) m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-dstImage-02000");
vk::CmdBlitImage(m_commandBuffer->handle(), unsigned_image.image(), unsigned_image.Layout(), signed_image.image(),
signed_image.Layout(), 1, &blitRegion, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
// Depth vs any non-identical depth format
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-srcImage-00231");
blitRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
blitRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
if (d2src) m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-srcImage-01999");
if (d1dst) m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-dstImage-02000");
vk::CmdBlitImage(m_commandBuffer->handle(), depth_image2.image(), depth_image2.Layout(), depth_image.image(),
depth_image.Layout(), 1, &blitRegion, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
m_commandBuffer->end();
}
TEST_F(VkLayerTest, BlitImageFilters) {
bool cubic_support = false;
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
if (DeviceExtensionSupported(gpu(), nullptr, "VK_IMG_filter_cubic")) {
m_device_extension_names.push_back("VK_IMG_filter_cubic");
cubic_support = true;
}
ASSERT_NO_FATAL_FAILURE(InitState());
VkFormat fmt = VK_FORMAT_R8_UINT;
if (!ImageFormatIsSupported(gpu(), fmt, VK_IMAGE_TILING_OPTIMAL)) {
printf("%s No R8_UINT format support - BlitImageFilters skipped.\n", kSkipPrefix);
return;
}
// Create 2D images
VkImageObj src2D(m_device);
VkImageObj dst2D(m_device);
src2D.Init(64, 64, 1, fmt, VK_IMAGE_USAGE_TRANSFER_SRC_BIT, VK_IMAGE_TILING_OPTIMAL, 0);
dst2D.Init(64, 64, 1, fmt, VK_IMAGE_USAGE_TRANSFER_DST_BIT, VK_IMAGE_TILING_OPTIMAL, 0);
ASSERT_TRUE(src2D.initialized());
ASSERT_TRUE(dst2D.initialized());
src2D.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_GENERAL);
dst2D.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_GENERAL);
// Create 3D image
VkImageCreateInfo ci;
ci.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
ci.pNext = NULL;
ci.flags = 0;
ci.imageType = VK_IMAGE_TYPE_3D;
ci.format = fmt;
ci.extent = {64, 64, 4};
ci.mipLevels = 1;
ci.arrayLayers = 1;
ci.samples = VK_SAMPLE_COUNT_1_BIT;
ci.tiling = VK_IMAGE_TILING_OPTIMAL;
ci.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
ci.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
ci.queueFamilyIndexCount = 0;
ci.pQueueFamilyIndices = NULL;
ci.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VkImageObj src3D(m_device);
src3D.init(&ci);
ASSERT_TRUE(src3D.initialized());
VkImageBlit blitRegion = {};
blitRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blitRegion.srcSubresource.baseArrayLayer = 0;
blitRegion.srcSubresource.layerCount = 1;
blitRegion.srcSubresource.mipLevel = 0;
blitRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blitRegion.dstSubresource.baseArrayLayer = 0;
blitRegion.dstSubresource.layerCount = 1;
blitRegion.dstSubresource.mipLevel = 0;
blitRegion.srcOffsets[0] = {0, 0, 0};
blitRegion.srcOffsets[1] = {48, 48, 1};
blitRegion.dstOffsets[0] = {0, 0, 0};
blitRegion.dstOffsets[1] = {64, 64, 1};
m_commandBuffer->begin();
// UINT format should not support linear filtering, but check to be sure
if (!ImageFormatAndFeaturesSupported(gpu(), fmt, VK_IMAGE_TILING_OPTIMAL, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT)) {
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-filter-02001");
vk::CmdBlitImage(m_commandBuffer->handle(), src2D.image(), src2D.Layout(), dst2D.image(), dst2D.Layout(), 1, &blitRegion,
VK_FILTER_LINEAR);
m_errorMonitor->VerifyFound();
}
if (cubic_support && !ImageFormatAndFeaturesSupported(gpu(), fmt, VK_IMAGE_TILING_OPTIMAL,
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_IMG)) {
// Invalid filter CUBIC_IMG
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-filter-02002");
vk::CmdBlitImage(m_commandBuffer->handle(), src3D.image(), src3D.Layout(), dst2D.image(), dst2D.Layout(), 1, &blitRegion,
VK_FILTER_CUBIC_IMG);
m_errorMonitor->VerifyFound();
// Invalid filter CUBIC_IMG + invalid 2D source image
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-filter-02002");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-filter-00237");
vk::CmdBlitImage(m_commandBuffer->handle(), src2D.image(), src2D.Layout(), dst2D.image(), dst2D.Layout(), 1, &blitRegion,
VK_FILTER_CUBIC_IMG);
m_errorMonitor->VerifyFound();
}
m_commandBuffer->end();
}
TEST_F(VkLayerTest, BlitImageLayout) {
TEST_DESCRIPTION("Incorrect vkCmdBlitImage layouts");
ASSERT_NO_FATAL_FAILURE(Init(nullptr, nullptr, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT));
VkResult err;
VkFormat fmt = VK_FORMAT_R8G8B8A8_UNORM;
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &m_commandBuffer->handle();
// Create images
VkImageObj img_src_transfer(m_device);
VkImageObj img_dst_transfer(m_device);
VkImageObj img_general(m_device);
VkImageObj img_color(m_device);
img_src_transfer.InitNoLayout(64, 64, 1, fmt, VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT,
VK_IMAGE_TILING_OPTIMAL, 0);
img_dst_transfer.InitNoLayout(64, 64, 1, fmt, VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT,
VK_IMAGE_TILING_OPTIMAL, 0);
img_general.InitNoLayout(64, 64, 1, fmt, VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT,
VK_IMAGE_TILING_OPTIMAL, 0);
img_color.InitNoLayout(64, 64, 1, fmt,
VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
VK_IMAGE_TILING_OPTIMAL, 0);
ASSERT_TRUE(img_src_transfer.initialized());
ASSERT_TRUE(img_dst_transfer.initialized());
ASSERT_TRUE(img_general.initialized());
ASSERT_TRUE(img_color.initialized());
img_src_transfer.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
img_dst_transfer.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
img_general.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_GENERAL);
img_color.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
VkImageBlit blit_region = {};
blit_region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blit_region.srcSubresource.baseArrayLayer = 0;
blit_region.srcSubresource.layerCount = 1;
blit_region.srcSubresource.mipLevel = 0;
blit_region.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blit_region.dstSubresource.baseArrayLayer = 0;
blit_region.dstSubresource.layerCount = 1;
blit_region.dstSubresource.mipLevel = 0;
blit_region.srcOffsets[0] = {0, 0, 0};
blit_region.srcOffsets[1] = {48, 48, 1};
blit_region.dstOffsets[0] = {0, 0, 0};
blit_region.dstOffsets[1] = {64, 64, 1};
m_commandBuffer->begin();
// Illegal srcImageLayout
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-srcImageLayout-00222");
vk::CmdBlitImage(m_commandBuffer->handle(), img_src_transfer.image(), VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
img_dst_transfer.image(), img_dst_transfer.Layout(), 1, &blit_region, VK_FILTER_LINEAR);
m_errorMonitor->VerifyFound();
// Illegal destImageLayout
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-dstImageLayout-00227");
vk::CmdBlitImage(m_commandBuffer->handle(), img_src_transfer.image(), img_src_transfer.Layout(), img_dst_transfer.image(),
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, 1, &blit_region, VK_FILTER_LINEAR);
m_commandBuffer->end();
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
m_errorMonitor->VerifyFound();
err = vk::QueueWaitIdle(m_device->m_queue);
ASSERT_VK_SUCCESS(err);
m_commandBuffer->reset(0);
m_commandBuffer->begin();
// Source image in invalid layout at start of the CB
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "UNASSIGNED-CoreValidation-DrawState-InvalidImageLayout");
vk::CmdBlitImage(m_commandBuffer->handle(), img_src_transfer.image(), img_src_transfer.Layout(), img_color.image(),
VK_IMAGE_LAYOUT_GENERAL, 1, &blit_region, VK_FILTER_LINEAR);
m_commandBuffer->end();
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
m_errorMonitor->VerifyFound();
err = vk::QueueWaitIdle(m_device->m_queue);
ASSERT_VK_SUCCESS(err);
m_commandBuffer->reset(0);
m_commandBuffer->begin();
// Destination image in invalid layout at start of the CB
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "UNASSIGNED-CoreValidation-DrawState-InvalidImageLayout");
vk::CmdBlitImage(m_commandBuffer->handle(), img_color.image(), VK_IMAGE_LAYOUT_GENERAL, img_dst_transfer.image(),
img_dst_transfer.Layout(), 1, &blit_region, VK_FILTER_LINEAR);
m_commandBuffer->end();
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
m_errorMonitor->VerifyFound();
err = vk::QueueWaitIdle(m_device->m_queue);
ASSERT_VK_SUCCESS(err);
// Source image in invalid layout in the middle of CB
m_commandBuffer->reset(0);
m_commandBuffer->begin();
VkImageMemoryBarrier img_barrier = {};
img_barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
img_barrier.pNext = nullptr;
img_barrier.srcAccessMask = 0;
img_barrier.dstAccessMask = 0;
img_barrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
img_barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
img_barrier.image = img_general.handle();
img_barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
img_barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
img_barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
img_barrier.subresourceRange.baseArrayLayer = 0;
img_barrier.subresourceRange.baseMipLevel = 0;
img_barrier.subresourceRange.layerCount = 1;
img_barrier.subresourceRange.levelCount = 1;
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, 0,
nullptr, 0, nullptr, 1, &img_barrier);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-srcImageLayout-00221");
vk::CmdBlitImage(m_commandBuffer->handle(), img_general.image(), VK_IMAGE_LAYOUT_GENERAL, img_dst_transfer.image(),
img_dst_transfer.Layout(), 1, &blit_region, VK_FILTER_LINEAR);
m_commandBuffer->end();
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
m_errorMonitor->VerifyFound();
err = vk::QueueWaitIdle(m_device->m_queue);
ASSERT_VK_SUCCESS(err);
// Destination image in invalid layout in the middle of CB
m_commandBuffer->reset(0);
m_commandBuffer->begin();
img_barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
img_barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
img_barrier.image = img_dst_transfer.handle();
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, 0,
nullptr, 0, nullptr, 1, &img_barrier);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-dstImageLayout-00226");
vk::CmdBlitImage(m_commandBuffer->handle(), img_src_transfer.image(), img_src_transfer.Layout(), img_dst_transfer.image(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &blit_region, VK_FILTER_LINEAR);
m_commandBuffer->end();
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
m_errorMonitor->VerifyFound();
err = vk::QueueWaitIdle(m_device->m_queue);
ASSERT_VK_SUCCESS(err);
}
TEST_F(VkLayerTest, BlitImageOffsets) {
ASSERT_NO_FATAL_FAILURE(Init());
VkFormat fmt = VK_FORMAT_R8G8B8A8_UNORM;
if (!ImageFormatAndFeaturesSupported(gpu(), fmt, VK_IMAGE_TILING_OPTIMAL,
VK_FORMAT_FEATURE_BLIT_SRC_BIT | VK_FORMAT_FEATURE_BLIT_DST_BIT)) {
printf("%s No blit feature bits - BlitImageOffsets skipped.\n", kSkipPrefix);
return;
}
VkImageCreateInfo ci;
ci.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
ci.pNext = NULL;
ci.flags = 0;
ci.imageType = VK_IMAGE_TYPE_1D;
ci.format = fmt;
ci.extent = {64, 1, 1};
ci.mipLevels = 1;
ci.arrayLayers = 1;
ci.samples = VK_SAMPLE_COUNT_1_BIT;
ci.tiling = VK_IMAGE_TILING_OPTIMAL;
ci.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
ci.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
ci.queueFamilyIndexCount = 0;
ci.pQueueFamilyIndices = NULL;
ci.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VkImageObj image_1D(m_device);
image_1D.init(&ci);
ASSERT_TRUE(image_1D.initialized());
ci.imageType = VK_IMAGE_TYPE_2D;
ci.extent = {64, 64, 1};
VkImageObj image_2D(m_device);
image_2D.init(&ci);
ASSERT_TRUE(image_2D.initialized());
ci.imageType = VK_IMAGE_TYPE_3D;
ci.extent = {64, 64, 64};
VkImageObj image_3D(m_device);
image_3D.init(&ci);
ASSERT_TRUE(image_3D.initialized());
VkImageBlit blit_region = {};
blit_region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blit_region.srcSubresource.baseArrayLayer = 0;
blit_region.srcSubresource.layerCount = 1;
blit_region.srcSubresource.mipLevel = 0;
blit_region.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blit_region.dstSubresource.baseArrayLayer = 0;
blit_region.dstSubresource.layerCount = 1;
blit_region.dstSubresource.mipLevel = 0;
m_commandBuffer->begin();
// 1D, with src/dest y offsets other than (0,1)
blit_region.srcOffsets[0] = {0, 1, 0};
blit_region.srcOffsets[1] = {30, 1, 1};
blit_region.dstOffsets[0] = {32, 0, 0};
blit_region.dstOffsets[1] = {64, 1, 1};
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageBlit-srcImage-00245");
vk::CmdBlitImage(m_commandBuffer->handle(), image_1D.image(), image_1D.Layout(), image_1D.image(), image_1D.Layout(), 1,
&blit_region, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
blit_region.srcOffsets[0] = {0, 0, 0};
blit_region.dstOffsets[0] = {32, 1, 0};
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageBlit-dstImage-00250");
vk::CmdBlitImage(m_commandBuffer->handle(), image_1D.image(), image_1D.Layout(), image_1D.image(), image_1D.Layout(), 1,
&blit_region, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
// 2D, with src/dest z offsets other than (0,1)
blit_region.srcOffsets[0] = {0, 0, 1};
blit_region.srcOffsets[1] = {24, 31, 1};
blit_region.dstOffsets[0] = {32, 32, 0};
blit_region.dstOffsets[1] = {64, 64, 1};
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageBlit-srcImage-00247");
vk::CmdBlitImage(m_commandBuffer->handle(), image_2D.image(), image_2D.Layout(), image_2D.image(), image_2D.Layout(), 1,
&blit_region, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
blit_region.srcOffsets[0] = {0, 0, 0};
blit_region.dstOffsets[0] = {32, 32, 1};
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageBlit-dstImage-00252");
vk::CmdBlitImage(m_commandBuffer->handle(), image_2D.image(), image_2D.Layout(), image_2D.image(), image_2D.Layout(), 1,
&blit_region, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
// Source offsets exceeding source image dimensions
blit_region.srcOffsets[0] = {0, 0, 0};
blit_region.srcOffsets[1] = {65, 64, 1}; // src x
blit_region.dstOffsets[0] = {0, 0, 0};
blit_region.dstOffsets[1] = {64, 64, 1};
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageBlit-srcOffset-00243"); // x
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-pRegions-00215"); // src region
vk::CmdBlitImage(m_commandBuffer->handle(), image_3D.image(), image_3D.Layout(), image_2D.image(), image_2D.Layout(), 1,
&blit_region, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
blit_region.srcOffsets[1] = {64, 65, 1}; // src y
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageBlit-srcOffset-00244"); // y
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-pRegions-00215"); // src region
vk::CmdBlitImage(m_commandBuffer->handle(), image_3D.image(), image_3D.Layout(), image_2D.image(), image_2D.Layout(), 1,
&blit_region, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
blit_region.srcOffsets[0] = {0, 0, 65}; // src z
blit_region.srcOffsets[1] = {64, 64, 64};
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageBlit-srcOffset-00246"); // z
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-pRegions-00215"); // src region
vk::CmdBlitImage(m_commandBuffer->handle(), image_3D.image(), image_3D.Layout(), image_2D.image(), image_2D.Layout(), 1,
&blit_region, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
// Dest offsets exceeding source image dimensions
blit_region.srcOffsets[0] = {0, 0, 0};
blit_region.srcOffsets[1] = {64, 64, 1};
blit_region.dstOffsets[0] = {96, 64, 32}; // dst x
blit_region.dstOffsets[1] = {64, 0, 33};
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageBlit-dstOffset-00248"); // x
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-pRegions-00216"); // dst region
vk::CmdBlitImage(m_commandBuffer->handle(), image_2D.image(), image_2D.Layout(), image_3D.image(), image_3D.Layout(), 1,
&blit_region, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
blit_region.dstOffsets[0] = {0, 65, 32}; // dst y
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageBlit-dstOffset-00249"); // y
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-pRegions-00216"); // dst region
vk::CmdBlitImage(m_commandBuffer->handle(), image_2D.image(), image_2D.Layout(), image_3D.image(), image_3D.Layout(), 1,
&blit_region, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
blit_region.dstOffsets[0] = {0, 64, 65}; // dst z
blit_region.dstOffsets[1] = {64, 0, 64};
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageBlit-dstOffset-00251"); // z
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-pRegions-00216"); // dst region
vk::CmdBlitImage(m_commandBuffer->handle(), image_2D.image(), image_2D.Layout(), image_3D.image(), image_3D.Layout(), 1,
&blit_region, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
m_commandBuffer->end();
}
TEST_F(VkLayerTest, MiscBlitImageTests) {
ASSERT_NO_FATAL_FAILURE(Init());
VkFormat f_color = VK_FORMAT_R32_SFLOAT; // Need features ..BLIT_SRC_BIT & ..BLIT_DST_BIT
if (!ImageFormatAndFeaturesSupported(gpu(), f_color, VK_IMAGE_TILING_OPTIMAL,
VK_FORMAT_FEATURE_BLIT_SRC_BIT | VK_FORMAT_FEATURE_BLIT_DST_BIT)) {
printf("%s Requested format features unavailable - MiscBlitImageTests skipped.\n", kSkipPrefix);
return;
}
VkImageCreateInfo ci;
ci.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
ci.pNext = NULL;
ci.flags = 0;
ci.imageType = VK_IMAGE_TYPE_2D;
ci.format = f_color;
ci.extent = {64, 64, 1};
ci.mipLevels = 1;
ci.arrayLayers = 1;
ci.samples = VK_SAMPLE_COUNT_1_BIT;
ci.tiling = VK_IMAGE_TILING_OPTIMAL;
ci.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
ci.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
ci.queueFamilyIndexCount = 0;
ci.pQueueFamilyIndices = NULL;
ci.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
// 2D color image
VkImageObj color_img(m_device);
color_img.init(&ci);
ASSERT_TRUE(color_img.initialized());
// 2D multi-sample image
ci.samples = VK_SAMPLE_COUNT_4_BIT;
VkImageObj ms_img(m_device);
ms_img.init(&ci);
ASSERT_TRUE(ms_img.initialized());
// 3D color image
ci.samples = VK_SAMPLE_COUNT_1_BIT;
ci.imageType = VK_IMAGE_TYPE_3D;
ci.extent = {64, 64, 8};
VkImageObj color_3D_img(m_device);
color_3D_img.init(&ci);
ASSERT_TRUE(color_3D_img.initialized());
VkImageBlit blitRegion = {};
blitRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blitRegion.srcSubresource.baseArrayLayer = 0;
blitRegion.srcSubresource.layerCount = 1;
blitRegion.srcSubresource.mipLevel = 0;
blitRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blitRegion.dstSubresource.baseArrayLayer = 0;
blitRegion.dstSubresource.layerCount = 1;
blitRegion.dstSubresource.mipLevel = 0;
blitRegion.srcOffsets[0] = {0, 0, 0};
blitRegion.srcOffsets[1] = {16, 16, 1};
blitRegion.dstOffsets[0] = {32, 32, 0};
blitRegion.dstOffsets[1] = {64, 64, 1};
m_commandBuffer->begin();
// Blit with aspectMask errors
blitRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
blitRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageBlit-aspectMask-00241");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageBlit-aspectMask-00242");
vk::CmdBlitImage(m_commandBuffer->handle(), color_img.image(), color_img.Layout(), color_img.image(), color_img.Layout(), 1,
&blitRegion, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
// Blit with invalid src mip level
blitRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blitRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blitRegion.srcSubresource.mipLevel = ci.mipLevels;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-vkCmdBlitImage-srcSubresource-01705"); // invalid srcSubresource.mipLevel
// Redundant unavoidable errors
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-VkImageBlit-srcOffset-00243"); // out-of-bounds srcOffset.x
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-VkImageBlit-srcOffset-00244"); // out-of-bounds srcOffset.y
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-VkImageBlit-srcOffset-00246"); // out-of-bounds srcOffset.z
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-vkCmdBlitImage-pRegions-00215"); // region not contained within src image
vk::CmdBlitImage(m_commandBuffer->handle(), color_img.image(), color_img.Layout(), color_img.image(), color_img.Layout(), 1,
&blitRegion, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
// Blit with invalid dst mip level
blitRegion.srcSubresource.mipLevel = 0;
blitRegion.dstSubresource.mipLevel = ci.mipLevels;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-vkCmdBlitImage-dstSubresource-01706"); // invalid dstSubresource.mipLevel
// Redundant unavoidable errors
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-VkImageBlit-dstOffset-00248"); // out-of-bounds dstOffset.x
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-VkImageBlit-dstOffset-00249"); // out-of-bounds dstOffset.y
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-VkImageBlit-dstOffset-00251"); // out-of-bounds dstOffset.z
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-vkCmdBlitImage-pRegions-00216"); // region not contained within dst image
vk::CmdBlitImage(m_commandBuffer->handle(), color_img.image(), color_img.Layout(), color_img.image(), color_img.Layout(), 1,
&blitRegion, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
// Blit with invalid src array layer
blitRegion.dstSubresource.mipLevel = 0;
blitRegion.srcSubresource.baseArrayLayer = ci.arrayLayers;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-vkCmdBlitImage-srcSubresource-01707"); // invalid srcSubresource layer range
vk::CmdBlitImage(m_commandBuffer->handle(), color_img.image(), color_img.Layout(), color_img.image(), color_img.Layout(), 1,
&blitRegion, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
// Blit with invalid dst array layer
blitRegion.srcSubresource.baseArrayLayer = 0;
blitRegion.dstSubresource.baseArrayLayer = ci.arrayLayers;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-vkCmdBlitImage-dstSubresource-01708"); // invalid dstSubresource layer range
// Redundant unavoidable errors
vk::CmdBlitImage(m_commandBuffer->handle(), color_img.image(), color_img.Layout(), color_img.image(), color_img.Layout(), 1,
&blitRegion, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
blitRegion.dstSubresource.baseArrayLayer = 0;
// Blit multi-sample image
// TODO: redundant VUs, one (1c8) or two (1d2 & 1d4) should be eliminated.
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-srcImage-00228");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-srcImage-00233");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-dstImage-00234");
vk::CmdBlitImage(m_commandBuffer->handle(), ms_img.image(), ms_img.Layout(), ms_img.image(), ms_img.Layout(), 1, &blitRegion,
VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
// Blit 3D with baseArrayLayer != 0 or layerCount != 1
blitRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blitRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blitRegion.srcSubresource.baseArrayLayer = 1;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageBlit-srcImage-00240");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-vkCmdBlitImage-srcSubresource-01707"); // base+count > total layer count
vk::CmdBlitImage(m_commandBuffer->handle(), color_3D_img.image(), color_3D_img.Layout(), color_3D_img.image(),
color_3D_img.Layout(), 1, &blitRegion, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
blitRegion.srcSubresource.baseArrayLayer = 0;
blitRegion.srcSubresource.layerCount = 0;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageBlit-srcImage-00240");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-VkImageSubresourceLayers-layerCount-01700"); // layer count == 0 (src)
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-VkImageBlit-layerCount-00239"); // src/dst layer count mismatch
vk::CmdBlitImage(m_commandBuffer->handle(), color_3D_img.image(), color_3D_img.Layout(), color_3D_img.image(),
color_3D_img.Layout(), 1, &blitRegion, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
m_commandBuffer->end();
}
TEST_F(VkLayerTest, BlitToDepthImageTests) {
ASSERT_NO_FATAL_FAILURE(Init());
// Need feature ..BLIT_SRC_BIT but not ..BLIT_DST_BIT
// TODO: provide more choices here; supporting D32_SFLOAT as BLIT_DST isn't unheard of.
VkFormat f_depth = VK_FORMAT_D32_SFLOAT;
if (!ImageFormatAndFeaturesSupported(gpu(), f_depth, VK_IMAGE_TILING_OPTIMAL, VK_FORMAT_FEATURE_BLIT_SRC_BIT) ||
ImageFormatAndFeaturesSupported(gpu(), f_depth, VK_IMAGE_TILING_OPTIMAL, VK_FORMAT_FEATURE_BLIT_DST_BIT)) {
printf("%s Requested format features unavailable - BlitToDepthImageTests skipped.\n", kSkipPrefix);
return;
}
VkImageCreateInfo ci;
ci.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
ci.pNext = NULL;
ci.flags = 0;
ci.imageType = VK_IMAGE_TYPE_2D;
ci.format = f_depth;
ci.extent = {64, 64, 1};
ci.mipLevels = 1;
ci.arrayLayers = 1;
ci.samples = VK_SAMPLE_COUNT_1_BIT;
ci.tiling = VK_IMAGE_TILING_OPTIMAL;
ci.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
ci.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
ci.queueFamilyIndexCount = 0;
ci.pQueueFamilyIndices = NULL;
ci.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
// 2D depth image
VkImageObj depth_img(m_device);
depth_img.init(&ci);
ASSERT_TRUE(depth_img.initialized());
VkImageBlit blitRegion = {};
blitRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blitRegion.srcSubresource.baseArrayLayer = 0;
blitRegion.srcSubresource.layerCount = 1;
blitRegion.srcSubresource.mipLevel = 0;
blitRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blitRegion.dstSubresource.baseArrayLayer = 0;
blitRegion.dstSubresource.layerCount = 1;
blitRegion.dstSubresource.mipLevel = 0;
blitRegion.srcOffsets[0] = {0, 0, 0};
blitRegion.srcOffsets[1] = {16, 16, 1};
blitRegion.dstOffsets[0] = {32, 32, 0};
blitRegion.dstOffsets[1] = {64, 64, 1};
m_commandBuffer->begin();
// Blit depth image - has SRC_BIT but not DST_BIT
blitRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
blitRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBlitImage-dstImage-02000");
vk::CmdBlitImage(m_commandBuffer->handle(), depth_img.image(), depth_img.Layout(), depth_img.image(), depth_img.Layout(), 1,
&blitRegion, VK_FILTER_NEAREST);
m_errorMonitor->VerifyFound();
m_commandBuffer->end();
}
TEST_F(VkLayerTest, MinImageTransferGranularity) {
TEST_DESCRIPTION("Tests for validation of Queue Family property minImageTransferGranularity.");
ASSERT_NO_FATAL_FAILURE(Init());
auto queue_family_properties = m_device->phy().queue_properties();
auto large_granularity_family =
std::find_if(queue_family_properties.begin(), queue_family_properties.end(), [](VkQueueFamilyProperties family_properties) {
VkExtent3D family_granularity = family_properties.minImageTransferGranularity;
// We need a queue family that supports copy operations and has a large enough minImageTransferGranularity for the tests
// below to make sense.
return (family_properties.queueFlags & VK_QUEUE_TRANSFER_BIT || family_properties.queueFlags & VK_QUEUE_GRAPHICS_BIT ||
family_properties.queueFlags & VK_QUEUE_COMPUTE_BIT) &&
family_granularity.depth >= 4 && family_granularity.width >= 4 && family_granularity.height >= 4;
});
if (large_granularity_family == queue_family_properties.end()) {
printf("%s No queue family has a large enough granularity for this test to be meaningful, skipping test\n", kSkipPrefix);
return;
}
const size_t queue_family_index = std::distance(queue_family_properties.begin(), large_granularity_family);
VkExtent3D granularity = queue_family_properties[queue_family_index].minImageTransferGranularity;
VkCommandPoolObj command_pool(m_device, queue_family_index, 0);
// Create two images of different types and try to copy between them
VkImage srcImage;
VkImage dstImage;
VkImageCreateInfo image_create_info = {};
image_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_create_info.pNext = NULL;
image_create_info.imageType = VK_IMAGE_TYPE_3D;
image_create_info.format = VK_FORMAT_B8G8R8A8_UNORM;
image_create_info.extent.width = granularity.width * 2;
image_create_info.extent.height = granularity.height * 2;
image_create_info.extent.depth = granularity.depth * 2;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
image_create_info.flags = 0;
VkImageObj src_image_obj(m_device);
src_image_obj.init(&image_create_info);
ASSERT_TRUE(src_image_obj.initialized());
srcImage = src_image_obj.handle();
image_create_info.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
VkImageObj dst_image_obj(m_device);
dst_image_obj.init(&image_create_info);
ASSERT_TRUE(dst_image_obj.initialized());
dstImage = dst_image_obj.handle();
VkCommandBufferObj command_buffer(m_device, &command_pool);
ASSERT_TRUE(command_buffer.initialized());
command_buffer.begin();
VkImageCopy copyRegion;
copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.srcSubresource.mipLevel = 0;
copyRegion.srcSubresource.baseArrayLayer = 0;
copyRegion.srcSubresource.layerCount = 1;
copyRegion.srcOffset.x = 0;
copyRegion.srcOffset.y = 0;
copyRegion.srcOffset.z = 0;
copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.dstSubresource.mipLevel = 0;
copyRegion.dstSubresource.baseArrayLayer = 0;
copyRegion.dstSubresource.layerCount = 1;
copyRegion.dstOffset.x = 0;
copyRegion.dstOffset.y = 0;
copyRegion.dstOffset.z = 0;
copyRegion.extent.width = granularity.width;
copyRegion.extent.height = granularity.height;
copyRegion.extent.depth = granularity.depth;
// Introduce failure by setting srcOffset to a bad granularity value
copyRegion.srcOffset.y = 3;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-vkCmdCopyImage-srcOffset-01783"); // srcOffset image transfer granularity
command_buffer.CopyImage(srcImage, VK_IMAGE_LAYOUT_GENERAL, dstImage, VK_IMAGE_LAYOUT_GENERAL, 1, &copyRegion);
m_errorMonitor->VerifyFound();
// Introduce failure by setting extent to a granularity value that is bad
// for both the source and destination image.
