blob: 7e74eb752441802c71d39f8ebfddcde7e961d180 [file] [log] [blame]
/*
* Copyright (c) 2015-2019 The Khronos Group Inc.
* Copyright (c) 2015-2019 Valve Corporation
* Copyright (c) 2015-2019 LunarG, Inc.
* Copyright (c) 2015-2019 Google, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Author: Chia-I Wu <olvaffe@gmail.com>
* Author: Chris Forbes <chrisf@ijw.co.nz>
* Author: Courtney Goeltzenleuchter <courtney@LunarG.com>
* Author: Mark Lobodzinski <mark@lunarg.com>
* Author: Mike Stroyan <mike@LunarG.com>
* Author: Tobin Ehlis <tobine@google.com>
* Author: Tony Barbour <tony@LunarG.com>
* Author: Cody Northrop <cnorthrop@google.com>
* Author: Dave Houlton <daveh@lunarg.com>
* Author: Jeremy Kniager <jeremyk@lunarg.com>
* Author: Shannon McPherson <shannon@lunarg.com>
* Author: John Zulauf <jzulauf@lunarg.com>
*/
#include "cast_utils.h"
#include "layer_validation_tests.h"
TEST_F(VkLayerTest, GpuValidationArrayOOBGraphicsShaders) {
TEST_DESCRIPTION(
"GPU validation: Verify detection of out-of-bounds descriptor array indexing and use of uninitialized descriptors.");
VkValidationFeatureEnableEXT enables[] = {VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_EXT};
VkValidationFeaturesEXT features = {};
features.sType = VK_STRUCTURE_TYPE_VALIDATION_FEATURES_EXT;
features.enabledValidationFeatureCount = 1;
features.pEnabledValidationFeatures = enables;
bool descriptor_indexing = CheckDescriptorIndexingSupportAndInitFramework(this, m_instance_extension_names,
m_device_extension_names, &features, m_errorMonitor);
if (DeviceIsMockICD() || DeviceSimulation()) {
printf("%s GPU-Assisted validation test requires a driver that can draw.\n", kSkipPrefix);
return;
}
VkPhysicalDeviceFeatures2KHR features2 = {};
auto indexing_features = lvl_init_struct<VkPhysicalDeviceDescriptorIndexingFeaturesEXT>();
if (descriptor_indexing) {
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR");
ASSERT_TRUE(vkGetPhysicalDeviceFeatures2KHR != nullptr);
features2 = lvl_init_struct<VkPhysicalDeviceFeatures2KHR>(&indexing_features);
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
if (!indexing_features.runtimeDescriptorArray || !indexing_features.descriptorBindingSampledImageUpdateAfterBind ||
!indexing_features.descriptorBindingPartiallyBound || !indexing_features.descriptorBindingVariableDescriptorCount ||
!indexing_features.shaderSampledImageArrayNonUniformIndexing ||
!indexing_features.shaderStorageBufferArrayNonUniformIndexing) {
printf("Not all descriptor indexing features supported, skipping descriptor indexing tests\n");
descriptor_indexing = false;
}
}
VkCommandPoolCreateFlags pool_flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2, pool_flags));
if (m_device->props.apiVersion < VK_API_VERSION_1_1) {
printf("%s GPU-Assisted validation test requires Vulkan 1.1+.\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
// Make a uniform buffer to be passed to the shader that contains the invalid array index.
uint32_t qfi = 0;
VkBufferCreateInfo bci = {};
bci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bci.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
bci.size = 1024;
bci.queueFamilyIndexCount = 1;
bci.pQueueFamilyIndices = &qfi;
VkBufferObj buffer0;
VkMemoryPropertyFlags mem_props = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
buffer0.init(*m_device, bci, mem_props);
bci.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
// Make another buffer to populate the buffer array to be indexed
VkBufferObj buffer1;
buffer1.init(*m_device, bci, mem_props);
void *layout_pnext = nullptr;
void *allocate_pnext = nullptr;
auto pool_create_flags = 0;
auto layout_create_flags = 0;
VkDescriptorBindingFlagsEXT ds_binding_flags[2] = {};
VkDescriptorSetLayoutBindingFlagsCreateInfoEXT layout_createinfo_binding_flags[1] = {};
if (descriptor_indexing) {
ds_binding_flags[0] = 0;
ds_binding_flags[1] = VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT_EXT | VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT;
layout_createinfo_binding_flags[0].sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO_EXT;
layout_createinfo_binding_flags[0].pNext = NULL;
layout_createinfo_binding_flags[0].bindingCount = 2;
layout_createinfo_binding_flags[0].pBindingFlags = ds_binding_flags;
layout_create_flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT;
pool_create_flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT;
layout_pnext = layout_createinfo_binding_flags;
}
// Prepare descriptors
OneOffDescriptorSet descriptor_set(m_device,
{
{0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr},
{1, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 6, VK_SHADER_STAGE_ALL, nullptr},
},
layout_create_flags, layout_pnext, pool_create_flags);
VkDescriptorSetVariableDescriptorCountAllocateInfoEXT variable_count = {};
uint32_t desc_counts;
if (descriptor_indexing) {
layout_create_flags = 0;
pool_create_flags = 0;
ds_binding_flags[1] =
VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT_EXT | VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT;
desc_counts = 6; // We'll reserve 8 spaces in the layout, but the descriptor will only use 6
variable_count.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO_EXT;
variable_count.descriptorSetCount = 1;
variable_count.pDescriptorCounts = &desc_counts;
allocate_pnext = &variable_count;
}
OneOffDescriptorSet descriptor_set_variable(m_device,
{
{0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr},
{1, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 8, VK_SHADER_STAGE_ALL, nullptr},
},
layout_create_flags, layout_pnext, pool_create_flags, allocate_pnext);
const VkPipelineLayoutObj pipeline_layout(m_device, {&descriptor_set.layout_});
const VkPipelineLayoutObj pipeline_layout_variable(m_device, {&descriptor_set_variable.layout_});
VkTextureObj texture(m_device, nullptr);
VkSamplerObj sampler(m_device);
VkDescriptorBufferInfo buffer_info[1] = {};
buffer_info[0].buffer = buffer0.handle();
buffer_info[0].offset = 0;
buffer_info[0].range = sizeof(uint32_t);
VkDescriptorImageInfo image_info[6] = {};
for (int i = 0; i < 6; i++) {
image_info[i] = texture.DescriptorImageInfo();
image_info[i].sampler = sampler.handle();
image_info[i].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
VkWriteDescriptorSet descriptor_writes[2] = {};
descriptor_writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptor_writes[0].dstSet = descriptor_set.set_; // descriptor_set;
descriptor_writes[0].dstBinding = 0;
descriptor_writes[0].descriptorCount = 1;
descriptor_writes[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
descriptor_writes[0].pBufferInfo = buffer_info;
descriptor_writes[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptor_writes[1].dstSet = descriptor_set.set_; // descriptor_set;
descriptor_writes[1].dstBinding = 1;
if (descriptor_indexing)
descriptor_writes[1].descriptorCount = 5; // Intentionally don't write index 5
else
descriptor_writes[1].descriptorCount = 6;
descriptor_writes[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
descriptor_writes[1].pImageInfo = image_info;
vk::UpdateDescriptorSets(m_device->device(), 2, descriptor_writes, 0, NULL);
if (descriptor_indexing) {
descriptor_writes[0].dstSet = descriptor_set_variable.set_;
descriptor_writes[1].dstSet = descriptor_set_variable.set_;
vk::UpdateDescriptorSets(m_device->device(), 2, descriptor_writes, 0, NULL);
}
ds_binding_flags[0] = 0;
ds_binding_flags[1] = VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT_EXT;
// Resources for buffer tests
OneOffDescriptorSet descriptor_set_buffer(m_device,
{
{0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr},
{1, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 6, VK_SHADER_STAGE_ALL, nullptr},
},
0, layout_pnext, 0);
const VkPipelineLayoutObj pipeline_layout_buffer(m_device, {&descriptor_set_buffer.layout_});
VkDescriptorBufferInfo buffer_test_buffer_info[7] = {};
buffer_test_buffer_info[0].buffer = buffer0.handle();
buffer_test_buffer_info[0].offset = 0;
buffer_test_buffer_info[0].range = sizeof(uint32_t);
for (int i = 1; i < 7; i++) {
buffer_test_buffer_info[i].buffer = buffer1.handle();
buffer_test_buffer_info[i].offset = 0;
buffer_test_buffer_info[i].range = 4 * sizeof(float);
}
if (descriptor_indexing) {
VkWriteDescriptorSet buffer_descriptor_writes[2] = {};
buffer_descriptor_writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
buffer_descriptor_writes[0].dstSet = descriptor_set_buffer.set_; // descriptor_set;
buffer_descriptor_writes[0].dstBinding = 0;
buffer_descriptor_writes[0].descriptorCount = 1;
buffer_descriptor_writes[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
buffer_descriptor_writes[0].pBufferInfo = buffer_test_buffer_info;
buffer_descriptor_writes[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
buffer_descriptor_writes[1].dstSet = descriptor_set_buffer.set_; // descriptor_set;
buffer_descriptor_writes[1].dstBinding = 1;
buffer_descriptor_writes[1].descriptorCount = 5; // Intentionally don't write index 5
buffer_descriptor_writes[1].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
buffer_descriptor_writes[1].pBufferInfo = &buffer_test_buffer_info[1];
vk::UpdateDescriptorSets(m_device->device(), 2, buffer_descriptor_writes, 0, NULL);
}
// Shader programs for array OOB test in vertex stage:
// - The vertex shader fetches the invalid index from the uniform buffer and uses it to make an invalid index into another
// array.
char const *vsSource_vert =
"#version 450\n"
"\n"
"layout(std140, set = 0, binding = 0) uniform foo { uint tex_index[1]; } uniform_index_buffer;\n"
"layout(set = 0, binding = 1) uniform sampler2D tex[6];\n"
"vec2 vertices[3];\n"
"void main(){\n"
" vertices[0] = vec2(-1.0, -1.0);\n"
" vertices[1] = vec2( 1.0, -1.0);\n"
" vertices[2] = vec2( 0.0, 1.0);\n"
" gl_Position = vec4(vertices[gl_VertexIndex % 3], 0.0, 1.0);\n"
" gl_Position += 1e-30 * texture(tex[uniform_index_buffer.tex_index[0]], vec2(0, 0));\n"
"}\n";
char const *fsSource_vert =
"#version 450\n"
"\n"
"layout(set = 0, binding = 1) uniform sampler2D tex[6];\n"
"layout(location = 0) out vec4 uFragColor;\n"
"void main(){\n"
" uFragColor = texture(tex[0], vec2(0, 0));\n"
"}\n";
// Shader programs for array OOB test in fragment stage:
// - The vertex shader fetches the invalid index from the uniform buffer and passes it to the fragment shader.
// - The fragment shader makes the invalid array access.
char const *vsSource_frag =
"#version 450\n"
"\n"
"layout(std140, binding = 0) uniform foo { uint tex_index[1]; } uniform_index_buffer;\n"
"layout(location = 0) out flat uint index;\n"
"vec2 vertices[3];\n"
"void main(){\n"
" vertices[0] = vec2(-1.0, -1.0);\n"
" vertices[1] = vec2( 1.0, -1.0);\n"
" vertices[2] = vec2( 0.0, 1.0);\n"
" gl_Position = vec4(vertices[gl_VertexIndex % 3], 0.0, 1.0);\n"
" index = uniform_index_buffer.tex_index[0];\n"
"}\n";
char const *fsSource_frag =
"#version 450\n"
"\n"
"layout(set = 0, binding = 1) uniform sampler2D tex[6];\n"
"layout(location = 0) out vec4 uFragColor;\n"
"layout(location = 0) in flat uint index;\n"
"void main(){\n"
" uFragColor = texture(tex[index], vec2(0, 0));\n"
"}\n";
char const *fsSource_frag_runtime =
"#version 450\n"
"#extension GL_EXT_nonuniform_qualifier : enable\n"
"\n"
"layout(set = 0, binding = 1) uniform sampler2D tex[];\n"
"layout(location = 0) out vec4 uFragColor;\n"
"layout(location = 0) in flat uint index;\n"
"void main(){\n"
" uFragColor = texture(tex[index], vec2(0, 0));\n"
"}\n";
char const *fsSource_buffer =
"#version 450\n"
"#extension GL_EXT_nonuniform_qualifier : enable\n "
"\n"
"layout(set = 0, binding = 1) buffer foo { vec4 val; } colors[];\n"
"layout(location = 0) out vec4 uFragColor;\n"
"layout(location = 0) in flat uint index;\n"
"void main(){\n"
" uFragColor = colors[index].val;\n"
"}\n";
char const *gsSource =
"#version 450\n"
"#extension GL_EXT_nonuniform_qualifier : enable\n "
"layout(triangles) in;\n"
"layout(triangle_strip, max_vertices=3) out;\n"
"layout(location=0) in VertexData { vec4 x; } gs_in[];\n"
"layout(std140, set = 0, binding = 0) uniform ufoo { uint index; } uniform_index_buffer;\n"
"layout(set = 0, binding = 1) buffer bfoo { vec4 val; } adds[];\n"
"void main() {\n"
" gl_Position = gs_in[0].x + adds[uniform_index_buffer.index].val.x;\n"
" EmitVertex();\n"
"}\n";
static const char *tesSource =
"#version 450\n"
"#extension GL_EXT_nonuniform_qualifier : enable\n "
"layout(std140, set = 0, binding = 0) uniform ufoo { uint index; } uniform_index_buffer;\n"
"layout(set = 0, binding = 1) buffer bfoo { vec4 val; } adds[];\n"
"layout(triangles, equal_spacing, cw) in;\n"
"void main() {\n"
" gl_Position = adds[uniform_index_buffer.index].val;\n"
"}\n";
struct TestCase {
char const *vertex_source;
char const *fragment_source;
char const *geometry_source;
char const *tess_ctrl_source;
char const *tess_eval_source;
bool debug;
const VkPipelineLayoutObj *pipeline_layout;
const OneOffDescriptorSet *descriptor_set;
uint32_t index;
char const *expected_error;
};
std::vector<TestCase> tests;
tests.push_back({vsSource_vert, fsSource_vert, nullptr, nullptr, nullptr, false, &pipeline_layout, &descriptor_set, 25,
"Index of 25 used to index descriptor array of length 6."});
tests.push_back({vsSource_frag, fsSource_frag, nullptr, nullptr, nullptr, false, &pipeline_layout, &descriptor_set, 25,
"Index of 25 used to index descriptor array of length 6."});
#if !defined(ANDROID)
// The Android test framework uses shaderc for online compilations. Even when configured to compile with debug info,
// shaderc seems to drop the OpLine instructions from the shader binary. This causes the following two tests to fail
// on Android platforms. Skip these tests until the shaderc issue is understood/resolved.
tests.push_back({vsSource_vert, fsSource_vert, nullptr, nullptr, nullptr, true, &pipeline_layout, &descriptor_set, 25,
"gl_Position += 1e-30 * texture(tex[uniform_index_buffer.tex_index[0]], vec2(0, 0));"});
tests.push_back({vsSource_frag, fsSource_frag, nullptr, nullptr, nullptr, true, &pipeline_layout, &descriptor_set, 25,
"uFragColor = texture(tex[index], vec2(0, 0));"});
#endif
if (descriptor_indexing) {
tests.push_back({vsSource_frag, fsSource_frag_runtime, nullptr, nullptr, nullptr, false, &pipeline_layout, &descriptor_set,
25, "Index of 25 used to index descriptor array of length 6."});
tests.push_back({vsSource_frag, fsSource_frag_runtime, nullptr, nullptr, nullptr, false, &pipeline_layout, &descriptor_set,
5, "Descriptor index 5 is uninitialized"});
// Pick 6 below because it is less than the maximum specified, but more than the actual specified
tests.push_back({vsSource_frag, fsSource_frag_runtime, nullptr, nullptr, nullptr, false, &pipeline_layout_variable,
&descriptor_set_variable, 6, "Index of 6 used to index descriptor array of length 6."});
tests.push_back({vsSource_frag, fsSource_frag_runtime, nullptr, nullptr, nullptr, false, &pipeline_layout_variable,
&descriptor_set_variable, 5, "Descriptor index 5 is uninitialized"});
tests.push_back({vsSource_frag, fsSource_buffer, nullptr, nullptr, nullptr, false, &pipeline_layout_buffer,
&descriptor_set_buffer, 25, "Index of 25 used to index descriptor array of length 6."});
tests.push_back({vsSource_frag, fsSource_buffer, nullptr, nullptr, nullptr, false, &pipeline_layout_buffer,
&descriptor_set_buffer, 5, "Descriptor index 5 is uninitialized"});
if (m_device->phy().features().geometryShader) {
// OOB Geometry
tests.push_back({bindStateVertShaderText, bindStateFragShaderText, gsSource, nullptr, nullptr, false,
&pipeline_layout_buffer, &descriptor_set_buffer, 25, "Stage = Geometry"});
// Uninitialized Geometry
tests.push_back({bindStateVertShaderText, bindStateFragShaderText, gsSource, nullptr, nullptr, false,
&pipeline_layout_buffer, &descriptor_set_buffer, 5, "Stage = Geometry"});
}
if (m_device->phy().features().tessellationShader) {
tests.push_back({bindStateVertShaderText, bindStateFragShaderText, nullptr, bindStateTscShaderText, tesSource, false,
&pipeline_layout_buffer, &descriptor_set_buffer, 25, "Stage = Tessellation Eval"});
tests.push_back({bindStateVertShaderText, bindStateFragShaderText, nullptr, bindStateTscShaderText, tesSource, false,
&pipeline_layout_buffer, &descriptor_set_buffer, 5, "Stage = Tessellation Eval"});
}
}
VkViewport viewport = m_viewports[0];
VkRect2D scissors = m_scissors[0];
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &m_commandBuffer->handle();
for (const auto &iter : tests) {
VkResult err;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, iter.expected_error);
VkShaderObj vs(m_device, iter.vertex_source, VK_SHADER_STAGE_VERTEX_BIT, this, "main", iter.debug);
VkShaderObj fs(m_device, iter.fragment_source, VK_SHADER_STAGE_FRAGMENT_BIT, this, "main", iter.debug);
VkShaderObj *gs = nullptr;
VkShaderObj *tcs = nullptr;
VkShaderObj *tes = nullptr;
VkPipelineObj pipe(m_device);
pipe.AddShader(&vs);
pipe.AddShader(&fs);
if (iter.geometry_source) {
gs = new VkShaderObj(m_device, iter.geometry_source, VK_SHADER_STAGE_GEOMETRY_BIT, this, "main", iter.debug);
pipe.AddShader(gs);
}
if (iter.tess_ctrl_source && iter.tess_eval_source) {
tcs = new VkShaderObj(m_device, iter.tess_ctrl_source, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, this, "main",
iter.debug);
tes = new VkShaderObj(m_device, iter.tess_eval_source, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, this, "main",
iter.debug);
pipe.AddShader(tcs);
pipe.AddShader(tes);
VkPipelineInputAssemblyStateCreateInfo iasci{VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, nullptr, 0,
VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, VK_FALSE};
VkPipelineTessellationDomainOriginStateCreateInfo tessellationDomainOriginStateInfo = {
VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO, VK_NULL_HANDLE,
VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT};
VkPipelineTessellationStateCreateInfo tsci{VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO,
&tessellationDomainOriginStateInfo, 0, 3};
pipe.SetTessellation(&tsci);
pipe.SetInputAssembly(&iasci);
}
pipe.AddDefaultColorAttachment();
err = pipe.CreateVKPipeline(iter.pipeline_layout->handle(), renderPass());
ASSERT_VK_SUCCESS(err);
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.handle());
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, iter.pipeline_layout->handle(), 0, 1,
&iter.descriptor_set->set_, 0, nullptr);
vk::CmdSetViewport(m_commandBuffer->handle(), 0, 1, &viewport);
vk::CmdSetScissor(m_commandBuffer->handle(), 0, 1, &scissors);
vk::CmdDraw(m_commandBuffer->handle(), 3, 1, 0, 0);
vk::CmdEndRenderPass(m_commandBuffer->handle());
m_commandBuffer->end();
uint32_t *data = (uint32_t *)buffer0.memory().map();
data[0] = iter.index;
buffer0.memory().unmap();
m_errorMonitor->SetUnexpectedError("UNASSIGNED-CoreValidation-DrawState-DescriptorSetNotUpdated");
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
vk::QueueWaitIdle(m_device->m_queue);
m_errorMonitor->VerifyFound();
if (gs) {
delete gs;
}
if (tcs && tes) {
delete tcs;
delete tes;
}
}
auto c_queue = m_device->GetDefaultComputeQueue();
if (c_queue && descriptor_indexing) {
char const *csSource =
"#version 450\n"
"#extension GL_EXT_nonuniform_qualifier : enable\n "
"layout(set = 0, binding = 0) uniform ufoo { uint index; } u_index;"
"layout(set = 0, binding = 1) buffer StorageBuffer {\n"
" uint data;\n"
"} Data[];\n"
"void main() {\n"
" Data[(u_index.index - 1)].data = Data[u_index.index].data;\n"
"}\n";
auto shader_module = new VkShaderObj(m_device, csSource, VK_SHADER_STAGE_COMPUTE_BIT, this);
VkPipelineShaderStageCreateInfo stage;
stage.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stage.pNext = nullptr;
stage.flags = 0;
stage.stage = VK_SHADER_STAGE_COMPUTE_BIT;
stage.module = shader_module->handle();
stage.pName = "main";
stage.pSpecializationInfo = nullptr;
// CreateComputePipelines
VkComputePipelineCreateInfo pipeline_info = {};
pipeline_info.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO;
pipeline_info.pNext = nullptr;
pipeline_info.flags = 0;
pipeline_info.layout = pipeline_layout_buffer.handle();
pipeline_info.basePipelineHandle = VK_NULL_HANDLE;
pipeline_info.basePipelineIndex = -1;
pipeline_info.stage = stage;
VkPipeline c_pipeline;
vk::CreateComputePipelines(device(), VK_NULL_HANDLE, 1, &pipeline_info, nullptr, &c_pipeline);
VkCommandBufferBeginInfo begin_info = {};
VkCommandBufferInheritanceInfo hinfo = {};
hinfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO;
begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
begin_info.pInheritanceInfo = &hinfo;
m_commandBuffer->begin(&begin_info);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_COMPUTE, c_pipeline);
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_COMPUTE, pipeline_layout_buffer.handle(), 0, 1,
&descriptor_set_buffer.set_, 0, nullptr);
vk::CmdDispatch(m_commandBuffer->handle(), 1, 1, 1);
m_commandBuffer->end();
// Uninitialized
uint32_t *data = (uint32_t *)buffer0.memory().map();
data[0] = 5;
buffer0.memory().unmap();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "Stage = Compute");
m_errorMonitor->SetUnexpectedError("UNASSIGNED-CoreValidation-DrawState-DescriptorSetNotUpdated");
vk::QueueSubmit(c_queue->handle(), 1, &submit_info, VK_NULL_HANDLE);
vk::QueueWaitIdle(m_device->m_queue);
m_errorMonitor->VerifyFound();
// Out of Bounds
data = (uint32_t *)buffer0.memory().map();
data[0] = 25;
buffer0.memory().unmap();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "Stage = Compute");
m_errorMonitor->SetUnexpectedError("UNASSIGNED-CoreValidation-DrawState-DescriptorSetNotUpdated");
vk::QueueSubmit(c_queue->handle(), 1, &submit_info, VK_NULL_HANDLE);
vk::QueueWaitIdle(m_device->m_queue);
m_errorMonitor->VerifyFound();
vk::DestroyPipeline(m_device->handle(), c_pipeline, NULL);
vk::DestroyShaderModule(m_device->handle(), shader_module->handle(), NULL);
}
return;
}
TEST_F(VkLayerTest, GpuBufferDeviceAddressOOB) {
bool supported = InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
VkValidationFeatureEnableEXT enables[] = {VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_EXT};
VkValidationFeaturesEXT features = {};
features.sType = VK_STRUCTURE_TYPE_VALIDATION_FEATURES_EXT;
features.enabledValidationFeatureCount = 1;
features.pEnabledValidationFeatures = enables;
InitFramework(myDbgFunc, m_errorMonitor, &features);
if (DeviceIsMockICD() || DeviceSimulation()) {
printf("%s GPU-Assisted validation test requires a driver that can draw.\n", kSkipPrefix);
return;
}
supported = supported && DeviceExtensionSupported(gpu(), nullptr, VK_EXT_BUFFER_DEVICE_ADDRESS_EXTENSION_NAME);
m_device_extension_names.push_back(VK_EXT_BUFFER_DEVICE_ADDRESS_EXTENSION_NAME);
VkPhysicalDeviceFeatures2KHR features2 = {};
auto bda_features = lvl_init_struct<VkPhysicalDeviceBufferDeviceAddressFeaturesEXT>();
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR");
ASSERT_TRUE(vkGetPhysicalDeviceFeatures2KHR != nullptr);
features2 = lvl_init_struct<VkPhysicalDeviceFeatures2KHR>(&bda_features);
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
supported = supported && bda_features.bufferDeviceAddress;
if (!supported) {
printf("Buffer Device Address feature not supported, skipping test\n");
return;
}
VkCommandPoolCreateFlags pool_flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2, pool_flags));
if (m_device->props.apiVersion < VK_API_VERSION_1_1) {
printf("%s GPU-Assisted validation test requires Vulkan 1.1+.\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
// Make a uniform buffer to be passed to the shader that contains the pointer and write count
uint32_t qfi = 0;
VkBufferCreateInfo bci = {};
bci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bci.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
bci.size = 8;
bci.queueFamilyIndexCount = 1;
bci.pQueueFamilyIndices = &qfi;
VkBufferObj buffer0;
VkMemoryPropertyFlags mem_props = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
buffer0.init(*m_device, bci, mem_props);
// Make another buffer to write to
bci.usage = VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT;
bci.size = 64; // Buffer should be 16*4 = 64 bytes
VkBufferObj buffer1;
buffer1.init(*m_device, bci, mem_props);
// Get device address of buffer to write to
VkBufferDeviceAddressInfoEXT bda_info = {};
bda_info.sType = VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO_EXT;
bda_info.buffer = buffer1.handle();
auto vkGetBufferDeviceAddressEXT =
(PFN_vkGetBufferDeviceAddressEXT)vk::GetDeviceProcAddr(m_device->device(), "vkGetBufferDeviceAddressEXT");
ASSERT_TRUE(vkGetBufferDeviceAddressEXT != nullptr);
auto pBuffer = vkGetBufferDeviceAddressEXT(m_device->device(), &bda_info);
OneOffDescriptorSet descriptor_set(m_device, {{0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr}});
const VkPipelineLayoutObj pipeline_layout(m_device, {&descriptor_set.layout_});
VkDescriptorBufferInfo buffer_test_buffer_info[2] = {};
buffer_test_buffer_info[0].buffer = buffer0.handle();
buffer_test_buffer_info[0].offset = 0;
buffer_test_buffer_info[0].range = sizeof(uint32_t);
VkWriteDescriptorSet descriptor_writes[1] = {};
descriptor_writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptor_writes[0].dstSet = descriptor_set.set_;
descriptor_writes[0].dstBinding = 0;
descriptor_writes[0].descriptorCount = 1;
descriptor_writes[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
descriptor_writes[0].pBufferInfo = buffer_test_buffer_info;
vk::UpdateDescriptorSets(m_device->device(), 1, descriptor_writes, 0, NULL);
char const *shader_source =
"#version 450\n"
"#extension GL_EXT_buffer_reference : enable\n "
"layout(buffer_reference, buffer_reference_align = 16) buffer bufStruct;\n"
"layout(set = 0, binding = 0) uniform ufoo {\n"
" bufStruct data;\n"
" int nWrites;\n"
"} u_info;\n"
"layout(buffer_reference, std140) buffer bufStruct {\n"
" int a[4];\n"
"};\n"
"void main() {\n"
" for (int i=0; i < u_info.nWrites; ++i) {\n"
" u_info.data.a[i] = 0xdeadca71;\n"
" }\n"
"}\n";
VkShaderObj vs(m_device, shader_source, VK_SHADER_STAGE_VERTEX_BIT, this, "main", true);
VkViewport viewport = m_viewports[0];
VkRect2D scissors = m_scissors[0];
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &m_commandBuffer->handle();
VkPipelineObj pipe(m_device);
pipe.AddShader(&vs);
pipe.AddDefaultColorAttachment();
VkResult err = pipe.CreateVKPipeline(pipeline_layout.handle(), renderPass());
ASSERT_VK_SUCCESS(err);
VkCommandBufferBeginInfo begin_info = {};
VkCommandBufferInheritanceInfo hinfo = {};
hinfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO;
begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
begin_info.pInheritanceInfo = &hinfo;
m_commandBuffer->begin(&begin_info);
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.handle());
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout.handle(), 0, 1,
&descriptor_set.set_, 0, nullptr);
vk::CmdSetViewport(m_commandBuffer->handle(), 0, 1, &viewport);
vk::CmdSetScissor(m_commandBuffer->handle(), 0, 1, &scissors);
vk::CmdDraw(m_commandBuffer->handle(), 3, 1, 0, 0);
vk::CmdEndRenderPass(m_commandBuffer->handle());
m_commandBuffer->end();
// Starting address too low
VkDeviceAddress *data = (VkDeviceAddress *)buffer0.memory().map();
data[0] = pBuffer - 16;
data[1] = 4;
buffer0.memory().unmap();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "access out of bounds");
err = vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
ASSERT_VK_SUCCESS(err);
err = vk::QueueWaitIdle(m_device->m_queue);
ASSERT_VK_SUCCESS(err);
m_errorMonitor->VerifyFound();
// Run past the end
data = (VkDeviceAddress *)buffer0.memory().map();
data[0] = pBuffer;
data[1] = 5;
buffer0.memory().unmap();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "access out of bounds");
err = vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
ASSERT_VK_SUCCESS(err);
err = vk::QueueWaitIdle(m_device->m_queue);
ASSERT_VK_SUCCESS(err);
m_errorMonitor->VerifyFound();
// Positive test - stay inside buffer
m_errorMonitor->ExpectSuccess();
data = (VkDeviceAddress *)buffer0.memory().map();
data[0] = pBuffer;
data[1] = 4;
buffer0.memory().unmap();
err = vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
ASSERT_VK_SUCCESS(err);
err = vk::QueueWaitIdle(m_device->m_queue);
ASSERT_VK_SUCCESS(err);
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkLayerTest, GpuValidationArrayOOBRayTracingShaders) {
TEST_DESCRIPTION(
"GPU validation: Verify detection of out-of-bounds descriptor array indexing and use of uninitialized descriptors for "
"ray tracing shaders.");
std::array<const char *, 1> required_instance_extensions = {VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME};
for (auto instance_extension : required_instance_extensions) {
if (InstanceExtensionSupported(instance_extension)) {
m_instance_extension_names.push_back(instance_extension);
} else {
printf("%s Did not find required instance extension %s; skipped.\n", kSkipPrefix, instance_extension);
return;
}
}
VkValidationFeatureEnableEXT validation_feature_enables[] = {VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_EXT};
VkValidationFeaturesEXT validation_features = {};
validation_features.sType = VK_STRUCTURE_TYPE_VALIDATION_FEATURES_EXT;
validation_features.enabledValidationFeatureCount = 1;
validation_features.pEnabledValidationFeatures = validation_feature_enables;
bool descriptor_indexing = CheckDescriptorIndexingSupportAndInitFramework(
this, m_instance_extension_names, m_device_extension_names, &validation_features, m_errorMonitor);
if (DeviceIsMockICD() || DeviceSimulation()) {
printf("%s Test not supported by MockICD, skipping tests\n", kSkipPrefix);
return;
}
std::array<const char *, 2> required_device_extensions = {VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME,
VK_NV_RAY_TRACING_EXTENSION_NAME};
for (auto device_extension : required_device_extensions) {
if (DeviceExtensionSupported(gpu(), nullptr, device_extension)) {
m_device_extension_names.push_back(device_extension);
} else {
printf("%s %s Extension not supported, skipping tests\n", kSkipPrefix, device_extension);
return;
}
}
VkPhysicalDeviceFeatures2KHR features2 = {};
auto indexing_features = lvl_init_struct<VkPhysicalDeviceDescriptorIndexingFeaturesEXT>();
if (descriptor_indexing) {
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR");
ASSERT_TRUE(vkGetPhysicalDeviceFeatures2KHR != nullptr);
features2 = lvl_init_struct<VkPhysicalDeviceFeatures2KHR>(&indexing_features);
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
if (!indexing_features.runtimeDescriptorArray || !indexing_features.descriptorBindingPartiallyBound ||
!indexing_features.descriptorBindingSampledImageUpdateAfterBind ||
!indexing_features.descriptorBindingVariableDescriptorCount) {
printf("Not all descriptor indexing features supported, skipping descriptor indexing tests\n");
descriptor_indexing = false;
}
}
VkCommandPoolCreateFlags pool_flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2, pool_flags));
PFN_vkGetPhysicalDeviceProperties2KHR vkGetPhysicalDeviceProperties2KHR =
(PFN_vkGetPhysicalDeviceProperties2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceProperties2KHR");
ASSERT_TRUE(vkGetPhysicalDeviceProperties2KHR != nullptr);
auto ray_tracing_properties = lvl_init_struct<VkPhysicalDeviceRayTracingPropertiesNV>();
auto properties2 = lvl_init_struct<VkPhysicalDeviceProperties2KHR>(&ray_tracing_properties);
vkGetPhysicalDeviceProperties2KHR(gpu(), &properties2);
if (ray_tracing_properties.maxTriangleCount == 0) {
printf("%s Did not find required ray tracing properties; skipped.\n", kSkipPrefix);
return;
}
VkQueue ray_tracing_queue = m_device->m_queue;
uint32_t ray_tracing_queue_family_index = 0;
// If supported, run on the compute only queue.