copyRegion.srcOffset.y = 0;
copyRegion.extent.width = 3;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-vkCmdCopyImage-srcOffset-01783"); // src extent image transfer granularity
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-vkCmdCopyImage-dstOffset-01784"); // dst extent image transfer granularity
command_buffer.CopyImage(srcImage, VK_IMAGE_LAYOUT_GENERAL, dstImage, VK_IMAGE_LAYOUT_GENERAL, 1, &copyRegion);
m_errorMonitor->VerifyFound();
// Now do some buffer/image copies
VkBufferObj buffer;
VkMemoryPropertyFlags reqs = 0;
buffer.init_as_src_and_dst(*m_device, 8 * granularity.height * granularity.width * granularity.depth, reqs);
VkBufferImageCopy region = {};
region.bufferOffset = 0;
region.bufferRowLength = 0;
region.bufferImageHeight = 0;
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.imageSubresource.layerCount = 1;
region.imageExtent.height = granularity.height;
region.imageExtent.width = granularity.width;
region.imageExtent.depth = granularity.depth;
region.imageOffset.x = 0;
region.imageOffset.y = 0;
region.imageOffset.z = 0;
// Introduce failure by setting imageExtent to a bad granularity value
region.imageExtent.width = 3;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-vkCmdCopyImageToBuffer-imageOffset-01794"); // image transfer granularity
vk::CmdCopyImageToBuffer(command_buffer.handle(), srcImage, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, buffer.handle(), 1, &region);
m_errorMonitor->VerifyFound();
region.imageExtent.width = granularity.width;
// Introduce failure by setting imageOffset to a bad granularity value
region.imageOffset.z = 3;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-vkCmdCopyBufferToImage-imageOffset-01793"); // image transfer granularity
vk::CmdCopyBufferToImage(command_buffer.handle(), buffer.handle(), dstImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &region);
m_errorMonitor->VerifyFound();
command_buffer.end();
}
TEST_F(VkLayerTest, ImageBarrierSubpassConflicts) {
TEST_DESCRIPTION("Add a pipeline barrier within a subpass that has conflicting state");
ASSERT_NO_FATAL_FAILURE(Init());
// A renderpass with a single subpass that declared a self-dependency
VkAttachmentDescription attach[] = {
{0, VK_FORMAT_R8G8B8A8_UNORM, VK_SAMPLE_COUNT_1_BIT, VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE, VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL},
};
VkAttachmentReference ref = {0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL};
VkSubpassDescription subpasses[] = {
{0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 1, &ref, nullptr, nullptr, 0, nullptr},
};
VkSubpassDependency dep = {0,
0,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_DEPENDENCY_BY_REGION_BIT};
VkRenderPassCreateInfo rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr, 0, 1, attach, 1, subpasses, 1, &dep};
VkRenderPass rp;
VkRenderPass rp_noselfdep;
VkResult err = vk::CreateRenderPass(m_device->device(), &rpci, nullptr, &rp);
ASSERT_VK_SUCCESS(err);
rpci.dependencyCount = 0;
rpci.pDependencies = nullptr;
err = vk::CreateRenderPass(m_device->device(), &rpci, nullptr, &rp_noselfdep);
ASSERT_VK_SUCCESS(err);
VkImageObj image(m_device);
image.InitNoLayout(32, 32, 1, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_TILING_OPTIMAL, 0);
VkImageView imageView = image.targetView(VK_FORMAT_R8G8B8A8_UNORM);
VkFramebufferCreateInfo fbci = {VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, nullptr, 0, rp, 1, &imageView, 32, 32, 1};
VkFramebuffer fb;
err = vk::CreateFramebuffer(m_device->device(), &fbci, nullptr, &fb);
ASSERT_VK_SUCCESS(err);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdPipelineBarrier-pDependencies-02285");
m_commandBuffer->begin();
VkRenderPassBeginInfo rpbi = {VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
nullptr,
rp_noselfdep,
fb,
{{
0,
0,
},
{32, 32}},
0,
nullptr};
vk::CmdBeginRenderPass(m_commandBuffer->handle(), &rpbi, VK_SUBPASS_CONTENTS_INLINE);
VkMemoryBarrier mem_barrier = {};
mem_barrier.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER;
mem_barrier.pNext = NULL;
mem_barrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
mem_barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_VERTEX_SHADER_BIT, 0, 1,
&mem_barrier, 0, nullptr, 0, nullptr);
m_errorMonitor->VerifyFound();
vk::CmdEndRenderPass(m_commandBuffer->handle());
rpbi.renderPass = rp;
vk::CmdBeginRenderPass(m_commandBuffer->handle(), &rpbi, VK_SUBPASS_CONTENTS_INLINE);
VkImageMemoryBarrier img_barrier = {};
img_barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
img_barrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
img_barrier.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
img_barrier.oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
img_barrier.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
img_barrier.image = image.handle();
img_barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
img_barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
img_barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
img_barrier.subresourceRange.baseArrayLayer = 0;
img_barrier.subresourceRange.baseMipLevel = 0;
img_barrier.subresourceRange.layerCount = 1;
img_barrier.subresourceRange.levelCount = 1;
// Mis-match src stage mask
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdPipelineBarrier-pDependencies-02285");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdPipelineBarrier-pDependencies-02285");
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_DEPENDENCY_BY_REGION_BIT, 0, nullptr, 0, nullptr, 1, &img_barrier);
m_errorMonitor->VerifyFound();
// Now mis-match dst stage mask
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdPipelineBarrier-pDependencies-02285");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdPipelineBarrier-pDependencies-02285");
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_HOST_BIT,
VK_DEPENDENCY_BY_REGION_BIT, 0, nullptr, 0, nullptr, 1, &img_barrier);
m_errorMonitor->VerifyFound();
// Set srcQueueFamilyIndex to something other than IGNORED
img_barrier.srcQueueFamilyIndex = 0;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdPipelineBarrier-srcQueueFamilyIndex-01182");
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_DEPENDENCY_BY_REGION_BIT, 0, nullptr, 0, nullptr, 1,
&img_barrier);
m_errorMonitor->VerifyFound();
img_barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
// Mis-match mem barrier src access mask
mem_barrier = {};
mem_barrier.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER;
mem_barrier.srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
mem_barrier.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdPipelineBarrier-pDependencies-02285");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdPipelineBarrier-pDependencies-02285");
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_DEPENDENCY_BY_REGION_BIT, 1, &mem_barrier, 0, nullptr,
0, nullptr);
m_errorMonitor->VerifyFound();
// Mis-match mem barrier dst access mask. Also set srcAccessMask to 0 which should not cause an error
mem_barrier.srcAccessMask = 0;
mem_barrier.dstAccessMask = VK_ACCESS_HOST_WRITE_BIT;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdPipelineBarrier-pDependencies-02285");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdPipelineBarrier-pDependencies-02285");
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_DEPENDENCY_BY_REGION_BIT, 1, &mem_barrier, 0, nullptr,
0, nullptr);
m_errorMonitor->VerifyFound();
// Mis-match image barrier src access mask
img_barrier.srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdPipelineBarrier-pDependencies-02285");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdPipelineBarrier-pDependencies-02285");
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_DEPENDENCY_BY_REGION_BIT, 0, nullptr, 0, nullptr, 1,
&img_barrier);
m_errorMonitor->VerifyFound();
// Mis-match image barrier dst access mask
img_barrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
img_barrier.dstAccessMask = VK_ACCESS_HOST_WRITE_BIT;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdPipelineBarrier-pDependencies-02285");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdPipelineBarrier-pDependencies-02285");
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_DEPENDENCY_BY_REGION_BIT, 0, nullptr, 0, nullptr, 1,
&img_barrier);
m_errorMonitor->VerifyFound();
// Mis-match dependencyFlags
img_barrier.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdPipelineBarrier-pDependencies-02285");
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, 0 /* wrong */, 0, nullptr, 0, nullptr, 1, &img_barrier);
m_errorMonitor->VerifyFound();
// Send non-zero bufferMemoryBarrierCount
// Construct a valid BufferMemoryBarrier to avoid any parameter errors
// First we need a valid buffer to reference
VkBufferObj buffer;
VkMemoryPropertyFlags mem_reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
buffer.init_as_src_and_dst(*m_device, 256, mem_reqs);
VkBufferMemoryBarrier bmb = {};
bmb.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER;
bmb.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
bmb.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
bmb.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
bmb.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
bmb.buffer = buffer.handle();
bmb.offset = 0;
bmb.size = VK_WHOLE_SIZE;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdPipelineBarrier-bufferMemoryBarrierCount-01178");
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_DEPENDENCY_BY_REGION_BIT, 0, nullptr, 1, &bmb, 0,
nullptr);
m_errorMonitor->VerifyFound();
// Add image barrier w/ image handle that's not in framebuffer
VkImageObj lone_image(m_device);
lone_image.InitNoLayout(32, 32, 1, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_TILING_OPTIMAL, 0);
img_barrier.image = lone_image.handle();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdPipelineBarrier-image-02635");
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_DEPENDENCY_BY_REGION_BIT, 0, nullptr, 0, nullptr, 1,
&img_barrier);
m_errorMonitor->VerifyFound();
// Have image barrier with mis-matched layouts
img_barrier.image = image.handle();
img_barrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdPipelineBarrier-oldLayout-01181");
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_DEPENDENCY_BY_REGION_BIT, 0, nullptr, 0, nullptr, 1,
&img_barrier);
m_errorMonitor->VerifyFound();
img_barrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
img_barrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdPipelineBarrier-oldLayout-02636");
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_DEPENDENCY_BY_REGION_BIT, 0, nullptr, 0, nullptr, 1,
&img_barrier);
m_errorMonitor->VerifyFound();
vk::CmdEndRenderPass(m_commandBuffer->handle());
vk::DestroyFramebuffer(m_device->device(), fb, nullptr);
vk::DestroyRenderPass(m_device->device(), rp, nullptr);
vk::DestroyRenderPass(m_device->device(), rp_noselfdep, nullptr);
}
TEST_F(VkLayerTest, InvalidCmdBufferBufferDestroyed) {
TEST_DESCRIPTION("Attempt to draw with a command buffer that is invalid due to a buffer dependency being destroyed.");
ASSERT_NO_FATAL_FAILURE(Init());
VkBuffer buffer;
VkDeviceMemory mem;
VkMemoryRequirements mem_reqs;
VkBufferCreateInfo buf_info = {};
buf_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buf_info.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT;
buf_info.size = 256;
buf_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VkResult err = vk::CreateBuffer(m_device->device(), &buf_info, NULL, &buffer);
ASSERT_VK_SUCCESS(err);
vk::GetBufferMemoryRequirements(m_device->device(), buffer, &mem_reqs);
VkMemoryAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
alloc_info.allocationSize = mem_reqs.size;
bool pass = false;
pass = m_device->phy().set_memory_type(mem_reqs.memoryTypeBits, &alloc_info, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
if (!pass) {
printf("%s Failed to set memory type.\n", kSkipPrefix);
vk::DestroyBuffer(m_device->device(), buffer, NULL);
return;
}
err = vk::AllocateMemory(m_device->device(), &alloc_info, NULL, &mem);
ASSERT_VK_SUCCESS(err);
err = vk::BindBufferMemory(m_device->device(), buffer, mem, 0);
ASSERT_VK_SUCCESS(err);
m_commandBuffer->begin();
vk::CmdFillBuffer(m_commandBuffer->handle(), buffer, 0, VK_WHOLE_SIZE, 0);
m_commandBuffer->end();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"UNASSIGNED-CoreValidation-DrawState-InvalidCommandBuffer-VkBuffer");
// Destroy buffer dependency prior to submit to cause ERROR
vk::DestroyBuffer(m_device->device(), buffer, NULL);
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &m_commandBuffer->handle();
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
m_errorMonitor->VerifyFound();
vk::QueueWaitIdle(m_device->m_queue);
vk::FreeMemory(m_device->handle(), mem, NULL);
}
TEST_F(VkLayerTest, InvalidCmdBufferBufferViewDestroyed) {
TEST_DESCRIPTION("Delete bufferView bound to cmd buffer, then attempt to submit cmd buffer.");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
OneOffDescriptorSet descriptor_set(m_device,
{
{0, VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, 1, VK_SHADER_STAGE_FRAGMENT_BIT, nullptr},
});
CreatePipelineHelper pipe(*this);
VkBufferCreateInfo buffer_create_info = {};
VkBufferViewCreateInfo bvci = {};
VkBufferView view;
{
uint32_t queue_family_index = 0;
buffer_create_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buffer_create_info.size = 1024;
buffer_create_info.usage = VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT;
buffer_create_info.queueFamilyIndexCount = 1;
buffer_create_info.pQueueFamilyIndices = &queue_family_index;
VkBufferObj buffer;
buffer.init(*m_device, buffer_create_info);
bvci.sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO;
bvci.buffer = buffer.handle();
bvci.format = VK_FORMAT_R32_SFLOAT;
bvci.range = VK_WHOLE_SIZE;
VkResult err = vk::CreateBufferView(m_device->device(), &bvci, NULL, &view);
ASSERT_VK_SUCCESS(err);
descriptor_set.WriteDescriptorBufferView(0, view);
descriptor_set.UpdateDescriptorSets();
char const *fsSource =
"#version 450\n"
"\n"
"layout(set=0, binding=0, r32f) uniform readonly imageBuffer s;\n"
"layout(location=0) out vec4 x;\n"
"void main(){\n"
" x = imageLoad(s, 0);\n"
"}\n";
VkShaderObj vs(m_device, bindStateVertShaderText, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj fs(m_device, fsSource, VK_SHADER_STAGE_FRAGMENT_BIT, this);
pipe.InitInfo();
pipe.InitState();
pipe.shader_stages_ = {vs.GetStageCreateInfo(), fs.GetStageCreateInfo()};
pipe.pipeline_layout_ = VkPipelineLayoutObj(m_device, {&descriptor_set.layout_});
pipe.CreateGraphicsPipeline();
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
VkViewport viewport = {0, 0, 16, 16, 0, 1};
vk::CmdSetViewport(m_commandBuffer->handle(), 0, 1, &viewport);
VkRect2D scissor = {{0, 0}, {16, 16}};
vk::CmdSetScissor(m_commandBuffer->handle(), 0, 1, &scissor);
// Bind pipeline to cmd buffer - This causes crash on Mali
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.pipeline_);
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.pipeline_layout_.handle(), 0, 1,
&descriptor_set.set_, 0, nullptr);
}
// buffer is released.
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "Descriptor in binding #0 index 0 is using buffer");
m_commandBuffer->Draw(1, 0, 0, 0);
m_errorMonitor->VerifyFound();
vk::DestroyBufferView(m_device->device(), view, NULL);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "Descriptor in binding #0 index 0 is using bufferView");
m_commandBuffer->Draw(1, 0, 0, 0);
m_errorMonitor->VerifyFound();
VkBufferObj buffer;
buffer.init(*m_device, buffer_create_info);
bvci.buffer = buffer.handle();
VkResult err = vk::CreateBufferView(m_device->device(), &bvci, NULL, &view);
ASSERT_VK_SUCCESS(err);
descriptor_set.descriptor_writes.clear();
descriptor_set.WriteDescriptorBufferView(0, view);
descriptor_set.UpdateDescriptorSets();
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.pipeline_layout_.handle(), 0, 1,
&descriptor_set.set_, 0, nullptr);
m_commandBuffer->Draw(1, 0, 0, 0);
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
// Delete BufferView in order to invalidate cmd buffer
vk::DestroyBufferView(m_device->device(), view, NULL);
// Now attempt submit of cmd buffer
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &m_commandBuffer->handle();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"UNASSIGNED-CoreValidation-DrawState-InvalidCommandBuffer-VkBufferView");
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, InvalidCmdBufferImageDestroyed) {
TEST_DESCRIPTION("Attempt to draw with a command buffer that is invalid due to an image dependency being destroyed.");
ASSERT_NO_FATAL_FAILURE(Init());
{
const VkFormat tex_format = VK_FORMAT_B8G8R8A8_UNORM;
VkImageCreateInfo image_create_info = {};
image_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_create_info.pNext = NULL;
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = tex_format;
image_create_info.extent.width = 32;
image_create_info.extent.height = 32;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
image_create_info.flags = 0;
VkImageObj image(m_device);
image.init(&image_create_info);
m_commandBuffer->begin();
VkClearColorValue ccv;
ccv.float32[0] = 1.0f;
ccv.float32[1] = 1.0f;
ccv.float32[2] = 1.0f;
ccv.float32[3] = 1.0f;
VkImageSubresourceRange isr = {};
isr.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
isr.baseArrayLayer = 0;
isr.baseMipLevel = 0;
isr.layerCount = 1;
isr.levelCount = 1;
vk::CmdClearColorImage(m_commandBuffer->handle(), image.handle(), VK_IMAGE_LAYOUT_GENERAL, &ccv, 1, &isr);
m_commandBuffer->end();
}
// Destroy image dependency prior to submit to cause ERROR
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"UNASSIGNED-CoreValidation-DrawState-InvalidCommandBuffer-VkImage");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"UNASSIGNED-CoreValidation-DrawState-InvalidCommandBuffer-VkDeviceMemory");
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &m_commandBuffer->handle();
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, InvalidCmdBufferFramebufferImageDestroyed) {
TEST_DESCRIPTION(
"Attempt to draw with a command buffer that is invalid due to a framebuffer image dependency being destroyed.");
ASSERT_NO_FATAL_FAILURE(Init());
VkFormatProperties format_properties;
VkResult err = VK_SUCCESS;
vk::GetPhysicalDeviceFormatProperties(gpu(), VK_FORMAT_B8G8R8A8_UNORM, &format_properties);
if (!(format_properties.optimalTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT)) {
printf("%s Image format doesn't support required features.\n", kSkipPrefix);
return;
}
VkFramebuffer fb;
VkImageView view;
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
{
VkImageCreateInfo image_ci = {};
image_ci.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_ci.pNext = NULL;
image_ci.imageType = VK_IMAGE_TYPE_2D;
image_ci.format = VK_FORMAT_B8G8R8A8_UNORM;
image_ci.extent.width = 32;
image_ci.extent.height = 32;
image_ci.extent.depth = 1;
image_ci.mipLevels = 1;
image_ci.arrayLayers = 1;
image_ci.samples = VK_SAMPLE_COUNT_1_BIT;
image_ci.tiling = VK_IMAGE_TILING_OPTIMAL;
image_ci.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
image_ci.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
image_ci.flags = 0;
VkImageObj image(m_device);
image.init(&image_ci);
VkImageViewCreateInfo ivci = {
VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
nullptr,
0,
image.handle(),
VK_IMAGE_VIEW_TYPE_2D,
VK_FORMAT_B8G8R8A8_UNORM,
{VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A},
{VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1},
};
err = vk::CreateImageView(m_device->device(), &ivci, nullptr, &view);
ASSERT_VK_SUCCESS(err);
VkFramebufferCreateInfo fci = {VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, nullptr, 0, m_renderPass, 1, &view, 32, 32, 1};
err = vk::CreateFramebuffer(m_device->device(), &fci, nullptr, &fb);
ASSERT_VK_SUCCESS(err);
// Just use default renderpass with our framebuffer
m_renderPassBeginInfo.framebuffer = fb;
m_renderPassBeginInfo.renderArea.extent.width = 32;
m_renderPassBeginInfo.renderArea.extent.height = 32;
// Create Null cmd buffer for submit
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
}
// Destroy image attached to framebuffer to invalidate cmd buffer
// Now attempt to submit cmd buffer and verify error
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"UNASSIGNED-CoreValidation-DrawState-InvalidCommandBuffer-VkImage");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"UNASSIGNED-CoreValidation-DrawState-InvalidCommandBuffer-VkDeviceMemory");
m_commandBuffer->QueueCommandBuffer(false);
m_errorMonitor->VerifyFound();
vk::DestroyFramebuffer(m_device->device(), fb, nullptr);
vk::DestroyImageView(m_device->device(), view, nullptr);
}
TEST_F(VkLayerTest, ImageMemoryNotBound) {
TEST_DESCRIPTION("Attempt to draw with an image which has not had memory bound to it.");
ASSERT_NO_FATAL_FAILURE(Init());
VkImage image;
const VkFormat tex_format = VK_FORMAT_B8G8R8A8_UNORM;
VkImageCreateInfo image_create_info = {};
image_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_create_info.pNext = NULL;
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = tex_format;
image_create_info.extent.width = 32;
image_create_info.extent.height = 32;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
image_create_info.flags = 0;
VkResult err = vk::CreateImage(m_device->device(), &image_create_info, NULL, &image);
ASSERT_VK_SUCCESS(err);
// Have to bind memory to image before recording cmd in cmd buffer using it
VkMemoryRequirements mem_reqs;
VkDeviceMemory image_mem;
bool pass;
VkMemoryAllocateInfo mem_alloc = {};
mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
mem_alloc.pNext = NULL;
mem_alloc.memoryTypeIndex = 0;
vk::GetImageMemoryRequirements(m_device->device(), image, &mem_reqs);
mem_alloc.allocationSize = mem_reqs.size;
pass = m_device->phy().set_memory_type(mem_reqs.memoryTypeBits, &mem_alloc, 0);
ASSERT_TRUE(pass);
err = vk::AllocateMemory(m_device->device(), &mem_alloc, NULL, &image_mem);
ASSERT_VK_SUCCESS(err);
// Introduce error, do not call vk::BindImageMemory(m_device->device(), image, image_mem, 0);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
" used with no memory bound. Memory should be bound by calling vkBindImageMemory().");
m_commandBuffer->begin();
VkClearColorValue ccv;
ccv.float32[0] = 1.0f;
ccv.float32[1] = 1.0f;
ccv.float32[2] = 1.0f;
ccv.float32[3] = 1.0f;
VkImageSubresourceRange isr = {};
isr.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
isr.baseArrayLayer = 0;
isr.baseMipLevel = 0;
isr.layerCount = 1;
isr.levelCount = 1;
vk::CmdClearColorImage(m_commandBuffer->handle(), image, VK_IMAGE_LAYOUT_GENERAL, &ccv, 1, &isr);
m_commandBuffer->end();
m_errorMonitor->VerifyFound();
vk::DestroyImage(m_device->device(), image, NULL);
vk::FreeMemory(m_device->device(), image_mem, nullptr);
}
TEST_F(VkLayerTest, BufferMemoryNotBound) {
TEST_DESCRIPTION("Attempt to copy from a buffer which has not had memory bound to it.");
ASSERT_NO_FATAL_FAILURE(Init());
VkImageObj image(m_device);
image.Init(128, 128, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT,
VK_IMAGE_TILING_OPTIMAL, 0);
ASSERT_TRUE(image.initialized());
VkBuffer buffer;
VkDeviceMemory mem;
VkMemoryRequirements mem_reqs;
VkBufferCreateInfo buf_info = {};
buf_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buf_info.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
buf_info.size = 1024;
buf_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VkResult err = vk::CreateBuffer(m_device->device(), &buf_info, NULL, &buffer);
ASSERT_VK_SUCCESS(err);
vk::GetBufferMemoryRequirements(m_device->device(), buffer, &mem_reqs);
VkMemoryAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
alloc_info.allocationSize = 1024;
bool pass = false;
pass = m_device->phy().set_memory_type(mem_reqs.memoryTypeBits, &alloc_info, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
if (!pass) {
printf("%s Failed to set memory type.\n", kSkipPrefix);
vk::DestroyBuffer(m_device->device(), buffer, NULL);
return;
}
err = vk::AllocateMemory(m_device->device(), &alloc_info, NULL, &mem);
ASSERT_VK_SUCCESS(err);
// Introduce failure by not calling vkBindBufferMemory(m_device->device(), buffer, mem, 0);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
" used with no memory bound. Memory should be bound by calling vkBindBufferMemory().");
VkBufferImageCopy region = {};
region.bufferRowLength = 16;
region.bufferImageHeight = 16;
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.imageSubresource.layerCount = 1;
region.imageExtent.height = 4;
region.imageExtent.width = 4;
region.imageExtent.depth = 1;
m_commandBuffer->begin();
vk::CmdCopyBufferToImage(m_commandBuffer->handle(), buffer, image.handle(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &region);
m_commandBuffer->end();
m_errorMonitor->VerifyFound();
vk::DestroyBuffer(m_device->device(), buffer, NULL);
vk::FreeMemory(m_device->handle(), mem, NULL);
}
TEST_F(VkLayerTest, MultiplaneImageLayoutBadAspectFlags) {
TEST_DESCRIPTION("Query layout of a multiplane image using illegal aspect flag masks");
// Enable KHR multiplane req'd extensions
bool mp_extensions = InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME,
VK_KHR_GET_MEMORY_REQUIREMENTS_2_SPEC_VERSION);
if (mp_extensions) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
mp_extensions = mp_extensions && DeviceExtensionSupported(gpu(), nullptr, VK_KHR_MAINTENANCE1_EXTENSION_NAME);
mp_extensions = mp_extensions && DeviceExtensionSupported(gpu(), nullptr, VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME);
mp_extensions = mp_extensions && DeviceExtensionSupported(gpu(), nullptr, VK_KHR_BIND_MEMORY_2_EXTENSION_NAME);
mp_extensions = mp_extensions && DeviceExtensionSupported(gpu(), nullptr, VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME);
if (mp_extensions) {
m_device_extension_names.push_back(VK_KHR_MAINTENANCE1_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME);
} else {
printf("%s test requires KHR multiplane extensions, not available. Skipping.\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
VkImageCreateInfo ci = {};
ci.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
ci.pNext = NULL;
ci.flags = 0;
ci.imageType = VK_IMAGE_TYPE_2D;
ci.format = VK_FORMAT_G8_B8R8_2PLANE_420_UNORM_KHR;
ci.extent = {128, 128, 1};
ci.mipLevels = 1;
ci.arrayLayers = 1;
ci.samples = VK_SAMPLE_COUNT_1_BIT;
ci.tiling = VK_IMAGE_TILING_LINEAR;
ci.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
ci.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
ci.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
// Verify formats
bool supported = ImageFormatAndFeaturesSupported(instance(), gpu(), ci, VK_FORMAT_FEATURE_TRANSFER_SRC_BIT);
ci.format = VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM_KHR;
supported = supported && ImageFormatAndFeaturesSupported(instance(), gpu(), ci, VK_FORMAT_FEATURE_TRANSFER_SRC_BIT);
if (!supported) {
printf("%s Multiplane image format not supported. Skipping test.\n", kSkipPrefix);
return; // Assume there's low ROI on searching for different mp formats
}
VkImage image_2plane, image_3plane;
ci.format = VK_FORMAT_G8_B8R8_2PLANE_420_UNORM_KHR;
VkResult err = vk::CreateImage(device(), &ci, NULL, &image_2plane);
ASSERT_VK_SUCCESS(err);
ci.format = VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM_KHR;
err = vk::CreateImage(device(), &ci, NULL, &image_3plane);
ASSERT_VK_SUCCESS(err);
// Query layout of 3rd plane, for a 2-plane image
VkImageSubresource subres = {};
subres.aspectMask = VK_IMAGE_ASPECT_PLANE_2_BIT_KHR;
subres.mipLevel = 0;
subres.arrayLayer = 0;
VkSubresourceLayout layout = {};
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkGetImageSubresourceLayout-format-01581");
vk::GetImageSubresourceLayout(device(), image_2plane, &subres, &layout);
m_errorMonitor->VerifyFound();
// Query layout using color aspect, for a 3-plane image
subres.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkGetImageSubresourceLayout-format-01582");
vk::GetImageSubresourceLayout(device(), image_3plane, &subres, &layout);
m_errorMonitor->VerifyFound();
// Clean up
vk::DestroyImage(device(), image_2plane, NULL);
vk::DestroyImage(device(), image_3plane, NULL);
}
TEST_F(VkLayerTest, InvalidBufferViewObject) {
// Create a single TEXEL_BUFFER descriptor and send it an invalid bufferView
// First, cause the bufferView to be invalid due to underlying buffer being destroyed
// Then destroy view itself and verify that same error is hit
VkResult err;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkWriteDescriptorSet-descriptorType-00323");
ASSERT_NO_FATAL_FAILURE(Init());
OneOffDescriptorSet descriptor_set(m_device, {
{0, VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr},
});
VkBufferView view;
{
// Create a valid bufferView to start with
uint32_t queue_family_index = 0;
VkBufferCreateInfo buffer_create_info = {};
buffer_create_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buffer_create_info.size = 1024;
buffer_create_info.usage = VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT;
buffer_create_info.queueFamilyIndexCount = 1;
buffer_create_info.pQueueFamilyIndices = &queue_family_index;
VkBufferObj buffer;
buffer.init(*m_device, buffer_create_info);
VkBufferViewCreateInfo bvci = {};
bvci.sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO;
bvci.buffer = buffer.handle();
bvci.format = VK_FORMAT_R32_SFLOAT;
bvci.range = VK_WHOLE_SIZE;
err = vk::CreateBufferView(m_device->device(), &bvci, NULL, &view);
ASSERT_VK_SUCCESS(err);
}
// First Destroy buffer underlying view which should hit error in CV
VkWriteDescriptorSet descriptor_write;
memset(&descriptor_write, 0, sizeof(descriptor_write));
descriptor_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptor_write.dstSet = descriptor_set.set_;
descriptor_write.dstBinding = 0;
descriptor_write.descriptorCount = 1;
descriptor_write.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER;
descriptor_write.pTexelBufferView = &view;
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
m_errorMonitor->VerifyFound();
// Now destroy view itself and verify same error, which is hit in PV this time
vk::DestroyBufferView(m_device->device(), view, NULL);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkWriteDescriptorSet-descriptorType-00323");
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, CreateBufferViewNoMemoryBoundToBuffer) {
TEST_DESCRIPTION("Attempt to create a buffer view with a buffer that has no memory bound to it.");
VkResult err;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
" used with no memory bound. Memory should be bound by calling vkBindBufferMemory().");
ASSERT_NO_FATAL_FAILURE(Init());
// Create a buffer with no bound memory and then attempt to create
// a buffer view.