uint32_t compute_only_queue_family_index = m_device->QueueFamilyMatching(VK_QUEUE_COMPUTE_BIT, VK_QUEUE_GRAPHICS_BIT);
if (compute_only_queue_family_index != UINT32_MAX) {
const auto &compute_only_queues = m_device->queue_family_queues(compute_only_queue_family_index);
if (!compute_only_queues.empty()) {
ray_tracing_queue = compute_only_queues[0]->handle();
ray_tracing_queue_family_index = compute_only_queue_family_index;
}
}
VkCommandPoolObj ray_tracing_command_pool(m_device, ray_tracing_queue_family_index,
VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT);
VkCommandBufferObj ray_tracing_command_buffer(m_device, &ray_tracing_command_pool);
struct AABB {
float min_x;
float min_y;
float min_z;
float max_x;
float max_y;
float max_z;
};
const std::vector<AABB> aabbs = {{-1.0f, -1.0f, -1.0f, +1.0f, +1.0f, +1.0f}};
struct VkGeometryInstanceNV {
float transform[12];
uint32_t instanceCustomIndex : 24;
uint32_t mask : 8;
uint32_t instanceOffset : 24;
uint32_t flags : 8;
uint64_t accelerationStructureHandle;
};
VkDeviceSize aabb_buffer_size = sizeof(AABB) * aabbs.size();
VkBufferObj aabb_buffer;
aabb_buffer.init(*m_device, aabb_buffer_size, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
VK_BUFFER_USAGE_RAY_TRACING_BIT_NV, {ray_tracing_queue_family_index});
uint8_t *mapped_aabb_buffer_data = (uint8_t *)aabb_buffer.memory().map();
std::memcpy(mapped_aabb_buffer_data, (uint8_t *)aabbs.data(), static_cast<std::size_t>(aabb_buffer_size));
aabb_buffer.memory().unmap();
VkGeometryNV geometry = {};
geometry.sType = VK_STRUCTURE_TYPE_GEOMETRY_NV;
geometry.geometryType = VK_GEOMETRY_TYPE_AABBS_NV;
geometry.geometry.triangles = {};
geometry.geometry.triangles.sType = VK_STRUCTURE_TYPE_GEOMETRY_TRIANGLES_NV;
geometry.geometry.aabbs = {};
geometry.geometry.aabbs.sType = VK_STRUCTURE_TYPE_GEOMETRY_AABB_NV;
geometry.geometry.aabbs.aabbData = aabb_buffer.handle();
geometry.geometry.aabbs.numAABBs = static_cast<uint32_t>(aabbs.size());
geometry.geometry.aabbs.offset = 0;
geometry.geometry.aabbs.stride = static_cast<VkDeviceSize>(sizeof(AABB));
geometry.flags = 0;
VkAccelerationStructureInfoNV bot_level_as_info = {};
bot_level_as_info.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_INFO_NV;
bot_level_as_info.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_NV;
bot_level_as_info.instanceCount = 0;
bot_level_as_info.geometryCount = 1;
bot_level_as_info.pGeometries = &geometry;
VkAccelerationStructureCreateInfoNV bot_level_as_create_info = {};
bot_level_as_create_info.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_NV;
bot_level_as_create_info.info = bot_level_as_info;
VkAccelerationStructureObj bot_level_as(*m_device, bot_level_as_create_info);
const std::vector<VkGeometryInstanceNV> instances = {
VkGeometryInstanceNV{
{
// clang-format off
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
// clang-format on
},
0,
0xFF,
0,
VK_GEOMETRY_INSTANCE_TRIANGLE_CULL_DISABLE_BIT_NV,
bot_level_as.opaque_handle(),
},
};
VkDeviceSize instance_buffer_size = sizeof(VkGeometryInstanceNV) * instances.size();
VkBufferObj instance_buffer;
instance_buffer.init(*m_device, instance_buffer_size,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
VK_BUFFER_USAGE_RAY_TRACING_BIT_NV, {ray_tracing_queue_family_index});
uint8_t *mapped_instance_buffer_data = (uint8_t *)instance_buffer.memory().map();
std::memcpy(mapped_instance_buffer_data, (uint8_t *)instances.data(), static_cast<std::size_t>(instance_buffer_size));
instance_buffer.memory().unmap();
VkAccelerationStructureInfoNV top_level_as_info = {};
top_level_as_info.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_INFO_NV;
top_level_as_info.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_NV;
top_level_as_info.instanceCount = 1;
top_level_as_info.geometryCount = 0;
VkAccelerationStructureCreateInfoNV top_level_as_create_info = {};
top_level_as_create_info.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_NV;
top_level_as_create_info.info = top_level_as_info;
VkAccelerationStructureObj top_level_as(*m_device, top_level_as_create_info);
VkDeviceSize scratch_buffer_size = std::max(bot_level_as.build_scratch_memory_requirements().memoryRequirements.size,
top_level_as.build_scratch_memory_requirements().memoryRequirements.size);
VkBufferObj scratch_buffer;
scratch_buffer.init(*m_device, scratch_buffer_size, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, VK_BUFFER_USAGE_RAY_TRACING_BIT_NV);
ray_tracing_command_buffer.begin();
// Build bot level acceleration structure
ray_tracing_command_buffer.BuildAccelerationStructure(&bot_level_as, scratch_buffer.handle());
// Barrier to prevent using scratch buffer for top level build before bottom level build finishes
VkMemoryBarrier memory_barrier = {};
memory_barrier.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER;
memory_barrier.srcAccessMask = VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_NV | VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_NV;
memory_barrier.dstAccessMask = VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_NV | VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_NV;
ray_tracing_command_buffer.PipelineBarrier(VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_NV,
VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_NV, 0, 1, &memory_barrier, 0,
nullptr, 0, nullptr);
// Build top level acceleration structure
ray_tracing_command_buffer.BuildAccelerationStructure(&top_level_as, scratch_buffer.handle(), instance_buffer.handle());
ray_tracing_command_buffer.end();
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &ray_tracing_command_buffer.handle();
vk::QueueSubmit(ray_tracing_queue, 1, &submit_info, VK_NULL_HANDLE);
vk::QueueWaitIdle(ray_tracing_queue);
m_errorMonitor->VerifyNotFound();
VkTextureObj texture(m_device, nullptr);
VkSamplerObj sampler(m_device);
VkDeviceSize storage_buffer_size = 1024;
VkBufferObj storage_buffer;
storage_buffer.init(*m_device, storage_buffer_size, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT, {ray_tracing_queue_family_index});
VkDeviceSize shader_binding_table_buffer_size = ray_tracing_properties.shaderGroupHandleSize * 4ull;
VkBufferObj shader_binding_table_buffer;
shader_binding_table_buffer.init(*m_device, shader_binding_table_buffer_size,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
VK_BUFFER_USAGE_RAY_TRACING_BIT_NV, {ray_tracing_queue_family_index});
// Setup descriptors!
const VkShaderStageFlags kAllRayTracingStages = VK_SHADER_STAGE_RAYGEN_BIT_NV | VK_SHADER_STAGE_ANY_HIT_BIT_NV |
VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV | VK_SHADER_STAGE_MISS_BIT_NV |
VK_SHADER_STAGE_INTERSECTION_BIT_NV | VK_SHADER_STAGE_CALLABLE_BIT_NV;
void *layout_pnext = nullptr;
void *allocate_pnext = nullptr;
VkDescriptorPoolCreateFlags pool_create_flags = 0;
VkDescriptorSetLayoutCreateFlags layout_create_flags = 0;
VkDescriptorBindingFlagsEXT ds_binding_flags[3] = {};
VkDescriptorSetLayoutBindingFlagsCreateInfoEXT layout_createinfo_binding_flags[1] = {};
if (descriptor_indexing) {
ds_binding_flags[0] = 0;
ds_binding_flags[1] = 0;
ds_binding_flags[2] = VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT_EXT | VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT;
layout_createinfo_binding_flags[0].sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO_EXT;
layout_createinfo_binding_flags[0].pNext = NULL;
layout_createinfo_binding_flags[0].bindingCount = 3;
layout_createinfo_binding_flags[0].pBindingFlags = ds_binding_flags;
layout_create_flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT;
pool_create_flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT;
layout_pnext = layout_createinfo_binding_flags;
}
// Prepare descriptors
OneOffDescriptorSet ds(m_device,
{
{0, VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_NV, 1, kAllRayTracingStages, nullptr},
{1, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, kAllRayTracingStages, nullptr},
{2, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 6, kAllRayTracingStages, nullptr},
},
layout_create_flags, layout_pnext, pool_create_flags);
VkDescriptorSetVariableDescriptorCountAllocateInfoEXT variable_count = {};
uint32_t desc_counts;
if (descriptor_indexing) {
layout_create_flags = 0;
pool_create_flags = 0;
ds_binding_flags[2] =
VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT_EXT | VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT;
desc_counts = 6; // We'll reserve 8 spaces in the layout, but the descriptor will only use 6
variable_count.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO_EXT;
variable_count.descriptorSetCount = 1;
variable_count.pDescriptorCounts = &desc_counts;
allocate_pnext = &variable_count;
}
OneOffDescriptorSet ds_variable(m_device,
{
{0, VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_NV, 1, kAllRayTracingStages, nullptr},
{1, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, kAllRayTracingStages, nullptr},
{2, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 8, kAllRayTracingStages, nullptr},
},
layout_create_flags, layout_pnext, pool_create_flags, allocate_pnext);
VkAccelerationStructureNV top_level_as_handle = top_level_as.handle();
VkWriteDescriptorSetAccelerationStructureNV write_descript_set_as = {};
write_descript_set_as.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_NV;
write_descript_set_as.accelerationStructureCount = 1;
write_descript_set_as.pAccelerationStructures = &top_level_as_handle;
VkDescriptorBufferInfo descriptor_buffer_info = {};
descriptor_buffer_info.buffer = storage_buffer.handle();
descriptor_buffer_info.offset = 0;
descriptor_buffer_info.range = storage_buffer_size;
VkDescriptorImageInfo descriptor_image_infos[6] = {};
for (int i = 0; i < 6; i++) {
descriptor_image_infos[i] = texture.DescriptorImageInfo();
descriptor_image_infos[i].sampler = sampler.handle();
descriptor_image_infos[i].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
VkWriteDescriptorSet descriptor_writes[3] = {};
descriptor_writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptor_writes[0].dstSet = ds.set_;
descriptor_writes[0].dstBinding = 0;
descriptor_writes[0].descriptorCount = 1;
descriptor_writes[0].descriptorType = VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_NV;
descriptor_writes[0].pNext = &write_descript_set_as;
descriptor_writes[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptor_writes[1].dstSet = ds.set_;
descriptor_writes[1].dstBinding = 1;
descriptor_writes[1].descriptorCount = 1;
descriptor_writes[1].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
descriptor_writes[1].pBufferInfo = &descriptor_buffer_info;
descriptor_writes[2].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptor_writes[2].dstSet = ds.set_;
descriptor_writes[2].dstBinding = 2;
if (descriptor_indexing) {
descriptor_writes[2].descriptorCount = 5; // Intentionally don't write index 5
} else {
descriptor_writes[2].descriptorCount = 6;
}
descriptor_writes[2].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
descriptor_writes[2].pImageInfo = descriptor_image_infos;
vk::UpdateDescriptorSets(m_device->device(), 3, descriptor_writes, 0, NULL);
if (descriptor_indexing) {
descriptor_writes[0].dstSet = ds_variable.set_;
descriptor_writes[1].dstSet = ds_variable.set_;
descriptor_writes[2].dstSet = ds_variable.set_;
vk::UpdateDescriptorSets(m_device->device(), 3, descriptor_writes, 0, NULL);
}
const VkPipelineLayoutObj pipeline_layout(m_device, {&ds.layout_});
const VkPipelineLayoutObj pipeline_layout_variable(m_device, {&ds_variable.layout_});
const auto SetImagesArrayLength = [](const std::string &shader_template, const std::string &length_str) {
const std::string to_replace = "IMAGES_ARRAY_LENGTH";
std::string result = shader_template;
auto position = result.find(to_replace);
assert(position != std::string::npos);
result.replace(position, to_replace.length(), length_str);
return result;
};
const std::string rgen_source_template = R"(#version 460
#extension GL_EXT_nonuniform_qualifier : require
#extension GL_EXT_samplerless_texture_functions : require
#extension GL_NV_ray_tracing : require
layout(set = 0, binding = 0) uniform accelerationStructureNV topLevelAS;
layout(set = 0, binding = 1, std430) buffer RayTracingSbo {
uint rgen_index;
uint ahit_index;
uint chit_index;
uint miss_index;
uint intr_index;
uint call_index;
uint rgen_ran;
uint ahit_ran;
uint chit_ran;
uint miss_ran;
uint intr_ran;
uint call_ran;
float result1;
float result2;
float result3;
} sbo;
layout(set = 0, binding = 2) uniform texture2D textures[IMAGES_ARRAY_LENGTH];
layout(location = 0) rayPayloadNV vec3 payload;
layout(location = 3) callableDataNV vec3 callableData;
void main() {
sbo.rgen_ran = 1;
executeCallableNV(0, 3);
sbo.result1 = callableData.x;
vec3 origin = vec3(0.0f, 0.0f, -2.0f);
vec3 direction = vec3(0.0f, 0.0f, 1.0f);
traceNV(topLevelAS, gl_RayFlagsNoneNV, 0xFF, 0, 1, 0, origin, 0.001, direction, 10000.0, 0);
sbo.result2 = payload.x;
traceNV(topLevelAS, gl_RayFlagsNoneNV, 0xFF, 0, 1, 0, origin, 0.001, -direction, 10000.0, 0);
sbo.result3 = payload.x;
if (sbo.rgen_index > 0) {
// OOB here:
sbo.result3 = texelFetch(textures[sbo.rgen_index], ivec2(0, 0), 0).x;
}
}
)";
const std::string rgen_source = SetImagesArrayLength(rgen_source_template, "6");
const std::string rgen_source_runtime = SetImagesArrayLength(rgen_source_template, "");
const std::string ahit_source_template = R"(#version 460
#extension GL_EXT_nonuniform_qualifier : require
#extension GL_EXT_samplerless_texture_functions : require
#extension GL_NV_ray_tracing : require
layout(set = 0, binding = 1, std430) buffer StorageBuffer {
uint rgen_index;
uint ahit_index;
uint chit_index;
uint miss_index;
uint intr_index;
uint call_index;
uint rgen_ran;
uint ahit_ran;
uint chit_ran;
uint miss_ran;
uint intr_ran;
uint call_ran;
float result1;
float result2;
float result3;
} sbo;
layout(set = 0, binding = 2) uniform texture2D textures[IMAGES_ARRAY_LENGTH];
hitAttributeNV vec3 hitValue;
layout(location = 0) rayPayloadInNV vec3 payload;
void main() {
sbo.ahit_ran = 2;
payload = vec3(0.1234f);
if (sbo.ahit_index > 0) {
// OOB here:
payload.x = texelFetch(textures[sbo.ahit_index], ivec2(0, 0), 0).x;
}
}
)";
const std::string ahit_source = SetImagesArrayLength(ahit_source_template, "6");
const std::string ahit_source_runtime = SetImagesArrayLength(ahit_source_template, "");
const std::string chit_source_template = R"(#version 460
#extension GL_EXT_nonuniform_qualifier : require
#extension GL_EXT_samplerless_texture_functions : require
#extension GL_NV_ray_tracing : require
layout(set = 0, binding = 1, std430) buffer RayTracingSbo {
uint rgen_index;
uint ahit_index;
uint chit_index;
uint miss_index;
uint intr_index;
uint call_index;
uint rgen_ran;
uint ahit_ran;
uint chit_ran;
uint miss_ran;
uint intr_ran;
uint call_ran;
float result1;
float result2;
float result3;
} sbo;
layout(set = 0, binding = 2) uniform texture2D textures[IMAGES_ARRAY_LENGTH];
layout(location = 0) rayPayloadInNV vec3 payload;
hitAttributeNV vec3 attribs;
void main() {
sbo.chit_ran = 3;
payload = attribs;
if (sbo.chit_index > 0) {
// OOB here:
payload.x = texelFetch(textures[sbo.chit_index], ivec2(0, 0), 0).x;
}
}
)";
const std::string chit_source = SetImagesArrayLength(chit_source_template, "6");
const std::string chit_source_runtime = SetImagesArrayLength(chit_source_template, "");
const std::string miss_source_template = R"(#version 460
#extension GL_EXT_nonuniform_qualifier : enable
#extension GL_EXT_samplerless_texture_functions : require
#extension GL_NV_ray_tracing : require
layout(set = 0, binding = 1, std430) buffer RayTracingSbo {
uint rgen_index;
uint ahit_index;
uint chit_index;
uint miss_index;
uint intr_index;
uint call_index;
uint rgen_ran;
uint ahit_ran;
uint chit_ran;
uint miss_ran;
uint intr_ran;
uint call_ran;
float result1;
float result2;
float result3;
} sbo;
layout(set = 0, binding = 2) uniform texture2D textures[IMAGES_ARRAY_LENGTH];
layout(location = 0) rayPayloadInNV vec3 payload;
void main() {
sbo.miss_ran = 4;
payload = vec3(1.0, 0.0, 0.0);
if (sbo.miss_index > 0) {
// OOB here:
payload.x = texelFetch(textures[sbo.miss_index], ivec2(0, 0), 0).x;
}
}
)";
const std::string miss_source = SetImagesArrayLength(miss_source_template, "6");
const std::string miss_source_runtime = SetImagesArrayLength(miss_source_template, "");
const std::string intr_source_template = R"(#version 460
#extension GL_EXT_nonuniform_qualifier : require
#extension GL_EXT_samplerless_texture_functions : require
#extension GL_NV_ray_tracing : require
layout(set = 0, binding = 1, std430) buffer StorageBuffer {
uint rgen_index;
uint ahit_index;
uint chit_index;
uint miss_index;
uint intr_index;
uint call_index;
uint rgen_ran;
uint ahit_ran;
uint chit_ran;
uint miss_ran;
uint intr_ran;
uint call_ran;
float result1;
float result2;
float result3;
} sbo;
layout(set = 0, binding = 2) uniform texture2D textures[IMAGES_ARRAY_LENGTH];
hitAttributeNV vec3 hitValue;
void main() {
sbo.intr_ran = 5;
hitValue = vec3(0.0f, 0.5f, 0.0f);
reportIntersectionNV(1.0f, 0);
if (sbo.intr_index > 0) {
// OOB here:
hitValue.x = texelFetch(textures[sbo.intr_index], ivec2(0, 0), 0).x;
}
}
)";
const std::string intr_source = SetImagesArrayLength(intr_source_template, "6");
const std::string intr_source_runtime = SetImagesArrayLength(intr_source_template, "");
const std::string call_source_template = R"(#version 460
#extension GL_EXT_nonuniform_qualifier : require
#extension GL_EXT_samplerless_texture_functions : require
#extension GL_NV_ray_tracing : require
layout(set = 0, binding = 1, std430) buffer StorageBuffer {
uint rgen_index;
uint ahit_index;
uint chit_index;
uint miss_index;
uint intr_index;
uint call_index;
uint rgen_ran;
uint ahit_ran;
uint chit_ran;
uint miss_ran;
uint intr_ran;
uint call_ran;
float result1;
float result2;
float result3;
} sbo;
layout(set = 0, binding = 2) uniform texture2D textures[IMAGES_ARRAY_LENGTH];
layout(location = 3) callableDataInNV vec3 callableData;
void main() {
sbo.call_ran = 6;
callableData = vec3(0.1234f);
if (sbo.call_index > 0) {
// OOB here:
callableData.x = texelFetch(textures[sbo.call_index], ivec2(0, 0), 0).x;
}
}
)";
const std::string call_source = SetImagesArrayLength(call_source_template, "6");
const std::string call_source_runtime = SetImagesArrayLength(call_source_template, "");
struct TestCase {
const std::string &rgen_shader_source;
const std::string &ahit_shader_source;
const std::string &chit_shader_source;
const std::string &miss_shader_source;
const std::string &intr_shader_source;
const std::string &call_shader_source;
bool variable_length;
uint32_t rgen_index;
uint32_t ahit_index;
uint32_t chit_index;
uint32_t miss_index;
uint32_t intr_index;
uint32_t call_index;
const char *expected_error;
};
std::vector<TestCase> tests;
tests.push_back({rgen_source, ahit_source, chit_source, miss_source, intr_source, call_source, false, 25, 0, 0, 0, 0, 0,
"Index of 25 used to index descriptor array of length 6."});
tests.push_back({rgen_source, ahit_source, chit_source, miss_source, intr_source, call_source, false, 0, 25, 0, 0, 0, 0,
"Index of 25 used to index descriptor array of length 6."});
tests.push_back({rgen_source, ahit_source, chit_source, miss_source, intr_source, call_source, false, 0, 0, 25, 0, 0, 0,
"Index of 25 used to index descriptor array of length 6."});
tests.push_back({rgen_source, ahit_source, chit_source, miss_source, intr_source, call_source, false, 0, 0, 0, 25, 0, 0,
"Index of 25 used to index descriptor array of length 6."});
tests.push_back({rgen_source, ahit_source, chit_source, miss_source, intr_source, call_source, false, 0, 0, 0, 0, 25, 0,
"Index of 25 used to index descriptor array of length 6."});
tests.push_back({rgen_source, ahit_source, chit_source, miss_source, intr_source, call_source, false, 0, 0, 0, 0, 0, 25,
"Index of 25 used to index descriptor array of length 6."});
if (descriptor_indexing) {
tests.push_back({rgen_source_runtime, ahit_source_runtime, chit_source_runtime, miss_source_runtime, intr_source_runtime,
call_source_runtime, true, 25, 0, 0, 0, 0, 0, "Index of 25 used to index descriptor array of length 6."});
tests.push_back({rgen_source_runtime, ahit_source_runtime, chit_source_runtime, miss_source_runtime, intr_source_runtime,
call_source_runtime, true, 0, 25, 0, 0, 0, 0, "Index of 25 used to index descriptor array of length 6."});
tests.push_back({rgen_source_runtime, ahit_source_runtime, chit_source_runtime, miss_source_runtime, intr_source_runtime,
call_source_runtime, true, 0, 0, 25, 0, 0, 0, "Index of 25 used to index descriptor array of length 6."});
tests.push_back({rgen_source_runtime, ahit_source_runtime, chit_source_runtime, miss_source_runtime, intr_source_runtime,
call_source_runtime, true, 0, 0, 0, 25, 0, 0, "Index of 25 used to index descriptor array of length 6."});
tests.push_back({rgen_source_runtime, ahit_source_runtime, chit_source_runtime, miss_source_runtime, intr_source_runtime,
call_source_runtime, true, 0, 0, 0, 0, 25, 0, "Index of 25 used to index descriptor array of length 6."});
tests.push_back({rgen_source_runtime, ahit_source_runtime, chit_source_runtime, miss_source_runtime, intr_source_runtime,
call_source_runtime, true, 0, 0, 0, 0, 0, 25, "Index of 25 used to index descriptor array of length 6."});
// For this group, 6 is less than max specified (max specified is 8) but more than actual specified (actual specified is 5)
tests.push_back({rgen_source_runtime, ahit_source_runtime, chit_source_runtime, miss_source_runtime, intr_source_runtime,
call_source_runtime, true, 6, 0, 0, 0, 0, 0, "Index of 6 used to index descriptor array of length 6."});
tests.push_back({rgen_source_runtime, ahit_source_runtime, chit_source_runtime, miss_source_runtime, intr_source_runtime,
call_source_runtime, true, 0, 6, 0, 0, 0, 0, "Index of 6 used to index descriptor array of length 6."});
tests.push_back({rgen_source_runtime, ahit_source_runtime, chit_source_runtime, miss_source_runtime, intr_source_runtime,
call_source_runtime, true, 0, 0, 6, 0, 0, 0, "Index of 6 used to index descriptor array of length 6."});
tests.push_back({rgen_source_runtime, ahit_source_runtime, chit_source_runtime, miss_source_runtime, intr_source_runtime,
call_source_runtime, true, 0, 0, 0, 6, 0, 0, "Index of 6 used to index descriptor array of length 6."});
tests.push_back({rgen_source_runtime, ahit_source_runtime, chit_source_runtime, miss_source_runtime, intr_source_runtime,
call_source_runtime, true, 0, 0, 0, 0, 6, 0, "Index of 6 used to index descriptor array of length 6."});
tests.push_back({rgen_source_runtime, ahit_source_runtime, chit_source_runtime, miss_source_runtime, intr_source_runtime,
call_source_runtime, true, 0, 0, 0, 0, 0, 6, "Index of 6 used to index descriptor array of length 6."});
tests.push_back({rgen_source_runtime, ahit_source_runtime, chit_source_runtime, miss_source_runtime, intr_source_runtime,
call_source_runtime, true, 5, 0, 0, 0, 0, 0, "Descriptor index 5 is uninitialized."});
tests.push_back({rgen_source_runtime, ahit_source_runtime, chit_source_runtime, miss_source_runtime, intr_source_runtime,
call_source_runtime, true, 0, 5, 0, 0, 0, 0, "Descriptor index 5 is uninitialized."});
tests.push_back({rgen_source_runtime, ahit_source_runtime, chit_source_runtime, miss_source_runtime, intr_source_runtime,
call_source_runtime, true, 0, 0, 5, 0, 0, 0, "Descriptor index 5 is uninitialized."});
tests.push_back({rgen_source_runtime, ahit_source_runtime, chit_source_runtime, miss_source_runtime, intr_source_runtime,
call_source_runtime, true, 0, 0, 0, 5, 0, 0, "Descriptor index 5 is uninitialized."});
tests.push_back({rgen_source_runtime, ahit_source_runtime, chit_source_runtime, miss_source_runtime, intr_source_runtime,
call_source_runtime, true, 0, 0, 0, 0, 5, 0, "Descriptor index 5 is uninitialized."});
tests.push_back({rgen_source_runtime, ahit_source_runtime, chit_source_runtime, miss_source_runtime, intr_source_runtime,
call_source_runtime, true, 0, 0, 0, 0, 0, 5, "Descriptor index 5 is uninitialized."});
}
PFN_vkCreateRayTracingPipelinesNV vkCreateRayTracingPipelinesNV = reinterpret_cast<PFN_vkCreateRayTracingPipelinesNV>(
vk::GetDeviceProcAddr(m_device->handle(), "vkCreateRayTracingPipelinesNV"));
ASSERT_TRUE(vkCreateRayTracingPipelinesNV != nullptr);
PFN_vkGetRayTracingShaderGroupHandlesNV vkGetRayTracingShaderGroupHandlesNV =
reinterpret_cast<PFN_vkGetRayTracingShaderGroupHandlesNV>(
vk::GetDeviceProcAddr(m_device->handle(), "vkGetRayTracingShaderGroupHandlesNV"));
ASSERT_TRUE(vkGetRayTracingShaderGroupHandlesNV != nullptr);
PFN_vkCmdTraceRaysNV vkCmdTraceRaysNV =
reinterpret_cast<PFN_vkCmdTraceRaysNV>(vk::GetDeviceProcAddr(m_device->handle(), "vkCmdTraceRaysNV"));
ASSERT_TRUE(vkCmdTraceRaysNV != nullptr);
// Iteration 0 tests with no descriptor set bound (to sanity test "draw" validation). Iteration 1
// tests what's in the test case vector.
for (int i = 0; i < 2; ++i) {
for (const auto &test : tests) {
if (i == 1) {
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, test.expected_error);
}
VkShaderObj rgen_shader(m_device, test.rgen_shader_source.c_str(), VK_SHADER_STAGE_RAYGEN_BIT_NV, this, "main");
VkShaderObj ahit_shader(m_device, test.ahit_shader_source.c_str(), VK_SHADER_STAGE_ANY_HIT_BIT_NV, this, "main");
VkShaderObj chit_shader(m_device, test.chit_shader_source.c_str(), VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV, this, "main");
VkShaderObj miss_shader(m_device, test.miss_shader_source.c_str(), VK_SHADER_STAGE_MISS_BIT_NV, this, "main");
VkShaderObj intr_shader(m_device, test.intr_shader_source.c_str(), VK_SHADER_STAGE_INTERSECTION_BIT_NV, this, "main");
VkShaderObj call_shader(m_device, test.call_shader_source.c_str(), VK_SHADER_STAGE_CALLABLE_BIT_NV, this, "main");
VkPipelineShaderStageCreateInfo stage_create_infos[6] = {};
stage_create_infos[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stage_create_infos[0].stage = VK_SHADER_STAGE_RAYGEN_BIT_NV;
stage_create_infos[0].module = rgen_shader.handle();
stage_create_infos[0].pName = "main";
stage_create_infos[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stage_create_infos[1].stage = VK_SHADER_STAGE_ANY_HIT_BIT_NV;
stage_create_infos[1].module = ahit_shader.handle();
stage_create_infos[1].pName = "main";
stage_create_infos[2].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stage_create_infos[2].stage = VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV;
stage_create_infos[2].module = chit_shader.handle();
stage_create_infos[2].pName = "main";
stage_create_infos[3].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stage_create_infos[3].stage = VK_SHADER_STAGE_MISS_BIT_NV;
stage_create_infos[3].module = miss_shader.handle();
stage_create_infos[3].pName = "main";
stage_create_infos[4].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stage_create_infos[4].stage = VK_SHADER_STAGE_INTERSECTION_BIT_NV;
stage_create_infos[4].module = intr_shader.handle();
stage_create_infos[4].pName = "main";
stage_create_infos[5].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stage_create_infos[5].stage = VK_SHADER_STAGE_CALLABLE_BIT_NV;
stage_create_infos[5].module = call_shader.handle();
stage_create_infos[5].pName = "main";
VkRayTracingShaderGroupCreateInfoNV group_create_infos[4] = {};
group_create_infos[0].sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_NV;
group_create_infos[0].type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_NV;
group_create_infos[0].generalShader = 0; // rgen
group_create_infos[0].closestHitShader = VK_SHADER_UNUSED_NV;
group_create_infos[0].anyHitShader = VK_SHADER_UNUSED_NV;
group_create_infos[0].intersectionShader = VK_SHADER_UNUSED_NV;
group_create_infos[1].sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_NV;
group_create_infos[1].type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_NV;
group_create_infos[1].generalShader = 3; // miss
group_create_infos[1].closestHitShader = VK_SHADER_UNUSED_NV;
group_create_infos[1].anyHitShader = VK_SHADER_UNUSED_NV;
group_create_infos[1].intersectionShader = VK_SHADER_UNUSED_NV;
group_create_infos[2].sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_NV;
group_create_infos[2].type = VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_NV;
group_create_infos[2].generalShader = VK_SHADER_UNUSED_NV;
group_create_infos[2].closestHitShader = 2;
group_create_infos[2].anyHitShader = 1;
group_create_infos[2].intersectionShader = 4;
group_create_infos[3].sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_NV;
group_create_infos[3].type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_NV;
group_create_infos[3].generalShader = 5; // call
group_create_infos[3].closestHitShader = VK_SHADER_UNUSED_NV;
group_create_infos[3].anyHitShader = VK_SHADER_UNUSED_NV;
group_create_infos[3].intersectionShader = VK_SHADER_UNUSED_NV;
VkRayTracingPipelineCreateInfoNV pipeline_ci = {};
pipeline_ci.sType = VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_NV;
pipeline_ci.stageCount = 6;
pipeline_ci.pStages = stage_create_infos;
pipeline_ci.groupCount = 4;
pipeline_ci.pGroups = group_create_infos;
pipeline_ci.maxRecursionDepth = 2;
pipeline_ci.layout = test.variable_length ? pipeline_layout_variable.handle() : pipeline_layout.handle();
VkPipeline pipeline = VK_NULL_HANDLE;
ASSERT_VK_SUCCESS(
vkCreateRayTracingPipelinesNV(m_device->handle(), VK_NULL_HANDLE, 1, &pipeline_ci, nullptr, &pipeline));
std::vector<uint8_t> shader_binding_table_data;
shader_binding_table_data.resize(static_cast<std::size_t>(shader_binding_table_buffer_size), 0);
ASSERT_VK_SUCCESS(vkGetRayTracingShaderGroupHandlesNV(m_device->handle(), pipeline, 0, 4,
static_cast<std::size_t>(shader_binding_table_buffer_size),
shader_binding_table_data.data()));
uint8_t *mapped_shader_binding_table_data = (uint8_t *)shader_binding_table_buffer.memory().map();
std::memcpy(mapped_shader_binding_table_data, shader_binding_table_data.data(), shader_binding_table_data.size());
shader_binding_table_buffer.memory().unmap();
ray_tracing_command_buffer.begin();
vk::CmdBindPipeline(ray_tracing_command_buffer.handle(), VK_PIPELINE_BIND_POINT_RAY_TRACING_NV, pipeline);
if (i == 1) {
vk::CmdBindDescriptorSets(ray_tracing_command_buffer.handle(), VK_PIPELINE_BIND_POINT_RAY_TRACING_NV,
test.variable_length ? pipeline_layout_variable.handle() : pipeline_layout.handle(), 0, 1,
test.variable_length ? &ds_variable.set_ : &ds.set_, 0, nullptr);
} else {
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdTraceRaysNV-None-02697");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"UNASSIGNED-CoreValidation-DrawState-DescriptorSetNotBound");
}
vkCmdTraceRaysNV(ray_tracing_command_buffer.handle(), shader_binding_table_buffer.handle(),
ray_tracing_properties.shaderGroupHandleSize * 0ull, shader_binding_table_buffer.handle(),
ray_tracing_properties.shaderGroupHandleSize * 1ull, ray_tracing_properties.shaderGroupHandleSize,
shader_binding_table_buffer.handle(), ray_tracing_properties.shaderGroupHandleSize * 2ull,
ray_tracing_properties.shaderGroupHandleSize, shader_binding_table_buffer.handle(),
ray_tracing_properties.shaderGroupHandleSize * 3ull, ray_tracing_properties.shaderGroupHandleSize,
/*width=*/1, /*height=*/1, /*depth=*/1);
ray_tracing_command_buffer.end();
// Update the index of the texture that the shaders should read
uint32_t *mapped_storage_buffer_data = (uint32_t *)storage_buffer.memory().map();
mapped_storage_buffer_data[0] = test.rgen_index;
mapped_storage_buffer_data[1] = test.ahit_index;
mapped_storage_buffer_data[2] = test.chit_index;
mapped_storage_buffer_data[3] = test.miss_index;
mapped_storage_buffer_data[4] = test.intr_index;
mapped_storage_buffer_data[5] = test.call_index;
mapped_storage_buffer_data[6] = 0;
mapped_storage_buffer_data[7] = 0;
mapped_storage_buffer_data[8] = 0;
mapped_storage_buffer_data[9] = 0;
mapped_storage_buffer_data[10] = 0;
mapped_storage_buffer_data[11] = 0;
storage_buffer.memory().unmap();
m_errorMonitor->SetUnexpectedError("UNASSIGNED-CoreValidation-DrawState-DescriptorSetNotUpdated");
vk::QueueSubmit(ray_tracing_queue, 1, &submit_info, VK_NULL_HANDLE);
vk::QueueWaitIdle(ray_tracing_queue);
m_errorMonitor->VerifyFound();
mapped_storage_buffer_data = (uint32_t *)storage_buffer.memory().map();
if (i == 1) {
ASSERT_TRUE(mapped_storage_buffer_data[6] == 1);
ASSERT_TRUE(mapped_storage_buffer_data[7] == 2);
ASSERT_TRUE(mapped_storage_buffer_data[8] == 3);
ASSERT_TRUE(mapped_storage_buffer_data[9] == 4);
ASSERT_TRUE(mapped_storage_buffer_data[10] == 5);
ASSERT_TRUE(mapped_storage_buffer_data[11] == 6);
}
storage_buffer.memory().unmap();
vk::DestroyPipeline(m_device->handle(), pipeline, nullptr);
}
}
}
TEST_F(VkLayerTest, InvalidDescriptorPoolConsistency) {
VkResult err;
TEST_DESCRIPTION("Allocate descriptor sets from one DS pool and attempt to delete them from another.");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkFreeDescriptorSets-pDescriptorSets-parent");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
VkDescriptorPoolSize ds_type_count = {};
ds_type_count.type = VK_DESCRIPTOR_TYPE_SAMPLER;
ds_type_count.descriptorCount = 1;
VkDescriptorPoolCreateInfo ds_pool_ci = {};
ds_pool_ci.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
ds_pool_ci.pNext = NULL;
ds_pool_ci.flags = 0;
ds_pool_ci.maxSets = 1;
ds_pool_ci.poolSizeCount = 1;
ds_pool_ci.pPoolSizes = &ds_type_count;
VkDescriptorPool bad_pool;
err = vk::CreateDescriptorPool(m_device->device(), &ds_pool_ci, NULL, &bad_pool);
ASSERT_VK_SUCCESS(err);
OneOffDescriptorSet descriptor_set(m_device, {
{0, VK_DESCRIPTOR_TYPE_SAMPLER, 1, VK_SHADER_STAGE_ALL, nullptr},
});
err = vk::FreeDescriptorSets(m_device->device(), bad_pool, 1, &descriptor_set.set_);
m_errorMonitor->VerifyFound();
vk::DestroyDescriptorPool(m_device->device(), bad_pool, NULL);
}
TEST_F(VkLayerTest, DrawWithPipelineIncompatibleWithSubpass) {
TEST_DESCRIPTION("Use a pipeline for the wrong subpass in a render pass instance");
ASSERT_NO_FATAL_FAILURE(Init());
// A renderpass with two subpasses, both writing the same attachment.