VkBufferCreateInfo buff_ci = {};
buff_ci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buff_ci.usage = VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT;
buff_ci.size = 256;
buff_ci.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VkBuffer buffer;
err = vk::CreateBuffer(m_device->device(), &buff_ci, NULL, &buffer);
ASSERT_VK_SUCCESS(err);
VkBufferViewCreateInfo buff_view_ci = {};
buff_view_ci.sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO;
buff_view_ci.buffer = buffer;
buff_view_ci.format = VK_FORMAT_R8_UNORM;
buff_view_ci.range = VK_WHOLE_SIZE;
VkBufferView buff_view;
err = vk::CreateBufferView(m_device->device(), &buff_view_ci, NULL, &buff_view);
m_errorMonitor->VerifyFound();
vk::DestroyBuffer(m_device->device(), buffer, NULL);
// If last error is success, it still created the view, so delete it.
if (err == VK_SUCCESS) {
vk::DestroyBufferView(m_device->device(), buff_view, NULL);
}
}
TEST_F(VkLayerTest, InvalidBufferViewCreateInfoEntries) {
TEST_DESCRIPTION("Attempt to create a buffer view with invalid create info.");
ASSERT_NO_FATAL_FAILURE(Init());
const VkPhysicalDeviceLimits &dev_limits = m_device->props.limits;
const VkDeviceSize minTexelBufferOffsetAlignment = dev_limits.minTexelBufferOffsetAlignment;
if (minTexelBufferOffsetAlignment == 1) {
printf("%s Test requires minTexelOffsetAlignment to not be equal to 1. \n", kSkipPrefix);
return;
}
const VkFormat format_with_uniform_texel_support = VK_FORMAT_R8G8B8A8_UNORM;
const char *format_with_uniform_texel_support_string = "VK_FORMAT_R8G8B8A8_UNORM";
const VkFormat format_without_texel_support = VK_FORMAT_R8G8B8_UNORM;
const char *format_without_texel_support_string = "VK_FORMAT_R8G8B8_UNORM";
VkFormatProperties format_properties;
vk::GetPhysicalDeviceFormatProperties(gpu(), format_with_uniform_texel_support, &format_properties);
if (!(format_properties.bufferFeatures & VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT)) {
printf("%s Test requires %s to support VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT\n", kSkipPrefix,
format_with_uniform_texel_support_string);
return;
}
vk::GetPhysicalDeviceFormatProperties(gpu(), format_without_texel_support, &format_properties);
if ((format_properties.bufferFeatures & VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT) ||
(format_properties.bufferFeatures & VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT)) {
printf(
"%s Test requires %s to not support VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT nor "
"VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT\n",
kSkipPrefix, format_without_texel_support_string);
return;
}
// Create a test buffer--buffer must have been created using VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT or
// VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT, so use a different usage value instead to cause an error
const VkDeviceSize resource_size = 1024;
const VkBufferCreateInfo bad_buffer_info = VkBufferObj::create_info(resource_size, VK_BUFFER_USAGE_INDEX_BUFFER_BIT);
VkBufferObj bad_buffer;
bad_buffer.init(*m_device, bad_buffer_info, (VkMemoryPropertyFlags)VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
// Create a test buffer view
VkBufferViewCreateInfo buff_view_ci = {};
buff_view_ci.sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO;
buff_view_ci.buffer = bad_buffer.handle();
buff_view_ci.format = format_with_uniform_texel_support;
buff_view_ci.range = VK_WHOLE_SIZE;
CreateBufferViewTest(*this, &buff_view_ci, {"VUID-VkBufferViewCreateInfo-buffer-00932"});
// Create a better test buffer
const VkBufferCreateInfo buffer_info = VkBufferObj::create_info(resource_size, VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT);
VkBufferObj buffer;
buffer.init(*m_device, buffer_info, (VkMemoryPropertyFlags)VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
// Offset must be less than the size of the buffer, so set it equal to the buffer size to cause an error
buff_view_ci.buffer = buffer.handle();
buff_view_ci.offset = buffer.create_info().size;
CreateBufferViewTest(*this, &buff_view_ci, {"VUID-VkBufferViewCreateInfo-offset-00925"});
// Offset must be a multiple of VkPhysicalDeviceLimits::minTexelBufferOffsetAlignment so add 1 to ensure it is not
buff_view_ci.offset = minTexelBufferOffsetAlignment + 1;
CreateBufferViewTest(*this, &buff_view_ci, {"VUID-VkBufferViewCreateInfo-offset-02749"});
// Set offset to acceptable value for range tests
buff_view_ci.offset = minTexelBufferOffsetAlignment;
// Setting range equal to 0 will cause an error to occur
buff_view_ci.range = 0;
CreateBufferViewTest(*this, &buff_view_ci, {"VUID-VkBufferViewCreateInfo-range-00928"});
uint32_t format_size = FormatElementSize(buff_view_ci.format);
// Range must be a multiple of the element size of format, so add one to ensure it is not
buff_view_ci.range = format_size + 1;
CreateBufferViewTest(*this, &buff_view_ci, {"VUID-VkBufferViewCreateInfo-range-00929"});
// Twice the element size of format multiplied by VkPhysicalDeviceLimits::maxTexelBufferElements guarantees range divided by the
// element size is greater than maxTexelBufferElements, causing failure
buff_view_ci.range = 2 * static_cast<VkDeviceSize>(format_size) * static_cast<VkDeviceSize>(dev_limits.maxTexelBufferElements);
CreateBufferViewTest(*this, &buff_view_ci,
{"VUID-VkBufferViewCreateInfo-range-00930", "VUID-VkBufferViewCreateInfo-offset-00931"});
// Set rage to acceptable value for buffer tests
buff_view_ci.format = format_without_texel_support;
buff_view_ci.range = VK_WHOLE_SIZE;
// `buffer` was created using VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT so we can use that for the first buffer test
CreateBufferViewTest(*this, &buff_view_ci, {"VUID-VkBufferViewCreateInfo-buffer-00933"});
// Create a new buffer using VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT
const VkBufferCreateInfo storage_buffer_info =
VkBufferObj::create_info(resource_size, VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT);
VkBufferObj storage_buffer;
storage_buffer.init(*m_device, storage_buffer_info, (VkMemoryPropertyFlags)VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
buff_view_ci.buffer = storage_buffer.handle();
CreateBufferViewTest(*this, &buff_view_ci, {"VUID-VkBufferViewCreateInfo-buffer-00934"});
}
TEST_F(VkLayerTest, InvalidTexelBufferAlignment) {
TEST_DESCRIPTION("Test VK_EXT_texel_buffer_alignment.");
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else {
printf("%s Did not find required instance extension %s; skipped.\n", kSkipPrefix,
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
std::array<const char *, 1> required_device_extensions = {{VK_EXT_TEXEL_BUFFER_ALIGNMENT_EXTENSION_NAME}};
for (auto device_extension : required_device_extensions) {
if (DeviceExtensionSupported(gpu(), nullptr, device_extension)) {
m_device_extension_names.push_back(device_extension);
} else {
printf("%s %s Extension not supported, skipping tests\n", kSkipPrefix, device_extension);
return;
}
}
if (DeviceIsMockICD() || DeviceSimulation()) {
printf("%s MockICD does not support this feature, skipping tests\n", kSkipPrefix);
return;
}
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR");
ASSERT_TRUE(vkGetPhysicalDeviceFeatures2KHR != nullptr);
// Create a device that enables texel_buffer_alignment
auto texel_buffer_alignment_features = lvl_init_struct<VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT>();
auto features2 = lvl_init_struct<VkPhysicalDeviceFeatures2KHR>(&texel_buffer_alignment_features);
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
texel_buffer_alignment_features.texelBufferAlignment = VK_TRUE;
VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT align_props = {};
align_props.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT;
VkPhysicalDeviceProperties2 pd_props2 = {};
pd_props2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
pd_props2.pNext = &align_props;
vk::GetPhysicalDeviceProperties2(gpu(), &pd_props2);
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
const VkFormat format_with_uniform_texel_support = VK_FORMAT_R8G8B8A8_UNORM;
const VkDeviceSize resource_size = 1024;
VkBufferCreateInfo buffer_info = VkBufferObj::create_info(
resource_size, VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT);
VkBufferObj buffer;
buffer.init(*m_device, buffer_info, (VkMemoryPropertyFlags)VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
// Create a test buffer view
VkBufferViewCreateInfo buff_view_ci = {};
buff_view_ci.sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO;
buff_view_ci.buffer = buffer.handle();
buff_view_ci.format = format_with_uniform_texel_support;
buff_view_ci.range = VK_WHOLE_SIZE;
buff_view_ci.offset = 1;
std::vector<std::string> expectedErrors;
if (buff_view_ci.offset < align_props.storageTexelBufferOffsetAlignmentBytes) {
expectedErrors.push_back("VUID-VkBufferViewCreateInfo-buffer-02750");
}
if (buff_view_ci.offset < align_props.uniformTexelBufferOffsetAlignmentBytes) {
expectedErrors.push_back("VUID-VkBufferViewCreateInfo-buffer-02751");
}
CreateBufferViewTest(*this, &buff_view_ci, expectedErrors);
expectedErrors.clear();
buff_view_ci.offset = 4;
if (buff_view_ci.offset < align_props.storageTexelBufferOffsetAlignmentBytes &&
!align_props.storageTexelBufferOffsetSingleTexelAlignment) {
expectedErrors.push_back("VUID-VkBufferViewCreateInfo-buffer-02750");
}
if (buff_view_ci.offset < align_props.uniformTexelBufferOffsetAlignmentBytes &&
!align_props.uniformTexelBufferOffsetSingleTexelAlignment) {
expectedErrors.push_back("VUID-VkBufferViewCreateInfo-buffer-02751");
}
CreateBufferViewTest(*this, &buff_view_ci, expectedErrors);
expectedErrors.clear();
// Test a 3-component format
VkFormatProperties format_properties;
vk::GetPhysicalDeviceFormatProperties(gpu(), VK_FORMAT_R32G32B32_SFLOAT, &format_properties);
if (format_properties.bufferFeatures & VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT) {
buffer_info.usage = VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT;
VkBufferObj buffer2;
buffer2.init(*m_device, buffer_info, (VkMemoryPropertyFlags)VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
// Create a test buffer view
buff_view_ci.buffer = buffer2.handle();
buff_view_ci.format = VK_FORMAT_R32G32B32_SFLOAT;
buff_view_ci.offset = 1;
if (buff_view_ci.offset < align_props.uniformTexelBufferOffsetAlignmentBytes) {
expectedErrors.push_back("VUID-VkBufferViewCreateInfo-buffer-02751");
}
CreateBufferViewTest(*this, &buff_view_ci, expectedErrors);
expectedErrors.clear();
buff_view_ci.offset = 4;
if (buff_view_ci.offset < align_props.uniformTexelBufferOffsetAlignmentBytes &&
!align_props.uniformTexelBufferOffsetSingleTexelAlignment) {
expectedErrors.push_back("VUID-VkBufferViewCreateInfo-buffer-02751");
}
CreateBufferViewTest(*this, &buff_view_ci, expectedErrors);
expectedErrors.clear();
}
}
TEST_F(VkLayerTest, FillBufferWithinRenderPass) {
// Call CmdFillBuffer within an active renderpass
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdFillBuffer-renderpass");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
VkBufferObj dstBuffer;
dstBuffer.init_as_dst(*m_device, (VkDeviceSize)1024, reqs);
m_commandBuffer->FillBuffer(dstBuffer.handle(), 0, 4, 0x11111111);
m_errorMonitor->VerifyFound();
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
}
TEST_F(VkLayerTest, UpdateBufferWithinRenderPass) {
// Call CmdUpdateBuffer within an active renderpass
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdUpdateBuffer-renderpass");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
VkBufferObj dstBuffer;
dstBuffer.init_as_dst(*m_device, (VkDeviceSize)1024, reqs);
VkDeviceSize dstOffset = 0;
uint32_t Data[] = {1, 2, 3, 4, 5, 6, 7, 8};
VkDeviceSize dataSize = sizeof(Data) / sizeof(uint32_t);
vk::CmdUpdateBuffer(m_commandBuffer->handle(), dstBuffer.handle(), dstOffset, dataSize, &Data);
m_errorMonitor->VerifyFound();
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
}
TEST_F(VkLayerTest, ClearColorImageWithBadRange) {
TEST_DESCRIPTION("Record clear color with an invalid VkImageSubresourceRange");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
VkImageObj image(m_device);
image.Init(32, 32, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_TRANSFER_DST_BIT, VK_IMAGE_TILING_OPTIMAL);
ASSERT_TRUE(image.create_info().arrayLayers == 1);
ASSERT_TRUE(image.initialized());
image.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
const VkClearColorValue clear_color = {{0.0f, 0.0f, 0.0f, 1.0f}};
m_commandBuffer->begin();
const auto cb_handle = m_commandBuffer->handle();
// Try baseMipLevel >= image.mipLevels with VK_REMAINING_MIP_LEVELS
{
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearColorImage-baseMipLevel-01470");
const VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 1, VK_REMAINING_MIP_LEVELS, 0, 1};
vk::CmdClearColorImage(cb_handle, image.handle(), image.Layout(), &clear_color, 1, &range);
m_errorMonitor->VerifyFound();
}
// Try baseMipLevel >= image.mipLevels without VK_REMAINING_MIP_LEVELS
{
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearColorImage-baseMipLevel-01470");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearColorImage-pRanges-01692");
const VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 0, 1};
vk::CmdClearColorImage(cb_handle, image.handle(), image.Layout(), &clear_color, 1, &range);
m_errorMonitor->VerifyFound();
}
// Try levelCount = 0
{
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearColorImage-pRanges-01692");
const VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 0, 1};
vk::CmdClearColorImage(cb_handle, image.handle(), image.Layout(), &clear_color, 1, &range);
m_errorMonitor->VerifyFound();
}
// Try baseMipLevel + levelCount > image.mipLevels
{
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearColorImage-pRanges-01692");
const VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 2, 0, 1};
vk::CmdClearColorImage(cb_handle, image.handle(), image.Layout(), &clear_color, 1, &range);
m_errorMonitor->VerifyFound();
}
// Try baseArrayLayer >= image.arrayLayers with VK_REMAINING_ARRAY_LAYERS
{
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearColorImage-baseArrayLayer-01472");
const VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 1, VK_REMAINING_ARRAY_LAYERS};
vk::CmdClearColorImage(cb_handle, image.handle(), image.Layout(), &clear_color, 1, &range);
m_errorMonitor->VerifyFound();
}
// Try baseArrayLayer >= image.arrayLayers without VK_REMAINING_ARRAY_LAYERS
{
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearColorImage-baseArrayLayer-01472");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearColorImage-pRanges-01693");
const VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 1, 1};
vk::CmdClearColorImage(cb_handle, image.handle(), image.Layout(), &clear_color, 1, &range);
m_errorMonitor->VerifyFound();
}
// Try layerCount = 0
{
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearColorImage-pRanges-01693");
const VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 0};
vk::CmdClearColorImage(cb_handle, image.handle(), image.Layout(), &clear_color, 1, &range);
m_errorMonitor->VerifyFound();
}
// Try baseArrayLayer + layerCount > image.arrayLayers
{
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearColorImage-pRanges-01693");
const VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 2};
vk::CmdClearColorImage(cb_handle, image.handle(), image.Layout(), &clear_color, 1, &range);
m_errorMonitor->VerifyFound();
}
}
TEST_F(VkLayerTest, ClearDepthStencilWithBadRange) {
TEST_DESCRIPTION("Record clear depth with an invalid VkImageSubresourceRange");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
const auto depth_format = FindSupportedDepthStencilFormat(gpu());
if (!depth_format) {
printf("%s No Depth + Stencil format found. Skipped.\n", kSkipPrefix);
return;
}
VkImageObj image(m_device);
image.Init(32, 32, 1, depth_format, VK_IMAGE_USAGE_TRANSFER_DST_BIT, VK_IMAGE_TILING_OPTIMAL);
ASSERT_TRUE(image.create_info().arrayLayers == 1);
ASSERT_TRUE(image.initialized());
const VkImageAspectFlags ds_aspect = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
image.SetLayout(ds_aspect, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
const VkClearDepthStencilValue clear_value = {};
m_commandBuffer->begin();
const auto cb_handle = m_commandBuffer->handle();
// Try baseMipLevel >= image.mipLevels with VK_REMAINING_MIP_LEVELS
{
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearDepthStencilImage-baseMipLevel-01474");
const VkImageSubresourceRange range = {ds_aspect, 1, VK_REMAINING_MIP_LEVELS, 0, 1};
vk::CmdClearDepthStencilImage(cb_handle, image.handle(), image.Layout(), &clear_value, 1, &range);
m_errorMonitor->VerifyFound();
}
// Try baseMipLevel >= image.mipLevels without VK_REMAINING_MIP_LEVELS
{
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearDepthStencilImage-baseMipLevel-01474");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearDepthStencilImage-pRanges-01694");
const VkImageSubresourceRange range = {ds_aspect, 1, 1, 0, 1};
vk::CmdClearDepthStencilImage(cb_handle, image.handle(), image.Layout(), &clear_value, 1, &range);
m_errorMonitor->VerifyFound();
}
// Try levelCount = 0
{
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearDepthStencilImage-pRanges-01694");
const VkImageSubresourceRange range = {ds_aspect, 0, 0, 0, 1};
vk::CmdClearDepthStencilImage(cb_handle, image.handle(), image.Layout(), &clear_value, 1, &range);
m_errorMonitor->VerifyFound();
}
// Try baseMipLevel + levelCount > image.mipLevels
{
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearDepthStencilImage-pRanges-01694");
const VkImageSubresourceRange range = {ds_aspect, 0, 2, 0, 1};
vk::CmdClearDepthStencilImage(cb_handle, image.handle(), image.Layout(), &clear_value, 1, &range);
m_errorMonitor->VerifyFound();
}
// Try baseArrayLayer >= image.arrayLayers with VK_REMAINING_ARRAY_LAYERS
{
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-vkCmdClearDepthStencilImage-baseArrayLayer-01476");
const VkImageSubresourceRange range = {ds_aspect, 0, 1, 1, VK_REMAINING_ARRAY_LAYERS};
vk::CmdClearDepthStencilImage(cb_handle, image.handle(), image.Layout(), &clear_value, 1, &range);
m_errorMonitor->VerifyFound();
}
// Try baseArrayLayer >= image.arrayLayers without VK_REMAINING_ARRAY_LAYERS
{
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-vkCmdClearDepthStencilImage-baseArrayLayer-01476");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearDepthStencilImage-pRanges-01695");
const VkImageSubresourceRange range = {ds_aspect, 0, 1, 1, 1};
vk::CmdClearDepthStencilImage(cb_handle, image.handle(), image.Layout(), &clear_value, 1, &range);
m_errorMonitor->VerifyFound();
}
// Try layerCount = 0
{
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearDepthStencilImage-pRanges-01695");
const VkImageSubresourceRange range = {ds_aspect, 0, 1, 0, 0};
vk::CmdClearDepthStencilImage(cb_handle, image.handle(), image.Layout(), &clear_value, 1, &range);
m_errorMonitor->VerifyFound();
}
// Try baseArrayLayer + layerCount > image.arrayLayers
{
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearDepthStencilImage-pRanges-01695");
const VkImageSubresourceRange range = {ds_aspect, 0, 1, 0, 2};
vk::CmdClearDepthStencilImage(cb_handle, image.handle(), image.Layout(), &clear_value, 1, &range);
m_errorMonitor->VerifyFound();
}
}
TEST_F(VkLayerTest, ClearColorImageWithinRenderPass) {
// Call CmdClearColorImage within an active RenderPass
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearColorImage-renderpass");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
VkClearColorValue clear_color;
memset(clear_color.uint32, 0, sizeof(uint32_t) * 4);
const VkFormat tex_format = VK_FORMAT_B8G8R8A8_UNORM;
const int32_t tex_width = 32;
const int32_t tex_height = 32;
VkImageCreateInfo image_create_info = {};
image_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_create_info.pNext = NULL;
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = tex_format;
image_create_info.extent.width = tex_width;
image_create_info.extent.height = tex_height;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
VkImageObj dstImage(m_device);
dstImage.init(&image_create_info);
const VkImageSubresourceRange range = VkImageObj::subresource_range(image_create_info, VK_IMAGE_ASPECT_COLOR_BIT);
vk::CmdClearColorImage(m_commandBuffer->handle(), dstImage.handle(), VK_IMAGE_LAYOUT_GENERAL, &clear_color, 1, &range);
m_errorMonitor->VerifyFound();
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
}
TEST_F(VkLayerTest, ClearDepthStencilImageErrors) {
// Hit errors related to vk::CmdClearDepthStencilImage()
// 1. Use an image that doesn't have VK_IMAGE_USAGE_TRANSFER_DST_BIT set
// 2. Call CmdClearDepthStencilImage within an active RenderPass
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
auto depth_format = FindSupportedDepthStencilFormat(gpu());
if (!depth_format) {
printf("%s No Depth + Stencil format found. Skipped.\n", kSkipPrefix);
return;
}
VkClearDepthStencilValue clear_value = {0};
VkImageCreateInfo image_create_info = VkImageObj::create_info();
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = depth_format;
image_create_info.extent.width = 64;
image_create_info.extent.height = 64;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
// Error here is that VK_IMAGE_USAGE_TRANSFER_DST_BIT is excluded for DS image that we'll call Clear on below
image_create_info.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
VkImageObj dst_image_bad_usage(m_device);
dst_image_bad_usage.init(&image_create_info);
const VkImageSubresourceRange range = VkImageObj::subresource_range(image_create_info, VK_IMAGE_ASPECT_DEPTH_BIT);
m_commandBuffer->begin();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearDepthStencilImage-image-00009");
vk::CmdClearDepthStencilImage(m_commandBuffer->handle(), dst_image_bad_usage.handle(), VK_IMAGE_LAYOUT_GENERAL, &clear_value, 1,
&range);
m_errorMonitor->VerifyFound();
// Fix usage for next test case
image_create_info.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
VkImageObj dst_image(m_device);
dst_image.init(&image_create_info);
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearDepthStencilImage-renderpass");
vk::CmdClearDepthStencilImage(m_commandBuffer->handle(), dst_image.handle(), VK_IMAGE_LAYOUT_GENERAL, &clear_value, 1, &range);
m_errorMonitor->VerifyFound();
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
}
TEST_F(VkLayerTest, BufferMemoryBarrierNoBuffer) {
// Try to add a buffer memory barrier with no buffer.
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"required parameter pBufferMemoryBarriers[0].buffer specified as VK_NULL_HANDLE");
ASSERT_NO_FATAL_FAILURE(Init());
m_commandBuffer->begin();
VkBufferMemoryBarrier buf_barrier = {};
buf_barrier.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER;
buf_barrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
buf_barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
buf_barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
buf_barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
buf_barrier.buffer = VK_NULL_HANDLE;
buf_barrier.offset = 0;
buf_barrier.size = VK_WHOLE_SIZE;
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_VERTEX_SHADER_BIT, 0, 0,
nullptr, 1, &buf_barrier, 0, nullptr);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, InvalidBarriers) {
TEST_DESCRIPTION("A variety of ways to get VK_INVALID_BARRIER ");
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
if (DeviceExtensionSupported(gpu(), nullptr, VK_KHR_SEPARATE_DEPTH_STENCIL_LAYOUTS_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_KHR_SEPARATE_DEPTH_STENCIL_LAYOUTS_EXTENSION_NAME);
}
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR");
auto separate_depth_stencil_layouts_features = lvl_init_struct<VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR>();
auto features2 = lvl_init_struct<VkPhysicalDeviceFeatures2KHR>(&separate_depth_stencil_layouts_features);
if (vkGetPhysicalDeviceFeatures2KHR) {
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
} else {
separate_depth_stencil_layouts_features.separateDepthStencilLayouts = VK_FALSE;
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, (vkGetPhysicalDeviceFeatures2KHR) ? &features2 : nullptr));
auto depth_format = FindSupportedDepthStencilFormat(gpu());
if (!depth_format) {
printf("%s No Depth + Stencil format found. Skipped.\n", kSkipPrefix);
return;
}
// Add a token self-dependency for this test to avoid unexpected errors
m_addRenderPassSelfDependency = true;
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
const uint32_t submit_family = m_device->graphics_queue_node_index_;
const uint32_t invalid = static_cast<uint32_t>(m_device->queue_props.size());
const uint32_t other_family = submit_family != 0 ? 0 : 1;
const bool only_one_family = (invalid == 1) || (m_device->queue_props[other_family].queueCount == 0);
std::vector<uint32_t> qf_indices{{submit_family, other_family}};
if (only_one_family) {
qf_indices.resize(1);
}
BarrierQueueFamilyTestHelper::Context test_context(this, qf_indices);
// Use image unbound to memory in barrier
// Use buffer unbound to memory in barrier
BarrierQueueFamilyTestHelper conc_test(&test_context);
conc_test.Init(nullptr, false, false);
conc_test.image_barrier_.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
conc_test(" used with no memory bound. Memory should be bound by calling vkBindImageMemory()",
" used with no memory bound. Memory should be bound by calling vkBindBufferMemory()");
VkBufferObj buffer;
VkMemoryPropertyFlags mem_reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
buffer.init_as_src_and_dst(*m_device, 256, mem_reqs);
conc_test.buffer_barrier_.buffer = buffer.handle();
VkImageObj image(m_device);
image.Init(128, 128, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_TILING_OPTIMAL, 0);
conc_test.image_barrier_.image = image.handle();
// New layout can't be UNDEFINED
conc_test.image_barrier_.newLayout = VK_IMAGE_LAYOUT_UNDEFINED;
conc_test("VUID-VkImageMemoryBarrier-newLayout-01198", "");
// Transition image to color attachment optimal
conc_test.image_barrier_.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
conc_test("");
// TODO: this looks vestigal or incomplete...
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
// Can't send buffer memory barrier during a render pass
vk::CmdEndRenderPass(m_commandBuffer->handle());
// Duplicate barriers that change layout
VkImageMemoryBarrier img_barrier = {};
img_barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
img_barrier.pNext = NULL;
img_barrier.image = image.handle();
img_barrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
img_barrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
img_barrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
img_barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
img_barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
img_barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
img_barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
img_barrier.subresourceRange.baseArrayLayer = 0;
img_barrier.subresourceRange.baseMipLevel = 0;
img_barrier.subresourceRange.layerCount = 1;
img_barrier.subresourceRange.levelCount = 1;
VkImageMemoryBarrier img_barriers[2] = {img_barrier, img_barrier};
// Transitions from UNDEFINED are valid, even if duplicated
m_errorMonitor->ExpectSuccess();
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, VK_DEPENDENCY_BY_REGION_BIT, 0, nullptr, 0, nullptr, 2,
img_barriers);
m_errorMonitor->VerifyNotFound();
// Duplication of layout transitions (not from undefined) are not valid
img_barriers[0].oldLayout = VK_IMAGE_LAYOUT_GENERAL;
img_barriers[0].newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
img_barriers[1].oldLayout = img_barriers[0].oldLayout;
img_barriers[1].newLayout = img_barriers[0].newLayout;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageMemoryBarrier-oldLayout-01197");
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, VK_DEPENDENCY_BY_REGION_BIT, 0, nullptr, 0, nullptr, 2,
img_barriers);
m_errorMonitor->VerifyFound();
// Exceed the buffer size
conc_test.buffer_barrier_.offset = conc_test.buffer_.create_info().size + 1;
conc_test("", "VUID-VkBufferMemoryBarrier-offset-01187");
conc_test.buffer_barrier_.offset = 0;
conc_test.buffer_barrier_.size = conc_test.buffer_.create_info().size + 1;
// Size greater than total size
conc_test("", "VUID-VkBufferMemoryBarrier-size-01189");
conc_test.buffer_barrier_.size = VK_WHOLE_SIZE;
// Now exercise barrier aspect bit errors, first DS
VkDepthStencilObj ds_image(m_device);
ds_image.Init(m_device, 128, 128, depth_format);
ASSERT_TRUE(ds_image.initialized());
conc_test.image_barrier_.oldLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
conc_test.image_barrier_.newLayout = VK_IMAGE_LAYOUT_GENERAL;
conc_test.image_barrier_.image = ds_image.handle();
// Not having DEPTH or STENCIL set is an error
conc_test.image_barrier_.subresourceRange.aspectMask = VK_IMAGE_ASPECT_METADATA_BIT;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "UNASSIGNED-CoreValidation-DrawState-InvalidImageAspect");
if (separate_depth_stencil_layouts_features.separateDepthStencilLayouts) {
conc_test("VUID-VkImageMemoryBarrier-image-03319");
} else {
conc_test("VUID-VkImageMemoryBarrier-image-03320");
// Having only one of depth or stencil set for DS image is an error
conc_test.image_barrier_.subresourceRange.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
conc_test("VUID-VkImageMemoryBarrier-image-03320");
}
// Having anything other than DEPTH and STENCIL is an error
conc_test.image_barrier_.subresourceRange.aspectMask =
VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT | VK_IMAGE_ASPECT_COLOR_BIT;
conc_test("UNASSIGNED-CoreValidation-DrawState-InvalidImageAspect");
// Now test depth-only
VkFormatProperties format_props;
vk::GetPhysicalDeviceFormatProperties(m_device->phy().handle(), VK_FORMAT_D16_UNORM, &format_props);
if (format_props.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) {
VkDepthStencilObj d_image(m_device);
d_image.Init(m_device, 128, 128, VK_FORMAT_D16_UNORM);
ASSERT_TRUE(d_image.initialized());
conc_test.image_barrier_.oldLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
conc_test.image_barrier_.newLayout = VK_IMAGE_LAYOUT_GENERAL;
conc_test.image_barrier_.image = d_image.handle();
// DEPTH bit must be set
conc_test.image_barrier_.subresourceRange.aspectMask = VK_IMAGE_ASPECT_METADATA_BIT;
conc_test("Depth-only image formats must have the VK_IMAGE_ASPECT_DEPTH_BIT set.");
// No bits other than DEPTH may be set
conc_test.image_barrier_.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_COLOR_BIT;
conc_test("Depth-only image formats can have only the VK_IMAGE_ASPECT_DEPTH_BIT set.");
}
// Now test stencil-only
vk::GetPhysicalDeviceFormatProperties(m_device->phy().handle(), VK_FORMAT_S8_UINT, &format_props);
if (format_props.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) {
VkDepthStencilObj s_image(m_device);
s_image.Init(m_device, 128, 128, VK_FORMAT_S8_UINT);
ASSERT_TRUE(s_image.initialized());
conc_test.image_barrier_.oldLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
conc_test.image_barrier_.newLayout = VK_IMAGE_LAYOUT_GENERAL;
conc_test.image_barrier_.image = s_image.handle();
// Use of COLOR aspect on depth image is error
conc_test.image_barrier_.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
conc_test("Stencil-only image formats must have the VK_IMAGE_ASPECT_STENCIL_BIT set.");
}
// Finally test color
VkImageObj c_image(m_device);
c_image.Init(128, 128, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_TILING_OPTIMAL, 0);
ASSERT_TRUE(c_image.initialized());
conc_test.image_barrier_.oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
conc_test.image_barrier_.newLayout = VK_IMAGE_LAYOUT_GENERAL;
conc_test.image_barrier_.image = c_image.handle();
// COLOR bit must be set
conc_test.image_barrier_.subresourceRange.aspectMask = VK_IMAGE_ASPECT_METADATA_BIT;
conc_test("Color image formats must have the VK_IMAGE_ASPECT_COLOR_BIT set.");
// No bits other than COLOR may be set
conc_test.image_barrier_.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT | VK_IMAGE_ASPECT_DEPTH_BIT;
conc_test("Color image formats must have ONLY the VK_IMAGE_ASPECT_COLOR_BIT set.");
// A barrier's new and old VkImageLayout must be compatible with an image's VkImageUsageFlags.