VkAttachmentDescription attach[] = {
{0, VK_FORMAT_R8G8B8A8_UNORM, VK_SAMPLE_COUNT_1_BIT, VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE, VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL},
};
VkAttachmentReference ref = {0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL};
VkSubpassDescription subpasses[] = {
{0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 1, &ref, nullptr, nullptr, 0, nullptr},
{0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 1, &ref, nullptr, nullptr, 0, nullptr},
};
VkSubpassDependency dep = {0,
1,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_DEPENDENCY_BY_REGION_BIT};
VkRenderPassCreateInfo rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr, 0, 1, attach, 2, subpasses, 1, &dep};
VkRenderPass rp;
VkResult err = vk::CreateRenderPass(m_device->device(), &rpci, nullptr, &rp);
ASSERT_VK_SUCCESS(err);
VkImageObj image(m_device);
image.InitNoLayout(32, 32, 1, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_TILING_OPTIMAL, 0);
VkImageView imageView = image.targetView(VK_FORMAT_R8G8B8A8_UNORM);
VkFramebufferCreateInfo fbci = {VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, nullptr, 0, rp, 1, &imageView, 32, 32, 1};
VkFramebuffer fb;
err = vk::CreateFramebuffer(m_device->device(), &fbci, nullptr, &fb);
ASSERT_VK_SUCCESS(err);
VkShaderObj vs(m_device, bindStateVertShaderText, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj fs(m_device, bindStateFragShaderText, VK_SHADER_STAGE_FRAGMENT_BIT, this);
VkPipelineObj pipe(m_device);
pipe.AddDefaultColorAttachment();
pipe.AddShader(&vs);
pipe.AddShader(&fs);
VkViewport viewport = {0.0f, 0.0f, 64.0f, 64.0f, 0.0f, 1.0f};
m_viewports.push_back(viewport);
pipe.SetViewport(m_viewports);
VkRect2D rect = {};
m_scissors.push_back(rect);
pipe.SetScissor(m_scissors);
const VkPipelineLayoutObj pl(m_device);
pipe.CreateVKPipeline(pl.handle(), rp);
m_commandBuffer->begin();
VkRenderPassBeginInfo rpbi = {VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
nullptr,
rp,
fb,
{{
0,
0,
},
{32, 32}},
0,
nullptr};
// subtest 1: bind in the wrong subpass
vk::CmdBeginRenderPass(m_commandBuffer->handle(), &rpbi, VK_SUBPASS_CONTENTS_INLINE);
vk::CmdNextSubpass(m_commandBuffer->handle(), VK_SUBPASS_CONTENTS_INLINE);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "built for subpass 0 but used in subpass 1");
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.handle());
vk::CmdDraw(m_commandBuffer->handle(), 3, 1, 0, 0);
m_errorMonitor->VerifyFound();
vk::CmdEndRenderPass(m_commandBuffer->handle());
// subtest 2: bind in correct subpass, then transition to next subpass
vk::CmdBeginRenderPass(m_commandBuffer->handle(), &rpbi, VK_SUBPASS_CONTENTS_INLINE);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.handle());
vk::CmdNextSubpass(m_commandBuffer->handle(), VK_SUBPASS_CONTENTS_INLINE);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "built for subpass 0 but used in subpass 1");
vk::CmdDraw(m_commandBuffer->handle(), 3, 1, 0, 0);
m_errorMonitor->VerifyFound();
vk::CmdEndRenderPass(m_commandBuffer->handle());
m_commandBuffer->end();
vk::DestroyFramebuffer(m_device->device(), fb, nullptr);
vk::DestroyRenderPass(m_device->device(), rp, nullptr);
}
TEST_F(VkLayerTest, ImageBarrierSubpassConflict) {
TEST_DESCRIPTION("Check case where subpass index references different image from image barrier");
ASSERT_NO_FATAL_FAILURE(Init());
// Create RP/FB combo where subpass has incorrect index attachment, this is 2nd half of "VUID-vkCmdPipelineBarrier-image-02635"
VkAttachmentDescription attach[] = {
{0, VK_FORMAT_R8G8B8A8_UNORM, VK_SAMPLE_COUNT_1_BIT, VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE, VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL},
{0, VK_FORMAT_R8G8B8A8_UNORM, VK_SAMPLE_COUNT_1_BIT, VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE, VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL},
};
// ref attachment points to wrong attachment index compared to img_barrier below
VkAttachmentReference ref = {1, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL};
VkSubpassDescription subpasses[] = {
{0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 1, &ref, nullptr, nullptr, 0, nullptr},
};
VkSubpassDependency dep = {0,
0,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_DEPENDENCY_BY_REGION_BIT};
VkRenderPassCreateInfo rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr, 0, 2, attach, 1, subpasses, 1, &dep};
VkRenderPass rp;
VkResult err = vk::CreateRenderPass(m_device->device(), &rpci, nullptr, &rp);
ASSERT_VK_SUCCESS(err);
VkImageObj image(m_device);
image.InitNoLayout(32, 32, 1, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_TILING_OPTIMAL, 0);
VkImageView imageView = image.targetView(VK_FORMAT_R8G8B8A8_UNORM);
VkImageObj image2(m_device);
image2.InitNoLayout(32, 32, 1, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_TILING_OPTIMAL, 0);
VkImageView imageView2 = image2.targetView(VK_FORMAT_R8G8B8A8_UNORM);
// re-use imageView from start of test
VkImageView iv_array[2] = {imageView, imageView2};
VkFramebufferCreateInfo fbci = {VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, nullptr, 0, rp, 2, iv_array, 32, 32, 1};
VkFramebuffer fb;
err = vk::CreateFramebuffer(m_device->device(), &fbci, nullptr, &fb);
ASSERT_VK_SUCCESS(err);
VkRenderPassBeginInfo rpbi = {VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
nullptr,
rp,
fb,
{{
0,
0,
},
{32, 32}},
0,
nullptr};
VkImageMemoryBarrier img_barrier = {};
img_barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
img_barrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
img_barrier.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
img_barrier.oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
img_barrier.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
img_barrier.image = image.handle(); /* barrier references image from attachment index 0 */
img_barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
img_barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
img_barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
img_barrier.subresourceRange.baseArrayLayer = 0;
img_barrier.subresourceRange.baseMipLevel = 0;
img_barrier.subresourceRange.layerCount = 1;
img_barrier.subresourceRange.levelCount = 1;
m_commandBuffer->begin();
vk::CmdBeginRenderPass(m_commandBuffer->handle(), &rpbi, VK_SUBPASS_CONTENTS_INLINE);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdPipelineBarrier-image-02635");
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_DEPENDENCY_BY_REGION_BIT, 0, nullptr, 0, nullptr, 1,
&img_barrier);
m_errorMonitor->VerifyFound();
vk::DestroyFramebuffer(m_device->device(), fb, nullptr);
vk::DestroyRenderPass(m_device->device(), rp, nullptr);
}
TEST_F(VkLayerTest, RenderPassCreateAttachmentIndexOutOfRange) {
// Check for VK_KHR_get_physical_device_properties2
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
bool rp2Supported = CheckCreateRenderPass2Support(this, m_device_extension_names);
ASSERT_NO_FATAL_FAILURE(InitState());
// There are no attachments, but refer to attachment 0.
VkAttachmentReference ref = {0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL};
VkSubpassDescription subpasses[] = {
{0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 1, &ref, nullptr, nullptr, 0, nullptr},
};
VkRenderPassCreateInfo rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr, 0, 0, nullptr, 1, subpasses, 0, nullptr};
// "... must be less than the total number of attachments ..."
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported, "VUID-VkRenderPassCreateInfo-attachment-00834",
"VUID-VkRenderPassCreateInfo2KHR-attachment-03051");
}
TEST_F(VkLayerTest, RenderPassCreateAttachmentReadOnlyButCleared) {
// Check for VK_KHR_get_physical_device_properties2
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
bool rp2Supported = CheckCreateRenderPass2Support(this, m_device_extension_names);
bool maintenance2Supported = rp2Supported;
// Check for VK_KHR_maintenance2
if (!rp2Supported && DeviceExtensionSupported(gpu(), nullptr, VK_KHR_MAINTENANCE2_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_KHR_MAINTENANCE2_EXTENSION_NAME);
maintenance2Supported = true;
}
ASSERT_NO_FATAL_FAILURE(InitState());
if (m_device->props.apiVersion < VK_API_VERSION_1_1) {
maintenance2Supported = true;
}
VkAttachmentDescription description = {0,
VK_FORMAT_D32_SFLOAT_S8_UINT,
VK_SAMPLE_COUNT_1_BIT,
VK_ATTACHMENT_LOAD_OP_CLEAR,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_CLEAR,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_IMAGE_LAYOUT_GENERAL,
VK_IMAGE_LAYOUT_GENERAL};
VkAttachmentReference depth_stencil_ref = {0, VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL};
VkSubpassDescription subpass = {0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 0, nullptr, nullptr, &depth_stencil_ref, 0,
nullptr};
VkRenderPassCreateInfo rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr, 0, 1, &description, 1, &subpass, 0, nullptr};
// VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL but depth cleared
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported, "VUID-VkRenderPassCreateInfo-pAttachments-00836",
"VUID-VkRenderPassCreateInfo2KHR-pAttachments-02522");
if (maintenance2Supported) {
// VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL but depth cleared
depth_stencil_ref.layout = VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkRenderPassCreateInfo-pAttachments-01566", nullptr);
// VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL but depth cleared
depth_stencil_ref.layout = VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkRenderPassCreateInfo-pAttachments-01567", nullptr);
}
}
TEST_F(VkLayerTest, RenderPassCreateAttachmentMismatchingLayoutsColor) {
TEST_DESCRIPTION("Attachment is used simultaneously as two color attachments with different layouts.");
// Check for VK_KHR_get_physical_device_properties2
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
bool rp2Supported = CheckCreateRenderPass2Support(this, m_device_extension_names);
ASSERT_NO_FATAL_FAILURE(InitState());
VkAttachmentDescription attach[] = {
{0, VK_FORMAT_R8G8B8A8_UNORM, VK_SAMPLE_COUNT_1_BIT, VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE, VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL},
};
VkAttachmentReference refs[] = {
{0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL},
{0, VK_IMAGE_LAYOUT_GENERAL},
};
VkSubpassDescription subpasses[] = {
{0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 2, refs, nullptr, nullptr, 0, nullptr},
};
VkRenderPassCreateInfo rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr, 0, 1, attach, 1, subpasses, 0, nullptr};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"subpass 0 already uses attachment 0 with a different image layout",
"subpass 0 already uses attachment 0 with a different image layout");
}
TEST_F(VkLayerTest, RenderPassCreateAttachmentDescriptionInvalidFinalLayout) {
TEST_DESCRIPTION("VkAttachmentDescription's finalLayout must not be UNDEFINED or PREINITIALIZED");
// Check for VK_KHR_get_physical_device_properties2
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
bool rp2Supported = CheckCreateRenderPass2Support(this, m_device_extension_names);
if (DeviceExtensionSupported(gpu(), nullptr, VK_KHR_SEPARATE_DEPTH_STENCIL_LAYOUTS_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_KHR_SEPARATE_DEPTH_STENCIL_LAYOUTS_EXTENSION_NAME);
}
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR");
auto separate_depth_stencil_layouts_features = lvl_init_struct<VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR>();
auto features2 = lvl_init_struct<VkPhysicalDeviceFeatures2KHR>(&separate_depth_stencil_layouts_features);
if (vkGetPhysicalDeviceFeatures2KHR) {
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
} else {
separate_depth_stencil_layouts_features.separateDepthStencilLayouts = VK_FALSE;
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, (vkGetPhysicalDeviceFeatures2KHR) ? &features2 : nullptr));
VkAttachmentDescription attach_desc = {};
attach_desc.format = VK_FORMAT_R8G8B8A8_UNORM;
attach_desc.samples = VK_SAMPLE_COUNT_1_BIT;
attach_desc.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attach_desc.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attach_desc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attach_desc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attach_desc.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attach_desc.finalLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VkAttachmentReference attach_ref = {};
attach_ref.attachment = 0;
attach_ref.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &attach_ref;
VkRenderPassCreateInfo rpci = {};
rpci.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
rpci.attachmentCount = 1;
rpci.pAttachments = &attach_desc;
rpci.subpassCount = 1;
rpci.pSubpasses = &subpass;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported, "VUID-VkAttachmentDescription-finalLayout-00843",
"VUID-VkAttachmentDescription2KHR-finalLayout-03061");
attach_desc.finalLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported, "VUID-VkAttachmentDescription-finalLayout-00843",
"VUID-VkAttachmentDescription2KHR-finalLayout-03061");
attach_desc.finalLayout = VK_IMAGE_LAYOUT_GENERAL;
auto depth_format = FindSupportedDepthOnlyFormat(gpu());
auto stencil_format = FindSupportedStencilOnlyFormat(gpu());
auto depth_stencil_format = FindSupportedDepthStencilFormat(gpu());
if (separate_depth_stencil_layouts_features.separateDepthStencilLayouts) {
attach_desc.initialLayout = VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported, "VUID-VkAttachmentDescription-format-03286",
"VUID-VkAttachmentDescription2KHR-format-03300");
attach_desc.initialLayout = VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported, "VUID-VkAttachmentDescription-format-03286",
"VUID-VkAttachmentDescription2KHR-format-03300");
attach_desc.initialLayout = VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported, "VUID-VkAttachmentDescription-format-03286",
"VUID-VkAttachmentDescription2KHR-format-03300");
attach_desc.initialLayout = VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported, "VUID-VkAttachmentDescription-format-03286",
"VUID-VkAttachmentDescription2KHR-format-03300");
attach_desc.initialLayout = VK_IMAGE_LAYOUT_GENERAL;
attach_desc.finalLayout = VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported, "VUID-VkAttachmentDescription-format-03287",
"VUID-VkAttachmentDescription2KHR-format-03301");
attach_desc.finalLayout = VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported, "VUID-VkAttachmentDescription-format-03287",
"VUID-VkAttachmentDescription2KHR-format-03301");
attach_desc.finalLayout = VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported, "VUID-VkAttachmentDescription-format-03287",
"VUID-VkAttachmentDescription2KHR-format-03301");
attach_desc.finalLayout = VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported, "VUID-VkAttachmentDescription-format-03287",
"VUID-VkAttachmentDescription2KHR-format-03301");
attach_desc.finalLayout = VK_IMAGE_LAYOUT_GENERAL;
if (depth_stencil_format) {
attach_desc.format = depth_stencil_format;
if (rp2Supported) {
safe_VkRenderPassCreateInfo2KHR rpci2;
attach_desc.initialLayout = VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL_KHR;
ConvertVkRenderPassCreateInfoToV2KHR(rpci, &rpci2);
TestRenderPass2KHRCreate(m_errorMonitor, m_device->device(), rpci2.ptr(),
"VUID-VkAttachmentDescription2KHR-format-03302");
attach_desc.initialLayout = VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL_KHR;
ConvertVkRenderPassCreateInfoToV2KHR(rpci, &rpci2);
TestRenderPass2KHRCreate(m_errorMonitor, m_device->device(), rpci2.ptr(),
"VUID-VkAttachmentDescription2KHR-format-03302");
} else {
attach_desc.initialLayout = VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkAttachmentDescription-format-03288", "VUID-VkAttachmentDescription2KHR-format-03302");
attach_desc.initialLayout = VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkAttachmentDescription-format-03288", "VUID-VkAttachmentDescription2KHR-format-03302");
attach_desc.initialLayout = VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkAttachmentDescription-format-03288", "VUID-VkAttachmentDescription2KHR-format-03302");
attach_desc.initialLayout = VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkAttachmentDescription-format-03288", "VUID-VkAttachmentDescription2KHR-format-03302");
}
attach_desc.initialLayout = VK_IMAGE_LAYOUT_GENERAL;
if (rp2Supported) {
safe_VkRenderPassCreateInfo2KHR rpci2;
attach_desc.finalLayout = VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL_KHR;
ConvertVkRenderPassCreateInfoToV2KHR(rpci, &rpci2);
TestRenderPass2KHRCreate(m_errorMonitor, m_device->device(), rpci2.ptr(),
"VUID-VkAttachmentDescription2KHR-format-03303");
attach_desc.finalLayout = VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL_KHR;
ConvertVkRenderPassCreateInfoToV2KHR(rpci, &rpci2);
TestRenderPass2KHRCreate(m_errorMonitor, m_device->device(), rpci2.ptr(),
"VUID-VkAttachmentDescription2KHR-format-03303");
} else {
attach_desc.finalLayout = VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkAttachmentDescription-format-03289", "VUID-VkAttachmentDescription2KHR-format-03303");
attach_desc.finalLayout = VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkAttachmentDescription-format-03289", "VUID-VkAttachmentDescription2KHR-format-03303");
attach_desc.finalLayout = VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkAttachmentDescription-format-03289", "VUID-VkAttachmentDescription2KHR-format-03303");
attach_desc.finalLayout = VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkAttachmentDescription-format-03289", "VUID-VkAttachmentDescription2KHR-format-03303");
}
attach_desc.finalLayout = VK_IMAGE_LAYOUT_GENERAL;
}
if (depth_format) {
attach_desc.format = depth_format;
attach_desc.initialLayout = VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkAttachmentDescription-format-03290", "VUID-VkAttachmentDescription2KHR-format-03304");
attach_desc.initialLayout = VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkAttachmentDescription-format-03290", "VUID-VkAttachmentDescription2KHR-format-03304");
attach_desc.initialLayout = VK_IMAGE_LAYOUT_GENERAL;
attach_desc.finalLayout = VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkAttachmentDescription-format-03291", "VUID-VkAttachmentDescription2KHR-format-03305");
attach_desc.finalLayout = VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkAttachmentDescription-format-03291", "VUID-VkAttachmentDescription2KHR-format-03305");
attach_desc.finalLayout = VK_IMAGE_LAYOUT_GENERAL;
}
if (stencil_format) {
attach_desc.format = stencil_format;
attach_desc.initialLayout = VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkAttachmentDescription-format-03292", "VUID-VkAttachmentDescription2KHR-format-03306");
attach_desc.initialLayout = VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkAttachmentDescription-format-03292", "VUID-VkAttachmentDescription2KHR-format-03306");
attach_desc.initialLayout = VK_IMAGE_LAYOUT_GENERAL;
attach_desc.finalLayout = VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkAttachmentDescription-format-03293", "VUID-VkAttachmentDescription2KHR-format-03307");
attach_desc.finalLayout = VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkAttachmentDescription-format-03293", "VUID-VkAttachmentDescription2KHR-format-03307");
attach_desc.finalLayout = VK_IMAGE_LAYOUT_GENERAL;
}
if (rp2Supported && depth_stencil_format) {
attach_desc.format = depth_stencil_format;
attach_desc.initialLayout = VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL_KHR;
auto attachment_description_stencil_layout = lvl_init_struct<VkAttachmentDescriptionStencilLayoutKHR>();
attachment_description_stencil_layout.stencilInitialLayout = VK_IMAGE_LAYOUT_GENERAL;
attachment_description_stencil_layout.stencilFinalLayout = VK_IMAGE_LAYOUT_GENERAL;
safe_VkRenderPassCreateInfo2KHR rpci2;
ConvertVkRenderPassCreateInfoToV2KHR(rpci, &rpci2);
rpci2.pAttachments[0].pNext = &attachment_description_stencil_layout;
VkImageLayout forbidden_layouts[] = {
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL_KHR,
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL_KHR,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL,
};
auto forbidden_layouts_array_size = sizeof(forbidden_layouts) / sizeof(forbidden_layouts[0]);
for (size_t i = 0; i < forbidden_layouts_array_size; ++i) {
attachment_description_stencil_layout.stencilInitialLayout = forbidden_layouts[i];
TestRenderPass2KHRCreate(m_errorMonitor, m_device->device(), rpci2.ptr(),
"VUID-VkAttachmentDescriptionStencilLayoutKHR-stencilInitialLayout-03308");
}
attachment_description_stencil_layout.stencilInitialLayout = VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
for (size_t i = 0; i < forbidden_layouts_array_size; ++i) {
attachment_description_stencil_layout.stencilFinalLayout = forbidden_layouts[i];
TestRenderPass2KHRCreate(m_errorMonitor, m_device->device(), rpci2.ptr(),
"VUID-VkAttachmentDescriptionStencilLayoutKHR-stencilFinalLayout-03309");
}
attachment_description_stencil_layout.stencilFinalLayout = VK_IMAGE_LAYOUT_UNDEFINED;
TestRenderPass2KHRCreate(m_errorMonitor, m_device->device(), rpci2.ptr(),
"VUID-VkAttachmentDescriptionStencilLayoutKHR-stencilFinalLayout-03310");
attachment_description_stencil_layout.stencilFinalLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
TestRenderPass2KHRCreate(m_errorMonitor, m_device->device(), rpci2.ptr(),
"VUID-VkAttachmentDescriptionStencilLayoutKHR-stencilFinalLayout-03310");
rpci2.pAttachments[0].pNext = nullptr;
}
} else {
if (depth_format) {
attach_desc.format = depth_format;
attach_desc.initialLayout = VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkAttachmentDescription-separateDepthStencilLayouts-03284",
"VUID-VkAttachmentDescription2KHR-separateDepthStencilLayouts-03298");
attach_desc.initialLayout = VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkAttachmentDescription-separateDepthStencilLayouts-03284",
"VUID-VkAttachmentDescription2KHR-separateDepthStencilLayouts-03298");
attach_desc.initialLayout = VK_IMAGE_LAYOUT_GENERAL;
attach_desc.finalLayout = VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkAttachmentDescription-separateDepthStencilLayouts-03285",
"VUID-VkAttachmentDescription2KHR-separateDepthStencilLayouts-03299");
attach_desc.finalLayout = VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkAttachmentDescription-separateDepthStencilLayouts-03285",
"VUID-VkAttachmentDescription2KHR-separateDepthStencilLayouts-03299");
attach_desc.finalLayout = VK_IMAGE_LAYOUT_GENERAL;
}
if (stencil_format) {
attach_desc.format = stencil_format;
attach_desc.initialLayout = VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkAttachmentDescription-separateDepthStencilLayouts-03284",
"VUID-VkAttachmentDescription2KHR-separateDepthStencilLayouts-03298");
attach_desc.initialLayout = VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkAttachmentDescription-separateDepthStencilLayouts-03284",
"VUID-VkAttachmentDescription2KHR-separateDepthStencilLayouts-03298");
attach_desc.initialLayout = VK_IMAGE_LAYOUT_GENERAL;
attach_desc.finalLayout = VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkAttachmentDescription-separateDepthStencilLayouts-03285",
"VUID-VkAttachmentDescription2KHR-separateDepthStencilLayouts-03299");
attach_desc.finalLayout = VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL_KHR;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkAttachmentDescription-separateDepthStencilLayouts-03285",
"VUID-VkAttachmentDescription2KHR-separateDepthStencilLayouts-03299");
attach_desc.finalLayout = VK_IMAGE_LAYOUT_GENERAL;
}
}
}
TEST_F(VkLayerTest, RenderPassCreateAttachmentsMisc) {
TEST_DESCRIPTION(
"Ensure that CreateRenderPass produces the expected validation errors when a subpass's attachments violate the valid usage "
"conditions.");
// Check for VK_KHR_get_physical_device_properties2
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
bool rp2Supported = CheckCreateRenderPass2Support(this, m_device_extension_names);
ASSERT_NO_FATAL_FAILURE(InitState());
std::vector<VkAttachmentDescription> attachments = {
// input attachments
{0, VK_FORMAT_R8G8B8A8_UNORM, VK_SAMPLE_COUNT_4_BIT, VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE, VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_GENERAL},
// color attachments
{0, VK_FORMAT_R8G8B8A8_UNORM, VK_SAMPLE_COUNT_4_BIT, VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL},
{0, VK_FORMAT_R8G8B8A8_UNORM, VK_SAMPLE_COUNT_4_BIT, VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL},
// depth attachment
{0, VK_FORMAT_D24_UNORM_S8_UINT, VK_SAMPLE_COUNT_4_BIT, VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL},
// resolve attachment
{0, VK_FORMAT_R8G8B8A8_UNORM, VK_SAMPLE_COUNT_1_BIT, VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL},
// preserve attachments
{0, VK_FORMAT_R8G8B8A8_UNORM, VK_SAMPLE_COUNT_4_BIT, VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL},
};
std::vector<VkAttachmentReference> input = {
{0, VK_IMAGE_LAYOUT_GENERAL},
};
std::vector<VkAttachmentReference> color = {
{1, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL},
{2, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL},
};
VkAttachmentReference depth = {3, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL};
std::vector<VkAttachmentReference> resolve = {
{4, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL},
{VK_ATTACHMENT_UNUSED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL},
};
std::vector<uint32_t> preserve = {5};
VkSubpassDescription subpass = {0,
VK_PIPELINE_BIND_POINT_GRAPHICS,
(uint32_t)input.size(),
input.data(),
(uint32_t)color.size(),
color.data(),
resolve.data(),
&depth,
(uint32_t)preserve.size(),
preserve.data()};
VkRenderPassCreateInfo rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
nullptr,
0,
(uint32_t)attachments.size(),
attachments.data(),
1,
&subpass,
0,
nullptr};
// Test too many color attachments
const uint32_t max_color_attachments = m_device->props.limits.maxColorAttachments;
const uint32_t too_big_max_attachments = 65536 + 1; // let's say this is too much to allocate
if (max_color_attachments >= too_big_max_attachments) {
printf(
"%s VkPhysicalDeviceLimits::maxColorAttachments is too large to practically test against -- skipping part of test.\n",
kSkipPrefix);
} else {
std::vector<VkAttachmentReference> too_many_colors(max_color_attachments + 1, color[0]);
VkSubpassDescription test_subpass = subpass;
test_subpass.colorAttachmentCount = (uint32_t)too_many_colors.size();
test_subpass.pColorAttachments = too_many_colors.data();
test_subpass.pResolveAttachments = NULL;
VkRenderPassCreateInfo test_rpci = rpci;
test_rpci.pSubpasses = &test_subpass;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &test_rpci, rp2Supported,
"VUID-VkSubpassDescription-colorAttachmentCount-00845",
"VUID-VkSubpassDescription2KHR-colorAttachmentCount-03063");
}
// Test sample count mismatch between color buffers
attachments[subpass.pColorAttachments[1].attachment].samples = VK_SAMPLE_COUNT_8_BIT;
depth.attachment = VK_ATTACHMENT_UNUSED; // Avoids triggering 01418
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkSubpassDescription-pColorAttachments-01417",
"VUID-VkSubpassDescription2KHR-pColorAttachments-03069");
depth.attachment = 3;
attachments[subpass.pColorAttachments[1].attachment].samples = attachments[subpass.pColorAttachments[0].attachment].samples;
// Test sample count mismatch between color buffers and depth buffer
attachments[subpass.pDepthStencilAttachment->attachment].samples = VK_SAMPLE_COUNT_8_BIT;
subpass.colorAttachmentCount = 1;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkSubpassDescription-pDepthStencilAttachment-01418",
"VUID-VkSubpassDescription2KHR-pDepthStencilAttachment-03071");
attachments[subpass.pDepthStencilAttachment->attachment].samples = attachments[subpass.pColorAttachments[0].attachment].samples;
subpass.colorAttachmentCount = (uint32_t)color.size();
// Test resolve attachment with UNUSED color attachment
color[0].attachment = VK_ATTACHMENT_UNUSED;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkSubpassDescription-pResolveAttachments-00847",
"VUID-VkSubpassDescription2KHR-pResolveAttachments-03065");
color[0].attachment = 1;
// Test resolve from a single-sampled color attachment
attachments[subpass.pColorAttachments[0].attachment].samples = VK_SAMPLE_COUNT_1_BIT;
subpass.colorAttachmentCount = 1; // avoid mismatch (00337), and avoid double report
subpass.pDepthStencilAttachment = nullptr; // avoid mismatch (01418)
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkSubpassDescription-pResolveAttachments-00848",
"VUID-VkSubpassDescription2KHR-pResolveAttachments-03066");
attachments[subpass.pColorAttachments[0].attachment].samples = VK_SAMPLE_COUNT_4_BIT;
subpass.colorAttachmentCount = (uint32_t)color.size();
subpass.pDepthStencilAttachment = &depth;
// Test resolve to a multi-sampled resolve attachment
attachments[subpass.pResolveAttachments[0].attachment].samples = VK_SAMPLE_COUNT_4_BIT;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkSubpassDescription-pResolveAttachments-00849",
"VUID-VkSubpassDescription2KHR-pResolveAttachments-03067");
attachments[subpass.pResolveAttachments[0].attachment].samples = VK_SAMPLE_COUNT_1_BIT;
// Test with color/resolve format mismatch
attachments[subpass.pColorAttachments[0].attachment].format = VK_FORMAT_R8G8B8A8_SRGB;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkSubpassDescription-pResolveAttachments-00850",
"VUID-VkSubpassDescription2KHR-pResolveAttachments-03068");
attachments[subpass.pColorAttachments[0].attachment].format = attachments[subpass.pResolveAttachments[0].attachment].format;
// Test for UNUSED preserve attachments
preserve[0] = VK_ATTACHMENT_UNUSED;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported, "VUID-VkSubpassDescription-attachment-00853",
"VUID-VkSubpassDescription2KHR-attachment-03073");
preserve[0] = 5;
// Test for preserve attachments used elsewhere in the subpass
color[0].attachment = preserve[0];
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkSubpassDescription-pPreserveAttachments-00854",
"VUID-VkSubpassDescription2KHR-pPreserveAttachments-03074");
color[0].attachment = 1;
input[0].attachment = 0;
input[0].layout = VK_IMAGE_LAYOUT_GENERAL;
// Test for attachment used first as input with loadOp=CLEAR
{
std::vector<VkSubpassDescription> subpasses = {subpass, subpass, subpass};
subpasses[0].inputAttachmentCount = 0;
subpasses[1].inputAttachmentCount = 0;
attachments[input[0].attachment].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
VkRenderPassCreateInfo rpci_multipass = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
nullptr,
0,
(uint32_t)attachments.size(),
attachments.data(),
(uint32_t)subpasses.size(),
subpasses.data(),
0,
nullptr};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci_multipass, rp2Supported,
"VUID-VkSubpassDescription-loadOp-00846", "VUID-VkSubpassDescription2KHR-loadOp-03064");
attachments[input[0].attachment].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
}
}
TEST_F(VkLayerTest, RenderPassCreateAttachmentReferenceInvalidLayout) {
TEST_DESCRIPTION("Attachment reference uses PREINITIALIZED or UNDEFINED layouts");
// Check for VK_KHR_get_physical_device_properties2
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
bool rp2Supported = CheckCreateRenderPass2Support(this, m_device_extension_names);
if (DeviceExtensionSupported(gpu(), nullptr, VK_KHR_SEPARATE_DEPTH_STENCIL_LAYOUTS_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_KHR_SEPARATE_DEPTH_STENCIL_LAYOUTS_EXTENSION_NAME);
}
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR");
auto separate_depth_stencil_layouts_features = lvl_init_struct<VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR>();
auto features2 = lvl_init_struct<VkPhysicalDeviceFeatures2KHR>(&separate_depth_stencil_layouts_features);
if (vkGetPhysicalDeviceFeatures2KHR) {
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
} else {
separate_depth_stencil_layouts_features.separateDepthStencilLayouts = VK_FALSE;
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, (vkGetPhysicalDeviceFeatures2KHR) ? &features2 : nullptr));
VkAttachmentDescription attach[] = {
{0, VK_FORMAT_R8G8B8A8_UNORM, VK_SAMPLE_COUNT_1_BIT, VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE, VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL},
};
VkAttachmentReference refs[] = {
{0, VK_IMAGE_LAYOUT_UNDEFINED},
};
VkSubpassDescription subpasses[] = {
{0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 1, refs, nullptr, nullptr, 0, nullptr},
};
VkRenderPassCreateInfo rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr, 0, 1, attach, 1, subpasses, 0, nullptr};
// Use UNDEFINED layout
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported, "VUID-VkAttachmentReference-layout-00857",
"VUID-VkAttachmentReference2KHR-layout-03077");
// Use PREINITIALIZED layout
refs[0].layout = VK_IMAGE_LAYOUT_PREINITIALIZED;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported, "VUID-VkAttachmentReference-layout-00857",
"VUID-VkAttachmentReference2KHR-layout-03077");
if (rp2Supported) {
safe_VkRenderPassCreateInfo2KHR rpci2;
ConvertVkRenderPassCreateInfoToV2KHR(rpci, &rpci2);
if (separate_depth_stencil_layouts_features.separateDepthStencilLayouts) {
rpci2.pSubpasses[0].pColorAttachments[0].aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
rpci2.pSubpasses[0].pColorAttachments[0].layout = VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL_KHR;
TestRenderPass2KHRCreate(m_errorMonitor, m_device->device(), rpci2.ptr(),
"VUID-VkAttachmentReference2KHR-attachment-03314");
rpci2.pSubpasses[0].pColorAttachments[0].layout = VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL_KHR;
TestRenderPass2KHRCreate(m_errorMonitor, m_device->device(), rpci2.ptr(),
"VUID-VkAttachmentReference2KHR-attachment-03314");
rpci2.pSubpasses[0].pColorAttachments[0].layout = VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
TestRenderPass2KHRCreate(m_errorMonitor, m_device->device(), rpci2.ptr(),
"VUID-VkAttachmentReference2KHR-attachment-03314");
rpci2.pSubpasses[0].pColorAttachments[0].layout = VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL_KHR;
TestRenderPass2KHRCreate(m_errorMonitor, m_device->device(), rpci2.ptr(),
"VUID-VkAttachmentReference2KHR-attachment-03314");
rpci2.pSubpasses[0].pColorAttachments[0].aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
rpci2.pSubpasses[0].pColorAttachments[0].layout = VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL_KHR;
TestRenderPass2KHRCreate(m_errorMonitor, m_device->device(), rpci2.ptr(),
"VUID-VkAttachmentReference2KHR-attachment-03315");
rpci2.pSubpasses[0].pColorAttachments[0].layout = VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL_KHR;
TestRenderPass2KHRCreate(m_errorMonitor, m_device->device(), rpci2.ptr(),
"VUID-VkAttachmentReference2KHR-attachment-03315");
rpci2.pSubpasses[0].pColorAttachments[0].aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
rpci2.pSubpasses[0].pColorAttachments[0].layout = VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
TestRenderPass2KHRCreate(m_errorMonitor, m_device->device(), rpci2.ptr(),
"VUID-VkAttachmentReference2KHR-attachment-03315");
rpci2.pSubpasses[0].pColorAttachments[0].layout = VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL_KHR;
TestRenderPass2KHRCreate(m_errorMonitor, m_device->device(), rpci2.ptr(),
"VUID-VkAttachmentReference2KHR-attachment-03315");
rpci2.pSubpasses[0].pColorAttachments[0].aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
rpci2.pSubpasses[0].pColorAttachments[0].layout = VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL_KHR;