{
VkImageObj img_color(m_device);
img_color.Init(128, 128, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_TILING_OPTIMAL);
ASSERT_TRUE(img_color.initialized());
VkImageObj img_ds(m_device);
img_ds.Init(128, 128, 1, depth_format, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_IMAGE_TILING_OPTIMAL);
ASSERT_TRUE(img_ds.initialized());
VkImageObj img_xfer_src(m_device);
img_xfer_src.Init(128, 128, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_TRANSFER_SRC_BIT, VK_IMAGE_TILING_OPTIMAL);
ASSERT_TRUE(img_xfer_src.initialized());
VkImageObj img_xfer_dst(m_device);
img_xfer_dst.Init(128, 128, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_TRANSFER_DST_BIT, VK_IMAGE_TILING_OPTIMAL);
ASSERT_TRUE(img_xfer_dst.initialized());
VkImageObj img_sampled(m_device);
img_sampled.Init(32, 32, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_SAMPLED_BIT, VK_IMAGE_TILING_OPTIMAL);
ASSERT_TRUE(img_sampled.initialized());
VkImageObj img_input(m_device);
img_input.Init(128, 128, 1, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT, VK_IMAGE_TILING_OPTIMAL);
ASSERT_TRUE(img_input.initialized());
const struct {
VkImageObj &image_obj;
VkImageLayout bad_layout;
std::string msg_code;
} bad_buffer_layouts[] = {
// clang-format off
// images _without_ VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT
{img_ds, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01208"},
{img_xfer_src, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01208"},
{img_xfer_dst, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01208"},
{img_sampled, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01208"},
{img_input, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01208"},
// images _without_ VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT
{img_color, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01209"},
{img_xfer_src, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01209"},
{img_xfer_dst, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01209"},
{img_sampled, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01209"},
{img_input, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01209"},
{img_color, VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01210"},
{img_xfer_src, VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01210"},
{img_xfer_dst, VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01210"},
{img_sampled, VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01210"},
{img_input, VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01210"},
// images _without_ VK_IMAGE_USAGE_SAMPLED_BIT or VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT
{img_color, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01211"},
{img_ds, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01211"},
{img_xfer_src, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01211"},
{img_xfer_dst, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01211"},
// images _without_ VK_IMAGE_USAGE_TRANSFER_SRC_BIT
{img_color, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01212"},
{img_ds, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01212"},
{img_xfer_dst, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01212"},
{img_sampled, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01212"},
{img_input, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01212"},
// images _without_ VK_IMAGE_USAGE_TRANSFER_DST_BIT
{img_color, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01213"},
{img_ds, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01213"},
{img_xfer_src, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01213"},
{img_sampled, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01213"},
{img_input, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, "VUID-VkImageMemoryBarrier-oldLayout-01213"},
// clang-format on
};
const uint32_t layout_count = sizeof(bad_buffer_layouts) / sizeof(bad_buffer_layouts[0]);
for (uint32_t i = 0; i < layout_count; ++i) {
conc_test.image_barrier_.image = bad_buffer_layouts[i].image_obj.handle();
const VkImageUsageFlags usage = bad_buffer_layouts[i].image_obj.usage();
conc_test.image_barrier_.subresourceRange.aspectMask = (usage == VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)
? (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)
: VK_IMAGE_ASPECT_COLOR_BIT;
conc_test.image_barrier_.oldLayout = bad_buffer_layouts[i].bad_layout;
conc_test.image_barrier_.newLayout = VK_IMAGE_LAYOUT_GENERAL;
conc_test(bad_buffer_layouts[i].msg_code);
conc_test.image_barrier_.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
conc_test.image_barrier_.newLayout = bad_buffer_layouts[i].bad_layout;
conc_test(bad_buffer_layouts[i].msg_code);
}
conc_test.image_barrier_.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
conc_test.image_barrier_.newLayout = VK_IMAGE_LAYOUT_GENERAL;
conc_test.image_barrier_.image = image.handle();
}
// Attempt barrier where srcAccessMask is not supported by srcStageMask
// Have lower-order bit that's supported (shader write), but higher-order bit not supported to verify multi-bit validation
conc_test.buffer_barrier_.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_SHADER_WRITE_BIT;
conc_test.buffer_barrier_.offset = 0;
conc_test.buffer_barrier_.size = VK_WHOLE_SIZE;
conc_test("", "VUID-vkCmdPipelineBarrier-srcAccessMask-02815");
// Attempt barrier where dstAccessMask is not supported by dstStageMask
conc_test.buffer_barrier_.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
conc_test.buffer_barrier_.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
conc_test("", "VUID-vkCmdPipelineBarrier-dstAccessMask-02816");
// Attempt to mismatch barriers/waitEvents calls with incompatible queues
// Create command pool with incompatible queueflags
const std::vector<VkQueueFamilyProperties> queue_props = m_device->queue_props;
uint32_t queue_family_index = m_device->QueueFamilyMatching(VK_QUEUE_GRAPHICS_BIT, VK_QUEUE_COMPUTE_BIT);
if (queue_family_index == UINT32_MAX) {
printf("%s No non-compute queue supporting graphics found; skipped.\n", kSkipPrefix);
return; // NOTE: this exits the test function!
}
VkBufferMemoryBarrier buf_barrier = {};
buf_barrier.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER;
buf_barrier.pNext = NULL;
buf_barrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
buf_barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
buf_barrier.buffer = buffer.handle();
buf_barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
buf_barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
buf_barrier.offset = 0;
buf_barrier.size = VK_WHOLE_SIZE;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdPipelineBarrier-srcStageMask-01183");
VkCommandPoolObj command_pool(m_device, queue_family_index, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT);
VkCommandBufferObj bad_command_buffer(m_device, &command_pool);
bad_command_buffer.begin();
buf_barrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
// Set two bits that should both be supported as a bonus positive check
buf_barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT | VK_ACCESS_TRANSFER_READ_BIT;
vk::CmdPipelineBarrier(bad_command_buffer.handle(), VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_DEPENDENCY_BY_REGION_BIT, 0, nullptr, 1, &buf_barrier, 0, nullptr);
m_errorMonitor->VerifyFound();
// Check for error for trying to wait on pipeline stage not supported by this queue. Specifically since our queue is not a
// compute queue, vk::CmdWaitEvents cannot have it's source stage mask be VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdWaitEvents-srcStageMask-01164");
VkEvent event;
VkEventCreateInfo event_create_info{};
event_create_info.sType = VK_STRUCTURE_TYPE_EVENT_CREATE_INFO;
vk::CreateEvent(m_device->device(), &event_create_info, nullptr, &event);
vk::CmdWaitEvents(bad_command_buffer.handle(), 1, &event, /*source stage mask*/ VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT, 0, nullptr, 0, nullptr, 0, nullptr);
m_errorMonitor->VerifyFound();
bad_command_buffer.end();
vk::DestroyEvent(m_device->device(), event, nullptr);
}
TEST_F(VkLayerTest, InvalidBarrierQueueFamily) {
TEST_DESCRIPTION("Create and submit barriers with invalid queue families");
ASSERT_NO_FATAL_FAILURE(Init(nullptr, nullptr, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT));
// Find queues of two families
const uint32_t submit_family = m_device->graphics_queue_node_index_;
const uint32_t invalid = static_cast<uint32_t>(m_device->queue_props.size());
const uint32_t other_family = submit_family != 0 ? 0 : 1;
const bool only_one_family = (invalid == 1) || (m_device->queue_props[other_family].queueCount == 0);
std::vector<uint32_t> qf_indices{{submit_family, other_family}};
if (only_one_family) {
qf_indices.resize(1);
}
BarrierQueueFamilyTestHelper::Context test_context(this, qf_indices);
if (m_device->props.apiVersion >= VK_API_VERSION_1_1) {
printf(
"%s Device has apiVersion greater than 1.0 -- skipping test cases that require external memory "
"to be "
"disabled.\n",
kSkipPrefix);
} else {
if (only_one_family) {
printf("%s Single queue family found -- VK_SHARING_MODE_CONCURRENT testcases skipped.\n", kSkipPrefix);
} else {
std::vector<uint32_t> families = {submit_family, other_family};
BarrierQueueFamilyTestHelper conc_test(&test_context);
conc_test.Init(&families);
// core_validation::barrier_queue_families::kSrcAndDestMustBeIgnore
conc_test("VUID-VkImageMemoryBarrier-image-01199", "VUID-VkBufferMemoryBarrier-buffer-01190", VK_QUEUE_FAMILY_IGNORED,
submit_family);
conc_test("VUID-VkImageMemoryBarrier-image-01199", "VUID-VkBufferMemoryBarrier-buffer-01190", submit_family,
VK_QUEUE_FAMILY_IGNORED);
conc_test("VUID-VkImageMemoryBarrier-image-01199", "VUID-VkBufferMemoryBarrier-buffer-01190", submit_family,
submit_family);
// true -> positive test
conc_test("VUID-VkImageMemoryBarrier-image-01199", "VUID-VkBufferMemoryBarrier-buffer-01190", VK_QUEUE_FAMILY_IGNORED,
VK_QUEUE_FAMILY_IGNORED, true);
}
BarrierQueueFamilyTestHelper excl_test(&test_context);
excl_test.Init(nullptr); // no queue families means *exclusive* sharing mode.
// core_validation::barrier_queue_families::kBothIgnoreOrBothValid
excl_test("VUID-VkImageMemoryBarrier-image-01200", "VUID-VkBufferMemoryBarrier-buffer-01192", VK_QUEUE_FAMILY_IGNORED,
submit_family);
excl_test("VUID-VkImageMemoryBarrier-image-01200", "VUID-VkBufferMemoryBarrier-buffer-01192", submit_family,
VK_QUEUE_FAMILY_IGNORED);
// true -> positive test
excl_test("VUID-VkImageMemoryBarrier-image-01200", "VUID-VkBufferMemoryBarrier-buffer-01192", submit_family, submit_family,
true);
excl_test("VUID-VkImageMemoryBarrier-image-01200", "VUID-VkBufferMemoryBarrier-buffer-01192", VK_QUEUE_FAMILY_IGNORED,
VK_QUEUE_FAMILY_IGNORED, true);
}
if (only_one_family) {
printf("%s Single queue family found -- VK_SHARING_MODE_EXCLUSIVE submit testcases skipped.\n", kSkipPrefix);
} else {
BarrierQueueFamilyTestHelper excl_test(&test_context);
excl_test.Init(nullptr);
// core_validation::barrier_queue_families::kSubmitQueueMustMatchSrcOrDst
excl_test("VUID-VkImageMemoryBarrier-image-01205", "VUID-VkBufferMemoryBarrier-buffer-01196", other_family, other_family,
false, submit_family);
// true -> positive test (testing both the index logic and the QFO transfer tracking.
excl_test("POSITIVE_TEST", "POSITIVE_TEST", submit_family, other_family, true, submit_family);
excl_test("POSITIVE_TEST", "POSITIVE_TEST", submit_family, other_family, true, other_family);
excl_test("POSITIVE_TEST", "POSITIVE_TEST", other_family, submit_family, true, other_family);
excl_test("POSITIVE_TEST", "POSITIVE_TEST", other_family, submit_family, true, submit_family);
// negative testing for QFO transfer tracking
// Duplicate release in one CB
excl_test("UNASSIGNED-VkImageMemoryBarrier-image-00001", "UNASSIGNED-VkBufferMemoryBarrier-buffer-00001", submit_family,
other_family, false, submit_family, BarrierQueueFamilyTestHelper::DOUBLE_RECORD);
// Duplicate pending release
excl_test("UNASSIGNED-VkImageMemoryBarrier-image-00003", "UNASSIGNED-VkBufferMemoryBarrier-buffer-00003", submit_family,
other_family, false, submit_family);
// Duplicate acquire in one CB
excl_test("UNASSIGNED-VkImageMemoryBarrier-image-00001", "UNASSIGNED-VkBufferMemoryBarrier-buffer-00001", submit_family,
other_family, false, other_family, BarrierQueueFamilyTestHelper::DOUBLE_RECORD);
// No pending release
excl_test("UNASSIGNED-VkImageMemoryBarrier-image-00004", "UNASSIGNED-VkBufferMemoryBarrier-buffer-00004", submit_family,
other_family, false, other_family);
// Duplicate release in two CB
excl_test("UNASSIGNED-VkImageMemoryBarrier-image-00002", "UNASSIGNED-VkBufferMemoryBarrier-buffer-00002", submit_family,
other_family, false, submit_family, BarrierQueueFamilyTestHelper::DOUBLE_COMMAND_BUFFER);
// Duplicate acquire in two CB
excl_test("POSITIVE_TEST", "POSITIVE_TEST", submit_family, other_family, true, submit_family); // need a succesful release
excl_test("UNASSIGNED-VkImageMemoryBarrier-image-00002", "UNASSIGNED-VkBufferMemoryBarrier-buffer-00002", submit_family,
other_family, false, other_family, BarrierQueueFamilyTestHelper::DOUBLE_COMMAND_BUFFER);
}
}
TEST_F(VkLayerTest, InvalidBarrierQueueFamilyWithMemExt) {
TEST_DESCRIPTION("Create and submit barriers with invalid queue families when memory extension is enabled ");
std::vector<const char *> reqd_instance_extensions = {
{VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME}};
for (auto extension_name : reqd_instance_extensions) {
if (InstanceExtensionSupported(extension_name)) {
m_instance_extension_names.push_back(extension_name);
} else {
printf("%s Required instance extension %s not supported, skipping test\n", kSkipPrefix, extension_name);
return;
}
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
// Check for external memory device extensions
if (DeviceExtensionSupported(gpu(), nullptr, VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME);
} else {
printf("%s External memory extension not supported, skipping test\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, nullptr, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT));
// Find queues of two families
const uint32_t submit_family = m_device->graphics_queue_node_index_;
const uint32_t invalid = static_cast<uint32_t>(m_device->queue_props.size());
const uint32_t other_family = submit_family != 0 ? 0 : 1;
const bool only_one_family = (invalid == 1) || (m_device->queue_props[other_family].queueCount == 0);
std::vector<uint32_t> qf_indices{{submit_family, other_family}};
if (only_one_family) {
qf_indices.resize(1);
}
BarrierQueueFamilyTestHelper::Context test_context(this, qf_indices);
if (only_one_family) {
printf("%s Single queue family found -- VK_SHARING_MODE_CONCURRENT testcases skipped.\n", kSkipPrefix);
} else {
std::vector<uint32_t> families = {submit_family, other_family};
BarrierQueueFamilyTestHelper conc_test(&test_context);
// core_validation::barrier_queue_families::kSrcOrDstMustBeIgnore
conc_test.Init(&families);
conc_test("VUID-VkImageMemoryBarrier-image-01381", "VUID-VkBufferMemoryBarrier-buffer-01191", submit_family, submit_family);
// true -> positive test
conc_test("VUID-VkImageMemoryBarrier-image-01381", "VUID-VkBufferMemoryBarrier-buffer-01191", VK_QUEUE_FAMILY_IGNORED,
VK_QUEUE_FAMILY_IGNORED, true);
conc_test("VUID-VkImageMemoryBarrier-image-01381", "VUID-VkBufferMemoryBarrier-buffer-01191", VK_QUEUE_FAMILY_IGNORED,
VK_QUEUE_FAMILY_EXTERNAL_KHR, true);
conc_test("VUID-VkImageMemoryBarrier-image-01381", "VUID-VkBufferMemoryBarrier-buffer-01191", VK_QUEUE_FAMILY_EXTERNAL_KHR,
VK_QUEUE_FAMILY_IGNORED, true);
// core_validation::barrier_queue_families::kSpecialOrIgnoreOnly
conc_test("VUID-VkImageMemoryBarrier-image-01766", "VUID-VkBufferMemoryBarrier-buffer-01763", submit_family,
VK_QUEUE_FAMILY_IGNORED);
conc_test("VUID-VkImageMemoryBarrier-image-01766", "VUID-VkBufferMemoryBarrier-buffer-01763", VK_QUEUE_FAMILY_IGNORED,
submit_family);
// This is to flag the errors that would be considered only "unexpected" in the parallel case above
// true -> positive test
conc_test("VUID-VkImageMemoryBarrier-image-01766", "VUID-VkBufferMemoryBarrier-buffer-01763", VK_QUEUE_FAMILY_IGNORED,
VK_QUEUE_FAMILY_EXTERNAL_KHR, true);
conc_test("VUID-VkImageMemoryBarrier-image-01766", "VUID-VkBufferMemoryBarrier-buffer-01763", VK_QUEUE_FAMILY_EXTERNAL_KHR,
VK_QUEUE_FAMILY_IGNORED, true);
}
BarrierQueueFamilyTestHelper excl_test(&test_context);
excl_test.Init(nullptr); // no queue families means *exclusive* sharing mode.
// core_validation::barrier_queue_families::kSrcIgnoreRequiresDstIgnore
excl_test("VUID-VkImageMemoryBarrier-image-01201", "VUID-VkBufferMemoryBarrier-buffer-01193", VK_QUEUE_FAMILY_IGNORED,
submit_family);
excl_test("VUID-VkImageMemoryBarrier-image-01201", "VUID-VkBufferMemoryBarrier-buffer-01193", VK_QUEUE_FAMILY_IGNORED,
VK_QUEUE_FAMILY_EXTERNAL_KHR);
// true -> positive test
excl_test("VUID-VkImageMemoryBarrier-image-01201", "VUID-VkBufferMemoryBarrier-buffer-01193", VK_QUEUE_FAMILY_IGNORED,
VK_QUEUE_FAMILY_IGNORED, true);
// core_validation::barrier_queue_families::kDstValidOrSpecialIfNotIgnore
excl_test("VUID-VkImageMemoryBarrier-image-01768", "VUID-VkBufferMemoryBarrier-buffer-01765", submit_family, invalid);
// true -> positive test
excl_test("VUID-VkImageMemoryBarrier-image-01768", "VUID-VkBufferMemoryBarrier-buffer-01765", submit_family, submit_family,
true);
excl_test("VUID-VkImageMemoryBarrier-image-01768", "VUID-VkBufferMemoryBarrier-buffer-01765", submit_family,
VK_QUEUE_FAMILY_IGNORED, true);
excl_test("VUID-VkImageMemoryBarrier-image-01768", "VUID-VkBufferMemoryBarrier-buffer-01765", submit_family,
VK_QUEUE_FAMILY_EXTERNAL_KHR, true);
// core_validation::barrier_queue_families::kSrcValidOrSpecialIfNotIgnore
excl_test("VUID-VkImageMemoryBarrier-image-01767", "VUID-VkBufferMemoryBarrier-buffer-01764", invalid, submit_family);
// true -> positive test
excl_test("VUID-VkImageMemoryBarrier-image-01767", "VUID-VkBufferMemoryBarrier-buffer-01764", submit_family, submit_family,
true);
excl_test("VUID-VkImageMemoryBarrier-image-01767", "VUID-VkBufferMemoryBarrier-buffer-01764", VK_QUEUE_FAMILY_IGNORED,
VK_QUEUE_FAMILY_IGNORED, true);
excl_test("VUID-VkImageMemoryBarrier-image-01767", "VUID-VkBufferMemoryBarrier-buffer-01764", VK_QUEUE_FAMILY_EXTERNAL_KHR,
submit_family, true);
}
TEST_F(VkLayerTest, ImageBarrierWithBadRange) {
TEST_DESCRIPTION("VkImageMemoryBarrier with an invalid subresourceRange");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
VkImageMemoryBarrier img_barrier_template = {};
img_barrier_template.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
img_barrier_template.pNext = NULL;
img_barrier_template.srcAccessMask = 0;
img_barrier_template.dstAccessMask = 0;
img_barrier_template.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
img_barrier_template.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
img_barrier_template.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
img_barrier_template.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
// subresourceRange to be set later for the for the purposes of this test
img_barrier_template.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
img_barrier_template.subresourceRange.baseArrayLayer = 0;
img_barrier_template.subresourceRange.baseMipLevel = 0;
img_barrier_template.subresourceRange.layerCount = 0;
img_barrier_template.subresourceRange.levelCount = 0;
const uint32_t submit_family = m_device->graphics_queue_node_index_;
const uint32_t invalid = static_cast<uint32_t>(m_device->queue_props.size());
const uint32_t other_family = submit_family != 0 ? 0 : 1;
const bool only_one_family = (invalid == 1) || (m_device->queue_props[other_family].queueCount == 0);
std::vector<uint32_t> qf_indices{{submit_family, other_family}};
if (only_one_family) {
qf_indices.resize(1);
}
BarrierQueueFamilyTestHelper::Context test_context(this, qf_indices);
// Use image unbound to memory in barrier
// Use buffer unbound to memory in barrier
BarrierQueueFamilyTestHelper conc_test(&test_context);
conc_test.Init(nullptr);
img_barrier_template.image = conc_test.image_.handle();
conc_test.image_barrier_ = img_barrier_template;
// Nested scope here confuses clang-format, somehow
// clang-format off
// try for vk::CmdPipelineBarrier
{
// Try baseMipLevel >= image.mipLevels with VK_REMAINING_MIP_LEVELS
{
conc_test.image_barrier_.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 1, VK_REMAINING_MIP_LEVELS, 0, 1};
conc_test("VUID-VkImageMemoryBarrier-subresourceRange-01486");
}
// Try baseMipLevel >= image.mipLevels without VK_REMAINING_MIP_LEVELS
{
conc_test.image_barrier_.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 0, 1};
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageMemoryBarrier-subresourceRange-01724");
conc_test("VUID-VkImageMemoryBarrier-subresourceRange-01486");
}
// Try levelCount = 0
{
conc_test.image_barrier_.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 0, 1};
conc_test("VUID-VkImageMemoryBarrier-subresourceRange-01724");
}
// Try baseMipLevel + levelCount > image.mipLevels
{
conc_test.image_barrier_.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 2, 0, 1};
conc_test("VUID-VkImageMemoryBarrier-subresourceRange-01724");
}
// Try baseArrayLayer >= image.arrayLayers with VK_REMAINING_ARRAY_LAYERS
{
conc_test.image_barrier_.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 1, VK_REMAINING_ARRAY_LAYERS};
conc_test("VUID-VkImageMemoryBarrier-subresourceRange-01488");
}
// Try baseArrayLayer >= image.arrayLayers without VK_REMAINING_ARRAY_LAYERS
{
conc_test.image_barrier_.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 1, 1};
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageMemoryBarrier-subresourceRange-01725");
conc_test("VUID-VkImageMemoryBarrier-subresourceRange-01488");
}
// Try layerCount = 0
{
conc_test.image_barrier_.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 0};
conc_test("VUID-VkImageMemoryBarrier-subresourceRange-01725");
}
// Try baseArrayLayer + layerCount > image.arrayLayers
{
conc_test.image_barrier_.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 2};
conc_test("VUID-VkImageMemoryBarrier-subresourceRange-01725");
}
}
m_commandBuffer->begin();
// try for vk::CmdWaitEvents
{
VkEvent event;
VkEventCreateInfo eci{VK_STRUCTURE_TYPE_EVENT_CREATE_INFO, NULL, 0};
VkResult err = vk::CreateEvent(m_device->handle(), &eci, nullptr, &event);
ASSERT_VK_SUCCESS(err);
// Try baseMipLevel >= image.mipLevels with VK_REMAINING_MIP_LEVELS
{
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageMemoryBarrier-subresourceRange-01486");
const VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 1, VK_REMAINING_MIP_LEVELS, 0, 1};
VkImageMemoryBarrier img_barrier = img_barrier_template;
img_barrier.subresourceRange = range;
vk::CmdWaitEvents(m_commandBuffer->handle(), 1, &event, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, nullptr, 0, nullptr, 1, &img_barrier);
m_errorMonitor->VerifyFound();
}
// Try baseMipLevel >= image.mipLevels without VK_REMAINING_MIP_LEVELS
{
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageMemoryBarrier-subresourceRange-01486");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageMemoryBarrier-subresourceRange-01724");
const VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 0, 1};
VkImageMemoryBarrier img_barrier = img_barrier_template;
img_barrier.subresourceRange = range;
vk::CmdWaitEvents(m_commandBuffer->handle(), 1, &event, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, nullptr, 0, nullptr, 1, &img_barrier);
m_errorMonitor->VerifyFound();
}
// Try levelCount = 0
{
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageMemoryBarrier-subresourceRange-01724");
const VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 0, 1};
VkImageMemoryBarrier img_barrier = img_barrier_template;
img_barrier.subresourceRange = range;
vk::CmdWaitEvents(m_commandBuffer->handle(), 1, &event, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, nullptr, 0, nullptr, 1, &img_barrier);
m_errorMonitor->VerifyFound();
}
// Try baseMipLevel + levelCount > image.mipLevels
{
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageMemoryBarrier-subresourceRange-01724");
const VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 2, 0, 1};
VkImageMemoryBarrier img_barrier = img_barrier_template;
img_barrier.subresourceRange = range;
vk::CmdWaitEvents(m_commandBuffer->handle(), 1, &event, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, nullptr, 0, nullptr, 1, &img_barrier);
m_errorMonitor->VerifyFound();
}
// Try baseArrayLayer >= image.arrayLayers with VK_REMAINING_ARRAY_LAYERS
{
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageMemoryBarrier-subresourceRange-01488");
const VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 1, VK_REMAINING_ARRAY_LAYERS};
VkImageMemoryBarrier img_barrier = img_barrier_template;
img_barrier.subresourceRange = range;
vk::CmdWaitEvents(m_commandBuffer->handle(), 1, &event, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, nullptr, 0, nullptr, 1, &img_barrier);
m_errorMonitor->VerifyFound();
}
// Try baseArrayLayer >= image.arrayLayers without VK_REMAINING_ARRAY_LAYERS
{
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageMemoryBarrier-subresourceRange-01488");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageMemoryBarrier-subresourceRange-01725");
const VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 1, 1};
VkImageMemoryBarrier img_barrier = img_barrier_template;
img_barrier.subresourceRange = range;
vk::CmdWaitEvents(m_commandBuffer->handle(), 1, &event, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, nullptr, 0, nullptr, 1, &img_barrier);
m_errorMonitor->VerifyFound();
}
// Try layerCount = 0
{
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageMemoryBarrier-subresourceRange-01725");
const VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 0};
VkImageMemoryBarrier img_barrier = img_barrier_template;
img_barrier.subresourceRange = range;
vk::CmdWaitEvents(m_commandBuffer->handle(), 1, &event, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, nullptr, 0, nullptr, 1, &img_barrier);
m_errorMonitor->VerifyFound();
}
// Try baseArrayLayer + layerCount > image.arrayLayers
{
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageMemoryBarrier-subresourceRange-01725");
const VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 2};
VkImageMemoryBarrier img_barrier = img_barrier_template;
img_barrier.subresourceRange = range;
vk::CmdWaitEvents(m_commandBuffer->handle(), 1, &event, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, nullptr, 0, nullptr, 1, &img_barrier);
m_errorMonitor->VerifyFound();
}
vk::DestroyEvent(m_device->handle(), event, nullptr);
}
// clang-format on
}
TEST_F(VkLayerTest, IdxBufferAlignmentError) {
// Bind a BeginRenderPass within an active RenderPass
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
uint32_t const indices[] = {0};
VkBufferCreateInfo buf_info = {};
buf_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buf_info.size = 1024;
buf_info.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT;
buf_info.queueFamilyIndexCount = 1;
buf_info.pQueueFamilyIndices = indices;
VkBufferObj buffer;
buffer.init(*m_device, buf_info);
m_commandBuffer->begin();
// vk::CmdBindPipeline(m_commandBuffer->handle(),
// VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.handle());
// Should error before calling to driver so don't care about actual data
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "vkCmdBindIndexBuffer() offset (0x7) does not fall on ");
vk::CmdBindIndexBuffer(m_commandBuffer->handle(), buffer.handle(), 7, VK_INDEX_TYPE_UINT16);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, Bad2DArrayImageType) {
TEST_DESCRIPTION("Create an image with a flag specifying 2D_ARRAY_COMPATIBLE but not of imageType 3D.");
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
if (DeviceExtensionSupported(gpu(), nullptr, VK_KHR_MAINTENANCE1_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_KHR_MAINTENANCE1_EXTENSION_NAME);
} else {
printf("%s %s is not supported; skipping\n", kSkipPrefix, VK_KHR_MAINTENANCE1_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
// Trigger check by setting imagecreateflags to 2d_array_compat and imageType to 2D
VkImageCreateInfo ici = {VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
nullptr,
VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT_KHR,
VK_IMAGE_TYPE_2D,
VK_FORMAT_R8G8B8A8_UNORM,
{32, 32, 1},
1,
1,
VK_SAMPLE_COUNT_1_BIT,
VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_SAMPLED_BIT,
VK_SHARING_MODE_EXCLUSIVE,
0,
nullptr,
VK_IMAGE_LAYOUT_UNDEFINED};
CreateImageTest(*this, &ici, "VUID-VkImageCreateInfo-flags-00950");
}
TEST_F(VkLayerTest, VertexBufferInvalid) {
TEST_DESCRIPTION(
"Submit a command buffer using deleted vertex buffer, delete a buffer twice, use an invalid offset for each buffer type, "
"and attempt to bind a null buffer");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.InitState();
pipe.CreateGraphicsPipeline();
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.pipeline_);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "CoreValidation-DrawState-InvalidCommandBuffer-VkBuffer");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"CoreValidation-DrawState-InvalidCommandBuffer-VkDeviceMemory");
{
// Create and bind a vertex buffer in a reduced scope, which will cause it to be deleted upon leaving this scope
const float vbo_data[3] = {1.f, 0.f, 1.f};
VkVerticesObj draw_verticies(m_device, 1, 1, sizeof(vbo_data[0]), sizeof(vbo_data) / sizeof(vbo_data[0]), vbo_data);
draw_verticies.BindVertexBuffers(m_commandBuffer->handle());
draw_verticies.AddVertexInputToPipeHelpr(&pipe);
m_commandBuffer->Draw(1, 0, 0, 0);
m_commandBuffer->EndRenderPass();
}
vk::EndCommandBuffer(m_commandBuffer->handle());
m_errorMonitor->VerifyFound();
{
// Create and bind a vertex buffer in a reduced scope, and delete it
// twice, the second through the destructor
VkBufferTest buffer_test(m_device, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT, VkBufferTest::eDoubleDelete);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkDestroyBuffer-buffer-parameter");
buffer_test.TestDoubleDestroy();
}
m_errorMonitor->VerifyFound();
m_errorMonitor->SetUnexpectedError("value of pCreateInfo->usage must not be 0");
if (VkBufferTest::GetTestConditionValid(m_device, VkBufferTest::eInvalidMemoryOffset)) {
// Create and bind a memory buffer with an invalid offset.
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkBindBufferMemory-memoryOffset-01036");
m_errorMonitor->SetUnexpectedError(
"If buffer was created with the VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT or VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT, "
"memoryOffset must be a multiple of VkPhysicalDeviceLimits::minTexelBufferOffsetAlignment");
VkBufferTest buffer_test(m_device, VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT, VkBufferTest::eInvalidMemoryOffset);
(void)buffer_test;
m_errorMonitor->VerifyFound();
}
{
// Attempt to bind a null buffer.
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"vkBindBufferMemory: required parameter buffer specified as VK_NULL_HANDLE");
VkBufferTest buffer_test(m_device, 0, VkBufferTest::eBindNullBuffer);
(void)buffer_test;
m_errorMonitor->VerifyFound();
}
{
// Attempt to bind a fake buffer.
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkBindBufferMemory-buffer-parameter");
VkBufferTest buffer_test(m_device, 0, VkBufferTest::eBindFakeBuffer);
(void)buffer_test;
m_errorMonitor->VerifyFound();
}
{
// Attempt to use an invalid handle to delete a buffer.
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkFreeMemory-memory-parameter");
VkBufferTest buffer_test(m_device, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT, VkBufferTest::eFreeInvalidHandle);
(void)buffer_test;
}
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, BadVertexBufferOffset) {
TEST_DESCRIPTION("Submit an offset past the end of a vertex buffer");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
static const float vbo_data[3] = {1.f, 0.f, 1.f};
VkConstantBufferObj vbo(m_device, sizeof(vbo_data), (const void *)&vbo_data, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBindVertexBuffers-pOffsets-00626");
m_commandBuffer->BindVertexBuffer(&vbo, (VkDeviceSize)(3 * sizeof(float)), 1); // Offset at the end of the buffer
m_errorMonitor->VerifyFound();
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
}
// INVALID_IMAGE_LAYOUT tests (one other case is hit by MapMemWithoutHostVisibleBit and not here)
TEST_F(VkLayerTest, InvalidImageLayout) {
TEST_DESCRIPTION(
"Hit all possible validation checks associated with the UNASSIGNED-CoreValidation-DrawState-InvalidImageLayout error. "
"Generally these involve having images in the wrong layout when they're copied or transitioned.");
// 3 in ValidateCmdBufImageLayouts
// * -1 Attempt to submit cmd buf w/ deleted image
// * -2 Cmd buf submit of image w/ layout not matching first use w/ subresource
// * -3 Cmd buf submit of image w/ layout not matching first use w/o subresource
ASSERT_NO_FATAL_FAILURE(Init());
auto depth_format = FindSupportedDepthStencilFormat(gpu());
if (!depth_format) {
printf("%s No Depth + Stencil format found. Skipped.\n", kSkipPrefix);
return;
}
// Create src & dst images to use for copy operations
VkImageObj src_image(m_device);
VkImageObj dst_image(m_device);
VkImageObj depth_image(m_device);
const VkFormat tex_format = VK_FORMAT_B8G8R8A8_UNORM;
const int32_t tex_width = 32;
const int32_t tex_height = 32;
VkImageCreateInfo image_create_info = {};
image_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_create_info.pNext = NULL;
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = tex_format;
image_create_info.extent.width = tex_width;
image_create_info.extent.height = tex_height;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 4;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
image_create_info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
image_create_info.flags = 0;
src_image.init(&image_create_info);
image_create_info.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT;
dst_image.init(&image_create_info);
image_create_info.format = VK_FORMAT_D16_UNORM;
image_create_info.usage |= VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
depth_image.init(&image_create_info);
m_commandBuffer->begin();
VkImageCopy copy_region;
copy_region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy_region.srcSubresource.mipLevel = 0;
copy_region.srcSubresource.baseArrayLayer = 0;
copy_region.srcSubresource.layerCount = 1;
copy_region.srcOffset.x = 0;
copy_region.srcOffset.y = 0;
copy_region.srcOffset.z = 0;
copy_region.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy_region.dstSubresource.mipLevel = 0;
copy_region.dstSubresource.baseArrayLayer = 0;
copy_region.dstSubresource.layerCount = 1;
copy_region.dstOffset.x = 0;
copy_region.dstOffset.y = 0;
copy_region.dstOffset.z = 0;
copy_region.extent.width = 1;
copy_region.extent.height = 1;
copy_region.extent.depth = 1;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
"layout should be VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL instead of GENERAL.");
m_errorMonitor->SetUnexpectedError("layout should be VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL instead of GENERAL.");
m_commandBuffer->CopyImage(src_image.handle(), VK_IMAGE_LAYOUT_GENERAL, dst_image.handle(), VK_IMAGE_LAYOUT_GENERAL, 1,
&copy_region);
m_errorMonitor->VerifyFound();
// The first call hits the expected WARNING and skips the call down the chain, so call a second time to call down chain and
// update layer state
m_errorMonitor->SetUnexpectedError("layout should be VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL instead of GENERAL.");
m_errorMonitor->SetUnexpectedError("layout should be VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL instead of GENERAL.");
m_commandBuffer->CopyImage(src_image.handle(), VK_IMAGE_LAYOUT_GENERAL, dst_image.handle(), VK_IMAGE_LAYOUT_GENERAL, 1,
&copy_region);
// Now cause error due to src image layout changing
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdCopyImage-srcImageLayout-00128");
m_errorMonitor->SetUnexpectedError("is VK_IMAGE_LAYOUT_UNDEFINED but can only be VK_IMAGE_LAYOUT");
m_commandBuffer->CopyImage(src_image.handle(), VK_IMAGE_LAYOUT_UNDEFINED, dst_image.handle(), VK_IMAGE_LAYOUT_GENERAL, 1,
&copy_region);
m_errorMonitor->VerifyFound();
// Final src error is due to bad layout type
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdCopyImage-srcImageLayout-00129");
m_errorMonitor->SetUnexpectedError(
"with specific layout VK_IMAGE_LAYOUT_UNDEFINED that doesn't match the previously used layout VK_IMAGE_LAYOUT_GENERAL.");
m_commandBuffer->CopyImage(src_image.handle(), VK_IMAGE_LAYOUT_UNDEFINED, dst_image.handle(), VK_IMAGE_LAYOUT_GENERAL, 1,
&copy_region);
m_errorMonitor->VerifyFound();
// Now verify same checks for dst
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
"layout should be VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL instead of GENERAL.");
m_errorMonitor->SetUnexpectedError("layout should be VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL instead of GENERAL.");
m_commandBuffer->CopyImage(src_image.handle(), VK_IMAGE_LAYOUT_GENERAL, dst_image.handle(), VK_IMAGE_LAYOUT_GENERAL, 1,
&copy_region);
m_errorMonitor->VerifyFound();
// Now cause error due to src image layout changing
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdCopyImage-dstImageLayout-00133");
m_errorMonitor->SetUnexpectedError(
"is VK_IMAGE_LAYOUT_UNDEFINED but can only be VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL.");
m_commandBuffer->CopyImage(src_image.handle(), VK_IMAGE_LAYOUT_GENERAL, dst_image.handle(), VK_IMAGE_LAYOUT_UNDEFINED, 1,
&copy_region);
m_errorMonitor->VerifyFound();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdCopyImage-dstImageLayout-00134");
m_errorMonitor->SetUnexpectedError(
"with specific layout VK_IMAGE_LAYOUT_UNDEFINED that doesn't match the previously used layout VK_IMAGE_LAYOUT_GENERAL.");
m_commandBuffer->CopyImage(src_image.handle(), VK_IMAGE_LAYOUT_GENERAL, dst_image.handle(), VK_IMAGE_LAYOUT_UNDEFINED, 1,
&copy_region);
m_errorMonitor->VerifyFound();
// Convert dst and depth images to TRANSFER_DST for subsequent tests
VkImageMemoryBarrier transfer_dst_image_barrier[1] = {};
transfer_dst_image_barrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
transfer_dst_image_barrier[0].oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
transfer_dst_image_barrier[0].newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
transfer_dst_image_barrier[0].srcAccessMask = 0;
transfer_dst_image_barrier[0].dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
transfer_dst_image_barrier[0].image = dst_image.handle();
transfer_dst_image_barrier[0].subresourceRange.layerCount = image_create_info.arrayLayers;
transfer_dst_image_barrier[0].subresourceRange.levelCount = image_create_info.mipLevels;
transfer_dst_image_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0,
NULL, 0, NULL, 1, transfer_dst_image_barrier);
transfer_dst_image_barrier[0].image = depth_image.handle();
transfer_dst_image_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0,
NULL, 0, NULL, 1, transfer_dst_image_barrier);
// Cause errors due to clearing with invalid image layouts
VkClearColorValue color_clear_value = {};
VkImageSubresourceRange clear_range;
clear_range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
clear_range.baseMipLevel = 0;
clear_range.baseArrayLayer = 0;
clear_range.layerCount = 1;
clear_range.levelCount = 1;
// Fail due to explicitly prohibited layout for color clear (only GENERAL and TRANSFER_DST are permitted).
// Since the image is currently not in UNDEFINED layout, this will emit two errors.
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearColorImage-imageLayout-00005");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearColorImage-imageLayout-00004");
m_commandBuffer->ClearColorImage(dst_image.handle(), VK_IMAGE_LAYOUT_UNDEFINED, &color_clear_value, 1, &clear_range);
m_errorMonitor->VerifyFound();
// Fail due to provided layout not matching actual current layout for color clear.
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearColorImage-imageLayout-00004");
m_commandBuffer->ClearColorImage(dst_image.handle(), VK_IMAGE_LAYOUT_GENERAL, &color_clear_value, 1, &clear_range);
m_errorMonitor->VerifyFound();
VkClearDepthStencilValue depth_clear_value = {};
clear_range.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
// Fail due to explicitly prohibited layout for depth clear (only GENERAL and TRANSFER_DST are permitted).
// Since the image is currently not in UNDEFINED layout, this will emit two errors.
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearDepthStencilImage-imageLayout-00012");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearDepthStencilImage-imageLayout-00011");
m_commandBuffer->ClearDepthStencilImage(depth_image.handle(), VK_IMAGE_LAYOUT_UNDEFINED, &depth_clear_value, 1, &clear_range);
m_errorMonitor->VerifyFound();
// Fail due to provided layout not matching actual current layout for depth clear.
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdClearDepthStencilImage-imageLayout-00011");
m_commandBuffer->ClearDepthStencilImage(depth_image.handle(), VK_IMAGE_LAYOUT_GENERAL, &depth_clear_value, 1, &clear_range);
m_errorMonitor->VerifyFound();
// Now cause error due to bad image layout transition in PipelineBarrier
VkImageMemoryBarrier image_barrier[1] = {};
image_barrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
image_barrier[0].oldLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL;
image_barrier[0].newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
image_barrier[0].image = src_image.handle();
image_barrier[0].subresourceRange.layerCount = image_create_info.arrayLayers;
image_barrier[0].subresourceRange.levelCount = image_create_info.mipLevels;
image_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageMemoryBarrier-oldLayout-01197");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageMemoryBarrier-oldLayout-01210");
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0,
NULL, 0, NULL, 1, image_barrier);
m_errorMonitor->VerifyFound();
// Finally some layout errors at RenderPass create time
// Just hacking in specific state to get to the errors we want so don't copy this unless you know what you're doing.
VkAttachmentReference attach = {};
// perf warning for GENERAL layout w/ non-DS input attachment
attach.layout = VK_IMAGE_LAYOUT_GENERAL;
VkSubpassDescription subpass = {};
subpass.inputAttachmentCount = 1;
subpass.pInputAttachments = &attach;
VkRenderPassCreateInfo rpci = {};
rpci.subpassCount = 1;
rpci.pSubpasses = &subpass;
rpci.attachmentCount = 1;
VkAttachmentDescription attach_desc = {};
attach_desc.format = VK_FORMAT_UNDEFINED;
attach_desc.samples = VK_SAMPLE_COUNT_1_BIT;
attach_desc.finalLayout = VK_IMAGE_LAYOUT_GENERAL;
rpci.pAttachments = &attach_desc;
rpci.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
VkRenderPass rp;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
"Layout for input attachment is GENERAL but should be READ_ONLY_OPTIMAL.");
vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp);
m_errorMonitor->VerifyFound();
// error w/ non-general layout
attach.layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
m_errorMonitor->SetDesiredFailureMsg(
VK_DEBUG_REPORT_ERROR_BIT_EXT,
"Layout for input attachment is VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL but can only be READ_ONLY_OPTIMAL or GENERAL.");
vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp);
m_errorMonitor->VerifyFound();
subpass.inputAttachmentCount = 0;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &attach;
attach.layout = VK_IMAGE_LAYOUT_GENERAL;
// perf warning for GENERAL layout on color attachment
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
"Layout for color attachment is GENERAL but should be COLOR_ATTACHMENT_OPTIMAL.");
vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp);
m_errorMonitor->VerifyFound();
// error w/ non-color opt or GENERAL layout for color attachment
attach.layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
m_errorMonitor->SetDesiredFailureMsg(
VK_DEBUG_REPORT_ERROR_BIT_EXT,
"Layout for color attachment is VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL but can only be COLOR_ATTACHMENT_OPTIMAL or GENERAL.");
vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp);
m_errorMonitor->VerifyFound();
subpass.colorAttachmentCount = 0;
subpass.pDepthStencilAttachment = &attach;
attach.layout = VK_IMAGE_LAYOUT_GENERAL;
// perf warning for GENERAL layout on DS attachment
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
"GENERAL layout for depth attachment may not give optimal performance.");
vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp);
m_errorMonitor->VerifyFound();
// error w/ non-ds opt or GENERAL layout for color attachment
attach.layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"Layout for depth attachment is VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL but can only be "
"DEPTH_STENCIL_ATTACHMENT_OPTIMAL, DEPTH_STENCIL_READ_ONLY_OPTIMAL or GENERAL.");
vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp);
m_errorMonitor->VerifyFound();
// For this error we need a valid renderpass so create default one
attach.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL;
attach.attachment = 0;
attach_desc.format = depth_format;
attach_desc.samples = VK_SAMPLE_COUNT_1_BIT;
attach_desc.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attach_desc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attach_desc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
// Can't do a CLEAR load on READ_ONLY initialLayout
attach_desc.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attach_desc.initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL;
attach_desc.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"with invalid first layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL");
vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, InvalidStorageImageLayout) {
TEST_DESCRIPTION("Attempt to update a STORAGE_IMAGE descriptor w/o GENERAL layout.");
ASSERT_NO_FATAL_FAILURE(Init());
const VkFormat tex_format = VK_FORMAT_R8G8B8A8_UNORM;
VkImageTiling tiling;
VkFormatProperties format_properties;
vk::GetPhysicalDeviceFormatProperties(gpu(), tex_format, &format_properties);
if (format_properties.linearTilingFeatures & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT) {
tiling = VK_IMAGE_TILING_LINEAR;
} else if (format_properties.optimalTilingFeatures & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT) {
tiling = VK_IMAGE_TILING_OPTIMAL;
} else {
printf("%s Device does not support VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT; skipped.\n", kSkipPrefix);
return;
}
OneOffDescriptorSet descriptor_set(m_device,
{
{0, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, VK_SHADER_STAGE_FRAGMENT_BIT, nullptr},
});
VkImageObj image(m_device);
image.Init(32, 32, 1, tex_format, VK_IMAGE_USAGE_STORAGE_BIT, tiling, 0);
ASSERT_TRUE(image.initialized());
VkImageView view = image.targetView(tex_format);
descriptor_set.WriteDescriptorImageInfo(0, view, VK_NULL_HANDLE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
" of VK_DESCRIPTOR_TYPE_STORAGE_IMAGE type is being updated with layout "
"VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL but according to spec ");
descriptor_set.UpdateDescriptorSets();
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, CreateImageViewBreaksParameterCompatibilityRequirements) {
TEST_DESCRIPTION(
"Attempts to create an Image View with a view type that does not match the image type it is being created from.");
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
if (DeviceExtensionSupported(gpu(), nullptr, VK_KHR_MAINTENANCE1_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_KHR_MAINTENANCE1_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitState());
VkPhysicalDeviceMemoryProperties memProps;
vk::GetPhysicalDeviceMemoryProperties(m_device->phy().handle(), &memProps);
// Test mismatch detection for image of type VK_IMAGE_TYPE_1D
VkImageCreateInfo imgInfo = {VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
nullptr,
VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT,
VK_IMAGE_TYPE_1D,
VK_FORMAT_R8G8B8A8_UNORM,
{1, 1, 1},
1,
1,
VK_SAMPLE_COUNT_1_BIT,
VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
VK_SHARING_MODE_EXCLUSIVE,
0,
nullptr,
VK_IMAGE_LAYOUT_UNDEFINED};
VkImageObj image1D(m_device);
image1D.init(&imgInfo);
ASSERT_TRUE(image1D.initialized());
// Initialize VkImageViewCreateInfo with mismatched viewType
VkImageViewCreateInfo ivci = {};
ivci.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
ivci.image = image1D.handle();
ivci.viewType = VK_IMAGE_VIEW_TYPE_2D;
ivci.format = VK_FORMAT_R8G8B8A8_UNORM;
ivci.subresourceRange.layerCount = 1;
ivci.subresourceRange.baseMipLevel = 0;
ivci.subresourceRange.levelCount = 1;
ivci.subresourceRange.baseArrayLayer = 0;
ivci.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
// Test for error message
CreateImageViewTest(*this, &ivci,
"vkCreateImageView(): pCreateInfo->viewType VK_IMAGE_VIEW_TYPE_2D is not compatible with image");
// Test mismatch detection for image of type VK_IMAGE_TYPE_2D
imgInfo = {VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
nullptr,
VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT,
VK_IMAGE_TYPE_2D,
VK_FORMAT_R8G8B8A8_UNORM,
{1, 1, 1},
1,
6,
VK_SAMPLE_COUNT_1_BIT,
VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
VK_SHARING_MODE_EXCLUSIVE,
0,
nullptr,
VK_IMAGE_LAYOUT_UNDEFINED};
VkImageObj image2D(m_device);
image2D.init(&imgInfo);
ASSERT_TRUE(image2D.initialized());
// Initialize VkImageViewCreateInfo with mismatched viewType
ivci = {};
ivci.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
ivci.image = image2D.handle();
ivci.viewType = VK_IMAGE_VIEW_TYPE_3D;
ivci.format = VK_FORMAT_R8G8B8A8_UNORM;
ivci.subresourceRange.layerCount = 1;
ivci.subresourceRange.baseMipLevel = 0;
ivci.subresourceRange.levelCount = 1;
ivci.subresourceRange.baseArrayLayer = 0;
ivci.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
// Test for error message
CreateImageViewTest(*this, &ivci,
"vkCreateImageView(): pCreateInfo->viewType VK_IMAGE_VIEW_TYPE_3D is not compatible with image");
// Change VkImageViewCreateInfo to different mismatched viewType
ivci.viewType = VK_IMAGE_VIEW_TYPE_CUBE;
ivci.subresourceRange.layerCount = 6;
// Test for error message
CreateImageViewTest(*this, &ivci, "VUID-VkImageViewCreateInfo-image-01003");
// Test mismatch detection for image of type VK_IMAGE_TYPE_3D
imgInfo = {VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
nullptr,
VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT,
VK_IMAGE_TYPE_3D,
VK_FORMAT_R8G8B8A8_UNORM,
{1, 1, 1},
1,
1,
VK_SAMPLE_COUNT_1_BIT,
VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
VK_SHARING_MODE_EXCLUSIVE,
0,
nullptr,
VK_IMAGE_LAYOUT_UNDEFINED};
VkImageObj image3D(m_device);
image3D.init(&imgInfo);
ASSERT_TRUE(image3D.initialized());
// Initialize VkImageViewCreateInfo with mismatched viewType
ivci = {};
ivci.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
ivci.image = image3D.handle();
ivci.viewType = VK_IMAGE_VIEW_TYPE_1D;
ivci.format = VK_FORMAT_R8G8B8A8_UNORM;
ivci.subresourceRange.layerCount = 1;
ivci.subresourceRange.baseMipLevel = 0;
ivci.subresourceRange.levelCount = 1;
ivci.subresourceRange.baseArrayLayer = 0;
ivci.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
// Test for error message
CreateImageViewTest(*this, &ivci,
"vkCreateImageView(): pCreateInfo->viewType VK_IMAGE_VIEW_TYPE_1D is not compatible with image");
// Change VkImageViewCreateInfo to different mismatched viewType
ivci.viewType = VK_IMAGE_VIEW_TYPE_2D;
// Test for error message
if (DeviceExtensionSupported(gpu(), nullptr, VK_KHR_MAINTENANCE1_EXTENSION_NAME)) {
CreateImageViewTest(*this, &ivci, "VUID-VkImageViewCreateInfo-image-01005");
} else {
CreateImageViewTest(*this, &ivci, "VUID-VkImageViewCreateInfo-subResourceRange-01021");
}
// Check if the device can make the image required for this test case.
VkImageFormatProperties formProps = {{0, 0, 0}, 0, 0, 0, 0};
VkResult res = vk::GetPhysicalDeviceImageFormatProperties(
m_device->phy().handle(), VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_TYPE_3D, VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT | VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT_KHR | VK_IMAGE_CREATE_SPARSE_BINDING_BIT,
&formProps);
// If not, skip this part of the test.
if (res || !m_device->phy().features().sparseBinding ||
!DeviceExtensionSupported(gpu(), nullptr, VK_KHR_MAINTENANCE1_EXTENSION_NAME)) {
printf("%s %s is not supported.\n", kSkipPrefix, VK_KHR_MAINTENANCE1_EXTENSION_NAME);
return;
}
// Initialize VkImageCreateInfo with VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT_KHR and VK_IMAGE_CREATE_SPARSE_BINDING_BIT which
// are incompatible create flags.
imgInfo = {
VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
nullptr,
VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT | VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT_KHR | VK_IMAGE_CREATE_SPARSE_BINDING_BIT,
VK_IMAGE_TYPE_3D,
VK_FORMAT_R8G8B8A8_UNORM,
{1, 1, 1},
1,
1,
VK_SAMPLE_COUNT_1_BIT,
VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
VK_SHARING_MODE_EXCLUSIVE,
0,
nullptr,
VK_IMAGE_LAYOUT_UNDEFINED};
VkImage imageSparse;
// Creating a sparse image means we should not bind memory to it.
res = vk::CreateImage(m_device->device(), &imgInfo, NULL, &imageSparse);
ASSERT_FALSE(res);
// Initialize VkImageViewCreateInfo to create a view that will attempt to utilize VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT_KHR.
ivci = {};
ivci.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
ivci.image = imageSparse;
ivci.viewType = VK_IMAGE_VIEW_TYPE_2D;
ivci.format = VK_FORMAT_R8G8B8A8_UNORM;
ivci.subresourceRange.layerCount = 1;
ivci.subresourceRange.baseMipLevel = 0;
ivci.subresourceRange.levelCount = 1;
ivci.subresourceRange.baseArrayLayer = 0;
ivci.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
// Test for error message
CreateImageViewTest(*this, &ivci,
" when the VK_IMAGE_CREATE_SPARSE_BINDING_BIT, VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT, or "
"VK_IMAGE_CREATE_SPARSE_ALIASED_BIT flags are enabled.");
// Clean up
vk::DestroyImage(m_device->device(), imageSparse, nullptr);
}
TEST_F(VkLayerTest, CreateImageViewFormatFeatureMismatch) {
TEST_DESCRIPTION("Create view with a format that does not have the same features as the image format.");
if (!EnableDeviceProfileLayer()) {
printf("%s Failed to enable device profile layer.\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
ASSERT_NO_FATAL_FAILURE(InitState());
PFN_vkSetPhysicalDeviceFormatPropertiesEXT fpvkSetPhysicalDeviceFormatPropertiesEXT = nullptr;
PFN_vkGetOriginalPhysicalDeviceFormatPropertiesEXT fpvkGetOriginalPhysicalDeviceFormatPropertiesEXT = nullptr;
// Load required functions
if (!LoadDeviceProfileLayer(fpvkSetPhysicalDeviceFormatPropertiesEXT, fpvkGetOriginalPhysicalDeviceFormatPropertiesEXT)) {
printf("%s Failed to device profile layer.\n", kSkipPrefix);
return;
}
// List of features to be tested
VkFormatFeatureFlagBits features[] = {VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT, VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT,
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT};
uint32_t feature_count = 4;
// List of usage cases for each feature test
VkImageUsageFlags usages[] = {VK_IMAGE_USAGE_SAMPLED_BIT, VK_IMAGE_USAGE_STORAGE_BIT, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT};
// List of errors that will be thrown in order of tests run
std::string optimal_error_codes[] = {
"VUID-VkImageViewCreateInfo-usage-02274",
"VUID-VkImageViewCreateInfo-usage-02275",
"VUID-VkImageViewCreateInfo-usage-02276",
"VUID-VkImageViewCreateInfo-usage-02277",
};
VkFormatProperties formatProps;
// First three tests
uint32_t i = 0;
for (i = 0; i < (feature_count - 1); i++) {
// Modify formats to have mismatched features
// Format for image
fpvkGetOriginalPhysicalDeviceFormatPropertiesEXT(gpu(), VK_FORMAT_R32G32B32A32_UINT, &formatProps);
formatProps.optimalTilingFeatures |= features[i];
fpvkSetPhysicalDeviceFormatPropertiesEXT(gpu(), VK_FORMAT_R32G32B32A32_UINT, formatProps);
memset(&formatProps, 0, sizeof(formatProps));
// Format for view
fpvkGetOriginalPhysicalDeviceFormatPropertiesEXT(gpu(), VK_FORMAT_R32G32B32A32_SINT, &formatProps);
formatProps.optimalTilingFeatures = features[(i + 1) % feature_count];
fpvkSetPhysicalDeviceFormatPropertiesEXT(gpu(), VK_FORMAT_R32G32B32A32_SINT, formatProps);
// Create image with modified format
VkImageCreateInfo imgInfo = {VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
nullptr,
VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT,
VK_IMAGE_TYPE_2D,
VK_FORMAT_R32G32B32A32_UINT,
{1, 1, 1},
1,
1,
VK_SAMPLE_COUNT_1_BIT,
VK_IMAGE_TILING_OPTIMAL,
usages[i],
VK_SHARING_MODE_EXCLUSIVE,
0,
nullptr,
VK_IMAGE_LAYOUT_UNDEFINED};
VkImageObj image(m_device);
image.init(&imgInfo);
ASSERT_TRUE(image.initialized());
// Initialize VkImageViewCreateInfo with modified format
VkImageViewCreateInfo ivci = {};
ivci.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
ivci.image = image.handle();
ivci.viewType = VK_IMAGE_VIEW_TYPE_2D;
ivci.format = VK_FORMAT_R32G32B32A32_SINT;
ivci.subresourceRange.layerCount = 1;
ivci.subresourceRange.baseMipLevel = 0;
ivci.subresourceRange.levelCount = 1;
ivci.subresourceRange.baseArrayLayer = 0;
ivci.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
// Test for error message
CreateImageViewTest(*this, &ivci, optimal_error_codes[i]);
}
// Test for VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT. Needs special formats
// Only run this test if format supported
if (!ImageFormatIsSupported(gpu(), VK_FORMAT_D24_UNORM_S8_UINT, VK_IMAGE_TILING_OPTIMAL)) {
printf("%s VK_FORMAT_D24_UNORM_S8_UINT format not supported - skipped.\n", kSkipPrefix);
return;
}
// Modify formats to have mismatched features
// Format for image
fpvkGetOriginalPhysicalDeviceFormatPropertiesEXT(gpu(), VK_FORMAT_D24_UNORM_S8_UINT, &formatProps);
formatProps.optimalTilingFeatures |= features[i];
fpvkSetPhysicalDeviceFormatPropertiesEXT(gpu(), VK_FORMAT_D24_UNORM_S8_UINT, formatProps);
memset(&formatProps, 0, sizeof(formatProps));
// Format for view
fpvkGetOriginalPhysicalDeviceFormatPropertiesEXT(gpu(), VK_FORMAT_D32_SFLOAT_S8_UINT, &formatProps);