TestRenderPass2KHRCreate(m_errorMonitor, m_device->device(), rpci2.ptr(),
"VUID-VkAttachmentReference2KHR-attachment-03317");
rpci2.pSubpasses[0].pColorAttachments[0].layout = VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL_KHR;
TestRenderPass2KHRCreate(m_errorMonitor, m_device->device(), rpci2.ptr(),
"VUID-VkAttachmentReference2KHR-attachment-03317");
auto attachment_reference_stencil_layout = lvl_init_struct<VkAttachmentReferenceStencilLayoutKHR>();
rpci2.pSubpasses[0].pColorAttachments[0].pNext = &attachment_reference_stencil_layout;
VkImageLayout forbidden_layouts[] = {VK_IMAGE_LAYOUT_PREINITIALIZED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL_KHR,
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL_KHR,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR};
rpci2.pSubpasses[0].pColorAttachments[0].aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
rpci2.pSubpasses[0].pColorAttachments[0].layout = VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL_KHR;
for (size_t i = 0; i < (sizeof(forbidden_layouts) / sizeof(forbidden_layouts[0])); ++i) {
attachment_reference_stencil_layout.stencilLayout = forbidden_layouts[i];
TestRenderPass2KHRCreate(m_errorMonitor, m_device->device(), rpci2.ptr(),
"VUID-VkAttachmentReferenceStencilLayoutKHR-stencilLayout-03318");
}
rpci2.pSubpasses[0].pColorAttachments[0].pNext = nullptr;
} else {
rpci2.pSubpasses[0].pColorAttachments[0].layout = VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL_KHR;
TestRenderPass2KHRCreate(m_errorMonitor, m_device->device(), rpci2.ptr(),
"VUID-VkAttachmentReference2KHR-separateDepthStencilLayouts-03313");
rpci2.pSubpasses[0].pColorAttachments[0].layout = VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL_KHR;
TestRenderPass2KHRCreate(m_errorMonitor, m_device->device(), rpci2.ptr(),
"VUID-VkAttachmentReference2KHR-separateDepthStencilLayouts-03313");
rpci2.pSubpasses[0].pColorAttachments[0].layout = VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
TestRenderPass2KHRCreate(m_errorMonitor, m_device->device(), rpci2.ptr(),
"VUID-VkAttachmentReference2KHR-separateDepthStencilLayouts-03313");
rpci2.pSubpasses[0].pColorAttachments[0].layout = VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL_KHR;
TestRenderPass2KHRCreate(m_errorMonitor, m_device->device(), rpci2.ptr(),
"VUID-VkAttachmentReference2KHR-separateDepthStencilLayouts-03313");
}
}
}
TEST_F(VkLayerTest, RenderPassCreateOverlappingCorrelationMasks) {
TEST_DESCRIPTION("Create a subpass with overlapping correlation masks");
// Check for VK_KHR_get_physical_device_properties2
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
bool rp2Supported = CheckCreateRenderPass2Support(this, m_device_extension_names);
if (!rp2Supported) {
if (DeviceExtensionSupported(gpu(), nullptr, VK_KHR_MULTIVIEW_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_KHR_MULTIVIEW_EXTENSION_NAME);
} else {
printf("%s Extension %s is not supported.\n", kSkipPrefix, VK_KHR_MULTIVIEW_EXTENSION_NAME);
return;
}
}
ASSERT_NO_FATAL_FAILURE(InitState());
VkSubpassDescription subpass = {0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 0, nullptr, nullptr, nullptr, 0, nullptr};
uint32_t viewMasks[] = {0x3u};
uint32_t correlationMasks[] = {0x1u, 0x3u};
VkRenderPassMultiviewCreateInfo rpmvci = {
VK_STRUCTURE_TYPE_RENDER_PASS_MULTIVIEW_CREATE_INFO, nullptr, 1, viewMasks, 0, nullptr, 2, correlationMasks};
VkRenderPassCreateInfo rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, &rpmvci, 0, 0, nullptr, 1, &subpass, 0, nullptr};
// Correlation masks must not overlap
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkRenderPassMultiviewCreateInfo-pCorrelationMasks-00841",
"VUID-VkRenderPassCreateInfo2KHR-pCorrelatedViewMasks-03056");
// Check for more specific "don't set any correlation masks when multiview is not enabled"
if (rp2Supported) {
viewMasks[0] = 0;
correlationMasks[0] = 0;
correlationMasks[1] = 0;
safe_VkRenderPassCreateInfo2KHR safe_rpci2;
ConvertVkRenderPassCreateInfoToV2KHR(rpci, &safe_rpci2);
TestRenderPass2KHRCreate(m_errorMonitor, m_device->device(), safe_rpci2.ptr(),
"VUID-VkRenderPassCreateInfo2KHR-viewMask-03057");
}
}
TEST_F(VkLayerTest, RenderPassCreateInvalidViewMasks) {
TEST_DESCRIPTION("Create a subpass with the wrong number of view masks, or inconsistent setting of view masks");
// Check for VK_KHR_get_physical_device_properties2
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
bool rp2Supported = CheckCreateRenderPass2Support(this, m_device_extension_names);
if (!rp2Supported) {
if (DeviceExtensionSupported(gpu(), nullptr, VK_KHR_MULTIVIEW_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_KHR_MULTIVIEW_EXTENSION_NAME);
} else {
printf("%s Extension %s is not supported.\n", kSkipPrefix, VK_KHR_MULTIVIEW_EXTENSION_NAME);
return;
}
}
ASSERT_NO_FATAL_FAILURE(InitState());
VkSubpassDescription subpasses[] = {
{0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 0, nullptr, nullptr, nullptr, 0, nullptr},
{0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 0, nullptr, nullptr, nullptr, 0, nullptr},
};
uint32_t viewMasks[] = {0x3u, 0u};
VkRenderPassMultiviewCreateInfo rpmvci = {
VK_STRUCTURE_TYPE_RENDER_PASS_MULTIVIEW_CREATE_INFO, nullptr, 1, viewMasks, 0, nullptr, 0, nullptr};
VkRenderPassCreateInfo rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, &rpmvci, 0, 0, nullptr, 2, subpasses, 0, nullptr};
// Not enough view masks
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported, "VUID-VkRenderPassCreateInfo-pNext-01928",
"VUID-VkRenderPassCreateInfo2KHR-viewMask-03058");
}
TEST_F(VkLayerTest, RenderPassCreateInvalidInputAttachmentReferences) {
TEST_DESCRIPTION("Create a subpass with the meta data aspect mask set for an input attachment");
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
if (DeviceExtensionSupported(gpu(), nullptr, VK_KHR_MAINTENANCE2_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_KHR_MAINTENANCE2_EXTENSION_NAME);
} else {
printf("%s Extension %s is not supported.\n", kSkipPrefix, VK_KHR_MAINTENANCE2_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
VkAttachmentDescription attach = {0,
VK_FORMAT_R8G8B8A8_UNORM,
VK_SAMPLE_COUNT_1_BIT,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL};
VkAttachmentReference ref = {0, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL};
VkSubpassDescription subpass = {0, VK_PIPELINE_BIND_POINT_GRAPHICS, 1, &ref, 0, nullptr, nullptr, nullptr, 0, nullptr};
VkInputAttachmentAspectReference iaar = {0, 0, VK_IMAGE_ASPECT_METADATA_BIT};
VkRenderPassInputAttachmentAspectCreateInfo rpiaaci = {VK_STRUCTURE_TYPE_RENDER_PASS_INPUT_ATTACHMENT_ASPECT_CREATE_INFO,
nullptr, 1, &iaar};
VkRenderPassCreateInfo rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, &rpiaaci, 0, 1, &attach, 1, &subpass, 0, nullptr};
// Invalid meta data aspect
m_errorMonitor->SetDesiredFailureMsg(
VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkRenderPassCreateInfo-pNext-01963"); // Cannot/should not avoid getting this one too
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, false, "VUID-VkInputAttachmentAspectReference-aspectMask-01964",
nullptr);
// Aspect not present
iaar.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, false, "VUID-VkRenderPassCreateInfo-pNext-01963", nullptr);
// Invalid subpass index
iaar.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
iaar.subpass = 1;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, false, "VUID-VkRenderPassCreateInfo-pNext-01926", nullptr);
iaar.subpass = 0;
// Invalid input attachment index
iaar.inputAttachmentIndex = 1;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, false, "VUID-VkRenderPassCreateInfo-pNext-01927", nullptr);
}
TEST_F(VkLayerTest, RenderPassCreateInvalidFragmentDensityMapReferences) {
TEST_DESCRIPTION("Create a subpass with the wrong attachment information for a fragment density map ");
// Check for VK_KHR_get_physical_device_properties2
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else {
printf("%s Extension %s is not supported.\n", kSkipPrefix, VK_EXT_FRAGMENT_DENSITY_MAP_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
if (DeviceExtensionSupported(gpu(), nullptr, VK_EXT_FRAGMENT_DENSITY_MAP_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_EXT_FRAGMENT_DENSITY_MAP_EXTENSION_NAME);
} else {
printf("%s Extension %s is not supported.\n", kSkipPrefix, VK_EXT_FRAGMENT_DENSITY_MAP_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
VkAttachmentDescription attach = {0,
VK_FORMAT_R8G8_UNORM,
VK_SAMPLE_COUNT_1_BIT,
VK_ATTACHMENT_LOAD_OP_LOAD,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_FRAGMENT_DENSITY_MAP_OPTIMAL_EXT};
// Set 1 instead of 0
VkAttachmentReference ref = {1, VK_IMAGE_LAYOUT_FRAGMENT_DENSITY_MAP_OPTIMAL_EXT};
VkSubpassDescription subpass = {0, VK_PIPELINE_BIND_POINT_GRAPHICS, 1, &ref, 0, nullptr, nullptr, nullptr, 0, nullptr};
VkRenderPassFragmentDensityMapCreateInfoEXT rpfdmi = {VK_STRUCTURE_TYPE_RENDER_PASS_FRAGMENT_DENSITY_MAP_CREATE_INFO_EXT,
nullptr, ref};
VkRenderPassCreateInfo rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, &rpfdmi, 0, 1, &attach, 1, &subpass, 0, nullptr};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, false,
"VUID-VkRenderPassFragmentDensityMapCreateInfoEXT-fragmentDensityMapAttachment-02547", nullptr);
// Set wrong VkImageLayout
ref = {0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL};
subpass = {0, VK_PIPELINE_BIND_POINT_GRAPHICS, 1, &ref, 0, nullptr, nullptr, nullptr, 0, nullptr};
rpfdmi = {VK_STRUCTURE_TYPE_RENDER_PASS_FRAGMENT_DENSITY_MAP_CREATE_INFO_EXT, nullptr, ref};
rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, &rpfdmi, 0, 1, &attach, 1, &subpass, 0, nullptr};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, false,
"VUID-VkRenderPassFragmentDensityMapCreateInfoEXT-fragmentDensityMapAttachment-02549", nullptr);
// Set wrong load operation
attach = {0,
VK_FORMAT_R8G8_UNORM,
VK_SAMPLE_COUNT_1_BIT,
VK_ATTACHMENT_LOAD_OP_CLEAR,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_FRAGMENT_DENSITY_MAP_OPTIMAL_EXT};
ref = {0, VK_IMAGE_LAYOUT_FRAGMENT_DENSITY_MAP_OPTIMAL_EXT};
subpass = {0, VK_PIPELINE_BIND_POINT_GRAPHICS, 1, &ref, 0, nullptr, nullptr, nullptr, 0, nullptr};
rpfdmi = {VK_STRUCTURE_TYPE_RENDER_PASS_FRAGMENT_DENSITY_MAP_CREATE_INFO_EXT, nullptr, ref};
rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, &rpfdmi, 0, 1, &attach, 1, &subpass, 0, nullptr};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, false,
"VUID-VkRenderPassFragmentDensityMapCreateInfoEXT-fragmentDensityMapAttachment-02550", nullptr);
// Set wrong store operation
attach = {0,
VK_FORMAT_R8G8_UNORM,
VK_SAMPLE_COUNT_1_BIT,
VK_ATTACHMENT_LOAD_OP_LOAD,
VK_ATTACHMENT_STORE_OP_STORE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_FRAGMENT_DENSITY_MAP_OPTIMAL_EXT};
ref = {0, VK_IMAGE_LAYOUT_FRAGMENT_DENSITY_MAP_OPTIMAL_EXT};
subpass = {0, VK_PIPELINE_BIND_POINT_GRAPHICS, 1, &ref, 0, nullptr, nullptr, nullptr, 0, nullptr};
rpfdmi = {VK_STRUCTURE_TYPE_RENDER_PASS_FRAGMENT_DENSITY_MAP_CREATE_INFO_EXT, nullptr, ref};
rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, &rpfdmi, 0, 1, &attach, 1, &subpass, 0, nullptr};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, false,
"VUID-VkRenderPassFragmentDensityMapCreateInfoEXT-fragmentDensityMapAttachment-02551", nullptr);
}
TEST_F(VkLayerTest, RenderPassCreateSubpassNonGraphicsPipeline) {
TEST_DESCRIPTION("Create a subpass with the compute pipeline bind point");
// Check for VK_KHR_get_physical_device_properties2
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
bool rp2Supported = CheckCreateRenderPass2Support(this, m_device_extension_names);
ASSERT_NO_FATAL_FAILURE(InitState());
VkSubpassDescription subpasses[] = {
{0, VK_PIPELINE_BIND_POINT_COMPUTE, 0, nullptr, 0, nullptr, nullptr, nullptr, 0, nullptr},
};
VkRenderPassCreateInfo rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr, 0, 0, nullptr, 1, subpasses, 0, nullptr};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkSubpassDescription-pipelineBindPoint-00844",
"VUID-VkSubpassDescription2KHR-pipelineBindPoint-03062");
}
TEST_F(VkLayerTest, RenderPassCreateSubpassMissingAttributesBitMultiviewNVX) {
TEST_DESCRIPTION("Create a subpass with the VK_SUBPASS_DESCRIPTION_PER_VIEW_ATTRIBUTES_BIT_NVX flag missing");
// Check for VK_KHR_get_physical_device_properties2
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else {
printf("%s Extension %s is not supported.\n", kSkipPrefix, VK_NVX_MULTIVIEW_PER_VIEW_ATTRIBUTES_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
if (DeviceExtensionSupported(gpu(), nullptr, VK_NVX_MULTIVIEW_PER_VIEW_ATTRIBUTES_EXTENSION_NAME) &&
DeviceExtensionSupported(gpu(), nullptr, VK_KHR_MULTIVIEW_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_NVX_MULTIVIEW_PER_VIEW_ATTRIBUTES_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_MULTIVIEW_EXTENSION_NAME);
} else {
printf("%s Extension %s is not supported.\n", kSkipPrefix, VK_NVX_MULTIVIEW_PER_VIEW_ATTRIBUTES_EXTENSION_NAME);
return;
}
bool rp2Supported = CheckCreateRenderPass2Support(this, m_device_extension_names);
ASSERT_NO_FATAL_FAILURE(InitState());
VkSubpassDescription subpasses[] = {
{VK_SUBPASS_DESCRIPTION_PER_VIEW_POSITION_X_ONLY_BIT_NVX, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 0, nullptr, nullptr,
nullptr, 0, nullptr},
};
VkRenderPassCreateInfo rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr, 0, 0, nullptr, 1, subpasses, 0, nullptr};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported, "VUID-VkSubpassDescription-flags-00856",
"VUID-VkSubpassDescription2KHR-flags-03076");
}
TEST_F(VkLayerTest, RenderPassCreate2SubpassInvalidInputAttachmentParameters) {
TEST_DESCRIPTION("Create a subpass with parameters in the input attachment ref which are invalid");
// Check for VK_KHR_get_physical_device_properties2
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else {
printf("%s Extension %s is not supported.\n", kSkipPrefix, VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
bool rp2Supported = CheckCreateRenderPass2Support(this, m_device_extension_names);
if (!rp2Supported) {
printf("%s Extension %s is not supported.\n", kSkipPrefix, VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
VkAttachmentDescription2KHR attach_desc = {};
attach_desc.sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2_KHR;
attach_desc.format = VK_FORMAT_UNDEFINED;
attach_desc.samples = VK_SAMPLE_COUNT_1_BIT;
attach_desc.finalLayout = VK_IMAGE_LAYOUT_GENERAL;
VkAttachmentReference2KHR reference = {};
reference.sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2_KHR;
reference.layout = VK_IMAGE_LAYOUT_GENERAL;
reference.aspectMask = 0;
VkSubpassDescription2KHR subpass = {VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2_KHR,
nullptr,
0,
VK_PIPELINE_BIND_POINT_GRAPHICS,
0,
1,
&reference,
0,
nullptr,
nullptr,
nullptr,
0,
nullptr};
VkRenderPassCreateInfo2KHR rpci2 = {
VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2_KHR, nullptr, 0, 1, &attach_desc, 1, &subpass, 0, nullptr, 0, nullptr};
// Test for aspect mask of 0
TestRenderPass2KHRCreate(m_errorMonitor, m_device->device(), &rpci2, "VUID-VkSubpassDescription2KHR-attachment-02800");
// Test for invalid aspect mask bits
reference.aspectMask = 0x40000000; // invalid VkImageAspectFlagBits value
TestRenderPass2KHRCreate(m_errorMonitor, m_device->device(), &rpci2, "VUID-VkSubpassDescription2KHR-attachment-02799");
}
TEST_F(VkLayerTest, RenderPassCreateInvalidSubpassDependencies) {
// Check for VK_KHR_get_physical_device_properties2
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
bool rp2_supported = CheckCreateRenderPass2Support(this, m_device_extension_names);
bool multiviewSupported = rp2_supported;
if (!rp2_supported && DeviceExtensionSupported(gpu(), nullptr, VK_KHR_MULTIVIEW_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_KHR_MULTIVIEW_EXTENSION_NAME);
multiviewSupported = true;
}
// Add a device features struct enabling NO features
VkPhysicalDeviceFeatures features = {0};
ASSERT_NO_FATAL_FAILURE(InitState(&features));
if (m_device->props.apiVersion >= VK_API_VERSION_1_1) {
multiviewSupported = true;
}
// Create two dummy subpasses
VkSubpassDescription subpasses[] = {
{0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 0, nullptr, nullptr, nullptr, 0, nullptr},
{0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 0, nullptr, nullptr, nullptr, 0, nullptr},
};
VkSubpassDependency dependency;
VkRenderPassCreateInfo rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr, 0, 0, nullptr, 2, subpasses, 1, &dependency};
// Non graphics stages in subpass dependency
dependency = {0, 1, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2_supported,
"VUID-VkRenderPassCreateInfo-pDependencies-00837", "VUID-VkRenderPassCreateInfo2KHR-pDependencies-03054");
dependency = {0, 1, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, 0, 0, 0};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2_supported,
"VUID-VkRenderPassCreateInfo-pDependencies-00837", "VUID-VkRenderPassCreateInfo2KHR-pDependencies-03054");
dependency = {0, 1, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, 0, 0, 0};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2_supported,
"VUID-VkRenderPassCreateInfo-pDependencies-00837", "VUID-VkRenderPassCreateInfo2KHR-pDependencies-03054");
dependency = {0, 1, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2_supported,
"VUID-VkRenderPassCreateInfo-pDependencies-00838", "VUID-VkRenderPassCreateInfo2KHR-pDependencies-03055");
dependency = {0, 1, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0, 0, 0};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2_supported,
"VUID-VkRenderPassCreateInfo-pDependencies-00838", "VUID-VkRenderPassCreateInfo2KHR-pDependencies-03055");
dependency = {0, VK_SUBPASS_EXTERNAL, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0, 0, 0};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2_supported,
"VUID-VkRenderPassCreateInfo-pDependencies-00837", "VUID-VkRenderPassCreateInfo2KHR-pDependencies-03054");
dependency = {VK_SUBPASS_EXTERNAL, 0, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0, 0, 0};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2_supported,
"VUID-VkRenderPassCreateInfo-pDependencies-00838", "VUID-VkRenderPassCreateInfo2KHR-pDependencies-03055");
dependency = {0, 0, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, 0};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2_supported,
"VUID-VkRenderPassCreateInfo-pDependencies-00837", "VUID-VkRenderPassCreateInfo2KHR-pDependencies-03054");
// Geometry shaders not enabled source
dependency = {0, 1, VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, 0};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2_supported, "VUID-VkSubpassDependency-srcStageMask-00860",
"VUID-VkSubpassDependency2KHR-srcStageMask-03080");
// Geometry shaders not enabled destination
dependency = {0, 1, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT, 0, 0, 0};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2_supported, "VUID-VkSubpassDependency-dstStageMask-00861",
"VUID-VkSubpassDependency2KHR-dstStageMask-03081");
// Tessellation not enabled source
dependency = {0, 1, VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, 0};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2_supported, "VUID-VkSubpassDependency-srcStageMask-00862",
"VUID-VkSubpassDependency2KHR-srcStageMask-03082");
// Tessellation not enabled destination
dependency = {0, 1, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT, 0, 0, 0};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2_supported, "VUID-VkSubpassDependency-dstStageMask-00863",
"VUID-VkSubpassDependency2KHR-dstStageMask-03083");
// Potential cyclical dependency
dependency = {1, 0, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, 0};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2_supported, "VUID-VkSubpassDependency-srcSubpass-00864",
"VUID-VkSubpassDependency2KHR-srcSubpass-03084");
// EXTERNAL to EXTERNAL dependency
dependency = {
VK_SUBPASS_EXTERNAL, VK_SUBPASS_EXTERNAL, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, 0};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2_supported, "VUID-VkSubpassDependency-srcSubpass-00865",
"VUID-VkSubpassDependency2KHR-srcSubpass-03085");
// Logically later source stages in self dependency
dependency = {0, 0, VK_PIPELINE_STAGE_VERTEX_SHADER_BIT, VK_PIPELINE_STAGE_VERTEX_INPUT_BIT, 0, 0, 0};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2_supported, "VUID-VkSubpassDependency-srcSubpass-00867",
"VUID-VkSubpassDependency2KHR-srcSubpass-03087");
// Source access mask mismatch with source stage mask
dependency = {0, 1, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, VK_ACCESS_UNIFORM_READ_BIT, 0, 0};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2_supported, "VUID-VkSubpassDependency-srcAccessMask-00868",
"VUID-VkSubpassDependency2KHR-srcAccessMask-03088");
// Destination access mask mismatch with destination stage mask
dependency = {
0, 1, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, 0};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2_supported, "VUID-VkSubpassDependency-dstAccessMask-00869",
"VUID-VkSubpassDependency2KHR-dstAccessMask-03089");
if (multiviewSupported) {
// VIEW_LOCAL_BIT but multiview is not enabled
dependency = {0, 1, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
0, 0, VK_DEPENDENCY_VIEW_LOCAL_BIT};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2_supported, nullptr,
"VUID-VkRenderPassCreateInfo2KHR-viewMask-03059");
// Enable multiview
uint32_t pViewMasks[2] = {0x3u, 0x3u};
int32_t pViewOffsets[2] = {0, 0};
VkRenderPassMultiviewCreateInfo rpmvci = {
VK_STRUCTURE_TYPE_RENDER_PASS_MULTIVIEW_CREATE_INFO, nullptr, 2, pViewMasks, 0, nullptr, 0, nullptr};
rpci.pNext = &rpmvci;
// Excessive view offsets
dependency = {0, 1, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
0, 0, VK_DEPENDENCY_VIEW_LOCAL_BIT};
rpmvci.pViewOffsets = pViewOffsets;
rpmvci.dependencyCount = 2;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, false, "VUID-VkRenderPassCreateInfo-pNext-01929", nullptr);
rpmvci.dependencyCount = 0;
// View offset with subpass self dependency
dependency = {0, 0, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
0, 0, VK_DEPENDENCY_VIEW_LOCAL_BIT};
rpmvci.pViewOffsets = pViewOffsets;
pViewOffsets[0] = 1;
rpmvci.dependencyCount = 1;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, false, "VUID-VkRenderPassCreateInfo-pNext-01930", nullptr);
rpmvci.dependencyCount = 0;
// View offset with no view local bit
if (rp2_supported) {
dependency = {0, VK_SUBPASS_EXTERNAL, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, 0};
rpmvci.pViewOffsets = pViewOffsets;
pViewOffsets[0] = 1;
rpmvci.dependencyCount = 1;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2_supported, nullptr,
"VUID-VkSubpassDependency2KHR-dependencyFlags-03092");
rpmvci.dependencyCount = 0;
}
// EXTERNAL subpass with VIEW_LOCAL_BIT - source subpass
dependency = {VK_SUBPASS_EXTERNAL, 1, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0,
VK_DEPENDENCY_VIEW_LOCAL_BIT};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2_supported,
"VUID-VkSubpassDependency-dependencyFlags-02520",
"VUID-VkSubpassDependency2KHR-dependencyFlags-03090");
// EXTERNAL subpass with VIEW_LOCAL_BIT - destination subpass
dependency = {0, VK_SUBPASS_EXTERNAL, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0,
0, VK_DEPENDENCY_VIEW_LOCAL_BIT};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2_supported,
"VUID-VkSubpassDependency-dependencyFlags-02521",
"VUID-VkSubpassDependency2KHR-dependencyFlags-03091");
// Multiple views but no view local bit in self-dependency
dependency = {0, 0, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, 0};
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2_supported, "VUID-VkSubpassDependency-srcSubpass-00872",
"VUID-VkRenderPassCreateInfo2KHR-pDependencies-03060");
}
}
TEST_F(VkLayerTest, RenderPassCreateInvalidMixedAttachmentSamplesAMD) {
TEST_DESCRIPTION("Verify error messages for supported and unsupported sample counts in render pass attachments.");
// Check for VK_KHR_get_physical_device_properties2
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
if (DeviceExtensionSupported(gpu(), nullptr, VK_AMD_MIXED_ATTACHMENT_SAMPLES_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_AMD_MIXED_ATTACHMENT_SAMPLES_EXTENSION_NAME);
} else {
printf("%s Extension %s is not supported.\n", kSkipPrefix, VK_AMD_MIXED_ATTACHMENT_SAMPLES_EXTENSION_NAME);
return;
}
bool rp2Supported = CheckCreateRenderPass2Support(this, m_device_extension_names);
ASSERT_NO_FATAL_FAILURE(InitState());
std::vector<VkAttachmentDescription> attachments;
{
VkAttachmentDescription att = {};
att.format = VK_FORMAT_R8G8B8A8_UNORM;
att.samples = VK_SAMPLE_COUNT_1_BIT;
att.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
att.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
att.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
att.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
att.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
att.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachments.push_back(att);
att.format = VK_FORMAT_D16_UNORM;
att.samples = VK_SAMPLE_COUNT_4_BIT;
att.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
att.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
att.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
att.stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE;
att.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
att.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attachments.push_back(att);
}
VkAttachmentReference color_ref = {};
color_ref.attachment = 0;
color_ref.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference depth_ref = {};
depth_ref.attachment = 1;
depth_ref.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &color_ref;
subpass.pDepthStencilAttachment = &depth_ref;
VkRenderPassCreateInfo rpci = {};
rpci.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
rpci.attachmentCount = attachments.size();
rpci.pAttachments = attachments.data();
rpci.subpassCount = 1;
rpci.pSubpasses = &subpass;
m_errorMonitor->ExpectSuccess();
VkRenderPass rp;
VkResult err;
err = vk::CreateRenderPass(device(), &rpci, NULL, &rp);
m_errorMonitor->VerifyNotFound();
if (err == VK_SUCCESS) vk::DestroyRenderPass(m_device->device(), rp, nullptr);
// Expect an error message for invalid sample counts
attachments[0].samples = VK_SAMPLE_COUNT_4_BIT;
attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
TestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported,
"VUID-VkSubpassDescription-pColorAttachments-01506",
"VUID-VkSubpassDescription2KHR-pColorAttachments-03070");
}
TEST_F(VkLayerTest, RenderPassBeginInvalidRenderArea) {
TEST_DESCRIPTION("Generate INVALID_RENDER_AREA error by beginning renderpass with extent outside of framebuffer");
// Check for VK_KHR_get_physical_device_properties2
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
bool rp2Supported = CheckCreateRenderPass2Support(this, m_device_extension_names);
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, nullptr, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
// Framebuffer for render target is 256x256, exceed that for INVALID_RENDER_AREA
m_renderPassBeginInfo.renderArea.extent.width = 257;
m_renderPassBeginInfo.renderArea.extent.height = 257;
TestRenderPassBegin(m_errorMonitor, m_device->device(), m_commandBuffer->handle(), &m_renderPassBeginInfo, rp2Supported,
"Cannot execute a render pass with renderArea not within the bound of the framebuffer.",
"Cannot execute a render pass with renderArea not within the bound of the framebuffer.");
}
TEST_F(VkLayerTest, RenderPassBeginWithinRenderPass) {
// Check for VK_KHR_get_physical_device_properties2
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
PFN_vkCmdBeginRenderPass2KHR vkCmdBeginRenderPass2KHR = nullptr;
bool rp2Supported = CheckCreateRenderPass2Support(this, m_device_extension_names);
ASSERT_NO_FATAL_FAILURE(InitState());
if (rp2Supported) {
vkCmdBeginRenderPass2KHR =
(PFN_vkCmdBeginRenderPass2KHR)vk::GetDeviceProcAddr(m_device->device(), "vkCmdBeginRenderPass2KHR");
}
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
// Bind a BeginRenderPass within an active RenderPass
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
// Just use a dummy Renderpass
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBeginRenderPass-renderpass");
vk::CmdBeginRenderPass(m_commandBuffer->handle(), &m_renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
m_errorMonitor->VerifyFound();
if (rp2Supported) {
VkSubpassBeginInfoKHR subpassBeginInfo = {VK_STRUCTURE_TYPE_SUBPASS_BEGIN_INFO_KHR, nullptr, VK_SUBPASS_CONTENTS_INLINE};
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBeginRenderPass2KHR-renderpass");
vkCmdBeginRenderPass2KHR(m_commandBuffer->handle(), &m_renderPassBeginInfo, &subpassBeginInfo);
m_errorMonitor->VerifyFound();
}
}
TEST_F(VkLayerTest, RenderPassBeginIncompatibleFramebufferRenderPass) {
TEST_DESCRIPTION("Test that renderpass begin is compatible with the framebuffer renderpass ");
ASSERT_NO_FATAL_FAILURE(Init(nullptr, nullptr, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT));
// Create a depth stencil image view
VkImageObj image(m_device);
image.Init(128, 128, 1, VK_FORMAT_D16_UNORM, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_IMAGE_TILING_OPTIMAL);
ASSERT_TRUE(image.initialized());
VkImageView dsv;
VkImageViewCreateInfo dsvci = {};
dsvci.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
dsvci.pNext = nullptr;
dsvci.image = image.handle();
dsvci.viewType = VK_IMAGE_VIEW_TYPE_2D;
dsvci.format = VK_FORMAT_D16_UNORM;
dsvci.subresourceRange.layerCount = 1;
dsvci.subresourceRange.baseMipLevel = 0;
dsvci.subresourceRange.levelCount = 1;
dsvci.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
vk::CreateImageView(m_device->device(), &dsvci, NULL, &dsv);
// Create a renderPass with a single attachment that uses loadOp CLEAR
VkAttachmentDescription description = {0,
VK_FORMAT_D16_UNORM,
VK_SAMPLE_COUNT_1_BIT,
VK_ATTACHMENT_LOAD_OP_LOAD,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_CLEAR,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_IMAGE_LAYOUT_GENERAL,
VK_IMAGE_LAYOUT_GENERAL};
VkAttachmentReference depth_stencil_ref = {0, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL};
VkSubpassDescription subpass = {0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 0, nullptr, nullptr, &depth_stencil_ref, 0,
nullptr};
VkRenderPassCreateInfo rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr, 0, 1, &description, 1, &subpass, 0, nullptr};
VkRenderPass rp1, rp2;
vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp1);
subpass.pDepthStencilAttachment = nullptr;
vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp2);
// Create a framebuffer
VkFramebufferCreateInfo fbci = {VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, nullptr, 0, rp1, 1, &dsv, 128, 128, 1};
VkFramebuffer fb;
vk::CreateFramebuffer(m_device->handle(), &fbci, nullptr, &fb);
VkRenderPassBeginInfo rp_begin = {VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, nullptr, rp2, fb, {{0, 0}, {128, 128}}, 0, nullptr};
TestRenderPassBegin(m_errorMonitor, m_device->device(), m_commandBuffer->handle(), &rp_begin, false,
"VUID-VkRenderPassBeginInfo-renderPass-00904", nullptr);
vk::DestroyRenderPass(m_device->device(), rp1, nullptr);
vk::DestroyRenderPass(m_device->device(), rp2, nullptr);
vk::DestroyFramebuffer(m_device->device(), fb, nullptr);
vk::DestroyImageView(m_device->device(), dsv, nullptr);
}
TEST_F(VkLayerTest, RenderPassBeginLayoutsFramebufferImageUsageMismatches) {
TEST_DESCRIPTION(
"Test that renderpass initial/final layouts match up with the usage bits set for each attachment of the framebuffer");
// Check for VK_KHR_get_physical_device_properties2
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
bool rp2Supported = CheckCreateRenderPass2Support(this, m_device_extension_names);
bool maintenance2Supported = rp2Supported;
// Check for VK_KHR_maintenance2
if (!rp2Supported && DeviceExtensionSupported(gpu(), nullptr, VK_KHR_MAINTENANCE2_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_KHR_MAINTENANCE2_EXTENSION_NAME);
maintenance2Supported = true;
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, nullptr, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT));
if (m_device->props.apiVersion >= VK_API_VERSION_1_1) {
maintenance2Supported = true;
}
// Create an input attachment view
VkImageObj iai(m_device);
iai.InitNoLayout(128, 128, 1, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT, VK_IMAGE_TILING_OPTIMAL);
ASSERT_TRUE(iai.initialized());
VkImageView iav;
VkImageViewCreateInfo iavci = {};
iavci.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
iavci.pNext = nullptr;
iavci.image = iai.handle();
iavci.viewType = VK_IMAGE_VIEW_TYPE_2D;
iavci.format = VK_FORMAT_R8G8B8A8_UNORM;
iavci.subresourceRange.layerCount = 1;
iavci.subresourceRange.baseMipLevel = 0;
iavci.subresourceRange.levelCount = 1;
iavci.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
vk::CreateImageView(m_device->device(), &iavci, NULL, &iav);
// Create a color attachment view
VkImageObj cai(m_device);
cai.InitNoLayout(128, 128, 1, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_TILING_OPTIMAL);
ASSERT_TRUE(cai.initialized());
VkImageView cav;
VkImageViewCreateInfo cavci = {};
cavci.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
cavci.pNext = nullptr;
cavci.image = cai.handle();
cavci.viewType = VK_IMAGE_VIEW_TYPE_2D;
cavci.format = VK_FORMAT_R8G8B8A8_UNORM;
cavci.subresourceRange.layerCount = 1;
cavci.subresourceRange.baseMipLevel = 0;
cavci.subresourceRange.levelCount = 1;
cavci.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
vk::CreateImageView(m_device->device(), &cavci, NULL, &cav);
// Create a renderPass with those attachments
VkAttachmentDescription descriptions[] = {
{0, VK_FORMAT_R8G8B8A8_UNORM, VK_SAMPLE_COUNT_1_BIT, VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_CLEAR, VK_ATTACHMENT_STORE_OP_DONT_CARE, VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_GENERAL},
{1, VK_FORMAT_R8G8B8A8_UNORM, VK_SAMPLE_COUNT_1_BIT, VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_CLEAR, VK_ATTACHMENT_STORE_OP_DONT_CARE, VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_GENERAL}};
VkAttachmentReference input_ref = {0, VK_IMAGE_LAYOUT_GENERAL};
VkAttachmentReference color_ref = {1, VK_IMAGE_LAYOUT_GENERAL};
VkSubpassDescription subpass = {0, VK_PIPELINE_BIND_POINT_GRAPHICS, 1, &input_ref, 1, &color_ref, nullptr, nullptr, 0, nullptr};
VkRenderPassCreateInfo rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr, 0, 2, descriptions, 1, &subpass, 0, nullptr};
VkRenderPass rp;
vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp);
// Create a framebuffer
VkImageView views[] = {iav, cav};
VkFramebufferCreateInfo fbci = {VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, nullptr, 0, rp, 2, views, 128, 128, 1};
VkFramebuffer fb;
vk::CreateFramebuffer(m_device->handle(), &fbci, nullptr, &fb);
VkRenderPassBeginInfo rp_begin = {VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, nullptr, rp, fb, {{0, 0}, {128, 128}}, 0, nullptr};
VkRenderPass rp_invalid;
// Initial layout is VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL but attachment doesn't support IMAGE_USAGE_COLOR_ATTACHMENT_BIT
descriptions[0].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp_invalid);
rp_begin.renderPass = rp_invalid;
TestRenderPassBegin(m_errorMonitor, m_device->device(), m_commandBuffer->handle(), &rp_begin, rp2Supported,
"VUID-vkCmdBeginRenderPass-initialLayout-00895", "VUID-vkCmdBeginRenderPass2KHR-initialLayout-03094");