formatProps.optimalTilingFeatures = features[(i + 1) % feature_count];
fpvkSetPhysicalDeviceFormatPropertiesEXT(gpu(), VK_FORMAT_D32_SFLOAT_S8_UINT, formatProps);
// Create image with modified format
VkImageCreateInfo imgInfo = {VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
nullptr,
VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT,
VK_IMAGE_TYPE_2D,
VK_FORMAT_D24_UNORM_S8_UINT,
{1, 1, 1},
1,
1,
VK_SAMPLE_COUNT_1_BIT,
VK_IMAGE_TILING_OPTIMAL,
usages[i],
VK_SHARING_MODE_EXCLUSIVE,
0,
nullptr,
VK_IMAGE_LAYOUT_UNDEFINED};
VkImageObj image(m_device);
image.init(&imgInfo);
ASSERT_TRUE(image.initialized());
// Initialize VkImageViewCreateInfo with modified format
VkImageViewCreateInfo ivci = {};
ivci.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
ivci.image = image.handle();
ivci.viewType = VK_IMAGE_VIEW_TYPE_2D;
ivci.format = VK_FORMAT_D32_SFLOAT_S8_UINT;
ivci.subresourceRange.layerCount = 1;
ivci.subresourceRange.baseMipLevel = 0;
ivci.subresourceRange.levelCount = 1;
ivci.subresourceRange.baseArrayLayer = 0;
ivci.subresourceRange.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
// Test for error message
CreateImageViewTest(*this, &ivci, optimal_error_codes[i]);
}
TEST_F(VkLayerTest, InvalidImageViewUsageCreateInfo) {
TEST_DESCRIPTION("Usage modification via a chained VkImageViewUsageCreateInfo struct");
if (!EnableDeviceProfileLayer()) {
printf("%s Test requires DeviceProfileLayer, unavailable - skipped.\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
if (!DeviceExtensionSupported(gpu(), nullptr, VK_KHR_MAINTENANCE2_EXTENSION_NAME)) {
printf("%s Test requires API >= 1.1 or KHR_MAINTENANCE2 extension, unavailable - skipped.\n", kSkipPrefix);
return;
}
m_device_extension_names.push_back(VK_KHR_MAINTENANCE2_EXTENSION_NAME);
ASSERT_NO_FATAL_FAILURE(InitState());
PFN_vkSetPhysicalDeviceFormatPropertiesEXT fpvkSetPhysicalDeviceFormatPropertiesEXT = nullptr;
PFN_vkGetOriginalPhysicalDeviceFormatPropertiesEXT fpvkGetOriginalPhysicalDeviceFormatPropertiesEXT = nullptr;
// Load required functions
if (!LoadDeviceProfileLayer(fpvkSetPhysicalDeviceFormatPropertiesEXT, fpvkGetOriginalPhysicalDeviceFormatPropertiesEXT)) {
printf("%s Required extensions are not avaiable.\n", kSkipPrefix);
return;
}
VkFormatProperties formatProps;
// Ensure image format claims support for sampled and storage, excludes color attachment
memset(&formatProps, 0, sizeof(formatProps));
fpvkGetOriginalPhysicalDeviceFormatPropertiesEXT(gpu(), VK_FORMAT_R32G32B32A32_UINT, &formatProps);
formatProps.optimalTilingFeatures |= (VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT | VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT);
formatProps.optimalTilingFeatures = formatProps.optimalTilingFeatures & ~VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT;
fpvkSetPhysicalDeviceFormatPropertiesEXT(gpu(), VK_FORMAT_R32G32B32A32_UINT, formatProps);
// Create image with sampled and storage usages
VkImageCreateInfo imgInfo = {VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
nullptr,
VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT,
VK_IMAGE_TYPE_2D,
VK_FORMAT_R32G32B32A32_UINT,
{1, 1, 1},
1,
1,
VK_SAMPLE_COUNT_1_BIT,
VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT,
VK_SHARING_MODE_EXCLUSIVE,
0,
nullptr,
VK_IMAGE_LAYOUT_UNDEFINED};
VkImageObj image(m_device);
image.init(&imgInfo);
ASSERT_TRUE(image.initialized());
// Force the imageview format to exclude storage feature, include color attachment
memset(&formatProps, 0, sizeof(formatProps));
fpvkGetOriginalPhysicalDeviceFormatPropertiesEXT(gpu(), VK_FORMAT_R32G32B32A32_SINT, &formatProps);
formatProps.optimalTilingFeatures |= VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT;
formatProps.optimalTilingFeatures = (formatProps.optimalTilingFeatures & ~VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT);
fpvkSetPhysicalDeviceFormatPropertiesEXT(gpu(), VK_FORMAT_R32G32B32A32_SINT, formatProps);
VkImageViewCreateInfo ivci = {};
ivci.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
ivci.image = image.handle();
ivci.viewType = VK_IMAGE_VIEW_TYPE_2D;
ivci.format = VK_FORMAT_R32G32B32A32_SINT;
ivci.subresourceRange.layerCount = 1;
ivci.subresourceRange.baseMipLevel = 0;
ivci.subresourceRange.levelCount = 1;
ivci.subresourceRange.baseArrayLayer = 0;
ivci.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
// ImageView creation should fail because view format doesn't support all the underlying image's usages
CreateImageViewTest(*this, &ivci, "VUID-VkImageViewCreateInfo-usage-02275");
// Add a chained VkImageViewUsageCreateInfo to override original image usage bits, removing storage
VkImageViewUsageCreateInfo usage_ci = {VK_STRUCTURE_TYPE_IMAGE_VIEW_USAGE_CREATE_INFO, nullptr, VK_IMAGE_USAGE_SAMPLED_BIT};
// Link the VkImageViewUsageCreateInfo struct into the view's create info pNext chain
ivci.pNext = &usage_ci;
// ImageView should now succeed without error
CreateImageViewTest(*this, &ivci);
// Try a zero usage field
usage_ci.usage = 0;
CreateImageViewTest(*this, &ivci, "VUID-VkImageViewUsageCreateInfo-usage-requiredbitmask");
// Try an illegal bit in usage field
usage_ci.usage = 0x10000000 | VK_IMAGE_USAGE_SAMPLED_BIT;
CreateImageViewTest(*this, &ivci, "VUID-VkImageViewUsageCreateInfo-usage-parameter");
}
TEST_F(VkLayerTest, CreateImageViewNoMemoryBoundToImage) {
VkResult err;
ASSERT_NO_FATAL_FAILURE(Init());
// Create an image and try to create a view with no memory backing the image
VkImage image;
const VkFormat tex_format = VK_FORMAT_B8G8R8A8_UNORM;
const int32_t tex_width = 32;
const int32_t tex_height = 32;
VkImageCreateInfo image_create_info = {};
image_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_create_info.pNext = NULL;
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = tex_format;
image_create_info.extent.width = tex_width;
image_create_info.extent.height = tex_height;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
image_create_info.flags = 0;
err = vk::CreateImage(m_device->device(), &image_create_info, NULL, &image);
ASSERT_VK_SUCCESS(err);
VkImageViewCreateInfo image_view_create_info = {};
image_view_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
image_view_create_info.image = image;
image_view_create_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
image_view_create_info.format = tex_format;
image_view_create_info.subresourceRange.layerCount = 1;
image_view_create_info.subresourceRange.baseMipLevel = 0;
image_view_create_info.subresourceRange.levelCount = 1;
image_view_create_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
CreateImageViewTest(*this, &image_view_create_info,
" used with no memory bound. Memory should be bound by calling vkBindImageMemory().");
vk::DestroyImage(m_device->device(), image, NULL);
}
TEST_F(VkLayerTest, InvalidImageViewAspect) {
TEST_DESCRIPTION("Create an image and try to create a view with an invalid aspectMask");
ASSERT_NO_FATAL_FAILURE(Init());
const VkFormat tex_format = VK_FORMAT_B8G8R8A8_UNORM;
VkImageObj image(m_device);
image.Init(32, 32, 1, tex_format, VK_IMAGE_USAGE_SAMPLED_BIT, VK_IMAGE_TILING_LINEAR, 0);
ASSERT_TRUE(image.initialized());
VkImageViewCreateInfo image_view_create_info = {};
image_view_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
image_view_create_info.image = image.handle();
image_view_create_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
image_view_create_info.format = tex_format;
image_view_create_info.subresourceRange.baseMipLevel = 0;
image_view_create_info.subresourceRange.levelCount = 1;
image_view_create_info.subresourceRange.layerCount = 1;
// Cause an error by setting an invalid image aspect
image_view_create_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_METADATA_BIT;
CreateImageViewTest(*this, &image_view_create_info, "UNASSIGNED-CoreValidation-DrawState-InvalidImageAspect");
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, ExerciseGetImageSubresourceLayout) {
TEST_DESCRIPTION("Test vkGetImageSubresourceLayout() valid usages");
ASSERT_NO_FATAL_FAILURE(Init());
VkSubresourceLayout subres_layout = {};
// VU 00732: image must have been created with tiling equal to VK_IMAGE_TILING_LINEAR
{
const VkImageTiling tiling = VK_IMAGE_TILING_OPTIMAL; // ERROR: violates VU 00732
VkImageObj img(m_device);
img.InitNoLayout(32, 32, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_TRANSFER_SRC_BIT, tiling);
ASSERT_TRUE(img.initialized());
VkImageSubresource subres = {};
subres.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subres.mipLevel = 0;
subres.arrayLayer = 0;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkGetImageSubresourceLayout-image-00996");
vk::GetImageSubresourceLayout(m_device->device(), img.image(), &subres, &subres_layout);
m_errorMonitor->VerifyFound();
}
// VU 00733: The aspectMask member of pSubresource must only have a single bit set
{
VkImageObj img(m_device);
img.InitNoLayout(32, 32, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_TRANSFER_SRC_BIT);
ASSERT_TRUE(img.initialized());
VkImageSubresource subres = {};
subres.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT | VK_IMAGE_ASPECT_METADATA_BIT; // ERROR: triggers VU 00733
subres.mipLevel = 0;
subres.arrayLayer = 0;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkGetImageSubresourceLayout-aspectMask-00997");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"UNASSIGNED-CoreValidation-DrawState-InvalidImageAspect");
vk::GetImageSubresourceLayout(m_device->device(), img.image(), &subres, &subres_layout);
m_errorMonitor->VerifyFound();
}
// 00739 mipLevel must be less than the mipLevels specified in VkImageCreateInfo when the image was created
{
VkImageObj img(m_device);
img.InitNoLayout(32, 32, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_TRANSFER_SRC_BIT);
ASSERT_TRUE(img.initialized());
VkImageSubresource subres = {};
subres.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subres.mipLevel = 1; // ERROR: triggers VU 00739
subres.arrayLayer = 0;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkGetImageSubresourceLayout-mipLevel-01716");
vk::GetImageSubresourceLayout(m_device->device(), img.image(), &subres, &subres_layout);
m_errorMonitor->VerifyFound();
}
// 00740 arrayLayer must be less than the arrayLayers specified in VkImageCreateInfo when the image was created
{
VkImageObj img(m_device);
img.InitNoLayout(32, 32, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_TRANSFER_SRC_BIT);
ASSERT_TRUE(img.initialized());
VkImageSubresource subres = {};
subres.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subres.mipLevel = 0;
subres.arrayLayer = 1; // ERROR: triggers VU 00740
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkGetImageSubresourceLayout-arrayLayer-01717");
vk::GetImageSubresourceLayout(m_device->device(), img.image(), &subres, &subres_layout);
m_errorMonitor->VerifyFound();
}
}
TEST_F(VkLayerTest, ImageLayerUnsupportedFormat) {
TEST_DESCRIPTION("Creating images with unsupported formats ");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
// Create image with unsupported format - Expect FORMAT_UNSUPPORTED
VkImageCreateInfo image_create_info = {};
image_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = VK_FORMAT_UNDEFINED;
image_create_info.extent.width = 32;
image_create_info.extent.height = 32;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
CreateImageTest(*this, &image_create_info, "VUID-VkImageCreateInfo-format-00943");
}
TEST_F(VkLayerTest, CreateImageViewFormatMismatchUnrelated) {
TEST_DESCRIPTION("Create an image with a color format, then try to create a depth view of it");
if (!EnableDeviceProfileLayer()) {
printf("%s Failed to enable device profile layer.\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
ASSERT_NO_FATAL_FAILURE(InitState());
// Load required functions
PFN_vkSetPhysicalDeviceFormatPropertiesEXT fpvkSetPhysicalDeviceFormatPropertiesEXT =
(PFN_vkSetPhysicalDeviceFormatPropertiesEXT)vk::GetInstanceProcAddr(instance(), "vkSetPhysicalDeviceFormatPropertiesEXT");
PFN_vkGetOriginalPhysicalDeviceFormatPropertiesEXT fpvkGetOriginalPhysicalDeviceFormatPropertiesEXT =
(PFN_vkGetOriginalPhysicalDeviceFormatPropertiesEXT)vk::GetInstanceProcAddr(
instance(), "vkGetOriginalPhysicalDeviceFormatPropertiesEXT");
if (!(fpvkSetPhysicalDeviceFormatPropertiesEXT) || !(fpvkGetOriginalPhysicalDeviceFormatPropertiesEXT)) {
printf("%s Can't find device_profile_api functions; skipped.\n", kSkipPrefix);
return;
}
auto depth_format = FindSupportedDepthStencilFormat(gpu());
if (!depth_format) {
printf("%s Couldn't find depth stencil image format.\n", kSkipPrefix);
return;
}
VkFormatProperties formatProps;
fpvkGetOriginalPhysicalDeviceFormatPropertiesEXT(gpu(), depth_format, &formatProps);
formatProps.optimalTilingFeatures |= VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT;
fpvkSetPhysicalDeviceFormatPropertiesEXT(gpu(), depth_format, formatProps);
VkImageObj image(m_device);
image.Init(128, 128, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_TILING_OPTIMAL, 0);
ASSERT_TRUE(image.initialized());
VkImageViewCreateInfo imgViewInfo = {};
imgViewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
imgViewInfo.image = image.handle();
imgViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
imgViewInfo.format = depth_format;
imgViewInfo.subresourceRange.layerCount = 1;
imgViewInfo.subresourceRange.baseMipLevel = 0;
imgViewInfo.subresourceRange.levelCount = 1;
imgViewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
// Can't use depth format for view into color image - Expect INVALID_FORMAT
CreateImageViewTest(*this, &imgViewInfo,
"Formats MUST be IDENTICAL unless VK_IMAGE_CREATE_MUTABLE_FORMAT BIT was set on image creation.");
}
TEST_F(VkLayerTest, CreateImageViewNoMutableFormatBit) {
TEST_DESCRIPTION("Create an image view with a different format, when the image does not have MUTABLE_FORMAT bit");
if (!EnableDeviceProfileLayer()) {
printf("%s Couldn't enable device profile layer.\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
ASSERT_NO_FATAL_FAILURE(InitState());
PFN_vkSetPhysicalDeviceFormatPropertiesEXT fpvkSetPhysicalDeviceFormatPropertiesEXT = nullptr;
PFN_vkGetOriginalPhysicalDeviceFormatPropertiesEXT fpvkGetOriginalPhysicalDeviceFormatPropertiesEXT = nullptr;
// Load required functions
if (!LoadDeviceProfileLayer(fpvkSetPhysicalDeviceFormatPropertiesEXT, fpvkGetOriginalPhysicalDeviceFormatPropertiesEXT)) {
printf("%s Required extensions are not present.\n", kSkipPrefix);
return;
}
VkImageObj image(m_device);
image.Init(128, 128, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_TILING_OPTIMAL, 0);
ASSERT_TRUE(image.initialized());
VkFormatProperties formatProps;
fpvkGetOriginalPhysicalDeviceFormatPropertiesEXT(gpu(), VK_FORMAT_B8G8R8A8_UINT, &formatProps);
formatProps.optimalTilingFeatures |= VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT;
fpvkSetPhysicalDeviceFormatPropertiesEXT(gpu(), VK_FORMAT_B8G8R8A8_UINT, formatProps);
VkImageViewCreateInfo imgViewInfo = {};
imgViewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
imgViewInfo.image = image.handle();
imgViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
imgViewInfo.format = VK_FORMAT_B8G8R8A8_UINT;
imgViewInfo.subresourceRange.layerCount = 1;
imgViewInfo.subresourceRange.baseMipLevel = 0;
imgViewInfo.subresourceRange.levelCount = 1;
imgViewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
// Same compatibility class but no MUTABLE_FORMAT bit - Expect
// VIEW_CREATE_ERROR
CreateImageViewTest(*this, &imgViewInfo, "VUID-VkImageViewCreateInfo-image-01019");
}
TEST_F(VkLayerTest, CreateImageViewDifferentClass) {
TEST_DESCRIPTION("Passing bad parameters to CreateImageView");
ASSERT_NO_FATAL_FAILURE(Init());
if (!(m_device->format_properties(VK_FORMAT_R8_UINT).optimalTilingFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT)) {
printf("%s Device does not support R8_UINT as color attachment; skipped", kSkipPrefix);
return;
}
VkImageCreateInfo mutImgInfo = {VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
nullptr,
VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT,
VK_IMAGE_TYPE_2D,
VK_FORMAT_R8_UINT,
{128, 128, 1},
1,
1,
VK_SAMPLE_COUNT_1_BIT,
VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
VK_SHARING_MODE_EXCLUSIVE,
0,
nullptr,
VK_IMAGE_LAYOUT_UNDEFINED};
VkImageObj mutImage(m_device);
mutImage.init(&mutImgInfo);
ASSERT_TRUE(mutImage.initialized());
VkImageViewCreateInfo imgViewInfo = {};
imgViewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
imgViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
imgViewInfo.format = VK_FORMAT_B8G8R8A8_UNORM;
imgViewInfo.subresourceRange.layerCount = 1;
imgViewInfo.subresourceRange.baseMipLevel = 0;
imgViewInfo.subresourceRange.levelCount = 1;
imgViewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imgViewInfo.image = mutImage.handle();
CreateImageViewTest(*this, &imgViewInfo, "VUID-VkImageViewCreateInfo-image-01018");
}
TEST_F(VkLayerTest, MultiplaneIncompatibleViewFormat) {
TEST_DESCRIPTION("Postive/negative tests of multiplane imageview format compatibility");
// Enable KHR multiplane req'd extensions
bool mp_extensions = InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME,
VK_KHR_GET_MEMORY_REQUIREMENTS_2_SPEC_VERSION);
if (mp_extensions) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
mp_extensions = mp_extensions && DeviceExtensionSupported(gpu(), nullptr, VK_KHR_MAINTENANCE1_EXTENSION_NAME);
mp_extensions = mp_extensions && DeviceExtensionSupported(gpu(), nullptr, VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME);
mp_extensions = mp_extensions && DeviceExtensionSupported(gpu(), nullptr, VK_KHR_BIND_MEMORY_2_EXTENSION_NAME);
mp_extensions = mp_extensions && DeviceExtensionSupported(gpu(), nullptr, VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME);
if (mp_extensions) {
m_device_extension_names.push_back(VK_KHR_MAINTENANCE1_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME);
} else {
printf("%s test requires KHR multiplane extensions, not available. Skipping.\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
VkImageCreateInfo ci = {};
ci.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
ci.pNext = NULL;
ci.flags = VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;
ci.imageType = VK_IMAGE_TYPE_2D;
ci.format = VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM;
ci.tiling = VK_IMAGE_TILING_OPTIMAL;
ci.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
ci.extent = {128, 128, 1};
ci.mipLevels = 1;
ci.arrayLayers = 1;
ci.samples = VK_SAMPLE_COUNT_1_BIT;
ci.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
ci.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
// Verify format
VkFormatFeatureFlags features = VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT;
bool supported = ImageFormatAndFeaturesSupported(instance(), gpu(), ci, features);
if (!supported) {
printf("%s Multiplane image format not supported. Skipping test.\n", kSkipPrefix);
return;
}
VkImageObj image_obj(m_device);
image_obj.init(&ci);
ASSERT_TRUE(image_obj.initialized());
VkImageViewCreateInfo ivci = {};
ivci.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
ivci.image = image_obj.image();
ivci.viewType = VK_IMAGE_VIEW_TYPE_2D;
ivci.format = VK_FORMAT_R8_SNORM; // Compat is VK_FORMAT_R8_UNORM
ivci.subresourceRange.layerCount = 1;
ivci.subresourceRange.baseMipLevel = 0;
ivci.subresourceRange.levelCount = 1;
ivci.subresourceRange.aspectMask = VK_IMAGE_ASPECT_PLANE_1_BIT;
// Incompatible format error
CreateImageViewTest(*this, &ivci, "VUID-VkImageViewCreateInfo-image-01586");
// Correct format succeeds
ivci.format = VK_FORMAT_R8_UNORM;
CreateImageViewTest(*this, &ivci);
// Try a multiplane imageview
ivci.format = VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM;
ivci.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
CreateImageViewTest(*this, &ivci);
}
TEST_F(VkLayerTest, CreateImageViewInvalidSubresourceRange) {
TEST_DESCRIPTION("Passing bad image subrange to CreateImageView");
ASSERT_NO_FATAL_FAILURE(Init());
VkImageObj image(m_device);
image.Init(32, 32, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_TILING_OPTIMAL);
ASSERT_TRUE(image.create_info().arrayLayers == 1);
ASSERT_TRUE(image.initialized());
VkImageViewCreateInfo img_view_info_template = {};
img_view_info_template.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
img_view_info_template.image = image.handle();
img_view_info_template.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
img_view_info_template.format = image.format();
// subresourceRange to be filled later for the purposes of this test
img_view_info_template.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
img_view_info_template.subresourceRange.baseMipLevel = 0;
img_view_info_template.subresourceRange.levelCount = 0;
img_view_info_template.subresourceRange.baseArrayLayer = 0;
img_view_info_template.subresourceRange.layerCount = 0;
// Try baseMipLevel >= image.mipLevels with VK_REMAINING_MIP_LEVELS
{
const VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 1, VK_REMAINING_MIP_LEVELS, 0, 1};
VkImageViewCreateInfo img_view_info = img_view_info_template;
img_view_info.subresourceRange = range;
CreateImageViewTest(*this, &img_view_info, "VUID-VkImageViewCreateInfo-subresourceRange-01478");
}
// Try baseMipLevel >= image.mipLevels without VK_REMAINING_MIP_LEVELS
{
const VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 0, 1};
VkImageViewCreateInfo img_view_info = img_view_info_template;
img_view_info.subresourceRange = range;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageViewCreateInfo-subresourceRange-01718");
CreateImageViewTest(*this, &img_view_info, "VUID-VkImageViewCreateInfo-subresourceRange-01478");
}
// Try levelCount = 0
{
const VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 0, 1};
VkImageViewCreateInfo img_view_info = img_view_info_template;
img_view_info.subresourceRange = range;
CreateImageViewTest(*this, &img_view_info, "VUID-VkImageViewCreateInfo-subresourceRange-01718");
}
// Try baseMipLevel + levelCount > image.mipLevels
{
const VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 2, 0, 1};
VkImageViewCreateInfo img_view_info = img_view_info_template;
img_view_info.subresourceRange = range;
CreateImageViewTest(*this, &img_view_info, "VUID-VkImageViewCreateInfo-subresourceRange-01718");
}
// These tests rely on having the Maintenance1 extension not being enabled, and are invalid on all but version 1.0
if (m_device->props.apiVersion < VK_API_VERSION_1_1) {
// Try baseArrayLayer >= image.arrayLayers with VK_REMAINING_ARRAY_LAYERS
{
const VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 1, VK_REMAINING_ARRAY_LAYERS};
VkImageViewCreateInfo img_view_info = img_view_info_template;
img_view_info.subresourceRange = range;
CreateImageViewTest(*this, &img_view_info, "VUID-VkImageViewCreateInfo-subresourceRange-01480");
}
// Try baseArrayLayer >= image.arrayLayers without VK_REMAINING_ARRAY_LAYERS
{
const VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 1, 1};
VkImageViewCreateInfo img_view_info = img_view_info_template;
img_view_info.subresourceRange = range;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-VkImageViewCreateInfo-subresourceRange-01719");
CreateImageViewTest(*this, &img_view_info, "VUID-VkImageViewCreateInfo-subresourceRange-01480");
}
// Try layerCount = 0
{
const VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 0};
VkImageViewCreateInfo img_view_info = img_view_info_template;
img_view_info.subresourceRange = range;
CreateImageViewTest(*this, &img_view_info, "VUID-VkImageViewCreateInfo-subresourceRange-01719");
}
// Try baseArrayLayer + layerCount > image.arrayLayers
{
const VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 2};
VkImageViewCreateInfo img_view_info = img_view_info_template;
img_view_info.subresourceRange = range;
CreateImageViewTest(*this, &img_view_info, "VUID-VkImageViewCreateInfo-subresourceRange-01719");
}
}
}
TEST_F(VkLayerTest, CreateImageMiscErrors) {
TEST_DESCRIPTION("Misc leftover valid usage errors in VkImageCreateInfo struct");
VkPhysicalDeviceFeatures features{};
ASSERT_NO_FATAL_FAILURE(Init(&features));
VkImageCreateInfo tmp_img_ci = {};
tmp_img_ci.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
tmp_img_ci.flags = 0; // assumably any is supported
tmp_img_ci.imageType = VK_IMAGE_TYPE_2D; // any is supported
tmp_img_ci.format = VK_FORMAT_R8G8B8A8_UNORM; // has mandatory support for all usages
tmp_img_ci.extent = {64, 64, 1}; // limit is 256 for 3D, or 4096
tmp_img_ci.mipLevels = 1; // any is supported
tmp_img_ci.arrayLayers = 1; // limit is 256
tmp_img_ci.samples = VK_SAMPLE_COUNT_1_BIT; // needs to be 1 if TILING_LINEAR
// if VK_IMAGE_TILING_LINEAR imageType must be 2D, usage must be TRANSFER, and levels layers samplers all 1
tmp_img_ci.tiling = VK_IMAGE_TILING_OPTIMAL;
tmp_img_ci.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT; // depends on format
tmp_img_ci.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
const VkImageCreateInfo safe_image_ci = tmp_img_ci;
ASSERT_VK_SUCCESS(GPDIFPHelper(gpu(), &safe_image_ci));
{
VkImageCreateInfo image_ci = safe_image_ci;
image_ci.sharingMode = VK_SHARING_MODE_CONCURRENT;
image_ci.queueFamilyIndexCount = 2;
image_ci.pQueueFamilyIndices = nullptr;
CreateImageTest(*this, &image_ci, "VUID-VkImageCreateInfo-sharingMode-00941");
}
{
VkImageCreateInfo image_ci = safe_image_ci;
image_ci.sharingMode = VK_SHARING_MODE_CONCURRENT;
image_ci.queueFamilyIndexCount = 1;
const uint32_t queue_family = 0;
image_ci.pQueueFamilyIndices = &queue_family;
CreateImageTest(*this, &image_ci, "VUID-VkImageCreateInfo-sharingMode-00942");
}
{
VkImageCreateInfo image_ci = safe_image_ci;
image_ci.format = VK_FORMAT_UNDEFINED;
CreateImageTest(*this, &image_ci, "VUID-VkImageCreateInfo-format-00943");
}
{
VkImageCreateInfo image_ci = safe_image_ci;
image_ci.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
image_ci.arrayLayers = 6;
image_ci.imageType = VK_IMAGE_TYPE_1D;
m_errorMonitor->SetUnexpectedError("VUID-VkImageCreateInfo-imageType-00954");
image_ci.extent = {64, 1, 1};
CreateImageTest(*this, &image_ci, "VUID-VkImageCreateInfo-flags-00949");
image_ci = safe_image_ci;
image_ci.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
image_ci.imageType = VK_IMAGE_TYPE_3D;
m_errorMonitor->SetUnexpectedError("VUID-VkImageCreateInfo-imageType-00954");
image_ci.extent = {4, 4, 4};
CreateImageTest(*this, &image_ci, "VUID-VkImageCreateInfo-flags-00949");
image_ci = safe_image_ci;
image_ci.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
image_ci.imageType = VK_IMAGE_TYPE_2D;
image_ci.extent = {8, 6, 1};
image_ci.arrayLayers = 6;
CreateImageTest(*this, &image_ci, "VUID-VkImageCreateInfo-imageType-00954");
image_ci = safe_image_ci;
image_ci.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
image_ci.imageType = VK_IMAGE_TYPE_2D;
image_ci.extent = {8, 8, 1};
image_ci.arrayLayers = 4;
CreateImageTest(*this, &image_ci, "VUID-VkImageCreateInfo-imageType-00954");
}
{
VkImageCreateInfo image_ci = safe_image_ci;
image_ci.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; // always has 4 samples support
image_ci.samples = VK_SAMPLE_COUNT_4_BIT;
image_ci.imageType = VK_IMAGE_TYPE_3D;
image_ci.extent = {4, 4, 4};
CreateImageTest(*this, &image_ci, "VUID-VkImageCreateInfo-samples-02257");
image_ci = safe_image_ci;
image_ci.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; // always has 4 samples support
image_ci.samples = VK_SAMPLE_COUNT_4_BIT;
image_ci.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
image_ci.arrayLayers = 6;
CreateImageTest(*this, &image_ci, "VUID-VkImageCreateInfo-samples-02257");
image_ci = safe_image_ci;
image_ci.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; // always has 4 samples support
image_ci.samples = VK_SAMPLE_COUNT_4_BIT;
image_ci.tiling = VK_IMAGE_TILING_LINEAR;
CreateImageTest(*this, &image_ci, "VUID-VkImageCreateInfo-samples-02257");
image_ci = safe_image_ci;
image_ci.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; // always has 4 samples support
image_ci.samples = VK_SAMPLE_COUNT_4_BIT;
image_ci.mipLevels = 2;
CreateImageTest(*this, &image_ci, "VUID-VkImageCreateInfo-samples-02257");
}
{
VkImageCreateInfo image_ci = safe_image_ci;
image_ci.usage = VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
image_ci.usage |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
CreateImageTest(*this, &image_ci, "VUID-VkImageCreateInfo-usage-00963");
image_ci.usage = VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT;
CreateImageTest(*this, &image_ci, "VUID-VkImageCreateInfo-usage-00966");
image_ci.usage = VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT;
image_ci.usage |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageCreateInfo-usage-00963");
CreateImageTest(*this, &image_ci, "VUID-VkImageCreateInfo-usage-00966");
}
{
VkImageCreateInfo image_ci = safe_image_ci;
image_ci.flags = VK_IMAGE_CREATE_SPARSE_BINDING_BIT;
CreateImageTest(*this, &image_ci, "VUID-VkImageCreateInfo-flags-00969");
}
// InitialLayout not VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREDEFINED
{
VkImageCreateInfo image_ci = safe_image_ci;
image_ci.initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
CreateImageTest(*this, &image_ci, "VUID-VkImageCreateInfo-initialLayout-00993");
}
}
TEST_F(VkLayerTest, CreateImageMinLimitsViolation) {
TEST_DESCRIPTION("Create invalid image with invalid parameters violation minimum limit, such as being zero.");
ASSERT_NO_FATAL_FAILURE(Init());
VkImage null_image; // throwaway target for all the vk::CreateImage
VkImageCreateInfo tmp_img_ci = {};
tmp_img_ci.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
tmp_img_ci.flags = 0; // assumably any is supported
tmp_img_ci.imageType = VK_IMAGE_TYPE_2D; // any is supported
tmp_img_ci.format = VK_FORMAT_R8G8B8A8_UNORM; // has mandatory support for all usages
tmp_img_ci.extent = {1, 1, 1}; // limit is 256 for 3D, or 4096
tmp_img_ci.mipLevels = 1; // any is supported
tmp_img_ci.arrayLayers = 1; // limit is 256
tmp_img_ci.samples = VK_SAMPLE_COUNT_1_BIT; // needs to be 1 if TILING_LINEAR
// if VK_IMAGE_TILING_LINEAR imageType must be 2D, usage must be TRANSFER, and levels layers samplers all 1
tmp_img_ci.tiling = VK_IMAGE_TILING_OPTIMAL;
tmp_img_ci.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT; // depends on format
tmp_img_ci.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
const VkImageCreateInfo safe_image_ci = tmp_img_ci;
enum Dimension { kWidth = 0x1, kHeight = 0x2, kDepth = 0x4 };
for (underlying_type<Dimension>::type bad_dimensions = 0x1; bad_dimensions < 0x8; ++bad_dimensions) {
VkExtent3D extent = {1, 1, 1};
if (bad_dimensions & kWidth) {
extent.width = 0;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageCreateInfo-extent-00944");
}
if (bad_dimensions & kHeight) {
extent.height = 0;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageCreateInfo-extent-00945");
}
if (bad_dimensions & kDepth) {
extent.depth = 0;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageCreateInfo-extent-00946");
}
VkImageCreateInfo bad_image_ci = safe_image_ci;
bad_image_ci.imageType = VK_IMAGE_TYPE_3D; // has to be 3D otherwise it might trigger the non-1 error instead
bad_image_ci.extent = extent;
vk::CreateImage(m_device->device(), &bad_image_ci, NULL, &null_image);
m_errorMonitor->VerifyFound();
}
{
VkImageCreateInfo bad_image_ci = safe_image_ci;
bad_image_ci.mipLevels = 0;
CreateImageTest(*this, &bad_image_ci, "VUID-VkImageCreateInfo-mipLevels-00947");
}
{
VkImageCreateInfo bad_image_ci = safe_image_ci;
bad_image_ci.arrayLayers = 0;
CreateImageTest(*this, &bad_image_ci, "VUID-VkImageCreateInfo-arrayLayers-00948");
}
{
VkImageCreateInfo bad_image_ci = safe_image_ci;
bad_image_ci.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
bad_image_ci.arrayLayers = 5;
CreateImageTest(*this, &bad_image_ci, "VUID-VkImageCreateInfo-imageType-00954");
bad_image_ci.arrayLayers = 6;
bad_image_ci.extent = {64, 63, 1};
CreateImageTest(*this, &bad_image_ci, "VUID-VkImageCreateInfo-imageType-00954");
}
{
VkImageCreateInfo bad_image_ci = safe_image_ci;
bad_image_ci.imageType = VK_IMAGE_TYPE_1D;
bad_image_ci.extent = {64, 2, 1};
CreateImageTest(*this, &bad_image_ci, "VUID-VkImageCreateInfo-imageType-00956");
bad_image_ci.imageType = VK_IMAGE_TYPE_1D;
bad_image_ci.extent = {64, 1, 2};
CreateImageTest(*this, &bad_image_ci, "VUID-VkImageCreateInfo-imageType-00956");
bad_image_ci.imageType = VK_IMAGE_TYPE_2D;
bad_image_ci.extent = {64, 64, 2};
CreateImageTest(*this, &bad_image_ci, "VUID-VkImageCreateInfo-imageType-00957");
bad_image_ci.imageType = VK_IMAGE_TYPE_2D;
bad_image_ci.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
bad_image_ci.arrayLayers = 6;
bad_image_ci.extent = {64, 64, 2};
CreateImageTest(*this, &bad_image_ci, "VUID-VkImageCreateInfo-imageType-00957");
}
{
VkImageCreateInfo bad_image_ci = safe_image_ci;
bad_image_ci.imageType = VK_IMAGE_TYPE_3D;
bad_image_ci.arrayLayers = 2;
CreateImageTest(*this, &bad_image_ci, "VUID-VkImageCreateInfo-imageType-00961");
}
}
TEST_F(VkLayerTest, CreateImageMaxLimitsViolation) {
TEST_DESCRIPTION("Create invalid image with invalid parameters exceeding physical device limits.");
// Check for VK_KHR_get_physical_device_properties2
bool push_physical_device_properties_2_support =
InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
if (push_physical_device_properties_2_support) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
bool push_fragment_density_support = false;
if (push_physical_device_properties_2_support) {
push_fragment_density_support = DeviceExtensionSupported(gpu(), nullptr, VK_EXT_FRAGMENT_DENSITY_MAP_EXTENSION_NAME);
if (push_fragment_density_support) m_device_extension_names.push_back(VK_EXT_FRAGMENT_DENSITY_MAP_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, nullptr, 0));
VkImageCreateInfo tmp_img_ci = {};
tmp_img_ci.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
tmp_img_ci.flags = 0; // assumably any is supported
tmp_img_ci.imageType = VK_IMAGE_TYPE_2D; // any is supported
tmp_img_ci.format = VK_FORMAT_R8G8B8A8_UNORM; // has mandatory support for all usages
tmp_img_ci.extent = {1, 1, 1}; // limit is 256 for 3D, or 4096
tmp_img_ci.mipLevels = 1; // any is supported
tmp_img_ci.arrayLayers = 1; // limit is 256
tmp_img_ci.samples = VK_SAMPLE_COUNT_1_BIT; // needs to be 1 if TILING_LINEAR
// if VK_IMAGE_TILING_LINEAR imageType must be 2D, usage must be TRANSFER, and levels layers samplers all 1
tmp_img_ci.tiling = VK_IMAGE_TILING_OPTIMAL;
tmp_img_ci.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT; // depends on format
tmp_img_ci.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
const VkImageCreateInfo safe_image_ci = tmp_img_ci;
ASSERT_VK_SUCCESS(GPDIFPHelper(gpu(), &safe_image_ci));
const VkPhysicalDeviceLimits &dev_limits = m_device->props.limits;
{
VkImageCreateInfo image_ci = safe_image_ci;
image_ci.extent = {8, 8, 1};
image_ci.mipLevels = 4 + 1; // 4 = log2(8) + 1
CreateImageTest(*this, &image_ci, "VUID-VkImageCreateInfo-mipLevels-00958");
image_ci.extent = {8, 15, 1};
image_ci.mipLevels = 4 + 1; // 4 = floor(log2(15)) + 1
CreateImageTest(*this, &image_ci, "VUID-VkImageCreateInfo-mipLevels-00958");
}
{
VkImageCreateInfo image_ci = safe_image_ci;
image_ci.tiling = VK_IMAGE_TILING_LINEAR;
image_ci.extent = {64, 64, 1};
image_ci.format = FindFormatLinearWithoutMips(gpu(), image_ci);
image_ci.mipLevels = 2;
if (image_ci.format != VK_FORMAT_UNDEFINED) {
CreateImageTest(*this, &image_ci, "VUID-VkImageCreateInfo-mipLevels-02255");
} else {
printf("%s Cannot find a format to test maxMipLevels limit; skipping part of test.\n", kSkipPrefix);
}
}
{
VkImageCreateInfo image_ci = safe_image_ci;
VkImageFormatProperties img_limits;
ASSERT_VK_SUCCESS(GPDIFPHelper(gpu(), &image_ci, &img_limits));
if (img_limits.maxArrayLayers != UINT32_MAX) {
image_ci.arrayLayers = img_limits.maxArrayLayers + 1;
CreateImageTest(*this, &image_ci, "VUID-VkImageCreateInfo-arrayLayers-02256");
} else {
printf("%s VkImageFormatProperties::maxArrayLayers is already UINT32_MAX; skipping part of test.\n", kSkipPrefix);
}
}
{
VkImageCreateInfo image_ci = safe_image_ci;
bool found = FindFormatWithoutSamples(gpu(), image_ci);
if (found) {
CreateImageTest(*this, &image_ci, "VUID-VkImageCreateInfo-samples-02258");
} else {
printf("%s Could not find a format with some unsupported samples; skipping part of test.\n", kSkipPrefix);
}
}
{
VkImageCreateInfo image_ci = safe_image_ci;
image_ci.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; // (any attachment bit)
VkImageFormatProperties img_limits;
ASSERT_VK_SUCCESS(GPDIFPHelper(gpu(), &image_ci, &img_limits));
if (dev_limits.maxFramebufferWidth != UINT32_MAX) {
image_ci.extent = {dev_limits.maxFramebufferWidth + 1, 64, 1};
CreateImageTest(*this, &image_ci, "VUID-VkImageCreateInfo-usage-00964");
} else {
printf("%s VkPhysicalDeviceLimits::maxFramebufferWidth is already UINT32_MAX; skipping part of test.\n", kSkipPrefix);
}
if (dev_limits.maxFramebufferHeight != UINT32_MAX) {
image_ci.usage = VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT; // try different one too
image_ci.extent = {64, dev_limits.maxFramebufferHeight + 1, 1};
CreateImageTest(*this, &image_ci, "VUID-VkImageCreateInfo-usage-00965");
} else {
printf("%s VkPhysicalDeviceLimits::maxFramebufferHeight is already UINT32_MAX; skipping part of test.\n", kSkipPrefix);
}
}
{
if (!push_fragment_density_support) {
printf("%s VK_EXT_fragment_density_map Extension not supported, skipping tests\n", kSkipPrefix);
} else {
VkImageCreateInfo image_ci = safe_image_ci;
image_ci.usage = VK_IMAGE_USAGE_FRAGMENT_DENSITY_MAP_BIT_EXT;
VkImageFormatProperties img_limits;
ASSERT_VK_SUCCESS(GPDIFPHelper(gpu(), &image_ci, &img_limits));
image_ci.extent = {dev_limits.maxFramebufferWidth + 1, 64, 1};
CreateImageTest(*this, &image_ci, "VUID-VkImageCreateInfo-usage-02559");
image_ci.extent = {64, dev_limits.maxFramebufferHeight + 1, 1};
CreateImageTest(*this, &image_ci, "VUID-VkImageCreateInfo-usage-02560");
}
}
}
TEST_F(VkLayerTest, MultiplaneImageSamplerConversionMismatch) {
TEST_DESCRIPTION(
"Create sampler with ycbcr conversion and use with an image created without ycrcb conversion or immutable sampler");
// Enable KHR multiplane req'd extensions
bool mp_extensions = InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME,
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_SPEC_VERSION);
if (mp_extensions) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
SetTargetApiVersion(VK_API_VERSION_1_1);
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
mp_extensions = mp_extensions && DeviceExtensionSupported(gpu(), nullptr, VK_KHR_MAINTENANCE1_EXTENSION_NAME);
mp_extensions = mp_extensions && DeviceExtensionSupported(gpu(), nullptr, VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME);
mp_extensions = mp_extensions && DeviceExtensionSupported(gpu(), nullptr, VK_KHR_BIND_MEMORY_2_EXTENSION_NAME);
mp_extensions = mp_extensions && DeviceExtensionSupported(gpu(), nullptr, VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME);
if (mp_extensions) {
m_device_extension_names.push_back(VK_KHR_MAINTENANCE1_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME);
} else {
printf("%s test requires KHR multiplane extensions, not available. Skipping.\n", kSkipPrefix);
return;
}
// Enable Ycbcr Conversion Features
VkPhysicalDeviceSamplerYcbcrConversionFeatures ycbcr_features = {};
ycbcr_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES;
ycbcr_features.samplerYcbcrConversion = VK_TRUE;
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &ycbcr_features));
PFN_vkCreateSamplerYcbcrConversionKHR vkCreateSamplerYcbcrConversionFunction = nullptr;
PFN_vkDestroySamplerYcbcrConversionKHR vkDestroySamplerYcbcrConversionFunction = nullptr;
if (DeviceValidationVersion() >= VK_API_VERSION_1_1) {
vkCreateSamplerYcbcrConversionFunction = vk::CreateSamplerYcbcrConversion;
vkDestroySamplerYcbcrConversionFunction = vk::DestroySamplerYcbcrConversion;
} else {
vkCreateSamplerYcbcrConversionFunction =
(PFN_vkCreateSamplerYcbcrConversionKHR)vk::GetDeviceProcAddr(m_device->handle(), "vkCreateSamplerYcbcrConversionKHR");
vkDestroySamplerYcbcrConversionFunction =
(PFN_vkDestroySamplerYcbcrConversionKHR)vk::GetDeviceProcAddr(m_device->handle(), "vkDestroySamplerYcbcrConversionKHR");
}
if (!vkCreateSamplerYcbcrConversionFunction || !vkDestroySamplerYcbcrConversionFunction) {
printf("%s Did not find required device extension %s; test skipped.\n", kSkipPrefix,
VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
const VkImageCreateInfo ci = {VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
NULL,
0,
VK_IMAGE_TYPE_2D,
VK_FORMAT_G8_B8R8_2PLANE_420_UNORM_KHR,
{128, 128, 1},
1,
1,
VK_SAMPLE_COUNT_1_BIT,
VK_IMAGE_TILING_LINEAR,
VK_IMAGE_USAGE_SAMPLED_BIT,
VK_SHARING_MODE_EXCLUSIVE,
VK_IMAGE_LAYOUT_UNDEFINED};
// Verify formats
bool supported = ImageFormatAndFeaturesSupported(instance(), gpu(), ci, VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT);
if (!supported) {
printf("%s Multiplane image format not supported. Skipping test.\n", kSkipPrefix);
return;
}
// Create Ycbcr conversion
VkSamplerYcbcrConversionCreateInfo ycbcr_create_info = {VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_CREATE_INFO,
NULL,
VK_FORMAT_G8_B8R8_2PLANE_420_UNORM_KHR,
VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY,
VK_SAMPLER_YCBCR_RANGE_ITU_FULL,
{VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY,
VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY},
VK_CHROMA_LOCATION_COSITED_EVEN,
VK_CHROMA_LOCATION_COSITED_EVEN,
VK_FILTER_NEAREST,
false};
VkSamplerYcbcrConversion conversions[2];
vkCreateSamplerYcbcrConversionFunction(m_device->handle(), &ycbcr_create_info, nullptr, &conversions[0]);
ycbcr_create_info.components.r = VK_COMPONENT_SWIZZLE_ZERO; // Just anything different than above
vkCreateSamplerYcbcrConversionFunction(m_device->handle(), &ycbcr_create_info, nullptr, &conversions[1]);
VkSamplerYcbcrConversionInfo ycbcr_info = {};
ycbcr_info.sType = VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_INFO;
ycbcr_info.conversion = conversions[0];
// Create a sampler using conversion
VkSamplerCreateInfo sci = SafeSaneSamplerCreateInfo();
sci.pNext = &ycbcr_info;
// Create two samplers with two different conversions, such that one will mismatch
// It will make the second sampler fail to see if the log prints the second sampler or the first sampler.
VkSampler samplers[2];
VkResult err = vk::CreateSampler(m_device->device(), &sci, NULL, &samplers[0]);
ASSERT_VK_SUCCESS(err);
ycbcr_info.conversion = conversions[1]; // Need two samplers with different conversions
err = vk::CreateSampler(m_device->device(), &sci, NULL, &samplers[1]);
ASSERT_VK_SUCCESS(err);
// Create an image without a Ycbcr conversion
VkImageObj mpimage(m_device);
mpimage.init(&ci);
VkImageView view;
VkImageViewCreateInfo ivci = {};
ivci.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
ycbcr_info.conversion = conversions[0]; // Need two samplers with different conversions
ivci.pNext = &ycbcr_info;
ivci.image = mpimage.handle();
ivci.viewType = VK_IMAGE_VIEW_TYPE_2D;
ivci.format = VK_FORMAT_G8_B8R8_2PLANE_420_UNORM_KHR;
ivci.subresourceRange.layerCount = 1;
ivci.subresourceRange.baseMipLevel = 0;
ivci.subresourceRange.levelCount = 1;
ivci.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
vk::CreateImageView(m_device->device(), &ivci, nullptr, &view);
// Use the image and sampler together in a descriptor set
OneOffDescriptorSet descriptor_set(m_device,
{
{0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, VK_SHADER_STAGE_ALL, samplers},
});
// Use the same image view twice, using the same sampler, with the *second* mismatched with the *second* immutable sampler
VkDescriptorImageInfo image_infos[2];
image_infos[0] = {};
image_infos[0].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
image_infos[0].imageView = view;
image_infos[0].sampler = samplers[0];
image_infos[1] = image_infos[0];
// Update the descriptor set expecting to get an error
VkWriteDescriptorSet descriptor_write = {};
descriptor_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptor_write.dstSet = descriptor_set.set_;
descriptor_write.dstBinding = 0;
descriptor_write.descriptorCount = 2;
descriptor_write.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
descriptor_write.pImageInfo = image_infos;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkWriteDescriptorSet-descriptorType-01948");
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
m_errorMonitor->VerifyFound();
// pImmutableSamplers = nullptr causes an error , VUID-VkWriteDescriptorSet-descriptorType-02738.
// Because if pNext chains a VkSamplerYcbcrConversionInfo, the sampler has to be a immutable sampler.
OneOffDescriptorSet descriptor_set_1947(m_device,
{
{0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_ALL, nullptr},
});
descriptor_write.dstSet = descriptor_set_1947.set_;
descriptor_write.descriptorCount = 1;
descriptor_write.pImageInfo = &image_infos[0];
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkWriteDescriptorSet-descriptorType-02738");
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
m_errorMonitor->VerifyFound();
vkDestroySamplerYcbcrConversionFunction(m_device->device(), conversions[0], nullptr);
vkDestroySamplerYcbcrConversionFunction(m_device->device(), conversions[1], nullptr);
vk::DestroyImageView(m_device->device(), view, NULL);
vk::DestroySampler(m_device->device(), samplers[0], nullptr);
vk::DestroySampler(m_device->device(), samplers[1], nullptr);
}
TEST_F(VkLayerTest, DepthStencilImageViewWithColorAspectBitError) {
// Create a single Image descriptor and cause it to first hit an error due
// to using a DS format, then cause it to hit error due to COLOR_BIT not
// set in aspect
// The image format check comes 2nd in validation so we trigger it first,
// then when we cause aspect fail next, bad format check will be preempted
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"Combination depth/stencil image formats can have only the ");
ASSERT_NO_FATAL_FAILURE(Init());
auto depth_format = FindSupportedDepthStencilFormat(gpu());
if (!depth_format) {
printf("%s Couldn't find depth stencil format.\n", kSkipPrefix);
return;
}
VkImageObj image_bad(m_device);
VkImageObj image_good(m_device);
// One bad format and one good format for Color attachment
const VkFormat tex_format_bad = depth_format;
const VkFormat tex_format_good = VK_FORMAT_B8G8R8A8_UNORM;
const int32_t tex_width = 32;
const int32_t tex_height = 32;
VkImageCreateInfo image_create_info = {};
image_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_create_info.pNext = NULL;
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = tex_format_bad;
image_create_info.extent.width = tex_width;
image_create_info.extent.height = tex_height;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
image_create_info.flags = 0;
image_bad.init(&image_create_info);
image_create_info.format = tex_format_good;
image_create_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
image_good.init(&image_create_info);
VkImageViewCreateInfo image_view_create_info = {};
image_view_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
image_view_create_info.image = image_bad.handle();
image_view_create_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
image_view_create_info.format = tex_format_bad;
image_view_create_info.subresourceRange.baseArrayLayer = 0;
image_view_create_info.subresourceRange.baseMipLevel = 0;
image_view_create_info.subresourceRange.layerCount = 1;
image_view_create_info.subresourceRange.levelCount = 1;
image_view_create_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT | VK_IMAGE_ASPECT_DEPTH_BIT;
VkImageView view;
vk::CreateImageView(m_device->device(), &image_view_create_info, NULL, &view);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, ExtensionNotEnabled) {
TEST_DESCRIPTION("Validate that using an API from an unenabled extension returns an error");
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else {
printf("%s Did not find required instance extension %s; skipped.\n", kSkipPrefix,
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
// Required extensions except VK_KHR_GET_MEMORY_REQUIREMENTS_2 -- to create the needed error
std::vector<const char *> required_device_extensions = {VK_KHR_MAINTENANCE1_EXTENSION_NAME, VK_KHR_BIND_MEMORY_2_EXTENSION_NAME,
VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME};
for (auto dev_ext : required_device_extensions) {
if (DeviceExtensionSupported(gpu(), nullptr, dev_ext)) {
m_device_extension_names.push_back(dev_ext);
} else {
printf("%s Did not find required device extension %s; skipped.\n", kSkipPrefix, dev_ext);
break;
}
}
// Need to ignore this error to get to the one we're testing
m_errorMonitor->SetUnexpectedError("VUID-vkCreateDevice-ppEnabledExtensionNames-01387");
ASSERT_NO_FATAL_FAILURE(InitState());
// Find address of extension API
auto vkCreateSamplerYcbcrConversionKHR =
(PFN_vkCreateSamplerYcbcrConversionKHR)vk::GetDeviceProcAddr(m_device->handle(), "vkCreateSamplerYcbcrConversionKHR");
if (vkCreateSamplerYcbcrConversionKHR == nullptr) {
printf("%s VK_KHR_sampler_ycbcr_conversion not supported by device; skipped.\n", kSkipPrefix);
return;
}
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "UNASSIGNED-GeneralParameterError-ExtensionNotEnabled");
VkSamplerYcbcrConversionCreateInfo ycbcr_info = {VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_CREATE_INFO,
NULL,
VK_FORMAT_UNDEFINED,
VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY,
VK_SAMPLER_YCBCR_RANGE_ITU_FULL,
{VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY,
VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY},
VK_CHROMA_LOCATION_COSITED_EVEN,
VK_CHROMA_LOCATION_COSITED_EVEN,
VK_FILTER_NEAREST,
false};
VkSamplerYcbcrConversion conversion;
vkCreateSamplerYcbcrConversionKHR(m_device->handle(), &ycbcr_info, nullptr, &conversion);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, InvalidCreateBufferSize) {
TEST_DESCRIPTION("Attempt to create VkBuffer with size of zero");
ASSERT_NO_FATAL_FAILURE(Init());
VkBufferCreateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
info.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
info.size = 0;
CreateBufferTest(*this, &info, "VUID-VkBufferCreateInfo-size-00912");
}
TEST_F(VkLayerTest, DuplicateValidPNextStructures) {
TEST_DESCRIPTION("Create a pNext chain containing valid structures, but with a duplicate structure type");
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
if (DeviceExtensionSupported(gpu(), nullptr, VK_NV_DEDICATED_ALLOCATION_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_NV_DEDICATED_ALLOCATION_EXTENSION_NAME);
} else {
printf("%s VK_NV_dedicated_allocation extension not supported, skipping test\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
// Create two pNext structures which by themselves would be valid
VkDedicatedAllocationBufferCreateInfoNV dedicated_buffer_create_info = {};
VkDedicatedAllocationBufferCreateInfoNV dedicated_buffer_create_info_2 = {};
dedicated_buffer_create_info.sType = VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_BUFFER_CREATE_INFO_NV;
dedicated_buffer_create_info.pNext = &dedicated_buffer_create_info_2;
dedicated_buffer_create_info.dedicatedAllocation = VK_TRUE;
dedicated_buffer_create_info_2.sType = VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_BUFFER_CREATE_INFO_NV;
dedicated_buffer_create_info_2.pNext = nullptr;
dedicated_buffer_create_info_2.dedicatedAllocation = VK_TRUE;
uint32_t queue_family_index = 0;
VkBufferCreateInfo buffer_create_info = {};
buffer_create_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buffer_create_info.pNext = &dedicated_buffer_create_info;
buffer_create_info.size = 1024;
buffer_create_info.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
buffer_create_info.queueFamilyIndexCount = 1;
buffer_create_info.pQueueFamilyIndices = &queue_family_index;
CreateBufferTest(*this, &buffer_create_info, "chain contains duplicate structure types");
}
TEST_F(VkLayerTest, DedicatedAllocation) {
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
if (DeviceExtensionSupported(gpu(), nullptr, VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME);
} else {
printf("%s Dedicated allocation extension not supported, skipping test\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
VkMemoryPropertyFlags mem_flags = 0;
const VkDeviceSize resource_size = 1024;
auto buffer_info = VkBufferObj::create_info(resource_size, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
VkBufferObj buffer;
buffer.init_no_mem(*m_device, buffer_info);
auto buffer_alloc_info = vk_testing::DeviceMemory::get_resource_alloc_info(*m_device, buffer.memory_requirements(), mem_flags);
auto buffer_dedicated_info = lvl_init_struct<VkMemoryDedicatedAllocateInfoKHR>();
buffer_dedicated_info.buffer = buffer.handle();
buffer_alloc_info.pNext = &buffer_dedicated_info;
vk_testing::DeviceMemory dedicated_buffer_memory;
dedicated_buffer_memory.init(*m_device, buffer_alloc_info);
VkBufferObj wrong_buffer;
wrong_buffer.init_no_mem(*m_device, buffer_info);
// Bind with wrong buffer
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkBindBufferMemory-memory-01508");
vk::BindBufferMemory(m_device->handle(), wrong_buffer.handle(), dedicated_buffer_memory.handle(), 0);
m_errorMonitor->VerifyFound();
// Bind with non-zero offset (same VUID)
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-vkBindBufferMemory-memory-01508"); // offset must be zero
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-vkBindBufferMemory-size-01037"); // offset pushes us past size
auto offset = buffer.memory_requirements().alignment;
vk::BindBufferMemory(m_device->handle(), buffer.handle(), dedicated_buffer_memory.handle(), offset);
m_errorMonitor->VerifyFound();
// Bind correctly (depends on the "skip" above)
m_errorMonitor->ExpectSuccess();
vk::BindBufferMemory(m_device->handle(), buffer.handle(), dedicated_buffer_memory.handle(), 0);
m_errorMonitor->VerifyNotFound();
// And for images...