vk::DestroyRenderPass(m_device->handle(), rp_invalid, nullptr);
// Initial layout is VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL but attachment doesn't support VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT
// / VK_IMAGE_USAGE_SAMPLED_BIT
descriptions[0].initialLayout = VK_IMAGE_LAYOUT_GENERAL;
descriptions[1].initialLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp_invalid);
rp_begin.renderPass = rp_invalid;
TestRenderPassBegin(m_errorMonitor, m_device->device(), m_commandBuffer->handle(), &rp_begin, rp2Supported,
"VUID-vkCmdBeginRenderPass-initialLayout-00897", "VUID-vkCmdBeginRenderPass2KHR-initialLayout-03097");
vk::DestroyRenderPass(m_device->handle(), rp_invalid, nullptr);
descriptions[1].initialLayout = VK_IMAGE_LAYOUT_GENERAL;
// Initial layout is VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL but attachment doesn't support VK_IMAGE_USAGE_TRANSFER_SRC_BIT
descriptions[0].initialLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp_invalid);
rp_begin.renderPass = rp_invalid;
TestRenderPassBegin(m_errorMonitor, m_device->device(), m_commandBuffer->handle(), &rp_begin, rp2Supported,
"VUID-vkCmdBeginRenderPass-initialLayout-00898", "VUID-vkCmdBeginRenderPass2KHR-initialLayout-03098");
vk::DestroyRenderPass(m_device->handle(), rp_invalid, nullptr);
// Initial layout is VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL but attachment doesn't support VK_IMAGE_USAGE_TRANSFER_DST_BIT
descriptions[0].initialLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp_invalid);
rp_begin.renderPass = rp_invalid;
TestRenderPassBegin(m_errorMonitor, m_device->device(), m_commandBuffer->handle(), &rp_begin, rp2Supported,
"VUID-vkCmdBeginRenderPass-initialLayout-00899", "VUID-vkCmdBeginRenderPass2KHR-initialLayout-03099");
vk::DestroyRenderPass(m_device->handle(), rp_invalid, nullptr);
// Initial layout is VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL but attachment doesn't support
// VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT
descriptions[0].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp_invalid);
rp_begin.renderPass = rp_invalid;
const char *initial_layout_vuid_rp1 =
maintenance2Supported ? "VUID-vkCmdBeginRenderPass-initialLayout-01758" : "VUID-vkCmdBeginRenderPass-initialLayout-00896";
TestRenderPassBegin(m_errorMonitor, m_device->device(), m_commandBuffer->handle(), &rp_begin, rp2Supported,
initial_layout_vuid_rp1, "VUID-vkCmdBeginRenderPass2KHR-initialLayout-03096");
vk::DestroyRenderPass(m_device->handle(), rp_invalid, nullptr);
// Initial layout is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL but attachment doesn't support
// VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT
descriptions[0].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL;
vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp_invalid);
rp_begin.renderPass = rp_invalid;
TestRenderPassBegin(m_errorMonitor, m_device->device(), m_commandBuffer->handle(), &rp_begin, rp2Supported,
initial_layout_vuid_rp1, "VUID-vkCmdBeginRenderPass2KHR-initialLayout-03096");
vk::DestroyRenderPass(m_device->handle(), rp_invalid, nullptr);
if (maintenance2Supported || rp2Supported) {
// Initial layout is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL but attachment doesn't support
// VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT
descriptions[0].initialLayout = VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL;
vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp_invalid);
rp_begin.renderPass = rp_invalid;
TestRenderPassBegin(m_errorMonitor, m_device->device(), m_commandBuffer->handle(), &rp_begin, rp2Supported,
"VUID-vkCmdBeginRenderPass-initialLayout-01758", "VUID-vkCmdBeginRenderPass2KHR-initialLayout-03096");
vk::DestroyRenderPass(m_device->handle(), rp_invalid, nullptr);
// Initial layout is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL but attachment doesn't support
// VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT
descriptions[0].initialLayout = VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL;
vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp_invalid);
rp_begin.renderPass = rp_invalid;
TestRenderPassBegin(m_errorMonitor, m_device->device(), m_commandBuffer->handle(), &rp_begin, rp2Supported,
"VUID-vkCmdBeginRenderPass-initialLayout-01758", "VUID-vkCmdBeginRenderPass2KHR-initialLayout-03096");
vk::DestroyRenderPass(m_device->handle(), rp_invalid, nullptr);
}
vk::DestroyRenderPass(m_device->device(), rp, nullptr);
vk::DestroyFramebuffer(m_device->device(), fb, nullptr);
vk::DestroyImageView(m_device->device(), iav, nullptr);
vk::DestroyImageView(m_device->device(), cav, nullptr);
}
TEST_F(VkLayerTest, RenderPassBeginClearOpMismatch) {
TEST_DESCRIPTION(
"Begin a renderPass where clearValueCount is less than the number of renderPass attachments that use "
"loadOp VK_ATTACHMENT_LOAD_OP_CLEAR.");
// Check for VK_KHR_get_physical_device_properties2
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
bool rp2Supported = CheckCreateRenderPass2Support(this, m_device_extension_names);
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, nullptr, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
// Create a renderPass with a single attachment that uses loadOp CLEAR
VkAttachmentReference attach = {};
attach.layout = VK_IMAGE_LAYOUT_GENERAL;
VkSubpassDescription subpass = {};
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &attach;
VkRenderPassCreateInfo rpci = {};
rpci.subpassCount = 1;
rpci.pSubpasses = &subpass;
rpci.attachmentCount = 1;
VkAttachmentDescription attach_desc = {};
attach_desc.format = VK_FORMAT_B8G8R8A8_UNORM;
// Set loadOp to CLEAR
attach_desc.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attach_desc.samples = VK_SAMPLE_COUNT_1_BIT;
attach_desc.finalLayout = VK_IMAGE_LAYOUT_GENERAL;
rpci.pAttachments = &attach_desc;
rpci.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
VkRenderPass rp;
vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp);
VkRenderPassBeginInfo rp_begin = {};
rp_begin.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
rp_begin.pNext = NULL;
rp_begin.renderPass = renderPass();
rp_begin.framebuffer = framebuffer();
rp_begin.clearValueCount = 0; // Should be 1
TestRenderPassBegin(m_errorMonitor, m_device->device(), m_commandBuffer->handle(), &rp_begin, rp2Supported,
"VUID-VkRenderPassBeginInfo-clearValueCount-00902", "VUID-VkRenderPassBeginInfo-clearValueCount-00902");
vk::DestroyRenderPass(m_device->device(), rp, NULL);
}
TEST_F(VkLayerTest, RenderPassBeginSampleLocationsInvalidIndicesEXT) {
TEST_DESCRIPTION("Test that attachment indices and subpass indices specifed by sample locations structures are valid");
// Check for VK_KHR_get_physical_device_properties2
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
if (DeviceExtensionSupported(gpu(), nullptr, VK_EXT_SAMPLE_LOCATIONS_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_EXT_SAMPLE_LOCATIONS_EXTENSION_NAME);
} else {
printf("%s Extension %s is not supported.\n", kSkipPrefix, VK_EXT_SAMPLE_LOCATIONS_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, nullptr, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT));
// Create a depth stencil image view
VkImageObj image(m_device);
image.Init(128, 128, 1, VK_FORMAT_D16_UNORM, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_IMAGE_TILING_OPTIMAL);
ASSERT_TRUE(image.initialized());
VkImageView dsv;
VkImageViewCreateInfo dsvci = {};
dsvci.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
dsvci.pNext = nullptr;
dsvci.image = image.handle();
dsvci.viewType = VK_IMAGE_VIEW_TYPE_2D;
dsvci.format = VK_FORMAT_D16_UNORM;
dsvci.subresourceRange.layerCount = 1;
dsvci.subresourceRange.baseMipLevel = 0;
dsvci.subresourceRange.levelCount = 1;
dsvci.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
vk::CreateImageView(m_device->device(), &dsvci, NULL, &dsv);
// Create a renderPass with a single attachment that uses loadOp CLEAR
VkAttachmentDescription description = {0,
VK_FORMAT_D16_UNORM,
VK_SAMPLE_COUNT_1_BIT,
VK_ATTACHMENT_LOAD_OP_LOAD,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_CLEAR,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_IMAGE_LAYOUT_GENERAL,
VK_IMAGE_LAYOUT_GENERAL};
VkAttachmentReference depth_stencil_ref = {0, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL};
VkSubpassDescription subpass = {0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 0, nullptr, nullptr, &depth_stencil_ref, 0,
nullptr};
VkRenderPassCreateInfo rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr, 0, 1, &description, 1, &subpass, 0, nullptr};
VkRenderPass rp;
vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp);
// Create a framebuffer
VkFramebufferCreateInfo fbci = {VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, nullptr, 0, rp, 1, &dsv, 128, 128, 1};
VkFramebuffer fb;
vk::CreateFramebuffer(m_device->handle(), &fbci, nullptr, &fb);
VkSampleLocationEXT sample_location = {0.5, 0.5};
VkSampleLocationsInfoEXT sample_locations_info = {
VK_STRUCTURE_TYPE_SAMPLE_LOCATIONS_INFO_EXT, nullptr, VK_SAMPLE_COUNT_1_BIT, {1, 1}, 1, &sample_location};
VkAttachmentSampleLocationsEXT attachment_sample_locations = {0, sample_locations_info};
VkSubpassSampleLocationsEXT subpass_sample_locations = {0, sample_locations_info};
VkRenderPassSampleLocationsBeginInfoEXT rp_sl_begin = {VK_STRUCTURE_TYPE_RENDER_PASS_SAMPLE_LOCATIONS_BEGIN_INFO_EXT,
nullptr,
1,
&attachment_sample_locations,
1,
&subpass_sample_locations};
VkRenderPassBeginInfo rp_begin = {
VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, &rp_sl_begin, rp, fb, {{0, 0}, {128, 128}}, 0, nullptr};
attachment_sample_locations.attachmentIndex = 1;
TestRenderPassBegin(m_errorMonitor, m_device->device(), m_commandBuffer->handle(), &rp_begin, false,
"VUID-VkAttachmentSampleLocationsEXT-attachmentIndex-01531", nullptr);
attachment_sample_locations.attachmentIndex = 0;
subpass_sample_locations.subpassIndex = 1;
TestRenderPassBegin(m_errorMonitor, m_device->device(), m_commandBuffer->handle(), &rp_begin, false,
"VUID-VkSubpassSampleLocationsEXT-subpassIndex-01532", nullptr);
subpass_sample_locations.subpassIndex = 0;
vk::DestroyRenderPass(m_device->device(), rp, nullptr);
vk::DestroyFramebuffer(m_device->device(), fb, nullptr);
vk::DestroyImageView(m_device->device(), dsv, nullptr);
}
TEST_F(VkLayerTest, RenderPassNextSubpassExcessive) {
TEST_DESCRIPTION("Test that an error is produced when CmdNextSubpass is called too many times in a renderpass instance");
// Check for VK_KHR_get_physical_device_properties2
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
PFN_vkCmdNextSubpass2KHR vkCmdNextSubpass2KHR = nullptr;
bool rp2Supported = CheckCreateRenderPass2Support(this, m_device_extension_names);
ASSERT_NO_FATAL_FAILURE(InitState());
if (rp2Supported) {
vkCmdNextSubpass2KHR = (PFN_vkCmdNextSubpass2KHR)vk::GetDeviceProcAddr(m_device->device(), "vkCmdNextSubpass2KHR");
}
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdNextSubpass-None-00909");
vk::CmdNextSubpass(m_commandBuffer->handle(), VK_SUBPASS_CONTENTS_INLINE);
m_errorMonitor->VerifyFound();
if (rp2Supported) {
VkSubpassBeginInfoKHR subpassBeginInfo = {VK_STRUCTURE_TYPE_SUBPASS_BEGIN_INFO_KHR, nullptr, VK_SUBPASS_CONTENTS_INLINE};
VkSubpassEndInfoKHR subpassEndInfo = {VK_STRUCTURE_TYPE_SUBPASS_END_INFO_KHR, nullptr};
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdNextSubpass2KHR-None-03102");
vkCmdNextSubpass2KHR(m_commandBuffer->handle(), &subpassBeginInfo, &subpassEndInfo);
m_errorMonitor->VerifyFound();
}
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
}
TEST_F(VkLayerTest, RenderPassEndBeforeFinalSubpass) {
TEST_DESCRIPTION("Test that an error is produced when CmdEndRenderPass is called before the final subpass has been reached");
// Check for VK_KHR_get_physical_device_properties2
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
PFN_vkCmdEndRenderPass2KHR vkCmdEndRenderPass2KHR = nullptr;
bool rp2Supported = CheckCreateRenderPass2Support(this, m_device_extension_names);
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, nullptr, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT));
if (rp2Supported) {
vkCmdEndRenderPass2KHR = (PFN_vkCmdEndRenderPass2KHR)vk::GetDeviceProcAddr(m_device->device(), "vkCmdEndRenderPass2KHR");
}
VkSubpassDescription sd[2] = {{0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 0, nullptr, nullptr, nullptr, 0, nullptr},
{0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 0, nullptr, nullptr, nullptr, 0, nullptr}};
VkRenderPassCreateInfo rcpi = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr, 0, 0, nullptr, 2, sd, 0, nullptr};
VkRenderPass rp;
VkResult err = vk::CreateRenderPass(m_device->device(), &rcpi, nullptr, &rp);
ASSERT_VK_SUCCESS(err);
VkFramebufferCreateInfo fbci = {VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, nullptr, 0, rp, 0, nullptr, 16, 16, 1};
VkFramebuffer fb;
err = vk::CreateFramebuffer(m_device->device(), &fbci, nullptr, &fb);
ASSERT_VK_SUCCESS(err);
m_commandBuffer->begin();
VkRenderPassBeginInfo rpbi = {VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, nullptr, rp, fb, {{0, 0}, {16, 16}}, 0, nullptr};
vk::CmdBeginRenderPass(m_commandBuffer->handle(), &rpbi, VK_SUBPASS_CONTENTS_INLINE);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdEndRenderPass-None-00910");
vk::CmdEndRenderPass(m_commandBuffer->handle());
m_errorMonitor->VerifyFound();
if (rp2Supported) {
VkSubpassEndInfoKHR subpassEndInfo = {VK_STRUCTURE_TYPE_SUBPASS_END_INFO_KHR, nullptr};
m_commandBuffer->reset();
m_commandBuffer->begin();
vk::CmdBeginRenderPass(m_commandBuffer->handle(), &rpbi, VK_SUBPASS_CONTENTS_INLINE);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdEndRenderPass2KHR-None-03103");
vkCmdEndRenderPass2KHR(m_commandBuffer->handle(), &subpassEndInfo);
m_errorMonitor->VerifyFound();
}
// Clean up.
vk::DestroyFramebuffer(m_device->device(), fb, nullptr);
vk::DestroyRenderPass(m_device->device(), rp, nullptr);
}
TEST_F(VkLayerTest, RenderPassDestroyWhileInUse) {
TEST_DESCRIPTION("Delete in-use renderPass.");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
// Create simple renderpass
VkAttachmentReference attach = {};
attach.layout = VK_IMAGE_LAYOUT_GENERAL;
VkSubpassDescription subpass = {};
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &attach;
VkRenderPassCreateInfo rpci = {};
rpci.subpassCount = 1;
rpci.pSubpasses = &subpass;
rpci.attachmentCount = 1;
VkAttachmentDescription attach_desc = {};
attach_desc.format = VK_FORMAT_B8G8R8A8_UNORM;
attach_desc.samples = VK_SAMPLE_COUNT_1_BIT;
attach_desc.finalLayout = VK_IMAGE_LAYOUT_GENERAL;
rpci.pAttachments = &attach_desc;
rpci.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
VkRenderPass rp;
VkResult err = vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp);
ASSERT_VK_SUCCESS(err);
m_errorMonitor->ExpectSuccess();
m_commandBuffer->begin();
VkRenderPassBeginInfo rpbi = {};
rpbi.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
rpbi.framebuffer = m_framebuffer;
rpbi.renderPass = rp;
m_commandBuffer->BeginRenderPass(rpbi);
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &m_commandBuffer->handle();
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
m_errorMonitor->VerifyNotFound();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkDestroyRenderPass-renderPass-00873");
vk::DestroyRenderPass(m_device->device(), rp, nullptr);
m_errorMonitor->VerifyFound();
// Wait for queue to complete so we can safely destroy rp
vk::QueueWaitIdle(m_device->m_queue);
m_errorMonitor->SetUnexpectedError("If renderPass is not VK_NULL_HANDLE, renderPass must be a valid VkRenderPass handle");
m_errorMonitor->SetUnexpectedError("Was it created? Has it already been destroyed?");
vk::DestroyRenderPass(m_device->device(), rp, nullptr);
}
TEST_F(VkLayerTest, FramebufferCreateErrors) {
TEST_DESCRIPTION(
"Hit errors when attempting to create a framebuffer :\n"
" 1. Mismatch between framebuffer & renderPass attachmentCount\n"
" 2. Use a color image as depthStencil attachment\n"
" 3. Mismatch framebuffer & renderPass attachment formats\n"
" 4. Mismatch framebuffer & renderPass attachment #samples\n"
" 5. Framebuffer attachment w/ non-1 mip-levels\n"
" 6. Framebuffer attachment where dimensions don't match\n"
" 7. Framebuffer attachment where dimensions don't match\n"
" 8. Framebuffer attachment w/o identity swizzle\n"
" 9. framebuffer dimensions exceed physical device limits\n"
"10. null pAttachments\n");
// Check for VK_KHR_get_physical_device_properties2
bool push_physical_device_properties_2_support =
InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
if (push_physical_device_properties_2_support) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
bool push_fragment_density_support = false;
if (push_physical_device_properties_2_support) {
push_fragment_density_support = DeviceExtensionSupported(gpu(), nullptr, VK_EXT_FRAGMENT_DENSITY_MAP_EXTENSION_NAME);
if (push_fragment_density_support) m_device_extension_names.push_back(VK_EXT_FRAGMENT_DENSITY_MAP_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, nullptr, 0));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkFramebufferCreateInfo-attachmentCount-00876");
// Create a renderPass with a single color attachment
VkAttachmentReference attach = {};
attach.layout = VK_IMAGE_LAYOUT_GENERAL;
VkSubpassDescription subpass = {};
subpass.pColorAttachments = &attach;
VkRenderPassCreateInfo rpci = {};
rpci.subpassCount = 1;
rpci.pSubpasses = &subpass;
rpci.attachmentCount = 1;
VkAttachmentDescription attach_desc = {};
attach_desc.format = VK_FORMAT_B8G8R8A8_UNORM;
attach_desc.samples = VK_SAMPLE_COUNT_1_BIT;
attach_desc.finalLayout = VK_IMAGE_LAYOUT_GENERAL;
rpci.pAttachments = &attach_desc;
rpci.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
VkRenderPass rp;
VkResult err = vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp);
ASSERT_VK_SUCCESS(err);
VkImageView ivs[2];
ivs[0] = m_renderTargets[0]->targetView(VK_FORMAT_B8G8R8A8_UNORM);
ivs[1] = m_renderTargets[0]->targetView(VK_FORMAT_B8G8R8A8_UNORM);
VkFramebufferCreateInfo fb_info = {};
fb_info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fb_info.pNext = NULL;
fb_info.renderPass = rp;
// Set mis-matching attachmentCount
fb_info.attachmentCount = 2;
fb_info.pAttachments = ivs;
fb_info.width = 100;
fb_info.height = 100;
fb_info.layers = 1;
VkFramebuffer fb;
err = vk::CreateFramebuffer(device(), &fb_info, NULL, &fb);
m_errorMonitor->VerifyFound();
if (err == VK_SUCCESS) {
vk::DestroyFramebuffer(m_device->device(), fb, NULL);
}
vk::DestroyRenderPass(m_device->device(), rp, NULL);
// Create a renderPass with a depth-stencil attachment created with
// IMAGE_USAGE_COLOR_ATTACHMENT
// Add our color attachment to pDepthStencilAttachment
subpass.pDepthStencilAttachment = &attach;
subpass.pColorAttachments = NULL;
VkRenderPass rp_ds;
err = vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp_ds);
ASSERT_VK_SUCCESS(err);
// Set correct attachment count, but attachment has COLOR usage bit set
fb_info.attachmentCount = 1;
fb_info.renderPass = rp_ds;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkFramebufferCreateInfo-pAttachments-02633");
err = vk::CreateFramebuffer(device(), &fb_info, NULL, &fb);
m_errorMonitor->VerifyFound();
if (err == VK_SUCCESS) {
vk::DestroyFramebuffer(m_device->device(), fb, NULL);
}
vk::DestroyRenderPass(m_device->device(), rp_ds, NULL);
// Create new renderpass with alternate attachment format from fb
attach_desc.format = VK_FORMAT_R8G8B8A8_UNORM;
subpass.pDepthStencilAttachment = NULL;
subpass.pColorAttachments = &attach;
err = vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp);
ASSERT_VK_SUCCESS(err);
// Cause error due to mis-matched formats between rp & fb
// rp attachment 0 now has RGBA8 but corresponding fb attach is BGRA8
fb_info.renderPass = rp;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkFramebufferCreateInfo-pAttachments-00880");
err = vk::CreateFramebuffer(device(), &fb_info, NULL, &fb);
m_errorMonitor->VerifyFound();
if (err == VK_SUCCESS) {
vk::DestroyFramebuffer(m_device->device(), fb, NULL);
}
vk::DestroyRenderPass(m_device->device(), rp, NULL);
// Create new renderpass with alternate sample count from fb
attach_desc.format = VK_FORMAT_B8G8R8A8_UNORM;
attach_desc.samples = VK_SAMPLE_COUNT_4_BIT;
err = vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp);
ASSERT_VK_SUCCESS(err);
// Cause error due to mis-matched sample count between rp & fb
fb_info.renderPass = rp;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkFramebufferCreateInfo-pAttachments-00881");
err = vk::CreateFramebuffer(device(), &fb_info, NULL, &fb);
m_errorMonitor->VerifyFound();
if (err == VK_SUCCESS) {
vk::DestroyFramebuffer(m_device->device(), fb, NULL);
}
vk::DestroyRenderPass(m_device->device(), rp, NULL);
{
// Create an image with 2 mip levels.
VkImageObj image(m_device);
image.Init(128, 128, 2, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_TILING_OPTIMAL, 0);
ASSERT_TRUE(image.initialized());
// Create a image view with two mip levels.
VkImageView view;
VkImageViewCreateInfo ivci = {};
ivci.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
ivci.image = image.handle();
ivci.viewType = VK_IMAGE_VIEW_TYPE_2D;
ivci.format = VK_FORMAT_B8G8R8A8_UNORM;
ivci.subresourceRange.layerCount = 1;
ivci.subresourceRange.baseMipLevel = 0;
// Set level count to 2 (only 1 is allowed for FB attachment)
ivci.subresourceRange.levelCount = 2;
ivci.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
err = vk::CreateImageView(m_device->device(), &ivci, NULL, &view);
ASSERT_VK_SUCCESS(err);
// Re-create renderpass to have matching sample count
attach_desc.samples = VK_SAMPLE_COUNT_1_BIT;
err = vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp);
ASSERT_VK_SUCCESS(err);
fb_info.renderPass = rp;
fb_info.pAttachments = &view;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkFramebufferCreateInfo-pAttachments-00883");
err = vk::CreateFramebuffer(device(), &fb_info, NULL, &fb);
m_errorMonitor->VerifyFound();
if (err == VK_SUCCESS) {
vk::DestroyFramebuffer(m_device->device(), fb, NULL);
}
vk::DestroyImageView(m_device->device(), view, NULL);
}
// Update view to original color buffer and grow FB dimensions too big
fb_info.pAttachments = ivs;
fb_info.height = 1024;
fb_info.width = 1024;
fb_info.layers = 2;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkFramebufferCreateInfo-pAttachments-00882");
err = vk::CreateFramebuffer(device(), &fb_info, NULL, &fb);
m_errorMonitor->VerifyFound();
if (err == VK_SUCCESS) {
vk::DestroyFramebuffer(m_device->device(), fb, NULL);
}
{
if (!push_fragment_density_support) {
printf("%s VK_EXT_fragment_density_map Extension not supported, skipping tests\n", kSkipPrefix);
} else {
uint32_t attachment_width = 512;
uint32_t attachment_height = 512;
VkFormat attachment_format = VK_FORMAT_R8G8_UNORM;
uint32_t frame_width = 512;
uint32_t frame_height = 512;
// Create a renderPass with a single color attachment for fragment density map
VkAttachmentReference attach_fragment_density_map = {};
attach_fragment_density_map.layout = VK_IMAGE_LAYOUT_GENERAL;
VkSubpassDescription subpass_fragment_density_map = {};
subpass_fragment_density_map.pColorAttachments = &attach_fragment_density_map;
VkRenderPassCreateInfo rpci_fragment_density_map = {};
rpci_fragment_density_map.subpassCount = 1;
rpci_fragment_density_map.pSubpasses = &subpass_fragment_density_map;
rpci_fragment_density_map.attachmentCount = 1;
VkAttachmentDescription attach_desc_fragment_density_map = {};
attach_desc_fragment_density_map.format = attachment_format;
attach_desc_fragment_density_map.samples = VK_SAMPLE_COUNT_1_BIT;
attach_desc_fragment_density_map.finalLayout = VK_IMAGE_LAYOUT_FRAGMENT_DENSITY_MAP_OPTIMAL_EXT;
rpci_fragment_density_map.pAttachments = &attach_desc_fragment_density_map;
rpci_fragment_density_map.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
VkRenderPass rp_fragment_density_map;
err = vk::CreateRenderPass(m_device->device(), &rpci_fragment_density_map, NULL, &rp_fragment_density_map);
ASSERT_VK_SUCCESS(err);
// Create view attachment
VkImageView view_fragment_density_map;
VkImageViewCreateInfo ivci = {};
ivci.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
ivci.viewType = VK_IMAGE_VIEW_TYPE_2D;
ivci.format = attachment_format;
ivci.flags = 0;
ivci.subresourceRange.layerCount = 1;
ivci.subresourceRange.baseMipLevel = 0;
ivci.subresourceRange.levelCount = 1;
ivci.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
VkFramebufferAttachmentImageInfoKHR fb_fdm = {};
fb_fdm.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_ATTACHMENT_IMAGE_INFO_KHR;
fb_fdm.usage = VK_IMAGE_USAGE_FRAGMENT_DENSITY_MAP_BIT_EXT;
fb_fdm.width = frame_width;
fb_fdm.height = frame_height;
fb_fdm.layerCount = 1;
fb_fdm.viewFormatCount = 1;
fb_fdm.pViewFormats = &attachment_format;
VkFramebufferAttachmentsCreateInfoKHR fb_aci_fdm = {};
fb_aci_fdm.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_ATTACHMENTS_CREATE_INFO_KHR;
fb_aci_fdm.attachmentImageInfoCount = 1;
fb_aci_fdm.pAttachmentImageInfos = &fb_fdm;
VkFramebufferCreateInfo fbci = {};
fbci.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fbci.pNext = &fb_aci_fdm;
fbci.flags = 0;
fbci.width = frame_width;
fbci.height = frame_height;
fbci.layers = 1;
fbci.renderPass = rp_fragment_density_map;
fbci.attachmentCount = 1;
fbci.pAttachments = &view_fragment_density_map;
// Set small width
VkImageObj image2(m_device);
image2.Init(16, attachment_height, 1, attachment_format, VK_IMAGE_USAGE_FRAGMENT_DENSITY_MAP_BIT_EXT,
VK_IMAGE_TILING_LINEAR, 0);
ASSERT_TRUE(image2.initialized());
ivci.image = image2.handle();
err = vk::CreateImageView(m_device->device(), &ivci, NULL, &view_fragment_density_map);
ASSERT_VK_SUCCESS(err);
fbci.pAttachments = &view_fragment_density_map;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkFramebufferCreateInfo-pAttachments-02555");
err = vk::CreateFramebuffer(device(), &fbci, NULL, &fb);
m_errorMonitor->VerifyFound();
if (err == VK_SUCCESS) {
vk::DestroyFramebuffer(m_device->device(), fb, NULL);
}
vk::DestroyImageView(m_device->device(), view_fragment_density_map, NULL);
// Set small height
VkImageObj image3(m_device);
image3.Init(attachment_width, 16, 1, attachment_format, VK_IMAGE_USAGE_FRAGMENT_DENSITY_MAP_BIT_EXT,
VK_IMAGE_TILING_LINEAR, 0);
ASSERT_TRUE(image3.initialized());
ivci.image = image3.handle();
err = vk::CreateImageView(m_device->device(), &ivci, NULL, &view_fragment_density_map);
ASSERT_VK_SUCCESS(err);
fbci.pAttachments = &view_fragment_density_map;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkFramebufferCreateInfo-pAttachments-02556");
err = vk::CreateFramebuffer(device(), &fbci, NULL, &fb);
m_errorMonitor->VerifyFound();
if (err == VK_SUCCESS) {
vk::DestroyFramebuffer(m_device->device(), fb, NULL);
}
vk::DestroyImageView(m_device->device(), view_fragment_density_map, NULL);
vk::DestroyRenderPass(m_device->device(), rp_fragment_density_map, NULL);
}
}
{
// Create an image with one mip level.
VkImageObj image(m_device);
image.Init(128, 128, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_TILING_OPTIMAL, 0);
ASSERT_TRUE(image.initialized());
// Create view attachment with non-identity swizzle
VkImageView view;
VkImageViewCreateInfo ivci = {};
ivci.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
ivci.image = image.handle();
ivci.viewType = VK_IMAGE_VIEW_TYPE_2D;
ivci.format = VK_FORMAT_B8G8R8A8_UNORM;
ivci.subresourceRange.layerCount = 1;
ivci.subresourceRange.baseMipLevel = 0;
ivci.subresourceRange.levelCount = 1;
ivci.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
ivci.components.r = VK_COMPONENT_SWIZZLE_G;
ivci.components.g = VK_COMPONENT_SWIZZLE_R;
ivci.components.b = VK_COMPONENT_SWIZZLE_A;
ivci.components.a = VK_COMPONENT_SWIZZLE_B;
err = vk::CreateImageView(m_device->device(), &ivci, NULL, &view);
ASSERT_VK_SUCCESS(err);
fb_info.pAttachments = &view;
fb_info.height = 100;
fb_info.width = 100;
fb_info.layers = 1;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkFramebufferCreateInfo-pAttachments-00884");
err = vk::CreateFramebuffer(device(), &fb_info, NULL, &fb);
m_errorMonitor->VerifyFound();
if (err == VK_SUCCESS) {
vk::DestroyFramebuffer(m_device->device(), fb, NULL);
}
vk::DestroyImageView(m_device->device(), view, NULL);
}
// reset attachment to color attachment
fb_info.pAttachments = ivs;
// Request fb that exceeds max width
fb_info.width = m_device->props.limits.maxFramebufferWidth + 1;
fb_info.height = 100;
fb_info.layers = 1;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkFramebufferCreateInfo-width-00886");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkFramebufferCreateInfo-pAttachments-00882");
err = vk::CreateFramebuffer(device(), &fb_info, NULL, &fb);
m_errorMonitor->VerifyFound();
if (err == VK_SUCCESS) {
vk::DestroyFramebuffer(m_device->device(), fb, NULL);
}
// and width=0
fb_info.width = 0;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkFramebufferCreateInfo-width-00885");
err = vk::CreateFramebuffer(device(), &fb_info, NULL, &fb);
m_errorMonitor->VerifyFound();
if (err == VK_SUCCESS) {
vk::DestroyFramebuffer(m_device->device(), fb, NULL);
}
// Request fb that exceeds max height
fb_info.width = 100;
fb_info.height = m_device->props.limits.maxFramebufferHeight + 1;
fb_info.layers = 1;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkFramebufferCreateInfo-height-00888");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkFramebufferCreateInfo-pAttachments-00882");
err = vk::CreateFramebuffer(device(), &fb_info, NULL, &fb);
m_errorMonitor->VerifyFound();
if (err == VK_SUCCESS) {
vk::DestroyFramebuffer(m_device->device(), fb, NULL);
}
// and height=0
fb_info.height = 0;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkFramebufferCreateInfo-height-00887");
err = vk::CreateFramebuffer(device(), &fb_info, NULL, &fb);
m_errorMonitor->VerifyFound();
if (err == VK_SUCCESS) {
vk::DestroyFramebuffer(m_device->device(), fb, NULL);
}
// Request fb that exceeds max layers
fb_info.width = 100;
fb_info.height = 100;
fb_info.layers = m_device->props.limits.maxFramebufferLayers + 1;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkFramebufferCreateInfo-layers-00890");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkFramebufferCreateInfo-pAttachments-00882");
err = vk::CreateFramebuffer(device(), &fb_info, NULL, &fb);
m_errorMonitor->VerifyFound();
if (err == VK_SUCCESS) {
vk::DestroyFramebuffer(m_device->device(), fb, NULL);
}
// and layers=0
fb_info.layers = 0;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkFramebufferCreateInfo-layers-00889");
err = vk::CreateFramebuffer(device(), &fb_info, NULL, &fb);
m_errorMonitor->VerifyFound();
if (err == VK_SUCCESS) {
vk::DestroyFramebuffer(m_device->device(), fb, NULL);
}
// Try to create with pAttachments = NULL
fb_info.layers = 1;
fb_info.pAttachments = NULL;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID_Undefined");
err = vk::CreateFramebuffer(device(), &fb_info, NULL, &fb);
m_errorMonitor->VerifyFound();
if (err == VK_SUCCESS) {
vk::DestroyFramebuffer(m_device->device(), fb, NULL);
}
vk::DestroyRenderPass(m_device->device(), rp, NULL);
}
TEST_F(VkLayerTest, AllocDescriptorFromEmptyPool) {
TEST_DESCRIPTION("Attempt to allocate more sets and descriptors than descriptor pool has available.");
VkResult err;
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
// This test is valid for Vulkan 1.0 only -- skip if device has an API version greater than 1.0.
if (m_device->props.apiVersion >= VK_API_VERSION_1_1) {
printf("%s Device has apiVersion greater than 1.0 -- skipping Descriptor Set checks.\n", kSkipPrefix);
return;
}
// Create Pool w/ 1 Sampler descriptor, but try to alloc Uniform Buffer
// descriptor from it
VkDescriptorPoolSize ds_type_count = {};
ds_type_count.type = VK_DESCRIPTOR_TYPE_SAMPLER;
ds_type_count.descriptorCount = 2;
VkDescriptorPoolCreateInfo ds_pool_ci = {};
ds_pool_ci.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
ds_pool_ci.pNext = NULL;
ds_pool_ci.flags = 0;
ds_pool_ci.maxSets = 1;
ds_pool_ci.poolSizeCount = 1;
ds_pool_ci.pPoolSizes = &ds_type_count;
VkDescriptorPool ds_pool;
err = vk::CreateDescriptorPool(m_device->device(), &ds_pool_ci, NULL, &ds_pool);
ASSERT_VK_SUCCESS(err);
VkDescriptorSetLayoutBinding dsl_binding_samp = {};
dsl_binding_samp.binding = 0;
dsl_binding_samp.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLER;
dsl_binding_samp.descriptorCount = 1;
dsl_binding_samp.stageFlags = VK_SHADER_STAGE_ALL;
dsl_binding_samp.pImmutableSamplers = NULL;
const VkDescriptorSetLayoutObj ds_layout_samp(m_device, {dsl_binding_samp});
// Try to allocate 2 sets when pool only has 1 set
VkDescriptorSet descriptor_sets[2];
VkDescriptorSetLayout set_layouts[2] = {ds_layout_samp.handle(), ds_layout_samp.handle()};
VkDescriptorSetAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
alloc_info.descriptorSetCount = 2;
alloc_info.descriptorPool = ds_pool;
alloc_info.pSetLayouts = set_layouts;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-VkDescriptorSetAllocateInfo-descriptorSetCount-00306");
err = vk::AllocateDescriptorSets(m_device->device(), &alloc_info, descriptor_sets);
m_errorMonitor->VerifyFound();
alloc_info.descriptorSetCount = 1;
// Create layout w/ descriptor type not available in pool
VkDescriptorSetLayoutBinding dsl_binding = {};
dsl_binding.binding = 0;
dsl_binding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
dsl_binding.descriptorCount = 1;
dsl_binding.stageFlags = VK_SHADER_STAGE_ALL;
dsl_binding.pImmutableSamplers = NULL;
const VkDescriptorSetLayoutObj ds_layout_ub(m_device, {dsl_binding});
VkDescriptorSet descriptor_set;
alloc_info.descriptorSetCount = 1;
alloc_info.pSetLayouts = &ds_layout_ub.handle();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkDescriptorSetAllocateInfo-descriptorPool-00307");
err = vk::AllocateDescriptorSets(m_device->device(), &alloc_info, &descriptor_set);
m_errorMonitor->VerifyFound();
vk::DestroyDescriptorPool(m_device->device(), ds_pool, NULL);
}
TEST_F(VkLayerTest, FreeDescriptorFromOneShotPool) {
VkResult err;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkFreeDescriptorSets-descriptorPool-00312");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
VkDescriptorPoolSize ds_type_count = {};
ds_type_count.type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
ds_type_count.descriptorCount = 1;
VkDescriptorPoolCreateInfo ds_pool_ci = {};
ds_pool_ci.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
ds_pool_ci.pNext = NULL;
ds_pool_ci.maxSets = 1;
ds_pool_ci.poolSizeCount = 1;
ds_pool_ci.flags = 0;
// Not specifying VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT means
// app can only call vk::ResetDescriptorPool on this pool.;
ds_pool_ci.pPoolSizes = &ds_type_count;
VkDescriptorPool ds_pool;
err = vk::CreateDescriptorPool(m_device->device(), &ds_pool_ci, NULL, &ds_pool);
ASSERT_VK_SUCCESS(err);
VkDescriptorSetLayoutBinding dsl_binding = {};
dsl_binding.binding = 0;
dsl_binding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
dsl_binding.descriptorCount = 1;
dsl_binding.stageFlags = VK_SHADER_STAGE_ALL;
dsl_binding.pImmutableSamplers = NULL;
const VkDescriptorSetLayoutObj ds_layout(m_device, {dsl_binding});
VkDescriptorSet descriptorSet;
VkDescriptorSetAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
alloc_info.descriptorSetCount = 1;
alloc_info.descriptorPool = ds_pool;
alloc_info.pSetLayouts = &ds_layout.handle();
err = vk::AllocateDescriptorSets(m_device->device(), &alloc_info, &descriptorSet);
ASSERT_VK_SUCCESS(err);
err = vk::FreeDescriptorSets(m_device->device(), ds_pool, 1, &descriptorSet);
m_errorMonitor->VerifyFound();
vk::DestroyDescriptorPool(m_device->device(), ds_pool, NULL);
}
TEST_F(VkLayerTest, InvalidDescriptorPool) {
// Attempt to clear Descriptor Pool with bad object.