VkImageObj image(m_device);
VkImageObj wrong_image(m_device);
auto image_info = VkImageObj::create_info();
image_info.extent.width = resource_size;
image_info.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT;
image_info.format = VK_FORMAT_R8G8B8A8_UNORM;
image.init_no_mem(*m_device, image_info);
wrong_image.init_no_mem(*m_device, image_info);
auto image_dedicated_info = lvl_init_struct<VkMemoryDedicatedAllocateInfoKHR>();
image_dedicated_info.image = image.handle();
auto image_alloc_info = vk_testing::DeviceMemory::get_resource_alloc_info(*m_device, image.memory_requirements(), mem_flags);
image_alloc_info.pNext = &image_dedicated_info;
vk_testing::DeviceMemory dedicated_image_memory;
dedicated_image_memory.init(*m_device, image_alloc_info);
// Bind with wrong image
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkBindImageMemory-memory-01509");
vk::BindImageMemory(m_device->handle(), wrong_image.handle(), dedicated_image_memory.handle(), 0);
m_errorMonitor->VerifyFound();
// Bind with non-zero offset (same VUID)
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-vkBindImageMemory-memory-01509"); // offset must be zero
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-vkBindImageMemory-size-01049"); // offset pushes us past size
auto image_offset = image.memory_requirements().alignment;
vk::BindImageMemory(m_device->handle(), image.handle(), dedicated_image_memory.handle(), image_offset);
m_errorMonitor->VerifyFound();
// Bind correctly (depends on the "skip" above)
m_errorMonitor->ExpectSuccess();
vk::BindImageMemory(m_device->handle(), image.handle(), dedicated_image_memory.handle(), 0);
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkLayerTest, DedicatedAllocationImageAliasing) {
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else {
printf("%s Did not find required instance extension %s; skipped.\n", kSkipPrefix,
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
if (DeviceExtensionSupported(gpu(), nullptr, VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME) &&
DeviceExtensionSupported(gpu(), nullptr, VK_NV_DEDICATED_ALLOCATION_IMAGE_ALIASING_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME);
m_device_extension_names.push_back(VK_NV_DEDICATED_ALLOCATION_IMAGE_ALIASING_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME);
} else {
printf("%s Dedicated allocation extension not supported, skipping test\n", kSkipPrefix);
return;
}
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR");
ASSERT_TRUE(vkGetPhysicalDeviceFeatures2KHR != nullptr);
auto aliasing_features = lvl_init_struct<VkPhysicalDeviceDedicatedAllocationImageAliasingFeaturesNV>();
auto features2 = lvl_init_struct<VkPhysicalDeviceFeatures2KHR>(&aliasing_features);
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
aliasing_features.dedicatedAllocationImageAliasing = VK_TRUE;
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
VkMemoryPropertyFlags mem_flags = 0;
const VkDeviceSize resource_size = 1024;
VkImageObj image(m_device);
VkImageObj identical_image(m_device);
auto image_info = VkImageObj::create_info();
image_info.extent.width = resource_size;
image_info.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT;
image_info.format = VK_FORMAT_R8G8B8A8_UNORM;
image.init_no_mem(*m_device, image_info);
identical_image.init_no_mem(*m_device, image_info);
auto image_dedicated_info = lvl_init_struct<VkMemoryDedicatedAllocateInfoKHR>();
image_dedicated_info.image = image.handle();
auto image_alloc_info = vk_testing::DeviceMemory::get_resource_alloc_info(*m_device, image.memory_requirements(), mem_flags);
image_alloc_info.pNext = &image_dedicated_info;
vk_testing::DeviceMemory dedicated_image_memory;
dedicated_image_memory.init(*m_device, image_alloc_info);
// Bind with different but identical image
m_errorMonitor->ExpectSuccess();
vk::BindImageMemory(m_device->handle(), identical_image.handle(), dedicated_image_memory.handle(), 0);
m_errorMonitor->VerifyNotFound();
VkImageObj smaller_image(m_device);
image_info = VkImageObj::create_info();
image_info.extent.width = resource_size - 1;
image_info.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT;
image_info.format = VK_FORMAT_R8G8B8A8_UNORM;
smaller_image.init_no_mem(*m_device, image_info);
// Bind with a smaller image
m_errorMonitor->ExpectSuccess();
vk::BindImageMemory(m_device->handle(), smaller_image.handle(), dedicated_image_memory.handle(), 0);
m_errorMonitor->VerifyNotFound();
VkImageObj larger_image(m_device);
image_info = VkImageObj::create_info();
image_info.extent.width = resource_size + 1;
image_info.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT;
image_info.format = VK_FORMAT_R8G8B8A8_UNORM;
larger_image.init_no_mem(*m_device, image_info);
// Bind with a larger image (not supported, and not enough memory)
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkBindImageMemory-memory-02629");
if (larger_image.memory_requirements().size > image.memory_requirements().size) {
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkBindImageMemory-size-01049");
}
vk::BindImageMemory(m_device->handle(), larger_image.handle(), dedicated_image_memory.handle(), 0);
m_errorMonitor->VerifyFound();
// Bind with non-zero offset
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-vkBindImageMemory-memory-02629"); // offset must be zero
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-vkBindImageMemory-size-01049"); // offset pushes us past size
auto image_offset = image.memory_requirements().alignment;
vk::BindImageMemory(m_device->handle(), image.handle(), dedicated_image_memory.handle(), image_offset);
m_errorMonitor->VerifyFound();
// Bind correctly (depends on the "skip" above)
m_errorMonitor->ExpectSuccess();
vk::BindImageMemory(m_device->handle(), image.handle(), dedicated_image_memory.handle(), 0);
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkLayerTest, CornerSampledImageNV) {
TEST_DESCRIPTION("Test VK_NV_corner_sampled_image.");
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else {
printf("%s Did not find required instance extension %s; skipped.\n", kSkipPrefix,
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
std::array<const char *, 1> required_device_extensions = {{VK_NV_CORNER_SAMPLED_IMAGE_EXTENSION_NAME}};
for (auto device_extension : required_device_extensions) {
if (DeviceExtensionSupported(gpu(), nullptr, device_extension)) {
m_device_extension_names.push_back(device_extension);
} else {
printf("%s %s Extension not supported, skipping tests\n", kSkipPrefix, device_extension);
return;
}
}
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR");
ASSERT_TRUE(vkGetPhysicalDeviceFeatures2KHR != nullptr);
// Create a device that enables exclusive scissor but disables multiViewport
auto corner_sampled_image_features = lvl_init_struct<VkPhysicalDeviceCornerSampledImageFeaturesNV>();
auto features2 = lvl_init_struct<VkPhysicalDeviceFeatures2KHR>(&corner_sampled_image_features);
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
VkImageCreateInfo image_create_info = {};
image_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_create_info.pNext = NULL;
image_create_info.imageType = VK_IMAGE_TYPE_1D;
image_create_info.format = VK_FORMAT_R8G8B8A8_UNORM;
image_create_info.extent.width = 2;
image_create_info.extent.height = 1;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
image_create_info.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT;
image_create_info.queueFamilyIndexCount = 0;
image_create_info.pQueueFamilyIndices = NULL;
image_create_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
image_create_info.flags = VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV;
// image type must be 2D or 3D
CreateImageTest(*this, &image_create_info, "VUID-VkImageCreateInfo-flags-02050");
// cube/depth not supported
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.extent.height = 2;
image_create_info.format = VK_FORMAT_D24_UNORM_S8_UINT;
CreateImageTest(*this, &image_create_info, "VUID-VkImageCreateInfo-flags-02051");
image_create_info.format = VK_FORMAT_R8G8B8A8_UNORM;
// 2D width/height must be > 1
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.extent.height = 1;
CreateImageTest(*this, &image_create_info, "VUID-VkImageCreateInfo-flags-02052");
// 3D width/height/depth must be > 1
image_create_info.imageType = VK_IMAGE_TYPE_3D;
image_create_info.extent.height = 2;
CreateImageTest(*this, &image_create_info, "VUID-VkImageCreateInfo-flags-02053");
image_create_info.imageType = VK_IMAGE_TYPE_2D;
// Valid # of mip levels
image_create_info.extent = {7, 7, 1};
image_create_info.mipLevels = 3; // 3 = ceil(log2(7))
CreateImageTest(*this, &image_create_info);
image_create_info.extent = {8, 8, 1};
image_create_info.mipLevels = 3; // 3 = ceil(log2(8))
CreateImageTest(*this, &image_create_info);
image_create_info.extent = {9, 9, 1};
image_create_info.mipLevels = 3; // 4 = ceil(log2(9))
CreateImageTest(*this, &image_create_info);
// Invalid # of mip levels
image_create_info.extent = {8, 8, 1};
image_create_info.mipLevels = 4; // 3 = ceil(log2(8))
CreateImageTest(*this, &image_create_info, "VUID-VkImageCreateInfo-mipLevels-00958");
}
TEST_F(VkLayerTest, CreateYCbCrSampler) {
TEST_DESCRIPTION("Verify YCbCr sampler creation.");
// Test requires API 1.1 or (API 1.0 + SamplerYCbCr extension). Request API 1.1
SetTargetApiVersion(VK_API_VERSION_1_1);
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
// In case we don't have API 1.1+, try enabling the extension directly (and it's dependencies)
if (DeviceExtensionSupported(gpu(), nullptr, VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_MAINTENANCE1_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitState());
VkDevice dev = m_device->device();
PFN_vkCreateSamplerYcbcrConversionKHR vkCreateSamplerYcbcrConversionFunction = nullptr;
if (DeviceValidationVersion() >= VK_API_VERSION_1_1) {
vkCreateSamplerYcbcrConversionFunction = vk::CreateSamplerYcbcrConversion;
} else {
vkCreateSamplerYcbcrConversionFunction =
(PFN_vkCreateSamplerYcbcrConversionKHR)vk::GetDeviceProcAddr(m_device->handle(), "vkCreateSamplerYcbcrConversionKHR");
}
if (!vkCreateSamplerYcbcrConversionFunction) {
printf("%s Did not find required device support for YcbcrSamplerConversion; test skipped.\n", kSkipPrefix);
return;
}
// Verify we have the requested support
bool ycbcr_support = (DeviceExtensionEnabled(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME) ||
(DeviceValidationVersion() >= VK_API_VERSION_1_1));
if (!ycbcr_support) {
printf("%s Did not find required device extension %s; test skipped.\n", kSkipPrefix,
VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME);
return;
}
VkSamplerYcbcrConversion ycbcr_conv = VK_NULL_HANDLE;
VkSamplerYcbcrConversionCreateInfo sycci = {};
sycci.sType = VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_CREATE_INFO;
sycci.format = VK_FORMAT_UNDEFINED;
sycci.ycbcrModel = VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY;
sycci.ycbcrRange = VK_SAMPLER_YCBCR_RANGE_ITU_FULL;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkSamplerYcbcrConversionCreateInfo-format-01649");
vkCreateSamplerYcbcrConversionFunction(dev, &sycci, NULL, &ycbcr_conv);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, BufferDeviceAddressEXT) {
TEST_DESCRIPTION("Test VK_EXT_buffer_device_address.");
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else {
printf("%s Did not find required instance extension %s; skipped.\n", kSkipPrefix,
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
std::array<const char *, 1> required_device_extensions = {{VK_EXT_BUFFER_DEVICE_ADDRESS_EXTENSION_NAME}};
for (auto device_extension : required_device_extensions) {
if (DeviceExtensionSupported(gpu(), nullptr, device_extension)) {
m_device_extension_names.push_back(device_extension);
} else {
printf("%s %s Extension not supported, skipping tests\n", kSkipPrefix, device_extension);
return;
}
}
if (DeviceIsMockICD() || DeviceSimulation()) {
printf("%s MockICD does not support this feature, skipping tests\n", kSkipPrefix);
return;
}
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR");
ASSERT_TRUE(vkGetPhysicalDeviceFeatures2KHR != nullptr);
// Create a device that enables buffer_device_address
auto buffer_device_address_features = lvl_init_struct<VkPhysicalDeviceBufferAddressFeaturesEXT>();
auto features2 = lvl_init_struct<VkPhysicalDeviceFeatures2KHR>(&buffer_device_address_features);
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
buffer_device_address_features.bufferDeviceAddressCaptureReplay = VK_FALSE;
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
PFN_vkGetBufferDeviceAddressEXT vkGetBufferDeviceAddressEXT =
(PFN_vkGetBufferDeviceAddressEXT)vk::GetDeviceProcAddr(device(), "vkGetBufferDeviceAddressEXT");
VkBufferCreateInfo buffer_create_info = {VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO};
buffer_create_info.size = sizeof(uint32_t);
buffer_create_info.usage = VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT;
buffer_create_info.flags = VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT_EXT;
CreateBufferTest(*this, &buffer_create_info, "VUID-VkBufferCreateInfo-flags-03338");
buffer_create_info.flags = 0;
VkBufferDeviceAddressCreateInfoEXT addr_ci = {VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_CREATE_INFO_EXT};
addr_ci.deviceAddress = 1;
buffer_create_info.pNext = &addr_ci;
CreateBufferTest(*this, &buffer_create_info, "VUID-VkBufferCreateInfo-deviceAddress-02604");
buffer_create_info.pNext = nullptr;
VkBuffer buffer;
VkResult err = vk::CreateBuffer(m_device->device(), &buffer_create_info, NULL, &buffer);
ASSERT_VK_SUCCESS(err);
VkBufferDeviceAddressInfoEXT info = {VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO_EXT};
info.buffer = buffer;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkBufferDeviceAddressInfoKHR-buffer-02600");
vkGetBufferDeviceAddressEXT(m_device->device(), &info);
m_errorMonitor->VerifyFound();
vk::DestroyBuffer(m_device->device(), buffer, NULL);
}
TEST_F(VkLayerTest, BufferDeviceAddressEXTDisabled) {
TEST_DESCRIPTION("Test VK_EXT_buffer_device_address.");
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else {
printf("%s Did not find required instance extension %s; skipped.\n", kSkipPrefix,
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
std::array<const char *, 1> required_device_extensions = {{VK_EXT_BUFFER_DEVICE_ADDRESS_EXTENSION_NAME}};
for (auto device_extension : required_device_extensions) {
if (DeviceExtensionSupported(gpu(), nullptr, device_extension)) {
m_device_extension_names.push_back(device_extension);
} else {
printf("%s %s Extension not supported, skipping tests\n", kSkipPrefix, device_extension);
return;
}
}
if (DeviceIsMockICD() || DeviceSimulation()) {
printf("%s MockICD does not support this feature, skipping tests\n", kSkipPrefix);
return;
}
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR");
ASSERT_TRUE(vkGetPhysicalDeviceFeatures2KHR != nullptr);
// Create a device that disables buffer_device_address
auto buffer_device_address_features = lvl_init_struct<VkPhysicalDeviceBufferAddressFeaturesEXT>();
auto features2 = lvl_init_struct<VkPhysicalDeviceFeatures2KHR>(&buffer_device_address_features);
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
buffer_device_address_features.bufferDeviceAddress = VK_FALSE;
buffer_device_address_features.bufferDeviceAddressCaptureReplay = VK_FALSE;
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
PFN_vkGetBufferDeviceAddressEXT vkGetBufferDeviceAddressEXT =
(PFN_vkGetBufferDeviceAddressEXT)vk::GetDeviceProcAddr(device(), "vkGetBufferDeviceAddressEXT");
VkBufferCreateInfo buffer_create_info = {VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO};
buffer_create_info.size = sizeof(uint32_t);
buffer_create_info.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT;
VkBuffer buffer;
VkResult err = vk::CreateBuffer(m_device->device(), &buffer_create_info, NULL, &buffer);
ASSERT_VK_SUCCESS(err);
VkBufferDeviceAddressInfoEXT info = {VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO_EXT};
info.buffer = buffer;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-vkGetBufferDeviceAddressKHR-bufferDeviceAddress-03324");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkBufferDeviceAddressInfoKHR-buffer-02601");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkBufferDeviceAddressInfoKHR-buffer-02600");
vkGetBufferDeviceAddressEXT(m_device->device(), &info);
m_errorMonitor->VerifyFound();
vk::DestroyBuffer(m_device->device(), buffer, NULL);
}
TEST_F(VkLayerTest, BufferDeviceAddressKHR) {
TEST_DESCRIPTION("Test VK_KHR_buffer_device_address.");
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else {
printf("%s Did not find required instance extension %s; skipped.\n", kSkipPrefix,
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
std::array<const char *, 1> required_device_extensions = {{VK_KHR_BUFFER_DEVICE_ADDRESS_EXTENSION_NAME}};
for (auto device_extension : required_device_extensions) {
if (DeviceExtensionSupported(gpu(), nullptr, device_extension)) {
m_device_extension_names.push_back(device_extension);
} else {
printf("%s %s Extension not supported, skipping tests\n", kSkipPrefix, device_extension);
return;
}
}
if (DeviceIsMockICD() || DeviceSimulation()) {
printf("%s MockICD does not support this feature, skipping tests\n", kSkipPrefix);
return;
}
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR");
ASSERT_TRUE(vkGetPhysicalDeviceFeatures2KHR != nullptr);
// Create a device that enables buffer_device_address
auto buffer_device_address_features = lvl_init_struct<VkPhysicalDeviceBufferDeviceAddressFeaturesKHR>();
auto features2 = lvl_init_struct<VkPhysicalDeviceFeatures2KHR>(&buffer_device_address_features);
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
buffer_device_address_features.bufferDeviceAddressCaptureReplay = VK_FALSE;
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
PFN_vkGetBufferDeviceAddressKHR vkGetBufferDeviceAddressKHR =
(PFN_vkGetBufferDeviceAddressKHR)vk::GetDeviceProcAddr(device(), "vkGetBufferDeviceAddressKHR");
PFN_vkGetDeviceMemoryOpaqueCaptureAddressKHR vkGetDeviceMemoryOpaqueCaptureAddressKHR =
(PFN_vkGetDeviceMemoryOpaqueCaptureAddressKHR)vk::GetDeviceProcAddr(device(), "vkGetDeviceMemoryOpaqueCaptureAddressKHR");
VkBufferCreateInfo buffer_create_info = {VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO};
buffer_create_info.size = sizeof(uint32_t);
buffer_create_info.usage = VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_KHR;
buffer_create_info.flags = VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT_KHR;
CreateBufferTest(*this, &buffer_create_info, "VUID-VkBufferCreateInfo-flags-03338");
buffer_create_info.flags = 0;
VkBufferOpaqueCaptureAddressCreateInfoKHR addr_ci = {VK_STRUCTURE_TYPE_BUFFER_OPAQUE_CAPTURE_ADDRESS_CREATE_INFO_KHR};
addr_ci.opaqueCaptureAddress = 1;
buffer_create_info.pNext = &addr_ci;
CreateBufferTest(*this, &buffer_create_info, "VUID-VkBufferCreateInfo-opaqueCaptureAddress-03337");
buffer_create_info.pNext = nullptr;
VkBuffer buffer;
VkResult err = vk::CreateBuffer(m_device->device(), &buffer_create_info, NULL, &buffer);
ASSERT_VK_SUCCESS(err);
VkBufferDeviceAddressInfoKHR info = {VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO_KHR};
info.buffer = buffer;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkBufferDeviceAddressInfoKHR-buffer-02600");
vkGetBufferDeviceAddressKHR(m_device->device(), &info);
m_errorMonitor->VerifyFound();
VkMemoryRequirements buffer_mem_reqs = {};
vk::GetBufferMemoryRequirements(device(), buffer, &buffer_mem_reqs);
VkMemoryAllocateInfo buffer_alloc_info = {};
buffer_alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
buffer_alloc_info.allocationSize = buffer_mem_reqs.size;
m_device->phy().set_memory_type(buffer_mem_reqs.memoryTypeBits, &buffer_alloc_info, 0);
VkDeviceMemory buffer_mem;
err = vk::AllocateMemory(device(), &buffer_alloc_info, NULL, &buffer_mem);
ASSERT_VK_SUCCESS(err);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkBindBufferMemory-bufferDeviceAddress-03339");
vk::BindBufferMemory(m_device->device(), buffer, buffer_mem, 0);
m_errorMonitor->VerifyFound();
VkDeviceMemoryOpaqueCaptureAddressInfoKHR mem_opaque_addr_info = {
VK_STRUCTURE_TYPE_DEVICE_MEMORY_OPAQUE_CAPTURE_ADDRESS_INFO_KHR};
mem_opaque_addr_info.memory = buffer_mem;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-VkDeviceMemoryOpaqueCaptureAddressInfoKHR-memory-03336");
vkGetDeviceMemoryOpaqueCaptureAddressKHR(m_device->device(), &mem_opaque_addr_info);
m_errorMonitor->VerifyFound();
vk::FreeMemory(m_device->device(), buffer_mem, NULL);
VkMemoryAllocateFlagsInfo alloc_flags = {VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO};
alloc_flags.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR;
buffer_alloc_info.pNext = &alloc_flags;
err = vk::AllocateMemory(device(), &buffer_alloc_info, NULL, &buffer_mem);
mem_opaque_addr_info.memory = buffer_mem;
m_errorMonitor->ExpectSuccess();
vkGetDeviceMemoryOpaqueCaptureAddressKHR(m_device->device(), &mem_opaque_addr_info);
m_errorMonitor->VerifyNotFound();
m_errorMonitor->ExpectSuccess();
vk::BindBufferMemory(m_device->device(), buffer, buffer_mem, 0);
m_errorMonitor->VerifyNotFound();
m_errorMonitor->ExpectSuccess();
vkGetBufferDeviceAddressKHR(m_device->device(), &info);
m_errorMonitor->VerifyNotFound();
vk::FreeMemory(m_device->device(), buffer_mem, NULL);
vk::DestroyBuffer(m_device->device(), buffer, NULL);
}
TEST_F(VkLayerTest, BufferDeviceAddressKHRDisabled) {
TEST_DESCRIPTION("Test VK_KHR_buffer_device_address.");
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else {
printf("%s Did not find required instance extension %s; skipped.\n", kSkipPrefix,
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
std::array<const char *, 1> required_device_extensions = {{VK_KHR_BUFFER_DEVICE_ADDRESS_EXTENSION_NAME}};
for (auto device_extension : required_device_extensions) {
if (DeviceExtensionSupported(gpu(), nullptr, device_extension)) {
m_device_extension_names.push_back(device_extension);
} else {
printf("%s %s Extension not supported, skipping tests\n", kSkipPrefix, device_extension);
return;
}
}
if (DeviceIsMockICD() || DeviceSimulation()) {
printf("%s MockICD does not support this feature, skipping tests\n", kSkipPrefix);
return;
}
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR");
ASSERT_TRUE(vkGetPhysicalDeviceFeatures2KHR != nullptr);
// Create a device that disables buffer_device_address
auto buffer_device_address_features = lvl_init_struct<VkPhysicalDeviceBufferDeviceAddressFeaturesKHR>();
auto features2 = lvl_init_struct<VkPhysicalDeviceFeatures2KHR>(&buffer_device_address_features);
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
buffer_device_address_features.bufferDeviceAddress = VK_FALSE;
buffer_device_address_features.bufferDeviceAddressCaptureReplay = VK_FALSE;
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
PFN_vkGetBufferDeviceAddressKHR vkGetBufferDeviceAddressKHR =
(PFN_vkGetBufferDeviceAddressKHR)vk::GetDeviceProcAddr(device(), "vkGetBufferDeviceAddressKHR");
PFN_vkGetBufferOpaqueCaptureAddressKHR vkGetBufferOpaqueCaptureAddressKHR =
(PFN_vkGetBufferOpaqueCaptureAddressKHR)vk::GetDeviceProcAddr(device(), "vkGetBufferOpaqueCaptureAddressKHR");
PFN_vkGetDeviceMemoryOpaqueCaptureAddressKHR vkGetDeviceMemoryOpaqueCaptureAddressKHR =
(PFN_vkGetDeviceMemoryOpaqueCaptureAddressKHR)vk::GetDeviceProcAddr(device(), "vkGetDeviceMemoryOpaqueCaptureAddressKHR");
VkBufferCreateInfo buffer_create_info = {VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO};
buffer_create_info.size = sizeof(uint32_t);
buffer_create_info.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT;
VkBuffer buffer;
VkResult err = vk::CreateBuffer(m_device->device(), &buffer_create_info, NULL, &buffer);
ASSERT_VK_SUCCESS(err);
VkBufferDeviceAddressInfoKHR info = {VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO_KHR};
info.buffer = buffer;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-vkGetBufferDeviceAddressKHR-bufferDeviceAddress-03324");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkBufferDeviceAddressInfoKHR-buffer-02601");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkBufferDeviceAddressInfoKHR-buffer-02600");
vkGetBufferDeviceAddressKHR(m_device->device(), &info);
m_errorMonitor->VerifyFound();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkGetBufferOpaqueCaptureAddressKHR-None-03326");
vkGetBufferOpaqueCaptureAddressKHR(m_device->device(), &info);
m_errorMonitor->VerifyFound();
VkMemoryRequirements buffer_mem_reqs = {};
vk::GetBufferMemoryRequirements(device(), buffer, &buffer_mem_reqs);
VkMemoryAllocateInfo buffer_alloc_info = {};
buffer_alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
buffer_alloc_info.allocationSize = buffer_mem_reqs.size;
m_device->phy().set_memory_type(buffer_mem_reqs.memoryTypeBits, &buffer_alloc_info, 0);
VkDeviceMemory buffer_mem;
err = vk::AllocateMemory(device(), &buffer_alloc_info, NULL, &buffer_mem);
ASSERT_VK_SUCCESS(err);
VkDeviceMemoryOpaqueCaptureAddressInfoKHR mem_opaque_addr_info = {
VK_STRUCTURE_TYPE_DEVICE_MEMORY_OPAQUE_CAPTURE_ADDRESS_INFO_KHR};
mem_opaque_addr_info.memory = buffer_mem;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkGetDeviceMemoryOpaqueCaptureAddressKHR-None-03334");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-VkDeviceMemoryOpaqueCaptureAddressInfoKHR-memory-03336");
vkGetDeviceMemoryOpaqueCaptureAddressKHR(m_device->device(), &mem_opaque_addr_info);
m_errorMonitor->VerifyFound();
vk::FreeMemory(m_device->device(), buffer_mem, NULL);
VkMemoryAllocateFlagsInfo alloc_flags = {VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO};
alloc_flags.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR | VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT_KHR;
buffer_alloc_info.pNext = &alloc_flags;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkMemoryAllocateInfo-flags-03330");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkMemoryAllocateInfo-flags-03331");
err = vk::AllocateMemory(device(), &buffer_alloc_info, NULL, &buffer_mem);
m_errorMonitor->VerifyFound();
vk::DestroyBuffer(m_device->device(), buffer, NULL);
}
TEST_F(VkLayerTest, CreateImageYcbcrArrayLayers) {
TEST_DESCRIPTION("Creating images with out-of-range arrayLayers ");
// Enable KHR multiplane req'd extensions
bool mp_extensions = InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME,
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_SPEC_VERSION);
if (mp_extensions) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
mp_extensions = mp_extensions && DeviceExtensionSupported(gpu(), nullptr, VK_KHR_MAINTENANCE1_EXTENSION_NAME);
mp_extensions = mp_extensions && DeviceExtensionSupported(gpu(), nullptr, VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME);
mp_extensions = mp_extensions && DeviceExtensionSupported(gpu(), nullptr, VK_KHR_BIND_MEMORY_2_EXTENSION_NAME);
mp_extensions = mp_extensions && DeviceExtensionSupported(gpu(), nullptr, VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME);
if (mp_extensions) {
m_device_extension_names.push_back(VK_KHR_MAINTENANCE1_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME);
} else {
printf("%s test requires KHR multiplane extensions, not available. Skipping.\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
// Create ycbcr image with unsupported arrayLayers
VkImageCreateInfo image_create_info = {};
image_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM;
image_create_info.extent.width = 32;
image_create_info.extent.height = 32;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
bool supported = ImageFormatAndFeaturesSupported(instance(), gpu(), image_create_info, VK_FORMAT_FEATURE_TRANSFER_SRC_BIT);
if (!supported) {
printf("%s Multiplane image format not supported. Skipping test.\n", kSkipPrefix);
return;
}
VkImageFormatProperties img_limits;
ASSERT_VK_SUCCESS(GPDIFPHelper(gpu(), &image_create_info, &img_limits));
if (img_limits.maxArrayLayers == 1) {
return;
}
image_create_info.arrayLayers = img_limits.maxArrayLayers;
CreateImageTest(*this, &image_create_info, "VUID-VkImageCreateInfo-format-02653");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkImageCreateInfo-format-02653");
}
TEST_F(VkLayerTest, BindImageMemorySwapchain) {
TEST_DESCRIPTION("Invalid bind image with a swapchain");
SetTargetApiVersion(VK_API_VERSION_1_1);
if (!AddSurfaceInstanceExtension()) {
printf("%s surface extensions not supported, skipping BindSwapchainImageMemory test\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
if (!AddSwapchainDeviceExtension()) {
printf("%s swapchain extensions not supported, skipping BindSwapchainImageMemory test\n", kSkipPrefix);
return;
}
if (DeviceValidationVersion() < VK_API_VERSION_1_1) {
printf("%s VkBindImageMemoryInfo requires Vulkan 1.1+, skipping test\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
if (!InitSwapchain()) {
printf("%s Cannot create surface or swapchain, skipping BindSwapchainImageMemory test\n", kSkipPrefix);
return;
}
auto image_create_info = lvl_init_struct<VkImageCreateInfo>();
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = VK_FORMAT_R8G8B8A8_UNORM;
image_create_info.extent.width = 64;
image_create_info.extent.height = 64;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
image_create_info.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
image_create_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
auto image_swapchain_create_info = lvl_init_struct<VkImageSwapchainCreateInfoKHR>();
image_swapchain_create_info.swapchain = m_swapchain;
image_create_info.pNext = &image_swapchain_create_info;
VkImage image_from_swapchain;
vk::CreateImage(device(), &image_create_info, NULL, &image_from_swapchain);
VkMemoryRequirements mem_reqs = {};
vk::GetImageMemoryRequirements(device(), image_from_swapchain, &mem_reqs);
auto alloc_info = lvl_init_struct<VkMemoryAllocateInfo>();
alloc_info.memoryTypeIndex = 0;
alloc_info.allocationSize = mem_reqs.size;
bool pass = m_device->phy().set_memory_type(mem_reqs.memoryTypeBits, &alloc_info, 0);
ASSERT_TRUE(pass);
VkDeviceMemory mem;
VkResult err = vk::AllocateMemory(m_device->device(), &alloc_info, NULL, &mem);
ASSERT_VK_SUCCESS(err);
auto bind_info = lvl_init_struct<VkBindImageMemoryInfo>();
bind_info.image = image_from_swapchain;
bind_info.memory = VK_NULL_HANDLE;
bind_info.memoryOffset = 0;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkBindImageMemoryInfo-image-01630");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkBindImageMemoryInfo-pNext-01632");
vk::BindImageMemory2(m_device->device(), 1, &bind_info);
m_errorMonitor->VerifyFound();
auto bind_swapchain_info = lvl_init_struct<VkBindImageMemorySwapchainInfoKHR>();
bind_swapchain_info.swapchain = VK_NULL_HANDLE;
bind_swapchain_info.imageIndex = 0;
bind_info.pNext = &bind_swapchain_info;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "UNASSIGNED-GeneralParameterError-RequiredParameter");
vk::BindImageMemory2(m_device->device(), 1, &bind_info);
m_errorMonitor->VerifyFound();
bind_info.memory = mem;
bind_swapchain_info.swapchain = m_swapchain;
bind_swapchain_info.imageIndex = UINT32_MAX;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkBindImageMemoryInfo-pNext-01631");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkBindImageMemorySwapchainInfoKHR-imageIndex-01644");
vk::BindImageMemory2(m_device->device(), 1, &bind_info);
m_errorMonitor->VerifyFound();
vk::DestroyImage(m_device->device(), image_from_swapchain, NULL);
vk::FreeMemory(m_device->device(), mem, NULL);
DestroySwapchain();
}
TEST_F(VkLayerTest, TransferImageToSwapchainWithInvalidLayoutDeviceGroup) {
TEST_DESCRIPTION("Transfer an image to a swapchain's image with a invalid layout between device group");
#if defined(VK_USE_PLATFORM_ANDROID_KHR)
printf(
"%s According to valid usage, VkBindImageMemoryInfo-memory should be NULL. But Android will crash if memory is NULL, "
"skipping test\n",
kSkipPrefix);
return;
#endif
SetTargetApiVersion(VK_API_VERSION_1_1);
if (!AddSurfaceInstanceExtension()) {
printf("%s surface extensions not supported, skipping test\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
if (!AddSwapchainDeviceExtension()) {
printf("%s swapchain extensions not supported, skipping test\n", kSkipPrefix);
return;
}
if (DeviceValidationVersion() < VK_API_VERSION_1_1) {
printf("%s VkBindImageMemoryInfo requires Vulkan 1.1+, skipping test\n", kSkipPrefix);
return;
}
uint32_t physical_device_group_count = 0;
vk::EnumeratePhysicalDeviceGroups(instance(), &physical_device_group_count, nullptr);
if (physical_device_group_count == 0) {
printf("%s physical_device_group_count is 0, skipping test\n", kSkipPrefix);
return;
}
std::vector<VkPhysicalDeviceGroupProperties> physical_device_group(physical_device_group_count,
{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GROUP_PROPERTIES});
vk::EnumeratePhysicalDeviceGroups(instance(), &physical_device_group_count, physical_device_group.data());
VkDeviceGroupDeviceCreateInfo create_device_pnext = {};
create_device_pnext.sType = VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO;
create_device_pnext.physicalDeviceCount = physical_device_group[0].physicalDeviceCount;
create_device_pnext.pPhysicalDevices = physical_device_group[0].physicalDevices;
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &create_device_pnext));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
if (!InitSwapchain(VK_IMAGE_USAGE_TRANSFER_DST_BIT)) {
printf("%s Cannot create surface or swapchain, skipping test\n", kSkipPrefix);
return;
}
auto image_create_info = lvl_init_struct<VkImageCreateInfo>();
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = VK_FORMAT_R8G8B8A8_UNORM;
image_create_info.extent.width = 64;
image_create_info.extent.height = 64;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
image_create_info.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
image_create_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VkImageObj src_Image(m_device);
src_Image.init(&image_create_info);
image_create_info.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT;
image_create_info.flags = VK_IMAGE_CREATE_ALIAS_BIT;
auto image_swapchain_create_info = lvl_init_struct<VkImageSwapchainCreateInfoKHR>();
image_swapchain_create_info.swapchain = m_swapchain;
image_create_info.pNext = &image_swapchain_create_info;
VkImage peer_image;
vk::CreateImage(device(), &image_create_info, NULL, &peer_image);
auto bind_devicegroup_info = lvl_init_struct<VkBindImageMemoryDeviceGroupInfo>();
bind_devicegroup_info.deviceIndexCount = 2;
std::array<uint32_t, 2> deviceIndices = {0, 0};
bind_devicegroup_info.pDeviceIndices = deviceIndices.data();
bind_devicegroup_info.splitInstanceBindRegionCount = 0;
bind_devicegroup_info.pSplitInstanceBindRegions = nullptr;
auto bind_swapchain_info = lvl_init_struct<VkBindImageMemorySwapchainInfoKHR>(&bind_devicegroup_info);
bind_swapchain_info.swapchain = m_swapchain;
bind_swapchain_info.imageIndex = 0;
auto bind_info = lvl_init_struct<VkBindImageMemoryInfo>(&bind_swapchain_info);
bind_info.image = peer_image;
bind_info.memory = VK_NULL_HANDLE;
bind_info.memoryOffset = 0;
vk::BindImageMemory2(m_device->device(), 1, &bind_info);
uint32_t swapchain_images_count = 0;
vk::GetSwapchainImagesKHR(device(), m_swapchain, &swapchain_images_count, nullptr);
std::vector<VkImage> swapchain_images;
swapchain_images.resize(swapchain_images_count);
vk::GetSwapchainImagesKHR(device(), m_swapchain, &swapchain_images_count, swapchain_images.data());
m_commandBuffer->begin();
VkImageCopy copy_region = {};
copy_region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy_region.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy_region.srcSubresource.mipLevel = 0;
copy_region.dstSubresource.mipLevel = 0;
copy_region.srcSubresource.baseArrayLayer = 0;
copy_region.dstSubresource.baseArrayLayer = 0;
copy_region.srcSubresource.layerCount = 1;
copy_region.dstSubresource.layerCount = 1;
copy_region.srcOffset = {0, 0, 0};
copy_region.dstOffset = {0, 0, 0};
copy_region.extent = {10, 10, 1};
vk::CmdCopyImage(m_commandBuffer->handle(), src_Image.handle(), VK_IMAGE_LAYOUT_GENERAL, peer_image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &copy_region);
m_commandBuffer->end();
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &m_commandBuffer->handle();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "UNASSIGNED-CoreValidation-DrawState-InvalidImageLayout");
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
m_errorMonitor->VerifyFound();
vk::DestroyImage(m_device->device(), peer_image, NULL);
DestroySwapchain();
}
TEST_F(VkLayerTest, InvalidMemoryType) {
// Attempts to allocate from a memory type that doesn't exist
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
ASSERT_NO_FATAL_FAILURE(InitState());
VkPhysicalDeviceMemoryProperties memory_info;
vk::GetPhysicalDeviceMemoryProperties(gpu(), &memory_info);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkAllocateMemory-pAllocateInfo-01714");
VkMemoryAllocateInfo mem_alloc = {};
mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
mem_alloc.pNext = NULL;
mem_alloc.memoryTypeIndex = memory_info.memoryTypeCount;
mem_alloc.allocationSize = 4;
VkDeviceMemory mem;
vk::AllocateMemory(m_device->device(), &mem_alloc, NULL, &mem);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, AllocationBeyondHeapSize) {
// Attempts to allocate a single piece of memory that's larger than the heap size
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
ASSERT_NO_FATAL_FAILURE(InitState());
VkPhysicalDeviceMemoryProperties memory_info;
vk::GetPhysicalDeviceMemoryProperties(gpu(), &memory_info);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkAllocateMemory-pAllocateInfo-01713");
VkMemoryAllocateInfo mem_alloc = {};
mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
mem_alloc.pNext = NULL;
mem_alloc.memoryTypeIndex = 0;
mem_alloc.allocationSize = memory_info.memoryHeaps[memory_info.memoryTypes[0].heapIndex].size + 1;
VkDeviceMemory mem;
vk::AllocateMemory(m_device->device(), &mem_alloc, NULL, &mem);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, DeviceCoherentMemoryDisabledAMD) {
// Attempts to allocate device coherent memory without enabling the extension/feature
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
ASSERT_NO_FATAL_FAILURE(InitState());
if (DeviceIsMockICD() || DeviceSimulation()) {
printf("%s MockICD does not support the necessary memory type, skipping test\n", kSkipPrefix);
return;
}
// Check extension support but do not enable it
if (!DeviceExtensionSupported(gpu(), nullptr, VK_AMD_DEVICE_COHERENT_MEMORY_EXTENSION_NAME)) {
printf("%s %s Extension not supported, skipping tests\n", kSkipPrefix, VK_AMD_DEVICE_COHERENT_MEMORY_EXTENSION_NAME);
return;
}
// Find a memory type that includes the device coherent memory property
VkPhysicalDeviceMemoryProperties memory_info;
vk::GetPhysicalDeviceMemoryProperties(gpu(), &memory_info);
uint32_t deviceCoherentMemoryTypeIndex = memory_info.memoryTypeCount; // Set to an invalid value just in case
for (uint32_t i = 0; i < memory_info.memoryTypeCount; ++i) {
if ((memory_info.memoryTypes[i].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD) != 0) {
deviceCoherentMemoryTypeIndex = i;
break;
}
}
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkAllocateMemory-deviceCoherentMemory-02790");
VkMemoryAllocateInfo mem_alloc = {};
mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
mem_alloc.pNext = NULL;
mem_alloc.memoryTypeIndex = deviceCoherentMemoryTypeIndex;
mem_alloc.allocationSize = 4;
VkDeviceMemory mem;
vk::AllocateMemory(m_device->device(), &mem_alloc, NULL, &mem);
m_errorMonitor->VerifyFound();
}