// ObjectTracker should catch this.
ASSERT_NO_FATAL_FAILURE(Init());
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkResetDescriptorPool-descriptorPool-parameter");
uint64_t fake_pool_handle = 0xbaad6001;
VkDescriptorPool bad_pool = reinterpret_cast<VkDescriptorPool &>(fake_pool_handle);
vk::ResetDescriptorPool(device(), bad_pool, 0);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, InvalidDescriptorSet) {
// Attempt to bind an invalid Descriptor Set to a valid Command Buffer
// ObjectTracker should catch this.
// Create a valid cmd buffer
// call vk::CmdBindDescriptorSets w/ false Descriptor Set
uint64_t fake_set_handle = 0xbaad6001;
VkDescriptorSet bad_set = reinterpret_cast<VkDescriptorSet &>(fake_set_handle);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBindDescriptorSets-pDescriptorSets-parameter");
ASSERT_NO_FATAL_FAILURE(Init());
VkDescriptorSetLayoutBinding layout_binding = {};
layout_binding.binding = 0;
layout_binding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
layout_binding.descriptorCount = 1;
layout_binding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
layout_binding.pImmutableSamplers = NULL;
const VkDescriptorSetLayoutObj descriptor_set_layout(m_device, {layout_binding});
const VkPipelineLayoutObj pipeline_layout(DeviceObj(), {&descriptor_set_layout});
m_commandBuffer->begin();
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout.handle(), 0, 1, &bad_set,
0, NULL);
m_errorMonitor->VerifyFound();
m_commandBuffer->end();
}
TEST_F(VkLayerTest, InvalidDescriptorSetLayout) {
// Attempt to create a Pipeline Layout with an invalid Descriptor Set Layout.
// ObjectTracker should catch this.
uint64_t fake_layout_handle = 0xbaad6001;
VkDescriptorSetLayout bad_layout = reinterpret_cast<VkDescriptorSetLayout &>(fake_layout_handle);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkPipelineLayoutCreateInfo-pSetLayouts-parameter");
ASSERT_NO_FATAL_FAILURE(Init());
VkPipelineLayout pipeline_layout;
VkPipelineLayoutCreateInfo plci = {};
plci.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
plci.pNext = NULL;
plci.setLayoutCount = 1;
plci.pSetLayouts = &bad_layout;
vk::CreatePipelineLayout(device(), &plci, NULL, &pipeline_layout);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, WriteDescriptorSetIntegrityCheck) {
TEST_DESCRIPTION(
"This test verifies some requirements of chapter 13.2.3 of the Vulkan Spec "
"1) A uniform buffer update must have a valid buffer index. "
"2) When using an array of descriptors in a single WriteDescriptor, the descriptor types and stageflags "
"must all be the same. "
"3) Immutable Sampler state must match across descriptors. "
"4) That sampled image descriptors have required layouts. ");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkWriteDescriptorSet-descriptorType-00324");
ASSERT_NO_FATAL_FAILURE(Init());
VkSamplerCreateInfo sampler_ci = SafeSaneSamplerCreateInfo();
VkSampler sampler;
VkResult err = vk::CreateSampler(m_device->device(), &sampler_ci, NULL, &sampler);
ASSERT_VK_SUCCESS(err);
OneOffDescriptorSet::Bindings bindings = {
{0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_ALL, NULL},
{1, VK_DESCRIPTOR_TYPE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT, NULL},
{2, VK_DESCRIPTOR_TYPE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT, static_cast<VkSampler *>(&sampler)},
{3, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, 1, VK_SHADER_STAGE_FRAGMENT_BIT, NULL}};
OneOffDescriptorSet descriptor_set(m_device, bindings);
ASSERT_TRUE(descriptor_set.Initialized());
VkWriteDescriptorSet descriptor_write = {};
descriptor_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptor_write.dstSet = descriptor_set.set_;
descriptor_write.dstBinding = 0;
descriptor_write.descriptorCount = 1;
descriptor_write.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
// 1) The uniform buffer is intentionally invalid here
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
m_errorMonitor->VerifyFound();
// Create a buffer to update the descriptor with
uint32_t qfi = 0;
VkBufferCreateInfo buffCI = {};
buffCI.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buffCI.size = 1024;
buffCI.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
buffCI.queueFamilyIndexCount = 1;
buffCI.pQueueFamilyIndices = &qfi;
VkBufferObj dynamic_uniform_buffer;
dynamic_uniform_buffer.init(*m_device, buffCI);
VkDescriptorBufferInfo buffInfo[2] = {};
buffInfo[0].buffer = dynamic_uniform_buffer.handle();
buffInfo[0].offset = 0;
buffInfo[0].range = 1024;
buffInfo[1].buffer = dynamic_uniform_buffer.handle();
buffInfo[1].offset = 0;
buffInfo[1].range = 1024;
descriptor_write.pBufferInfo = buffInfo;
descriptor_write.descriptorCount = 2;
// 2) The stateFlags don't match between the first and second descriptor
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkWriteDescriptorSet-dstArrayElement-00321");
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
m_errorMonitor->VerifyFound();
// 3) The second descriptor has a null_ptr pImmutableSamplers and
// the third descriptor contains an immutable sampler
descriptor_write.dstBinding = 1;
descriptor_write.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLER;
// Make pImageInfo index non-null to avoid complaints of it missing
VkDescriptorImageInfo imageInfo = {};
imageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
descriptor_write.pImageInfo = &imageInfo;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkWriteDescriptorSet-dstArrayElement-00321");
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
m_errorMonitor->VerifyFound();
// 4) That sampled image descriptors have required layouts
// Create images to update the descriptor with
VkImageObj image(m_device);
const VkFormat tex_format = VK_FORMAT_B8G8R8A8_UNORM;
image.Init(32, 32, 1, tex_format, VK_IMAGE_USAGE_SAMPLED_BIT, VK_IMAGE_TILING_OPTIMAL, 0);
ASSERT_TRUE(image.initialized());
// Attmept write with incorrect layout for sampled descriptor
imageInfo.sampler = VK_NULL_HANDLE;
imageInfo.imageView = image.targetView(tex_format);
imageInfo.imageLayout = VK_IMAGE_LAYOUT_UNDEFINED;
descriptor_write.dstBinding = 3;
descriptor_write.descriptorCount = 1;
descriptor_write.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkWriteDescriptorSet-descriptorType-01403");
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
m_errorMonitor->VerifyFound();
vk::DestroySampler(m_device->device(), sampler, NULL);
}
TEST_F(VkLayerTest, WriteDescriptorSetConsecutiveUpdates) {
TEST_DESCRIPTION(
"Verifies that updates rolling over to next descriptor work correctly by destroying buffer from consecutive update known "
"to be used in descriptor set and verifying that error is flagged.");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
OneOffDescriptorSet descriptor_set(m_device, {
{0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, VK_SHADER_STAGE_ALL, nullptr},
{1, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr},
});
uint32_t qfi = 0;
VkBufferCreateInfo bci = {};
bci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bci.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
bci.size = 2048;
bci.queueFamilyIndexCount = 1;
bci.pQueueFamilyIndices = &qfi;
VkBufferObj buffer0;
buffer0.init(*m_device, bci);
CreatePipelineHelper pipe(*this);
{ // Scope 2nd buffer to cause early destruction
VkBufferObj buffer1;
bci.size = 1024;
buffer1.init(*m_device, bci);
VkDescriptorBufferInfo buffer_info[3] = {};
buffer_info[0].buffer = buffer0.handle();
buffer_info[0].offset = 0;
buffer_info[0].range = 1024;
buffer_info[1].buffer = buffer0.handle();
buffer_info[1].offset = 1024;
buffer_info[1].range = 1024;
buffer_info[2].buffer = buffer1.handle();
buffer_info[2].offset = 0;
buffer_info[2].range = 1024;
VkWriteDescriptorSet descriptor_write = {};
descriptor_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptor_write.dstSet = descriptor_set.set_; // descriptor_set;
descriptor_write.dstBinding = 0;
descriptor_write.descriptorCount = 3;
descriptor_write.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
descriptor_write.pBufferInfo = buffer_info;
// Update descriptor
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
// Create PSO that uses the uniform buffers
char const *fsSource =
"#version 450\n"
"\n"
"layout(location=0) out vec4 x;\n"
"layout(set=0) layout(binding=0) uniform foo { int x; int y; } bar;\n"
"layout(set=0) layout(binding=1) uniform blah { int x; } duh;\n"
"void main(){\n"
" x = vec4(duh.x, bar.y, bar.x, 1);\n"
"}\n";
VkShaderObj fs(m_device, fsSource, VK_SHADER_STAGE_FRAGMENT_BIT, this);
pipe.InitInfo();
pipe.shader_stages_ = {pipe.vs_->GetStageCreateInfo(), fs.GetStageCreateInfo()};
const VkDynamicState dyn_states[] = {VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR};
VkPipelineDynamicStateCreateInfo dyn_state_ci = {};
dyn_state_ci.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dyn_state_ci.dynamicStateCount = size(dyn_states);
dyn_state_ci.pDynamicStates = dyn_states;
pipe.dyn_state_ci_ = dyn_state_ci;
pipe.InitState();
pipe.pipeline_layout_ = VkPipelineLayoutObj(m_device, {&descriptor_set.layout_});
pipe.CreateGraphicsPipeline();
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.pipeline_);
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.pipeline_layout_.handle(), 0, 1,
&descriptor_set.set_, 0, nullptr);
VkViewport viewport = {0, 0, 16, 16, 0, 1};
vk::CmdSetViewport(m_commandBuffer->handle(), 0, 1, &viewport);
VkRect2D scissor = {{0, 0}, {16, 16}};
vk::CmdSetScissor(m_commandBuffer->handle(), 0, 1, &scissor);
vk::CmdDraw(m_commandBuffer->handle(), 3, 1, 0, 0);
vk::CmdEndRenderPass(m_commandBuffer->handle());
m_commandBuffer->end();
}
// buffer2 just went out of scope and was destroyed along with its memory
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"UNASSIGNED-CoreValidation-DrawState-InvalidCommandBuffer-VkBuffer");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"UNASSIGNED-CoreValidation-DrawState-InvalidCommandBuffer-VkDeviceMemory");
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &m_commandBuffer->handle();
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, InvalidCmdBufferDescriptorSetBufferDestroyed) {
TEST_DESCRIPTION(
"Attempt to draw with a command buffer that is invalid due to a bound descriptor set with a buffer dependency being "
"destroyed.");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
CreatePipelineHelper pipe(*this);
{
// Create a buffer to update the descriptor with
uint32_t qfi = 0;
VkBufferCreateInfo buffCI = {};
buffCI.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buffCI.size = 1024;
buffCI.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
buffCI.queueFamilyIndexCount = 1;
buffCI.pQueueFamilyIndices = &qfi;
VkBufferObj buffer;
buffer.init(*m_device, buffCI);
// Create PSO to be used for draw-time errors below
char const *fsSource =
"#version 450\n"
"\n"
"layout(location=0) out vec4 x;\n"
"layout(set=0) layout(binding=0) uniform foo { int x; int y; } bar;\n"
"void main(){\n"
" x = vec4(bar.y);\n"
"}\n";
VkShaderObj fs(m_device, fsSource, VK_SHADER_STAGE_FRAGMENT_BIT, this);
pipe.InitInfo();
pipe.shader_stages_ = {pipe.vs_->GetStageCreateInfo(), fs.GetStageCreateInfo()};
const VkDynamicState dyn_states[] = {VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR};
VkPipelineDynamicStateCreateInfo dyn_state_ci = {};
dyn_state_ci.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dyn_state_ci.dynamicStateCount = size(dyn_states);
dyn_state_ci.pDynamicStates = dyn_states;
pipe.dyn_state_ci_ = dyn_state_ci;
pipe.InitState();
pipe.CreateGraphicsPipeline();
// Correctly update descriptor to avoid "NOT_UPDATED" error
pipe.descriptor_set_->WriteDescriptorBufferInfo(0, buffer.handle(), 1024);
pipe.descriptor_set_->UpdateDescriptorSets();
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.pipeline_);
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.pipeline_layout_.handle(), 0, 1,
&pipe.descriptor_set_->set_, 0, NULL);
vk::CmdSetViewport(m_commandBuffer->handle(), 0, 1, &m_viewports[0]);
vk::CmdSetScissor(m_commandBuffer->handle(), 0, 1, &m_scissors[0]);
m_commandBuffer->Draw(1, 0, 0, 0);
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
}
// Destroy buffer should invalidate the cmd buffer, causing error on submit
// Attempt to submit cmd buffer
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &m_commandBuffer->handle();
// Invalid VkBuffe
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "UNASSIGNED-CoreValidation-DrawState-InvalidCommandBuffe");
// Invalid VkDeviceMemory
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, " that is invalid because bound ");
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, InvalidCmdBufferDescriptorSetImageSamplerDestroyed) {
TEST_DESCRIPTION(
"Attempt to draw with a command buffer that is invalid due to a bound descriptor sets with a combined image sampler having "
"their image, sampler, and descriptor set each respectively destroyed and then attempting to submit associated cmd "
"buffers. Attempt to destroy a DescriptorSet that is in use.");
ASSERT_NO_FATAL_FAILURE(Init(nullptr, nullptr, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT));
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
VkDescriptorPoolSize ds_type_count = {};
ds_type_count.type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
ds_type_count.descriptorCount = 1;
VkDescriptorPoolCreateInfo ds_pool_ci = {};
ds_pool_ci.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
ds_pool_ci.pNext = NULL;
ds_pool_ci.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT;
ds_pool_ci.maxSets = 1;
ds_pool_ci.poolSizeCount = 1;
ds_pool_ci.pPoolSizes = &ds_type_count;
VkDescriptorPool ds_pool;
VkResult err = vk::CreateDescriptorPool(m_device->device(), &ds_pool_ci, NULL, &ds_pool);
ASSERT_VK_SUCCESS(err);
VkDescriptorSetLayoutBinding dsl_binding = {};
dsl_binding.binding = 0;
dsl_binding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
dsl_binding.descriptorCount = 1;
dsl_binding.stageFlags = VK_SHADER_STAGE_ALL;
dsl_binding.pImmutableSamplers = NULL;
const VkDescriptorSetLayoutObj ds_layout(m_device, {dsl_binding});
VkDescriptorSet descriptorSet;
VkDescriptorSetAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
alloc_info.descriptorSetCount = 1;
alloc_info.descriptorPool = ds_pool;
alloc_info.pSetLayouts = &ds_layout.handle();
err = vk::AllocateDescriptorSets(m_device->device(), &alloc_info, &descriptorSet);
ASSERT_VK_SUCCESS(err);
const VkPipelineLayoutObj pipeline_layout(m_device, {&ds_layout});
// Create images to update the descriptor with
VkImage image;
VkImage image2;
const VkFormat tex_format = VK_FORMAT_B8G8R8A8_UNORM;
const int32_t tex_width = 32;
const int32_t tex_height = 32;
VkImageCreateInfo image_create_info = {};
image_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_create_info.pNext = NULL;
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = tex_format;
image_create_info.extent.width = tex_width;
image_create_info.extent.height = tex_height;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
image_create_info.flags = 0;
err = vk::CreateImage(m_device->device(), &image_create_info, NULL, &image);
ASSERT_VK_SUCCESS(err);
err = vk::CreateImage(m_device->device(), &image_create_info, NULL, &image2);
ASSERT_VK_SUCCESS(err);
VkMemoryRequirements memory_reqs;
VkDeviceMemory image_memory;
bool pass;
VkMemoryAllocateInfo memory_info = {};
memory_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memory_info.pNext = NULL;
memory_info.allocationSize = 0;
memory_info.memoryTypeIndex = 0;
vk::GetImageMemoryRequirements(m_device->device(), image, &memory_reqs);
// Allocate enough memory for both images
VkDeviceSize align_mod = memory_reqs.size % memory_reqs.alignment;
VkDeviceSize aligned_size = ((align_mod == 0) ? memory_reqs.size : (memory_reqs.size + memory_reqs.alignment - align_mod));
memory_info.allocationSize = aligned_size * 2;
pass = m_device->phy().set_memory_type(memory_reqs.memoryTypeBits, &memory_info, 0);
ASSERT_TRUE(pass);
err = vk::AllocateMemory(m_device->device(), &memory_info, NULL, &image_memory);
ASSERT_VK_SUCCESS(err);
err = vk::BindImageMemory(m_device->device(), image, image_memory, 0);
ASSERT_VK_SUCCESS(err);
// Bind second image to memory right after first image
err = vk::BindImageMemory(m_device->device(), image2, image_memory, aligned_size);
ASSERT_VK_SUCCESS(err);
VkImageViewCreateInfo image_view_create_info = {};
image_view_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
image_view_create_info.image = image;
image_view_create_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
image_view_create_info.format = tex_format;
image_view_create_info.subresourceRange.layerCount = 1;
image_view_create_info.subresourceRange.baseMipLevel = 0;
image_view_create_info.subresourceRange.levelCount = 1;
image_view_create_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
VkImageView tmp_view; // First test deletes this view
VkImageView view;
VkImageView view2;
err = vk::CreateImageView(m_device->device(), &image_view_create_info, NULL, &tmp_view);
ASSERT_VK_SUCCESS(err);
err = vk::CreateImageView(m_device->device(), &image_view_create_info, NULL, &view);
ASSERT_VK_SUCCESS(err);
image_view_create_info.image = image2;
err = vk::CreateImageView(m_device->device(), &image_view_create_info, NULL, &view2);
ASSERT_VK_SUCCESS(err);
// Create Samplers
VkSamplerCreateInfo sampler_ci = SafeSaneSamplerCreateInfo();
VkSampler sampler;
VkSampler sampler2;
err = vk::CreateSampler(m_device->device(), &sampler_ci, NULL, &sampler);
ASSERT_VK_SUCCESS(err);
err = vk::CreateSampler(m_device->device(), &sampler_ci, NULL, &sampler2);
ASSERT_VK_SUCCESS(err);
// Update descriptor with image and sampler
VkDescriptorImageInfo img_info = {};
img_info.sampler = sampler;
img_info.imageView = tmp_view;
img_info.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
VkWriteDescriptorSet descriptor_write;
memset(&descriptor_write, 0, sizeof(descriptor_write));
descriptor_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptor_write.dstSet = descriptorSet;
descriptor_write.dstBinding = 0;
descriptor_write.descriptorCount = 1;
descriptor_write.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
descriptor_write.pImageInfo = &img_info;
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
// Create PSO to be used for draw-time errors below
char const *fsSource =
"#version 450\n"
"\n"
"layout(set=0, binding=0) uniform sampler2D s;\n"
"layout(location=0) out vec4 x;\n"
"void main(){\n"
" x = texture(s, vec2(1));\n"
"}\n";
VkShaderObj vs(m_device, bindStateVertShaderText, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj fs(m_device, fsSource, VK_SHADER_STAGE_FRAGMENT_BIT, this);
VkPipelineObj pipe(m_device);
pipe.AddShader(&vs);
pipe.AddShader(&fs);
pipe.AddDefaultColorAttachment();
pipe.CreateVKPipeline(pipeline_layout.handle(), renderPass());
// First error case is destroying sampler prior to cmd buffer submission
m_commandBuffer->begin();
// Transit image layout from VK_IMAGE_LAYOUT_UNDEFINED into VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL
VkImageMemoryBarrier barrier = {};
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.image = image;
barrier.srcAccessMask = 0;
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
barrier.subresourceRange.baseMipLevel = 0;
barrier.subresourceRange.levelCount = 1;
barrier.subresourceRange.baseArrayLayer = 0;
barrier.subresourceRange.layerCount = 1;
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0,
nullptr, 0, nullptr, 1, &barrier);
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.handle());
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout.handle(), 0, 1,
&descriptorSet, 0, NULL);
VkViewport viewport = {0, 0, 16, 16, 0, 1};
VkRect2D scissor = {{0, 0}, {16, 16}};
vk::CmdSetViewport(m_commandBuffer->handle(), 0, 1, &viewport);
vk::CmdSetScissor(m_commandBuffer->handle(), 0, 1, &scissor);
m_commandBuffer->Draw(1, 0, 0, 0);
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &m_commandBuffer->handle();
// This first submit should be successful
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
vk::QueueWaitIdle(m_device->m_queue);
// Now destroy imageview and reset cmdBuffer
vk::DestroyImageView(m_device->device(), tmp_view, NULL);
m_commandBuffer->reset(0);
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.handle());
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout.handle(), 0, 1,
&descriptorSet, 0, NULL);
vk::CmdSetViewport(m_commandBuffer->handle(), 0, 1, &viewport);
vk::CmdSetScissor(m_commandBuffer->handle(), 0, 1, &scissor);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, " that is invalid or has been destroyed.");
m_commandBuffer->Draw(1, 0, 0, 0);
m_errorMonitor->VerifyFound();
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
// Re-update descriptor with new view
img_info.imageView = view;
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
// Now test destroying sampler prior to cmd buffer submission
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.handle());
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout.handle(), 0, 1,
&descriptorSet, 0, NULL);
vk::CmdSetViewport(m_commandBuffer->handle(), 0, 1, &viewport);
vk::CmdSetScissor(m_commandBuffer->handle(), 0, 1, &scissor);
m_commandBuffer->Draw(1, 0, 0, 0);
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
// Destroy sampler invalidates the cmd buffer, causing error on submit
vk::DestroySampler(m_device->device(), sampler, NULL);
// Attempt to submit cmd buffer
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"UNASSIGNED-CoreValidation-DrawState-InvalidCommandBuffer-VkSampler");
submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &m_commandBuffer->handle();
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
m_errorMonitor->VerifyFound();
// Now re-update descriptor with valid sampler and delete image
img_info.sampler = sampler2;
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
VkCommandBufferBeginInfo info = {};
info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
info.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"UNASSIGNED-CoreValidation-DrawState-InvalidCommandBuffer-VkImage");
m_commandBuffer->begin(&info);
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.handle());
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout.handle(), 0, 1,
&descriptorSet, 0, NULL);
vk::CmdSetViewport(m_commandBuffer->handle(), 0, 1, &viewport);
vk::CmdSetScissor(m_commandBuffer->handle(), 0, 1, &scissor);
m_commandBuffer->Draw(1, 0, 0, 0);
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
// Destroy image invalidates the cmd buffer, causing error on submit
vk::DestroyImage(m_device->device(), image, NULL);
// Attempt to submit cmd buffer
submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &m_commandBuffer->handle();
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
m_errorMonitor->VerifyFound();
// Now update descriptor to be valid, but then free descriptor
img_info.imageView = view2;
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
m_commandBuffer->begin(&info);
// Transit image2 layout from VK_IMAGE_LAYOUT_UNDEFINED into VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL
barrier.image = image2;
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0,
nullptr, 0, nullptr, 1, &barrier);
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.handle());
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout.handle(), 0, 1,
&descriptorSet, 0, NULL);
vk::CmdSetViewport(m_commandBuffer->handle(), 0, 1, &viewport);
vk::CmdSetScissor(m_commandBuffer->handle(), 0, 1, &scissor);
m_commandBuffer->Draw(1, 0, 0, 0);
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
// Immediately try to destroy the descriptor set in the active command buffer - failure expected
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkFreeDescriptorSets-pDescriptorSets-00309");
vk::FreeDescriptorSets(m_device->device(), ds_pool, 1, &descriptorSet);
m_errorMonitor->VerifyFound();
// Try again once the queue is idle - should succeed w/o error
// TODO - though the particular error above doesn't re-occur, there are other 'unexpecteds' still to clean up
vk::QueueWaitIdle(m_device->m_queue);
m_errorMonitor->SetUnexpectedError(
"pDescriptorSets must be a valid pointer to an array of descriptorSetCount VkDescriptorSet handles, each element of which "
"must either be a valid handle or VK_NULL_HANDLE");
m_errorMonitor->SetUnexpectedError("Unable to remove DescriptorSet obj");
vk::FreeDescriptorSets(m_device->device(), ds_pool, 1, &descriptorSet);
// Attempt to submit cmd buffer containing the freed descriptor set
submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &m_commandBuffer->handle();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"UNASSIGNED-CoreValidation-DrawState-InvalidCommandBuffer-VkDescriptorSet");
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
m_errorMonitor->VerifyFound();
// Cleanup
vk::FreeMemory(m_device->device(), image_memory, NULL);
vk::DestroySampler(m_device->device(), sampler2, NULL);
vk::DestroyImage(m_device->device(), image2, NULL);
vk::DestroyImageView(m_device->device(), view, NULL);
vk::DestroyImageView(m_device->device(), view2, NULL);
vk::DestroyDescriptorPool(m_device->device(), ds_pool, NULL);
}
TEST_F(VkLayerTest, InvalidDescriptorSetSamplerDestroyed) {
TEST_DESCRIPTION("Attempt to draw with a bound descriptor sets with a combined image sampler where sampler has been deleted.");
ASSERT_NO_FATAL_FAILURE(Init(nullptr, nullptr, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT));
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
OneOffDescriptorSet descriptor_set(m_device,
{
{0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_ALL, nullptr},
{1, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_ALL, nullptr},
});
const VkPipelineLayoutObj pipeline_layout(m_device, {&descriptor_set.layout_});
// Create images to update the descriptor with
VkImageObj image(m_device);
const VkFormat tex_format = VK_FORMAT_B8G8R8A8_UNORM;
image.Init(32, 32, 1, tex_format, VK_IMAGE_USAGE_SAMPLED_BIT, VK_IMAGE_TILING_OPTIMAL, 0);
ASSERT_TRUE(image.initialized());
VkImageViewCreateInfo image_view_create_info = {};
image_view_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
image_view_create_info.image = image.handle();
image_view_create_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
image_view_create_info.format = tex_format;
image_view_create_info.subresourceRange.layerCount = 1;
image_view_create_info.subresourceRange.baseMipLevel = 0;
image_view_create_info.subresourceRange.levelCount = 1;
image_view_create_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
VkImageView view;
VkResult err = vk::CreateImageView(m_device->device(), &image_view_create_info, NULL, &view);
ASSERT_VK_SUCCESS(err);
// Create Samplers
VkSamplerCreateInfo sampler_ci = SafeSaneSamplerCreateInfo();
VkSampler sampler;
err = vk::CreateSampler(m_device->device(), &sampler_ci, NULL, &sampler);
ASSERT_VK_SUCCESS(err);
VkSampler sampler1;
err = vk::CreateSampler(m_device->device(), &sampler_ci, NULL, &sampler1);
ASSERT_VK_SUCCESS(err);
// Update descriptor with image and sampler
VkDescriptorImageInfo img_info = {};
img_info.sampler = sampler;
img_info.imageView = view;
img_info.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
VkDescriptorImageInfo img_info1 = img_info;
img_info1.sampler = sampler1;
VkWriteDescriptorSet descriptor_write;
memset(&descriptor_write, 0, sizeof(descriptor_write));
descriptor_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptor_write.dstSet = descriptor_set.set_;
descriptor_write.dstBinding = 0;
descriptor_write.descriptorCount = 1;
descriptor_write.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
descriptor_write.pImageInfo = &img_info;
std::array<VkWriteDescriptorSet, 2> descriptor_writes = {descriptor_write, descriptor_write};
descriptor_writes[1].dstBinding = 1;
descriptor_writes[1].pImageInfo = &img_info1;
vk::UpdateDescriptorSets(m_device->device(), 2, descriptor_writes.data(), 0, NULL);
// Destroy the sampler before it's bound to the cmd buffer
vk::DestroySampler(m_device->device(), sampler1, NULL);
// Create PSO to be used for draw-time errors below
char const *fsSource =
"#version 450\n"
"\n"
"layout(set=0, binding=0) uniform sampler2D s;\n"
"layout(set=0, binding=1) uniform sampler2D s1;\n"
"layout(location=0) out vec4 x;\n"
"void main(){\n"
" x = texture(s, vec2(1));\n"
" x = texture(s1, vec2(1));\n"
"}\n";
VkShaderObj vs(m_device, bindStateVertShaderText, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj fs(m_device, fsSource, VK_SHADER_STAGE_FRAGMENT_BIT, this);
VkPipelineObj pipe(m_device);
pipe.AddShader(&vs);
pipe.AddShader(&fs);
pipe.AddDefaultColorAttachment();
pipe.CreateVKPipeline(pipeline_layout.handle(), renderPass());
// First error case is destroying sampler prior to cmd buffer submission
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.handle());
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout.handle(), 0, 1,
&descriptor_set.set_, 0, NULL);
VkViewport viewport = {0, 0, 16, 16, 0, 1};
VkRect2D scissor = {{0, 0}, {16, 16}};
vk::CmdSetViewport(m_commandBuffer->handle(), 0, 1, &viewport);
vk::CmdSetScissor(m_commandBuffer->handle(), 0, 1, &scissor);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, " Descriptor in binding #1 index 0 is using sampler ");
m_commandBuffer->Draw(1, 0, 0, 0);
m_errorMonitor->VerifyFound();
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
vk::DestroySampler(m_device->device(), sampler, NULL);
vk::DestroyImageView(m_device->device(), view, NULL);
}
TEST_F(VkLayerTest, ImageDescriptorLayoutMismatch) {
TEST_DESCRIPTION("Create an image sampler layout->image layout mismatch within/without a command buffer");
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
bool maint2_support = DeviceExtensionSupported(gpu(), nullptr, VK_KHR_MAINTENANCE2_EXTENSION_NAME);
if (maint2_support) {
m_device_extension_names.push_back(VK_KHR_MAINTENANCE2_EXTENSION_NAME);
} else {
printf("%s Relaxed layout matching subtest requires API >= 1.1 or KHR_MAINTENANCE2 extension, unavailable - skipped.\n",
kSkipPrefix);
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, nullptr, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT));
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
OneOffDescriptorSet descriptor_set(m_device,
{
{0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_ALL, nullptr},
});
VkDescriptorSet descriptorSet = descriptor_set.set_;
const VkPipelineLayoutObj pipeline_layout(m_device, {&descriptor_set.layout_});
// Create image, view, and sampler
const VkFormat format = VK_FORMAT_B8G8R8A8_UNORM;
VkImageObj image(m_device);
image.Init(32, 32, 1, format, VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_IMAGE_TILING_OPTIMAL,
0);
ASSERT_TRUE(image.initialized());
vk_testing::ImageView view;
auto image_view_create_info = SafeSaneImageViewCreateInfo(image, format, VK_IMAGE_ASPECT_COLOR_BIT);
view.init(*m_device, image_view_create_info);
ASSERT_TRUE(view.initialized());
// Create Sampler
vk_testing::Sampler sampler;
VkSamplerCreateInfo sampler_ci = SafeSaneSamplerCreateInfo();
sampler.init(*m_device, sampler_ci);
ASSERT_TRUE(sampler.initialized());
// Setup structure for descriptor update with sampler, for update in do_test below
VkDescriptorImageInfo img_info = {};
img_info.sampler = sampler.handle();
VkWriteDescriptorSet descriptor_write;
memset(&descriptor_write, 0, sizeof(descriptor_write));
descriptor_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptor_write.dstSet = descriptorSet;
descriptor_write.dstBinding = 0;
descriptor_write.descriptorCount = 1;
descriptor_write.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
descriptor_write.pImageInfo = &img_info;
// Create PSO to be used for draw-time errors below
VkShaderObj vs(m_device, bindStateVertShaderText, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj fs(m_device, bindStateFragSamplerShaderText, VK_SHADER_STAGE_FRAGMENT_BIT, this);
VkPipelineObj pipe(m_device);
pipe.AddShader(&vs);
pipe.AddShader(&fs);
pipe.AddDefaultColorAttachment();
pipe.CreateVKPipeline(pipeline_layout.handle(), renderPass());
VkViewport viewport = {0, 0, 16, 16, 0, 1};
VkRect2D scissor = {{0, 0}, {16, 16}};
VkCommandBufferObj cmd_buf(m_device, m_commandPool);
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &cmd_buf.handle();
enum TestType {
kInternal, // Image layout mismatch is *within* a given command buffer
kExternal // Image layout mismatch is with the current state of the image, found at QueueSubmit
};
std::array<TestType, 2> test_list = {kInternal, kExternal};
const std::vector<std::string> internal_errors = {"VUID-VkDescriptorImageInfo-imageLayout-00344",
"UNASSIGNED-CoreValidation-DrawState-DescriptorSetNotUpdated"};
const std::vector<std::string> external_errors = {"UNASSIGNED-CoreValidation-DrawState-InvalidImageLayout"};
// Common steps to create the two classes of errors (or two classes of positives)
auto do_test = [&](VkImageObj *image, vk_testing::ImageView *view, VkImageAspectFlags aspect_mask, VkImageLayout image_layout,
VkImageLayout descriptor_layout, const bool positive_test) {
// Set up the descriptor
img_info.imageView = view->handle();
img_info.imageLayout = descriptor_layout;
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
for (TestType test_type : test_list) {
cmd_buf.begin();
// record layout different than actual descriptor layout.
const VkFlags read_write = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT;
auto image_barrier = image->image_memory_barrier(read_write, read_write, VK_IMAGE_LAYOUT_UNDEFINED, image_layout,
image->subresource_range(aspect_mask));
cmd_buf.PipelineBarrier(VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, 0, 0, nullptr, 0,
nullptr, 1, &image_barrier);
if (test_type == kExternal) {
// The image layout is external to the command buffer we are recording to test. Submit to push to instance scope.
cmd_buf.end();
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
vk::QueueWaitIdle(m_device->m_queue);
cmd_buf.begin();
}
cmd_buf.BeginRenderPass(m_renderPassBeginInfo);
vk::CmdBindPipeline(cmd_buf.handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.handle());
vk::CmdBindDescriptorSets(cmd_buf.handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout.handle(), 0, 1,
&descriptorSet, 0, NULL);
vk::CmdSetViewport(cmd_buf.handle(), 0, 1, &viewport);
vk::CmdSetScissor(cmd_buf.handle(), 0, 1, &scissor);
// At draw time the update layout will mis-match the actual layout
if (positive_test || (test_type == kExternal)) {
m_errorMonitor->ExpectSuccess();
} else {
for (const auto &err : internal_errors) {
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, err.c_str());
}
}
cmd_buf.Draw(1, 0, 0, 0);
if (positive_test || (test_type == kExternal)) {
m_errorMonitor->VerifyNotFound();
} else {
m_errorMonitor->VerifyFound();
}
m_errorMonitor->ExpectSuccess();
cmd_buf.EndRenderPass();
cmd_buf.end();
m_errorMonitor->VerifyNotFound();
// Submit cmd buffer
if (positive_test || (test_type == kInternal)) {
m_errorMonitor->ExpectSuccess();
} else {
for (const auto &err : external_errors) {
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, err.c_str());
}
}
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
vk::QueueWaitIdle(m_device->m_queue);
if (positive_test || (test_type == kInternal)) {
m_errorMonitor->VerifyNotFound();
} else {
m_errorMonitor->VerifyFound();
}
}
};
do_test(&image, &view, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, /* positive */ false);
// Create depth stencil image and views
const VkFormat format_ds = m_depth_stencil_fmt = FindSupportedDepthStencilFormat(gpu());
bool ds_test_support = maint2_support && (format_ds != VK_FORMAT_UNDEFINED);
VkImageObj image_ds(m_device);
vk_testing::ImageView stencil_view;
vk_testing::ImageView depth_view;
const VkImageLayout ds_image_layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL;
const VkImageLayout depth_descriptor_layout = VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL;
const VkImageLayout stencil_descriptor_layout = VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL;
const VkImageAspectFlags depth_stencil = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
if (ds_test_support) {
image_ds.Init(32, 32, 1, format_ds, VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
VK_IMAGE_TILING_OPTIMAL, 0);
ASSERT_TRUE(image_ds.initialized());
auto ds_view_ci = SafeSaneImageViewCreateInfo(image_ds, format_ds, VK_IMAGE_ASPECT_DEPTH_BIT);
depth_view.init(*m_device, ds_view_ci);
ds_view_ci.subresourceRange.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
stencil_view.init(*m_device, ds_view_ci);
do_test(&image_ds, &depth_view, depth_stencil, ds_image_layout, depth_descriptor_layout, /* positive */ true);
do_test(&image_ds, &depth_view, depth_stencil, ds_image_layout, VK_IMAGE_LAYOUT_GENERAL, /* positive */ false);
do_test(&image_ds, &stencil_view, depth_stencil, ds_image_layout, stencil_descriptor_layout, /* positive */ true);
do_test(&image_ds, &stencil_view, depth_stencil, ds_image_layout, VK_IMAGE_LAYOUT_GENERAL, /* positive */ false);
}
}
TEST_F(VkLayerTest, DescriptorPoolInUseResetSignaled) {
TEST_DESCRIPTION("Reset a DescriptorPool with a DescriptorSet that is in use.");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
OneOffDescriptorSet descriptor_set(m_device,
{
{0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_ALL, nullptr},
});
const VkPipelineLayoutObj pipeline_layout(m_device, {&descriptor_set.layout_});
// Create image to update the descriptor with
VkImageObj image(m_device);
image.Init(32, 32, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_SAMPLED_BIT, VK_IMAGE_TILING_OPTIMAL, 0);
ASSERT_TRUE(image.initialized());
VkImageView view = image.targetView(VK_FORMAT_B8G8R8A8_UNORM);
// Create Sampler
VkSamplerCreateInfo sampler_ci = SafeSaneSamplerCreateInfo();
VkSampler sampler;
VkResult err = vk::CreateSampler(m_device->device(), &sampler_ci, nullptr, &sampler);
ASSERT_VK_SUCCESS(err);
// Update descriptor with image and sampler
descriptor_set.WriteDescriptorImageInfo(0, view, sampler);
descriptor_set.UpdateDescriptorSets();
// Create PSO to be used for draw-time errors below
VkShaderObj vs(m_device, bindStateVertShaderText, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj fs(m_device, bindStateFragSamplerShaderText, VK_SHADER_STAGE_FRAGMENT_BIT, this);
VkPipelineObj pipe(m_device);
pipe.AddShader(&vs);
pipe.AddShader(&fs);
pipe.AddDefaultColorAttachment();
pipe.CreateVKPipeline(pipeline_layout.handle(), renderPass());
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.handle());
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout.handle(), 0, 1,
&descriptor_set.set_, 0, nullptr);
VkViewport viewport = {0, 0, 16, 16, 0, 1};
VkRect2D scissor = {{0, 0}, {16, 16}};
vk::CmdSetViewport(m_commandBuffer->handle(), 0, 1, &viewport);
vk::CmdSetScissor(m_commandBuffer->handle(), 0, 1, &scissor);
m_commandBuffer->Draw(1, 0, 0, 0);
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
// Submit cmd buffer to put pool in-flight
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &m_commandBuffer->handle();
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
// Reset pool while in-flight, causing error
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkResetDescriptorPool-descriptorPool-00313");
vk::ResetDescriptorPool(m_device->device(), descriptor_set.pool_, 0);
m_errorMonitor->VerifyFound();
vk::QueueWaitIdle(m_device->m_queue);
// Cleanup
vk::DestroySampler(m_device->device(), sampler, nullptr);
m_errorMonitor->SetUnexpectedError(
"If descriptorPool is not VK_NULL_HANDLE, descriptorPool must be a valid VkDescriptorPool handle");
m_errorMonitor->SetUnexpectedError("Unable to remove DescriptorPool obj");
}
TEST_F(VkLayerTest, DescriptorImageUpdateNoMemoryBound) {
TEST_DESCRIPTION("Attempt an image descriptor set update where image's bound memory has been freed.");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
OneOffDescriptorSet descriptor_set(m_device,
{
{0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_ALL, nullptr},
});
// Create images to update the descriptor with
VkImage image;
const VkFormat tex_format = VK_FORMAT_B8G8R8A8_UNORM;
const int32_t tex_width = 32;
const int32_t tex_height = 32;
VkImageCreateInfo image_create_info = {};
image_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_create_info.pNext = NULL;
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = tex_format;
image_create_info.extent.width = tex_width;
image_create_info.extent.height = tex_height;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
image_create_info.flags = 0;
VkResult err = vk::CreateImage(m_device->device(), &image_create_info, NULL, &image);
ASSERT_VK_SUCCESS(err);
// Initially bind memory to avoid error at bind view time. We'll break binding before update.
VkMemoryRequirements memory_reqs;
VkDeviceMemory image_memory;
bool pass;
VkMemoryAllocateInfo memory_info = {};
memory_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memory_info.pNext = NULL;
memory_info.allocationSize = 0;
memory_info.memoryTypeIndex = 0;
vk::GetImageMemoryRequirements(m_device->device(), image, &memory_reqs);
// Allocate enough memory for image
memory_info.allocationSize = memory_reqs.size;
pass = m_device->phy().set_memory_type(memory_reqs.memoryTypeBits, &memory_info, 0);
ASSERT_TRUE(pass);
err = vk::AllocateMemory(m_device->device(), &memory_info, NULL, &image_memory);
ASSERT_VK_SUCCESS(err);
err = vk::BindImageMemory(m_device->device(), image, image_memory, 0);
ASSERT_VK_SUCCESS(err);
VkImageViewCreateInfo image_view_create_info = {};
image_view_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
image_view_create_info.image = image;
image_view_create_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
image_view_create_info.format = tex_format;
image_view_create_info.subresourceRange.layerCount = 1;
image_view_create_info.subresourceRange.baseMipLevel = 0;
image_view_create_info.subresourceRange.levelCount = 1;
image_view_create_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
VkImageView view;
err = vk::CreateImageView(m_device->device(), &image_view_create_info, NULL, &view);
ASSERT_VK_SUCCESS(err);
// Create Samplers
VkSamplerCreateInfo sampler_ci = SafeSaneSamplerCreateInfo();
VkSampler sampler;
err = vk::CreateSampler(m_device->device(), &sampler_ci, NULL, &sampler);
ASSERT_VK_SUCCESS(err);
// Update descriptor with image and sampler
descriptor_set.WriteDescriptorImageInfo(0, view, sampler);
// Break memory binding and attempt update
vk::FreeMemory(m_device->device(), image_memory, nullptr);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
" previously bound memory was freed. Memory must not be freed prior to this operation.");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"vkUpdateDescriptorSets() failed write update validation for ");
descriptor_set.UpdateDescriptorSets();
m_errorMonitor->VerifyFound();
// Cleanup
vk::DestroyImage(m_device->device(), image, NULL);
vk::DestroySampler(m_device->device(), sampler, NULL);
vk::DestroyImageView(m_device->device(), view, NULL);
}
TEST_F(VkLayerTest, InvalidDynamicOffsetCases) {
// Create a descriptorSet w/ dynamic descriptor and then hit 3 offset error
// cases:
// 1. No dynamicOffset supplied
// 2. Too many dynamicOffsets supplied
// 3. Dynamic offset oversteps buffer being updated
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
" requires 1 dynamicOffsets, but only 0 dynamicOffsets are left in pDynamicOffsets ");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
OneOffDescriptorSet descriptor_set(m_device,
{
{0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1, VK_SHADER_STAGE_ALL, nullptr},
});
const VkPipelineLayoutObj pipeline_layout(m_device, {&descriptor_set.layout_});
// Create a buffer to update the descriptor with
uint32_t qfi = 0;
VkBufferCreateInfo buffCI = {};
buffCI.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buffCI.size = 1024;
buffCI.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
buffCI.queueFamilyIndexCount = 1;
buffCI.pQueueFamilyIndices = &qfi;
VkBufferObj dynamic_uniform_buffer;
dynamic_uniform_buffer.init(*m_device, buffCI);
// Correctly update descriptor to avoid "NOT_UPDATED" error
descriptor_set.WriteDescriptorBufferInfo(0, dynamic_uniform_buffer.handle(), 1024, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
descriptor_set.UpdateDescriptorSets();
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout.handle(), 0, 1,
&descriptor_set.set_, 0, NULL);
m_errorMonitor->VerifyFound();
uint32_t pDynOff[2] = {512, 756};
// Now cause error b/c too many dynOffsets in array for # of dyn descriptors
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"Attempting to bind 1 descriptorSets with 1 dynamic descriptors, but ");
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout.handle(), 0, 1,
&descriptor_set.set_, 2, pDynOff);
m_errorMonitor->VerifyFound();
// Finally cause error due to dynamicOffset being too big
m_errorMonitor->SetDesiredFailureMsg(
VK_DEBUG_REPORT_ERROR_BIT_EXT,
" dynamic offset 512 combined with offset 0 and range 1024 that oversteps the buffer size of 1024");
// Create PSO to be used for draw-time errors below
VkShaderObj vs(m_device, bindStateVertShaderText, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj fs(m_device, bindStateFragUniformShaderText, VK_SHADER_STAGE_FRAGMENT_BIT, this);
VkPipelineObj pipe(m_device);
pipe.AddShader(&vs);
pipe.AddShader(&fs);
pipe.AddDefaultColorAttachment();
pipe.CreateVKPipeline(pipeline_layout.handle(), renderPass());
VkViewport viewport = {0, 0, 16, 16, 0, 1};
vk::CmdSetViewport(m_commandBuffer->handle(), 0, 1, &viewport);
VkRect2D scissor = {{0, 0}, {16, 16}};
vk::CmdSetScissor(m_commandBuffer->handle(), 0, 1, &scissor);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.handle());
// This update should succeed, but offset size of 512 will overstep buffer
// /w range 1024 & size 1024
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout.handle(), 0, 1,
&descriptor_set.set_, 1, pDynOff);
m_commandBuffer->Draw(1, 0, 0, 0);
m_errorMonitor->VerifyFound();
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
}
TEST_F(VkLayerTest, DescriptorBufferUpdateNoMemoryBound) {
TEST_DESCRIPTION("Attempt to update a descriptor with a non-sparse buffer that doesn't have memory bound");
VkResult err;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
" used with no memory bound. Memory should be bound by calling vkBindBufferMemory().");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"vkUpdateDescriptorSets() failed write update validation for ");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
OneOffDescriptorSet descriptor_set(m_device,
{
{0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1, VK_SHADER_STAGE_ALL, nullptr},
});
// Create a buffer to update the descriptor with
uint32_t qfi = 0;
VkBufferCreateInfo buffCI = {};
buffCI.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buffCI.size = 1024;
buffCI.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
buffCI.queueFamilyIndexCount = 1;
buffCI.pQueueFamilyIndices = &qfi;
VkBuffer dynamic_uniform_buffer;
err = vk::CreateBuffer(m_device->device(), &buffCI, NULL, &dynamic_uniform_buffer);
ASSERT_VK_SUCCESS(err);
// Attempt to update descriptor without binding memory to it
descriptor_set.WriteDescriptorBufferInfo(0, dynamic_uniform_buffer, 1024, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
descriptor_set.UpdateDescriptorSets();
m_errorMonitor->VerifyFound();
vk::DestroyBuffer(m_device->device(), dynamic_uniform_buffer, NULL);
}
TEST_F(VkLayerTest, DescriptorSetCompatibility) {
// Test various desriptorSet errors with bad binding combinations
using std::vector;
VkResult err;
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
static const uint32_t NUM_DESCRIPTOR_TYPES = 5;
VkDescriptorPoolSize ds_type_count[NUM_DESCRIPTOR_TYPES] = {};
ds_type_count[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
ds_type_count[0].descriptorCount = 10;
ds_type_count[1].type = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE;
ds_type_count[1].descriptorCount = 2;
ds_type_count[2].type = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE;
ds_type_count[2].descriptorCount = 2;
ds_type_count[3].type = VK_DESCRIPTOR_TYPE_SAMPLER;
ds_type_count[3].descriptorCount = 5;
// TODO : LunarG ILO driver currently asserts in desc.c w/ INPUT_ATTACHMENT
// type
// ds_type_count[4].type = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT;
ds_type_count[4].type = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER;
ds_type_count[4].descriptorCount = 2;
VkDescriptorPoolCreateInfo ds_pool_ci = {};
ds_pool_ci.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
ds_pool_ci.pNext = NULL;
ds_pool_ci.maxSets = 5;
ds_pool_ci.poolSizeCount = NUM_DESCRIPTOR_TYPES;
ds_pool_ci.pPoolSizes = ds_type_count;
VkDescriptorPool ds_pool;
err = vk::CreateDescriptorPool(m_device->device(), &ds_pool_ci, NULL, &ds_pool);
ASSERT_VK_SUCCESS(err);
static const uint32_t MAX_DS_TYPES_IN_LAYOUT = 2;
VkDescriptorSetLayoutBinding dsl_binding[MAX_DS_TYPES_IN_LAYOUT] = {};
dsl_binding[0].binding = 0;
dsl_binding[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
dsl_binding[0].descriptorCount = 5;
dsl_binding[0].stageFlags = VK_SHADER_STAGE_ALL;
dsl_binding[0].pImmutableSamplers = NULL;
// Create layout identical to set0 layout but w/ different stageFlags
VkDescriptorSetLayoutBinding dsl_fs_stage_only = {};
dsl_fs_stage_only.binding = 0;
dsl_fs_stage_only.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
dsl_fs_stage_only.descriptorCount = 5;
dsl_fs_stage_only.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; // Different stageFlags to cause error at
// bind time
dsl_fs_stage_only.pImmutableSamplers = NULL;
vector<VkDescriptorSetLayoutObj> ds_layouts;
// Create 4 unique layouts for full pipelineLayout, and 1 special fs-only
// layout for error case
ds_layouts.emplace_back(m_device, std::vector<VkDescriptorSetLayoutBinding>(1, dsl_binding[0]));
const VkDescriptorSetLayoutObj ds_layout_fs_only(m_device, {dsl_fs_stage_only});
dsl_binding[0].binding = 0;
dsl_binding[0].descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE;
dsl_binding[0].descriptorCount = 2;
dsl_binding[1].binding = 1;
dsl_binding[1].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE;
dsl_binding[1].descriptorCount = 2;
dsl_binding[1].stageFlags = VK_SHADER_STAGE_ALL;
dsl_binding[1].pImmutableSamplers = NULL;
ds_layouts.emplace_back(m_device, std::vector<VkDescriptorSetLayoutBinding>({dsl_binding[0], dsl_binding[1]}));
dsl_binding[0].binding = 0;
dsl_binding[0].descriptorType = VK_DESCRIPTOR_TYPE_SAMPLER;
dsl_binding[0].descriptorCount = 5;
ds_layouts.emplace_back(m_device, std::vector<VkDescriptorSetLayoutBinding>(1, dsl_binding[0]));
dsl_binding[0].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER;
dsl_binding[0].descriptorCount = 2;
ds_layouts.emplace_back(m_device, std::vector<VkDescriptorSetLayoutBinding>(1, dsl_binding[0]));
const auto &ds_vk_layouts = MakeVkHandles<VkDescriptorSetLayout>(ds_layouts);
static const uint32_t NUM_SETS = 4;
VkDescriptorSet descriptorSet[NUM_SETS] = {};
VkDescriptorSetAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
alloc_info.descriptorPool = ds_pool;
alloc_info.descriptorSetCount = ds_vk_layouts.size();
alloc_info.pSetLayouts = ds_vk_layouts.data();
err = vk::AllocateDescriptorSets(m_device->device(), &alloc_info, descriptorSet);
ASSERT_VK_SUCCESS(err);
VkDescriptorSet ds0_fs_only = {};
alloc_info.descriptorSetCount = 1;
alloc_info.pSetLayouts = &ds_layout_fs_only.handle();
err = vk::AllocateDescriptorSets(m_device->device(), &alloc_info, &ds0_fs_only);
ASSERT_VK_SUCCESS(err);
const VkPipelineLayoutObj pipeline_layout(m_device, {&ds_layouts[0], &ds_layouts[1]});
// Create pipelineLayout with only one setLayout
const VkPipelineLayoutObj single_pipe_layout(m_device, {&ds_layouts[0]});
// Create pipelineLayout with 2 descriptor setLayout at index 0
const VkPipelineLayoutObj pipe_layout_one_desc(m_device, {&ds_layouts[3]});
// Create pipelineLayout with 5 SAMPLER descriptor setLayout at index 0
const VkPipelineLayoutObj pipe_layout_five_samp(m_device, {&ds_layouts[2]});
// Create pipelineLayout with UB type, but stageFlags for FS only
VkPipelineLayoutObj pipe_layout_fs_only(m_device, {&ds_layout_fs_only});
// Create pipelineLayout w/ incompatible set0 layout, but set1 is fine
const VkPipelineLayoutObj pipe_layout_bad_set0(m_device, {&ds_layout_fs_only, &ds_layouts[1]});
// Add buffer binding for UBO
uint32_t qfi = 0;
VkBufferCreateInfo bci = {};
bci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bci.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
bci.size = 8;
bci.queueFamilyIndexCount = 1;
bci.pQueueFamilyIndices = &qfi;
VkBufferObj buffer;
buffer.init(*m_device, bci);
VkDescriptorBufferInfo buffer_info;
buffer_info.buffer = buffer.handle();
buffer_info.offset = 0;
buffer_info.range = VK_WHOLE_SIZE;
VkWriteDescriptorSet descriptor_write = {};
descriptor_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptor_write.dstSet = descriptorSet[0];
descriptor_write.dstBinding = 0;
descriptor_write.descriptorCount = 1;
descriptor_write.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
descriptor_write.pBufferInfo = &buffer_info;
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
// Create PSO to be used for draw-time errors below
VkShaderObj vs(m_device, bindStateVertShaderText, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj fs(m_device, bindStateFragUniformShaderText, VK_SHADER_STAGE_FRAGMENT_BIT, this);
VkPipelineObj pipe(m_device);
pipe.AddShader(&vs);
pipe.AddShader(&fs);
pipe.AddDefaultColorAttachment();
pipe.CreateVKPipeline(pipe_layout_fs_only.handle(), renderPass());
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.handle());
// TODO : Want to cause various binding incompatibility issues here to test
// DrawState
// First cause various verify_layout_compatibility() fails
// Second disturb early and late sets and verify INFO msgs
// VerifySetLayoutCompatibility fail cases:
// 1. invalid VkPipelineLayout (layout) passed into vk::CmdBindDescriptorSets
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdBindDescriptorSets-layout-parameter");
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS,
CastToHandle<VkPipelineLayout, uintptr_t>(0xbaadb1be), 0, 1, &descriptorSet[0], 0, NULL);
m_errorMonitor->VerifyFound();
// 2. layoutIndex exceeds # of layouts in layout
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, " attempting to bind set to index 1");
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, single_pipe_layout.handle(), 0, 2,
&descriptorSet[0], 0, NULL);
m_errorMonitor->VerifyFound();
// 3. Pipeline setLayout[0] has 2 descriptors, but set being bound has 5
// descriptors
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, " has 2 total descriptors, but ");
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe_layout_one_desc.handle(), 0, 1,
&descriptorSet[0], 0, NULL);
m_errorMonitor->VerifyFound();
// 4. same # of descriptors but mismatch in type
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, " is type 'VK_DESCRIPTOR_TYPE_SAMPLER' but binding ");
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe_layout_five_samp.handle(), 0, 1,
&descriptorSet[0], 0, NULL);
m_errorMonitor->VerifyFound();
// 5. same # of descriptors but mismatch in stageFlags
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
" has stageFlags VK_SHADER_STAGE_FRAGMENT_BIT but binding 0 for ");
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe_layout_fs_only.handle(), 0, 1,
&descriptorSet[0], 0, NULL);
m_errorMonitor->VerifyFound();
// Now that we're done actively using the pipelineLayout that gfx pipeline
// was created with, we should be able to delete it. Do that now to verify
// that validation obeys pipelineLayout lifetime
pipe_layout_fs_only.Reset();
// Cause draw-time errors due to PSO incompatibilities
// 1. Error due to not binding required set (we actually use same code as
// above to disturb set0)
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout.handle(), 0, 2,
&descriptorSet[0], 0, NULL);
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe_layout_bad_set0.handle(), 1, 1,
&descriptorSet[1], 0, NULL);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, " uses set #0 but that set is not bound.");
VkViewport viewport = {0, 0, 16, 16, 0, 1};
VkRect2D scissor = {{0, 0}, {16, 16}};
vk::CmdSetViewport(m_commandBuffer->handle(), 0, 1, &viewport);
vk::CmdSetScissor(m_commandBuffer->handle(), 0, 1, &scissor);
m_commandBuffer->Draw(1, 0, 0, 0);
m_errorMonitor->VerifyFound();
// 2. Error due to bound set not being compatible with PSO's
// VkPipelineLayout (diff stageFlags in this case)
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout.handle(), 0, 2,
&descriptorSet[0], 0, NULL);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, " bound as set #0 is not compatible with ");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdDraw-None-02697");
m_commandBuffer->Draw(1, 0, 0, 0);
m_errorMonitor->VerifyFound();
// Remaining clean-up
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
vk::DestroyDescriptorPool(m_device->device(), ds_pool, NULL);
}
TEST_F(VkLayerTest, NullRenderPass) {
// Bind a NULL RenderPass
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"vkCmdBeginRenderPass: required parameter pRenderPassBegin specified as NULL");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
m_commandBuffer->begin();
// Don't care about RenderPass handle b/c error should be flagged before
// that
vk::CmdBeginRenderPass(m_commandBuffer->handle(), NULL, VK_SUBPASS_CONTENTS_INLINE);
m_errorMonitor->VerifyFound();
m_commandBuffer->end();
}
TEST_F(VkLayerTest, EndCommandBufferWithinRenderPass) {
TEST_DESCRIPTION("End a command buffer with an active render pass");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkEndCommandBuffer-commandBuffer-00060");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
vk::EndCommandBuffer(m_commandBuffer->handle());
m_errorMonitor->VerifyFound();
// End command buffer properly to avoid driver issues. This is safe -- the
// previous vk::EndCommandBuffer should not have reached the driver.
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
// TODO: Add test for VK_COMMAND_BUFFER_LEVEL_SECONDARY
// TODO: Add test for VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT
}
TEST_F(VkLayerTest, DSUsageBitsErrors) {
TEST_DESCRIPTION("Attempt to update descriptor sets for images and buffers that do not have correct usage bits sets.");
ASSERT_NO_FATAL_FAILURE(Init());
const VkFormat buffer_format = VK_FORMAT_R8_UNORM;
VkFormatProperties format_properties;
vk::GetPhysicalDeviceFormatProperties(gpu(), buffer_format, &format_properties);
if (!(format_properties.bufferFeatures & VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT)) {
printf("%s Device does not support VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT for this format; skipped.\n", kSkipPrefix);
return;
}
std::array<VkDescriptorPoolSize, VK_DESCRIPTOR_TYPE_RANGE_SIZE> ds_type_count;
for (uint32_t i = 0; i < ds_type_count.size(); ++i) {
ds_type_count[i].type = VkDescriptorType(i);
ds_type_count[i].descriptorCount = 1;
}
vk_testing::DescriptorPool ds_pool;
ds_pool.init(*m_device, vk_testing::DescriptorPool::create_info(0, VK_DESCRIPTOR_TYPE_RANGE_SIZE, ds_type_count));
ASSERT_TRUE(ds_pool.initialized());
std::vector<VkDescriptorSetLayoutBinding> dsl_bindings(1);
dsl_bindings[0].binding = 0;
dsl_bindings[0].descriptorType = VkDescriptorType(0);
dsl_bindings[0].descriptorCount = 1;
dsl_bindings[0].stageFlags = VK_SHADER_STAGE_ALL;
dsl_bindings[0].pImmutableSamplers = NULL;
// Create arrays of layout and descriptor objects
using UpDescriptorSet = std::unique_ptr<vk_testing::DescriptorSet>;
std::vector<UpDescriptorSet> descriptor_sets;
using UpDescriptorSetLayout = std::unique_ptr<VkDescriptorSetLayoutObj>;
std::vector<UpDescriptorSetLayout> ds_layouts;
descriptor_sets.reserve(VK_DESCRIPTOR_TYPE_RANGE_SIZE);
ds_layouts.reserve(VK_DESCRIPTOR_TYPE_RANGE_SIZE);
for (uint32_t i = 0; i < VK_DESCRIPTOR_TYPE_RANGE_SIZE; ++i) {
dsl_bindings[0].descriptorType = VkDescriptorType(i);
ds_layouts.push_back(UpDescriptorSetLayout(new VkDescriptorSetLayoutObj(m_device, dsl_bindings)));
descriptor_sets.push_back(UpDescriptorSet(ds_pool.alloc_sets(*m_device, *ds_layouts.back())));
ASSERT_TRUE(descriptor_sets.back()->initialized());
}
// Create a buffer & bufferView to be used for invalid updates
const VkDeviceSize buffer_size = 256;
uint8_t data[buffer_size];
VkConstantBufferObj buffer(m_device, buffer_size, data, VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT);
VkConstantBufferObj storage_texel_buffer(m_device, buffer_size, data, VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT);
ASSERT_TRUE(buffer.initialized() && storage_texel_buffer.initialized());
auto buff_view_ci = vk_testing::BufferView::createInfo(buffer.handle(), VK_FORMAT_R8_UNORM);
vk_testing::BufferView buffer_view_obj, storage_texel_buffer_view_obj;
buffer_view_obj.init(*m_device, buff_view_ci);
buff_view_ci.buffer = storage_texel_buffer.handle();
storage_texel_buffer_view_obj.init(*m_device, buff_view_ci);
ASSERT_TRUE(buffer_view_obj.initialized() && storage_texel_buffer_view_obj.initialized());
VkBufferView buffer_view = buffer_view_obj.handle();
VkBufferView storage_texel_buffer_view = storage_texel_buffer_view_obj.handle();
// Create an image to be used for invalid updates
VkImageObj image_obj(m_device);
image_obj.InitNoLayout(64, 64, 1, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_TILING_OPTIMAL, 0);
ASSERT_TRUE(image_obj.initialized());
VkImageView image_view = image_obj.targetView(VK_FORMAT_R8G8B8A8_UNORM);
VkDescriptorBufferInfo buff_info = {};
buff_info.buffer = buffer.handle();
VkDescriptorImageInfo img_info = {};
img_info.imageView = image_view;
VkWriteDescriptorSet descriptor_write = {};
descriptor_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptor_write.dstBinding = 0;
descriptor_write.descriptorCount = 1;
descriptor_write.pTexelBufferView = &buffer_view;
descriptor_write.pBufferInfo = &buff_info;
descriptor_write.pImageInfo = &img_info;
// These error messages align with VkDescriptorType struct
std::string error_codes[] = {
"UNASSIGNED-CoreValidation-DrawState-InvalidImageView", // placeholder, no error for SAMPLER descriptor
"UNASSIGNED-CoreValidation-DrawState-InvalidImageView", // COMBINED_IMAGE_SAMPLER
"UNASSIGNED-CoreValidation-DrawState-InvalidImageView", // SAMPLED_IMAGE
"UNASSIGNED-CoreValidation-DrawState-InvalidImageView", // STORAGE_IMAGE
"VUID-VkWriteDescriptorSet-descriptorType-00334", // UNIFORM_TEXEL_BUFFER
"VUID-VkWriteDescriptorSet-descriptorType-00335", // STORAGE_TEXEL_BUFFER
"VUID-VkWriteDescriptorSet-descriptorType-00330", // UNIFORM_BUFFER
"VUID-VkWriteDescriptorSet-descriptorType-00331", // STORAGE_BUFFER
"VUID-VkWriteDescriptorSet-descriptorType-00330", // UNIFORM_BUFFER_DYNAMIC
"VUID-VkWriteDescriptorSet-descriptorType-00331", // STORAGE_BUFFER_DYNAMIC
"UNASSIGNED-CoreValidation-DrawState-InvalidImageView" // INPUT_ATTACHMENT
};
// Start loop at 1 as SAMPLER desc type has no usage bit error
for (uint32_t i = 1; i < VK_DESCRIPTOR_TYPE_RANGE_SIZE; ++i) {
if (VkDescriptorType(i) == VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER) {
// Now check for UNIFORM_TEXEL_BUFFER using storage_texel_buffer_view
descriptor_write.pTexelBufferView = &storage_texel_buffer_view;
}
descriptor_write.descriptorType = VkDescriptorType(i);
descriptor_write.dstSet = descriptor_sets[i]->handle();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, error_codes[i]);
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
m_errorMonitor->VerifyFound();
if (VkDescriptorType(i) == VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER) {
descriptor_write.pTexelBufferView = &buffer_view;
}
}
}
TEST_F(VkLayerTest, DSBufferInfoErrors) {
TEST_DESCRIPTION(
"Attempt to update buffer descriptor set that has incorrect parameters in VkDescriptorBufferInfo struct. This includes:\n"
"1. offset value greater than or equal to buffer size\n"
"2. range value of 0\n"
"3. range value greater than buffer (size - offset)");
// GPDDP2 needed for push descriptors support below
bool gpdp2_support = InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME,
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_SPEC_VERSION);
if (gpdp2_support) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
bool update_template_support = DeviceExtensionSupported(gpu(), nullptr, VK_KHR_DESCRIPTOR_UPDATE_TEMPLATE_EXTENSION_NAME);
if (update_template_support) {
m_device_extension_names.push_back(VK_KHR_DESCRIPTOR_UPDATE_TEMPLATE_EXTENSION_NAME);
} else {
printf("%s Descriptor Update Template Extensions not supported, template cases skipped.\n", kSkipPrefix);
}
// Note: Includes workaround for some implementations which incorrectly return 0 maxPushDescriptors
bool push_descriptor_support = gpdp2_support &&
DeviceExtensionSupported(gpu(), nullptr, VK_KHR_PUSH_DESCRIPTOR_EXTENSION_NAME) &&
(GetPushDescriptorProperties(instance(), gpu()).maxPushDescriptors > 0);
if (push_descriptor_support) {
m_device_extension_names.push_back(VK_KHR_PUSH_DESCRIPTOR_EXTENSION_NAME);
} else {
printf("%s Push Descriptor Extension not supported, push descriptor cases skipped.\n", kSkipPrefix);
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, nullptr, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT));
std::vector<VkDescriptorSetLayoutBinding> ds_bindings = {
{0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr}};
OneOffDescriptorSet descriptor_set(m_device, ds_bindings);
// Create a buffer to be used for invalid updates
VkBufferCreateInfo buff_ci = {};
buff_ci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buff_ci.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
buff_ci.size = m_device->props.limits.minUniformBufferOffsetAlignment;
buff_ci.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VkBufferObj buffer;
buffer.init(*m_device, buff_ci);
VkDescriptorBufferInfo buff_info = {};
buff_info.buffer = buffer.handle();
VkWriteDescriptorSet descriptor_write = {};
descriptor_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptor_write.dstBinding = 0;
descriptor_write.descriptorCount = 1;
descriptor_write.pTexelBufferView = nullptr;
descriptor_write.pBufferInfo = &buff_info;
descriptor_write.pImageInfo = nullptr;
descriptor_write.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
descriptor_write.dstSet = descriptor_set.set_;
// Relying on the "return nullptr for non-enabled extensions
auto vkCreateDescriptorUpdateTemplateKHR =
(PFN_vkCreateDescriptorUpdateTemplateKHR)vk::GetDeviceProcAddr(m_device->device(), "vkCreateDescriptorUpdateTemplateKHR");
auto vkDestroyDescriptorUpdateTemplateKHR =
(PFN_vkDestroyDescriptorUpdateTemplateKHR)vk::GetDeviceProcAddr(m_device->device(), "vkDestroyDescriptorUpdateTemplateKHR");
auto vkUpdateDescriptorSetWithTemplateKHR =
(PFN_vkUpdateDescriptorSetWithTemplateKHR)vk::GetDeviceProcAddr(m_device->device(), "vkUpdateDescriptorSetWithTemplateKHR");
if (update_template_support) {
ASSERT_NE(vkCreateDescriptorUpdateTemplateKHR, nullptr);
ASSERT_NE(vkDestroyDescriptorUpdateTemplateKHR, nullptr);
ASSERT_NE(vkUpdateDescriptorSetWithTemplateKHR, nullptr);
}
// Setup for update w/ template tests
// Create a template of descriptor set updates
struct SimpleTemplateData {
uint8_t padding[7];
VkDescriptorBufferInfo buff_info;
uint32_t other_padding[4];
};
SimpleTemplateData update_template_data = {};
VkDescriptorUpdateTemplateEntry update_template_entry = {};
update_template_entry.dstBinding = 0;
update_template_entry.dstArrayElement = 0;
update_template_entry.descriptorCount = 1;
update_template_entry.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
update_template_entry.offset = offsetof(SimpleTemplateData, buff_info);
update_template_entry.stride = sizeof(SimpleTemplateData);
auto update_template_ci = lvl_init_struct<VkDescriptorUpdateTemplateCreateInfoKHR>();
update_template_ci.descriptorUpdateEntryCount = 1;
update_template_ci.pDescriptorUpdateEntries = &update_template_entry;
update_template_ci.templateType = VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET;
update_template_ci.descriptorSetLayout = descriptor_set.layout_.handle();
VkDescriptorUpdateTemplate update_template = VK_NULL_HANDLE;
if (update_template_support) {
auto result = vkCreateDescriptorUpdateTemplateKHR(m_device->device(), &update_template_ci, nullptr, &update_template);
ASSERT_VK_SUCCESS(result);
}
// VK_KHR_push_descriptor support
auto vkCmdPushDescriptorSetKHR =
(PFN_vkCmdPushDescriptorSetKHR)vk::GetDeviceProcAddr(m_device->device(), "vkCmdPushDescriptorSetKHR");
auto vkCmdPushDescriptorSetWithTemplateKHR = (PFN_vkCmdPushDescriptorSetWithTemplateKHR)vk::GetDeviceProcAddr(
m_device->device(), "vkCmdPushDescriptorSetWithTemplateKHR");
std::unique_ptr<VkDescriptorSetLayoutObj> push_dsl = nullptr;
std::unique_ptr<VkPipelineLayoutObj> pipeline_layout = nullptr;
VkDescriptorUpdateTemplate push_template = VK_NULL_HANDLE;
if (push_descriptor_support) {
ASSERT_NE(vkCmdPushDescriptorSetKHR, nullptr);
push_dsl.reset(
new VkDescriptorSetLayoutObj(m_device, ds_bindings, VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
pipeline_layout.reset(new VkPipelineLayoutObj(m_device, {push_dsl.get()}));
ASSERT_TRUE(push_dsl->initialized());
if (update_template_support) {
ASSERT_NE(vkCmdPushDescriptorSetWithTemplateKHR, nullptr);
auto push_template_ci = lvl_init_struct<VkDescriptorUpdateTemplateCreateInfoKHR>();
push_template_ci.descriptorUpdateEntryCount = 1;
push_template_ci.pDescriptorUpdateEntries = &update_template_entry;
push_template_ci.templateType = VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR;
push_template_ci.descriptorSetLayout = VK_NULL_HANDLE;
push_template_ci.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
push_template_ci.pipelineLayout = pipeline_layout->handle();
push_template_ci.set = 0;
auto result = vkCreateDescriptorUpdateTemplateKHR(m_device->device(), &push_template_ci, nullptr, &push_template);
ASSERT_VK_SUCCESS(result);
}
}
auto do_test = [&](const char *desired_failure) {
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, desired_failure);
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
m_errorMonitor->VerifyFound();
if (push_descriptor_support) {
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, desired_failure);
m_commandBuffer->begin();
vkCmdPushDescriptorSetKHR(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout->handle(), 0, 1,
&descriptor_write);
m_commandBuffer->end();
m_errorMonitor->VerifyFound();
}
if (update_template_support) {
update_template_data.buff_info = buff_info; // copy the test case information into our "pData"
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, desired_failure);
vkUpdateDescriptorSetWithTemplateKHR(m_device->device(), descriptor_set.set_, update_template, &update_template_data);
m_errorMonitor->VerifyFound();
if (push_descriptor_support) {
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, desired_failure);
m_commandBuffer->begin();
vkCmdPushDescriptorSetWithTemplateKHR(m_commandBuffer->handle(), push_template, pipeline_layout->handle(), 0,
&update_template_data);
m_commandBuffer->end();
m_errorMonitor->VerifyFound();
}
}
};
// Cause error due to offset out of range
buff_info.offset = buff_ci.size;
buff_info.range = VK_WHOLE_SIZE;
do_test("VUID-VkDescriptorBufferInfo-offset-00340");
// Now cause error due to range of 0
buff_info.offset = 0;
buff_info.range = 0;
do_test("VUID-VkDescriptorBufferInfo-range-00341");
// Now cause error due to range exceeding buffer size - offset
buff_info.offset = 0;
buff_info.range = buff_ci.size + 1;
do_test("VUID-VkDescriptorBufferInfo-range-00342");
if (update_template_support) {
vkDestroyDescriptorUpdateTemplateKHR(m_device->device(), update_template, nullptr);
if (push_descriptor_support) {
vkDestroyDescriptorUpdateTemplateKHR(m_device->device(), push_template, nullptr);
}
}
}
TEST_F(VkLayerTest, DSBufferLimitErrors) {
TEST_DESCRIPTION(
"Attempt to update buffer descriptor set that has VkDescriptorBufferInfo values that violate device limits.\n"
"Test cases include:\n"
"1. range of uniform buffer update exceeds maxUniformBufferRange\n"
"2. offset of uniform buffer update is not multiple of minUniformBufferOffsetAlignment\n"
"3. using VK_WHOLE_SIZE with uniform buffer size exceeding maxUniformBufferRange\n"
"4. range of storage buffer update exceeds maxStorageBufferRange\n"
"5. offset of storage buffer update is not multiple of minStorageBufferOffsetAlignment\n"
"6. using VK_WHOLE_SIZE with storage buffer size exceeding maxStorageBufferRange");
ASSERT_NO_FATAL_FAILURE(Init());
struct TestCase {
VkDescriptorType descriptor_type;
VkBufferUsageFlagBits buffer_usage;
VkDeviceSize max_range;
std::string max_range_vu;
VkDeviceSize min_align;
std::string min_align_vu;
};
for (const auto &test_case : {
TestCase({VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
m_device->props.limits.maxUniformBufferRange, "VUID-VkWriteDescriptorSet-descriptorType-00332",
m_device->props.limits.minUniformBufferOffsetAlignment, "VUID-VkWriteDescriptorSet-descriptorType-00327"}),
TestCase({VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT,
m_device->props.limits.maxStorageBufferRange, "VUID-VkWriteDescriptorSet-descriptorType-00333",
m_device->props.limits.minStorageBufferOffsetAlignment, "VUID-VkWriteDescriptorSet-descriptorType-00328"}),
}) {
// Create layout with single buffer
OneOffDescriptorSet descriptor_set(m_device, {
{0, test_case.descriptor_type, 1, VK_SHADER_STAGE_ALL, nullptr},
});
// Create a buffer to be used for invalid updates
VkBufferCreateInfo bci = {};
bci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bci.usage = test_case.buffer_usage;
bci.size = test_case.max_range + test_case.min_align; // Make buffer bigger than range limit
bci.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VkBuffer buffer;
VkResult err = vk::CreateBuffer(m_device->device(), &bci, NULL, &buffer);
ASSERT_VK_SUCCESS(err);
// Have to bind memory to buffer before descriptor update
VkMemoryRequirements mem_reqs;
vk::GetBufferMemoryRequirements(m_device->device(), buffer, &mem_reqs);
VkMemoryAllocateInfo mem_alloc = {};
mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
mem_alloc.pNext = NULL;
mem_alloc.allocationSize = mem_reqs.size;
bool pass = m_device->phy().set_memory_type(mem_reqs.memoryTypeBits, &mem_alloc, 0);
if (!pass) {
printf("%s Failed to allocate memory in DSBufferLimitErrors; skipped.\n", kSkipPrefix);
vk::DestroyBuffer(m_device->device(), buffer, NULL);
continue;
}
VkDeviceMemory mem;
err = vk::AllocateMemory(m_device->device(), &mem_alloc, NULL, &mem);
if (VK_SUCCESS != err) {
printf("%s Failed to allocate memory in DSBufferLimitErrors; skipped.\n", kSkipPrefix);
vk::DestroyBuffer(m_device->device(), buffer, NULL);
continue;
}
err = vk::BindBufferMemory(m_device->device(), buffer, mem, 0);
ASSERT_VK_SUCCESS(err);
VkDescriptorBufferInfo buff_info = {};
buff_info.buffer = buffer;
VkWriteDescriptorSet descriptor_write = {};
descriptor_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptor_write.dstBinding = 0;
descriptor_write.descriptorCount = 1;
descriptor_write.pTexelBufferView = nullptr;
descriptor_write.pBufferInfo = &buff_info;
descriptor_write.pImageInfo = nullptr;
descriptor_write.descriptorType = test_case.descriptor_type;
descriptor_write.dstSet = descriptor_set.set_;
// Exceed range limit
if (test_case.max_range != UINT32_MAX) {
buff_info.range = test_case.max_range + 1;
buff_info.offset = 0;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, test_case.max_range_vu);
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
m_errorMonitor->VerifyFound();
}
// Reduce size of range to acceptable limit and cause offset error
if (test_case.min_align > 1) {
buff_info.range = test_case.max_range;
buff_info.offset = test_case.min_align - 1;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, test_case.min_align_vu);
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
m_errorMonitor->VerifyFound();
}
// Exceed effective range limit by using VK_WHOLE_SIZE
buff_info.range = VK_WHOLE_SIZE;
buff_info.offset = 0;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, test_case.max_range_vu);
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
m_errorMonitor->VerifyFound();
// Cleanup
vk::FreeMemory(m_device->device(), mem, NULL);
vk::DestroyBuffer(m_device->device(), buffer, NULL);
}
}
TEST_F(VkLayerTest, DSAspectBitsErrors) {
// TODO : Initially only catching case where DEPTH & STENCIL aspect bits
// are set, but could expand this test to hit more cases.
TEST_DESCRIPTION("Attempt to update descriptor sets for images that do not have correct aspect bits sets.");
VkResult err;
ASSERT_NO_FATAL_FAILURE(Init());
auto depth_format = FindSupportedDepthStencilFormat(gpu());
if (!depth_format) {
printf("%s No Depth + Stencil format found. Skipped.\n", kSkipPrefix);
return;
}
OneOffDescriptorSet descriptor_set(m_device, {
{0, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 1, VK_SHADER_STAGE_ALL, nullptr},
});
// Create an image to be used for invalid updates
VkImageObj image_obj(m_device);
VkFormatProperties fmt_props;
vk::GetPhysicalDeviceFormatProperties(m_device->phy().handle(), depth_format, &fmt_props);
if (!image_obj.IsCompatible(VK_IMAGE_USAGE_SAMPLED_BIT, fmt_props.linearTilingFeatures) &&
!image_obj.IsCompatible(VK_IMAGE_USAGE_SAMPLED_BIT, fmt_props.optimalTilingFeatures)) {
printf("%s Depth + Stencil format cannot be sampled. Skipped.\n", kSkipPrefix);
return;
}
image_obj.Init(64, 64, 1, depth_format, VK_IMAGE_USAGE_SAMPLED_BIT);
ASSERT_TRUE(image_obj.initialized());
VkImage image = image_obj.image();
// Now create view for image
VkImageViewCreateInfo image_view_ci = {};
image_view_ci.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
image_view_ci.image = image;
image_view_ci.format = depth_format;
image_view_ci.viewType = VK_IMAGE_VIEW_TYPE_2D;
image_view_ci.subresourceRange.layerCount = 1;
image_view_ci.subresourceRange.baseArrayLayer = 0;
image_view_ci.subresourceRange.levelCount = 1;
// Setting both depth & stencil aspect bits is illegal for an imageView used
// to populate a descriptor set.
image_view_ci.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
VkImageView image_view;
err = vk::CreateImageView(m_device->device(), &image_view_ci, NULL, &image_view);
ASSERT_VK_SUCCESS(err);
descriptor_set.WriteDescriptorImageInfo(0, image_view, VK_NULL_HANDLE, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT);
const char *error_msg = "VUID-VkDescriptorImageInfo-imageView-01976";
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, error_msg);
descriptor_set.UpdateDescriptorSets();
m_errorMonitor->VerifyFound();
vk::DestroyImageView(m_device->device(), image_view, NULL);
}
TEST_F(VkLayerTest, DSTypeMismatch) {
// Create DS w/ layout of one type and attempt Update w/ mis-matched type
VkResult err;
m_errorMonitor->SetDesiredFailureMsg(
VK_DEBUG_REPORT_ERROR_BIT_EXT,
" binding #0 with type VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER but update type is VK_DESCRIPTOR_TYPE_SAMPLER");
ASSERT_NO_FATAL_FAILURE(Init());
OneOffDescriptorSet descriptor_set(m_device, {
{0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr},
});
VkSamplerCreateInfo sampler_ci = SafeSaneSamplerCreateInfo();
VkSampler sampler;
err = vk::CreateSampler(m_device->device(), &sampler_ci, NULL, &sampler);
ASSERT_VK_SUCCESS(err);
descriptor_set.WriteDescriptorImageInfo(0, VK_NULL_HANDLE, sampler, VK_DESCRIPTOR_TYPE_SAMPLER);
descriptor_set.UpdateDescriptorSets();
m_errorMonitor->VerifyFound();
vk::DestroySampler(m_device->device(), sampler, NULL);
}
TEST_F(VkLayerTest, DSUpdateOutOfBounds) {
// For overlapping Update, have arrayIndex exceed that of layout
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkWriteDescriptorSet-dstArrayElement-00321");
ASSERT_NO_FATAL_FAILURE(Init());
OneOffDescriptorSet descriptor_set(m_device, {
{0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr},
});
VkBufferTest buffer_test(m_device, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT);
if (!buffer_test.GetBufferCurrent()) {
// Something prevented creation of buffer so abort
printf("%s Buffer creation failed, skipping test\n", kSkipPrefix);
return;
}
// Correctly update descriptor to avoid "NOT_UPDATED" error
VkDescriptorBufferInfo buff_info = {};
buff_info.buffer = buffer_test.GetBuffer();
buff_info.offset = 0;
buff_info.range = 1024;
VkWriteDescriptorSet descriptor_write;
memset(&descriptor_write, 0, sizeof(descriptor_write));
descriptor_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptor_write.dstSet = descriptor_set.set_;
descriptor_write.dstArrayElement = 1; /* This index out of bounds for the update */
descriptor_write.descriptorCount = 1;
descriptor_write.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
descriptor_write.pBufferInfo = &buff_info;
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, InvalidDSUpdateIndex) {
// Create layout w/ count of 1 and attempt update to that layout w/ binding index 2
VkResult err;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkWriteDescriptorSet-dstBinding-00315");
ASSERT_NO_FATAL_FAILURE(Init());
OneOffDescriptorSet descriptor_set(m_device, {
{0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr},
});
VkSamplerCreateInfo sampler_ci = SafeSaneSamplerCreateInfo();
VkSampler sampler;
err = vk::CreateSampler(m_device->device(), &sampler_ci, NULL, &sampler);
ASSERT_VK_SUCCESS(err);
// This is the wrong type, but out of bounds will be flagged first
descriptor_set.WriteDescriptorImageInfo(2, VK_NULL_HANDLE, sampler, VK_DESCRIPTOR_TYPE_SAMPLER);
descriptor_set.UpdateDescriptorSets();
m_errorMonitor->VerifyFound();
vk::DestroySampler(m_device->device(), sampler, NULL);
}
TEST_F(VkLayerTest, DSUpdateEmptyBinding) {
// Create layout w/ empty binding and attempt to update it
VkResult err;
ASSERT_NO_FATAL_FAILURE(Init());
OneOffDescriptorSet descriptor_set(m_device, {
{0, VK_DESCRIPTOR_TYPE_SAMPLER, 0 /* !! */, VK_SHADER_STAGE_ALL, nullptr},
});
VkSamplerCreateInfo sampler_ci = SafeSaneSamplerCreateInfo();
VkSampler sampler;
err = vk::CreateSampler(m_device->device(), &sampler_ci, NULL, &sampler);
ASSERT_VK_SUCCESS(err);
// descriptor_write.descriptorCount = 1, Lie here to avoid parameter_validation error
// This is the wrong type, but empty binding error will be flagged first
descriptor_set.WriteDescriptorImageInfo(0, VK_NULL_HANDLE, sampler, VK_DESCRIPTOR_TYPE_SAMPLER);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkWriteDescriptorSet-dstBinding-00316");
descriptor_set.UpdateDescriptorSets();
m_errorMonitor->VerifyFound();
vk::DestroySampler(m_device->device(), sampler, NULL);
}
TEST_F(VkLayerTest, InvalidDSUpdateStruct) {
// Call UpdateDS w/ struct type other than valid VK_STRUCTUR_TYPE_UPDATE_*
// types
VkResult err;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, ".sType must be VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET");
ASSERT_NO_FATAL_FAILURE(Init());
OneOffDescriptorSet descriptor_set(m_device, {
{0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr},
});
VkSamplerCreateInfo sampler_ci = SafeSaneSamplerCreateInfo();
VkSampler sampler;
err = vk::CreateSampler(m_device->device(), &sampler_ci, NULL, &sampler);
ASSERT_VK_SUCCESS(err);
VkDescriptorImageInfo info = {};
info.sampler = sampler;
VkWriteDescriptorSet descriptor_write;
memset(&descriptor_write, 0, sizeof(descriptor_write));
descriptor_write.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; /* Intentionally broken struct type */
descriptor_write.dstSet = descriptor_set.set_;
descriptor_write.descriptorCount = 1;
// This is the wrong type, but out of bounds will be flagged first
descriptor_write.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLER;
descriptor_write.pImageInfo = &info;
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
m_errorMonitor->VerifyFound();
vk::DestroySampler(m_device->device(), sampler, NULL);
}
TEST_F(VkLayerTest, SampleDescriptorUpdateError) {
// Create a single Sampler descriptor and send it an invalid Sampler
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkWriteDescriptorSet-descriptorType-00325");
ASSERT_NO_FATAL_FAILURE(Init());
OneOffDescriptorSet descriptor_set(m_device, {
{0, VK_DESCRIPTOR_TYPE_SAMPLER, 1, VK_SHADER_STAGE_ALL, nullptr},
});
VkSampler sampler = CastToHandle<VkSampler, uintptr_t>(0xbaadbeef); // Sampler with invalid handle
descriptor_set.WriteDescriptorImageInfo(0, VK_NULL_HANDLE, sampler, VK_DESCRIPTOR_TYPE_SAMPLER);
descriptor_set.UpdateDescriptorSets();
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, ImageViewDescriptorUpdateError) {
// Create a single combined Image/Sampler descriptor and send it an invalid
// imageView
VkResult err;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkWriteDescriptorSet-descriptorType-00326");
ASSERT_NO_FATAL_FAILURE(Init());
OneOffDescriptorSet descriptor_set(m_device,
{
{0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_ALL, nullptr},
});
VkSamplerCreateInfo sampler_ci = SafeSaneSamplerCreateInfo();
VkSampler sampler;
err = vk::CreateSampler(m_device->device(), &sampler_ci, NULL, &sampler);
ASSERT_VK_SUCCESS(err);
VkImageView view = CastToHandle<VkImageView, uintptr_t>(0xbaadbeef); // invalid imageView object
descriptor_set.WriteDescriptorImageInfo(0, view, sampler, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
descriptor_set.UpdateDescriptorSets();
m_errorMonitor->VerifyFound();
vk::DestroySampler(m_device->device(), sampler, NULL);
}
TEST_F(VkLayerTest, CopyDescriptorUpdateErrors) {
// Create DS w/ layout of 2 types, write update 1 and attempt to copy-update
// into the other
VkResult err;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
" binding #1 with type VK_DESCRIPTOR_TYPE_SAMPLER. Types do not match.");
ASSERT_NO_FATAL_FAILURE(Init());
OneOffDescriptorSet descriptor_set(m_device, {
{0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr},
{1, VK_DESCRIPTOR_TYPE_SAMPLER, 1, VK_SHADER_STAGE_ALL, nullptr},
});
VkSamplerCreateInfo sampler_ci = SafeSaneSamplerCreateInfo();
VkSampler sampler;
err = vk::CreateSampler(m_device->device(), &sampler_ci, NULL, &sampler);
ASSERT_VK_SUCCESS(err);
// SAMPLER binding from layout above
// This write update should succeed
descriptor_set.WriteDescriptorImageInfo(1, VK_NULL_HANDLE, sampler, VK_DESCRIPTOR_TYPE_SAMPLER);
descriptor_set.UpdateDescriptorSets();
// Now perform a copy update that fails due to type mismatch
VkCopyDescriptorSet copy_ds_update;
memset(&copy_ds_update, 0, sizeof(VkCopyDescriptorSet));
copy_ds_update.sType = VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET;
copy_ds_update.srcSet = descriptor_set.set_;
copy_ds_update.srcBinding = 1; // Copy from SAMPLER binding
copy_ds_update.dstSet = descriptor_set.set_;
copy_ds_update.dstBinding = 0; // ERROR : copy to UNIFORM binding
copy_ds_update.descriptorCount = 1; // copy 1 descriptor
vk::UpdateDescriptorSets(m_device->device(), 0, NULL, 1, &copy_ds_update);
m_errorMonitor->VerifyFound();
// Now perform a copy update that fails due to binding out of bounds
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, " does not have copy update src binding of 3.");
memset(&copy_ds_update, 0, sizeof(VkCopyDescriptorSet));
copy_ds_update.sType = VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET;
copy_ds_update.srcSet = descriptor_set.set_;
copy_ds_update.srcBinding = 3; // ERROR : Invalid binding for matching layout
copy_ds_update.dstSet = descriptor_set.set_;
copy_ds_update.dstBinding = 0;
copy_ds_update.descriptorCount = 1; // Copy 1 descriptor
vk::UpdateDescriptorSets(m_device->device(), 0, NULL, 1, &copy_ds_update);
m_errorMonitor->VerifyFound();
// Now perform a copy update that fails due to binding out of bounds
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
" binding#1 with offset index of 1 plus update array offset of 0 and update of 5 "
"descriptors oversteps total number of descriptors in set: 2.");
memset(&copy_ds_update, 0, sizeof(VkCopyDescriptorSet));
copy_ds_update.sType = VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET;
copy_ds_update.srcSet = descriptor_set.set_;
copy_ds_update.srcBinding = 1;
copy_ds_update.dstSet = descriptor_set.set_;
copy_ds_update.dstBinding = 0;
copy_ds_update.descriptorCount = 5; // ERROR copy 5 descriptors (out of bounds for layout)
vk::UpdateDescriptorSets(m_device->device(), 0, NULL, 1, &copy_ds_update);
m_errorMonitor->VerifyFound();
vk::DestroySampler(m_device->device(), sampler, NULL);
}
TEST_F(VkLayerTest, DrawWithPipelineIncompatibleWithRenderPass) {
TEST_DESCRIPTION(
"Hit RenderPass incompatible cases. Initial case is drawing with an active renderpass that's not compatible with the bound "
"pipeline state object's creation renderpass");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
OneOffDescriptorSet descriptor_set(m_device, {
{0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr},
});
const VkPipelineLayoutObj pipeline_layout(m_device, {&descriptor_set.layout_});
VkShaderObj vs(m_device, bindStateVertShaderText, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj fs(m_device, bindStateFragShaderText, VK_SHADER_STAGE_FRAGMENT_BIT, this); // We shouldn't need a fragment shader
// but add it to be able to run on more devices
// Create a renderpass that will be incompatible with default renderpass
VkAttachmentReference color_att = {};
color_att.layout = VK_IMAGE_LAYOUT_GENERAL;
VkSubpassDescription subpass = {};
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &color_att;
VkRenderPassCreateInfo rpci = {};
rpci.subpassCount = 1;
rpci.pSubpasses = &subpass;
rpci.attachmentCount = 1;
VkAttachmentDescription attach_desc = {};
attach_desc.samples = VK_SAMPLE_COUNT_1_BIT;
// Format incompatible with PSO RP color attach format B8G8R8A8_UNORM
attach_desc.format = VK_FORMAT_R8G8B8A8_UNORM;
attach_desc.finalLayout = VK_IMAGE_LAYOUT_GENERAL;
rpci.pAttachments = &attach_desc;
rpci.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
VkRenderPass rp;
vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp);
VkPipelineObj pipe(m_device);
pipe.AddShader(&vs);
pipe.AddShader(&fs);
pipe.AddDefaultColorAttachment();
VkViewport viewport = {0.0f, 0.0f, 64.0f, 64.0f, 0.0f, 1.0f};
m_viewports.push_back(viewport);
pipe.SetViewport(m_viewports);
VkRect2D rect = {{0, 0}, {64, 64}};
m_scissors.push_back(rect);
pipe.SetScissor(m_scissors);
pipe.CreateVKPipeline(pipeline_layout.handle(), rp);
VkCommandBufferInheritanceInfo cbii = {};
cbii.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO;
cbii.renderPass = rp;
cbii.subpass = 0;
VkCommandBufferBeginInfo cbbi = {};
cbbi.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cbbi.pInheritanceInfo = &cbii;
vk::BeginCommandBuffer(m_commandBuffer->handle(), &cbbi);
vk::CmdBeginRenderPass(m_commandBuffer->handle(), &m_renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.handle());
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdDraw-renderPass-02684");
// Render triangle (the error should trigger on the attempt to draw).
m_commandBuffer->Draw(3, 1, 0, 0);
// Finalize recording of the command buffer
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
m_errorMonitor->VerifyFound();
vk::DestroyRenderPass(m_device->device(), rp, NULL);
}
TEST_F(VkLayerTest, Maint1BindingSliceOf3DImage) {
TEST_DESCRIPTION(
"Attempt to bind a slice of a 3D texture in a descriptor set. This is explicitly disallowed by KHR_maintenance1 to keep "
"things simple for drivers.");
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
if (DeviceExtensionSupported(gpu(), nullptr, VK_KHR_MAINTENANCE1_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_KHR_MAINTENANCE1_EXTENSION_NAME);
} else {
printf("%s %s is not supported; skipping\n", kSkipPrefix, VK_KHR_MAINTENANCE1_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
VkResult err;
OneOffDescriptorSet descriptor_set(m_device,
{
{0, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, 1, VK_SHADER_STAGE_FRAGMENT_BIT, nullptr},
});
VkImageCreateInfo ici = {VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
nullptr,
VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT_KHR,
VK_IMAGE_TYPE_3D,
VK_FORMAT_R8G8B8A8_UNORM,
{32, 32, 32},
1,
1,
VK_SAMPLE_COUNT_1_BIT,
VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_SAMPLED_BIT,
VK_SHARING_MODE_EXCLUSIVE,
0,
nullptr,
VK_IMAGE_LAYOUT_UNDEFINED};
VkImageObj image(m_device);
image.init(&ici);
ASSERT_TRUE(image.initialized());
VkImageViewCreateInfo ivci = {
VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
nullptr,
0,
image.handle(),
VK_IMAGE_VIEW_TYPE_2D,
VK_FORMAT_R8G8B8A8_UNORM,
{VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY,
VK_COMPONENT_SWIZZLE_IDENTITY},
{VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1},
};
VkImageView view;
err = vk::CreateImageView(m_device->device(), &ivci, nullptr, &view);
ASSERT_VK_SUCCESS(err);
// Meat of the test.
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkDescriptorImageInfo-imageView-00343");
VkDescriptorImageInfo dii = {VK_NULL_HANDLE, view, VK_IMAGE_LAYOUT_GENERAL};
VkWriteDescriptorSet write = {VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
nullptr,
descriptor_set.set_,
0,
0,
1,
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
&dii,
nullptr,
nullptr};
vk::UpdateDescriptorSets(m_device->device(), 1, &write, 0, nullptr);
m_errorMonitor->VerifyFound();
vk::DestroyImageView(m_device->device(), view, nullptr);
}
TEST_F(VkLayerTest, UpdateDestroyDescriptorSetLayout) {
TEST_DESCRIPTION("Attempt updates to descriptor sets with destroyed descriptor set layouts");
// TODO: Update to match the descriptor set layout specific VUIDs/VALIDATION_ERROR_* when present
const auto kWriteDestroyedLayout = "VUID-VkWriteDescriptorSet-dstSet-00320";
const auto kCopyDstDestroyedLayout = "VUID-VkCopyDescriptorSet-dstSet-parameter";
const auto kCopySrcDestroyedLayout = "VUID-VkCopyDescriptorSet-srcSet-parameter";
ASSERT_NO_FATAL_FAILURE(Init());
// Set up the descriptor (resource) and write/copy operations to use.
float data[16] = {};
VkConstantBufferObj buffer(m_device, sizeof(data), data, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT);
ASSERT_TRUE(buffer.initialized());
VkDescriptorBufferInfo info = {};
info.buffer = buffer.handle();
info.range = VK_WHOLE_SIZE;
VkWriteDescriptorSet write_descriptor = {};
write_descriptor.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
write_descriptor.dstSet = VK_NULL_HANDLE; // must update this
write_descriptor.dstBinding = 0;
write_descriptor.descriptorCount = 1;
write_descriptor.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
write_descriptor.pBufferInfo = &info;
VkCopyDescriptorSet copy_descriptor = {};
copy_descriptor.sType = VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET;
copy_descriptor.srcSet = VK_NULL_HANDLE; // must update
copy_descriptor.srcBinding = 0;
copy_descriptor.dstSet = VK_NULL_HANDLE; // must update
copy_descriptor.dstBinding = 0;
copy_descriptor.descriptorCount = 1;
// Create valid and invalid source and destination descriptor sets
std::vector<VkDescriptorSetLayoutBinding> one_uniform_buffer = {
{0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr},
};
OneOffDescriptorSet good_dst(m_device, one_uniform_buffer);
ASSERT_TRUE(good_dst.Initialized());
OneOffDescriptorSet bad_dst(m_device, one_uniform_buffer);
// Must assert before invalidating it below
ASSERT_TRUE(bad_dst.Initialized());
bad_dst.layout_ = VkDescriptorSetLayoutObj();
OneOffDescriptorSet good_src(m_device, one_uniform_buffer);
ASSERT_TRUE(good_src.Initialized());
// Put valid data in the good and bad sources, simultaneously doing a positive test on write and copy operations
m_errorMonitor->ExpectSuccess();
write_descriptor.dstSet = good_src.set_;
vk::UpdateDescriptorSets(m_device->device(), 1, &write_descriptor, 0, NULL);
m_errorMonitor->VerifyNotFound();
OneOffDescriptorSet bad_src(m_device, one_uniform_buffer);
ASSERT_TRUE(bad_src.Initialized());
// to complete our positive testing use copy, where above we used write.
copy_descriptor.srcSet = good_src.set_;
copy_descriptor.dstSet = bad_src.set_;
vk::UpdateDescriptorSets(m_device->device(), 0, nullptr, 1, &copy_descriptor);
bad_src.layout_ = VkDescriptorSetLayoutObj();
m_errorMonitor->VerifyNotFound();
// Trigger the three invalid use errors
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, kWriteDestroyedLayout);
write_descriptor.dstSet = bad_dst.set_;
vk::UpdateDescriptorSets(m_device->device(), 1, &write_descriptor, 0, NULL);
m_errorMonitor->VerifyFound();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, kCopyDstDestroyedLayout);
copy_descriptor.dstSet = bad_dst.set_;
vk::UpdateDescriptorSets(m_device->device(), 0, nullptr, 1, &copy_descriptor);
m_errorMonitor->VerifyFound();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, kCopySrcDestroyedLayout);
copy_descriptor.srcSet = bad_src.set_;
copy_descriptor.dstSet = good_dst.set_;
vk::UpdateDescriptorSets(m_device->device(), 0, nullptr, 1, &copy_descriptor);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, FramebufferIncompatible) {
TEST_DESCRIPTION(
"Bind a secondary command buffer with a framebuffer that does not match the framebuffer for the active renderpass.");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
// A renderpass with one color attachment.
VkAttachmentDescription attachment = {0,
VK_FORMAT_B8G8R8A8_UNORM,
VK_SAMPLE_COUNT_1_BIT,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_STORE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL};
VkAttachmentReference att_ref = {0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL};
VkSubpassDescription subpass = {0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 1, &att_ref, nullptr, nullptr, 0, nullptr};
VkRenderPassCreateInfo rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr, 0, 1, &attachment, 1, &subpass, 0, nullptr};
VkRenderPass rp;
VkResult err = vk::CreateRenderPass(m_device->device(), &rpci, nullptr, &rp);
ASSERT_VK_SUCCESS(err);
// A compatible framebuffer.
VkImageObj image(m_device);
image.Init(32, 32, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_TILING_OPTIMAL, 0);
ASSERT_TRUE(image.initialized());
VkImageViewCreateInfo ivci = {
VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
nullptr,
0,
image.handle(),
VK_IMAGE_VIEW_TYPE_2D,
VK_FORMAT_B8G8R8A8_UNORM,
{VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY,
VK_COMPONENT_SWIZZLE_IDENTITY},
{VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1},
};
VkImageView view;
err = vk::CreateImageView(m_device->device(), &ivci, nullptr, &view);
ASSERT_VK_SUCCESS(err);
VkFramebufferCreateInfo fci = {VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, nullptr, 0, rp, 1, &view, 32, 32, 1};
VkFramebuffer fb;
err = vk::CreateFramebuffer(m_device->device(), &fci, nullptr, &fb);
ASSERT_VK_SUCCESS(err);
VkCommandBufferAllocateInfo cbai = {};
cbai.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
cbai.commandPool = m_commandPool->handle();
cbai.level = VK_COMMAND_BUFFER_LEVEL_SECONDARY;
cbai.commandBufferCount = 1;
VkCommandBuffer sec_cb;
err = vk::AllocateCommandBuffers(m_device->device(), &cbai, &sec_cb);
ASSERT_VK_SUCCESS(err);
VkCommandBufferBeginInfo cbbi = {};
VkCommandBufferInheritanceInfo cbii = {};
cbii.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO;
cbii.renderPass = renderPass();
cbii.framebuffer = fb;
cbbi.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cbbi.pNext = NULL;
cbbi.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT | VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT;
cbbi.pInheritanceInfo = &cbii;
vk::BeginCommandBuffer(sec_cb, &cbbi);
vk::EndCommandBuffer(sec_cb);
VkCommandBufferBeginInfo cbbi2 = {VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, nullptr, 0, nullptr};
vk::BeginCommandBuffer(m_commandBuffer->handle(), &cbbi2);
vk::CmdBeginRenderPass(m_commandBuffer->handle(), &m_renderPassBeginInfo, VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-vkCmdExecuteCommands-pCommandBuffers-00099");
vk::CmdExecuteCommands(m_commandBuffer->handle(), 1, &sec_cb);
m_errorMonitor->VerifyFound();
// Cleanup
vk::CmdEndRenderPass(m_commandBuffer->handle());
vk::EndCommandBuffer(m_commandBuffer->handle());
vk::DestroyImageView(m_device->device(), view, NULL);
vk::DestroyRenderPass(m_device->device(), rp, NULL);
vk::DestroyFramebuffer(m_device->device(), fb, NULL);
}
TEST_F(VkLayerTest, RenderPassMissingAttachment) {
TEST_DESCRIPTION("Begin render pass with missing framebuffer attachment");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
// Create a renderPass with a single color attachment
VkAttachmentReference attach = {};
attach.layout = VK_IMAGE_LAYOUT_GENERAL;
VkSubpassDescription subpass = {};
subpass.pColorAttachments = &attach;
VkRenderPassCreateInfo rpci = {};
rpci.subpassCount = 1;
rpci.pSubpasses = &subpass;
rpci.attachmentCount = 1;
VkAttachmentDescription attach_desc = {};
attach_desc.format = VK_FORMAT_B8G8R8A8_UNORM;
attach_desc.samples = VK_SAMPLE_COUNT_1_BIT;
attach_desc.finalLayout = VK_IMAGE_LAYOUT_GENERAL;
rpci.pAttachments = &attach_desc;
rpci.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
VkRenderPass rp;
VkResult err = vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp);
ASSERT_VK_SUCCESS(err);
auto createView = lvl_init_struct<VkImageViewCreateInfo>();
createView.image = m_renderTargets[0]->handle();
createView.viewType = VK_IMAGE_VIEW_TYPE_2D;
createView.format = VK_FORMAT_B8G8R8A8_UNORM;
createView.components.r = VK_COMPONENT_SWIZZLE_R;
createView.components.g = VK_COMPONENT_SWIZZLE_G;
createView.components.b = VK_COMPONENT_SWIZZLE_B;
createView.components.a = VK_COMPONENT_SWIZZLE_A;
createView.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
createView.flags = 0;
VkImageView iv;
vk::CreateImageView(m_device->handle(), &createView, nullptr, &iv);
auto fb_info = lvl_init_struct<VkFramebufferCreateInfo>();
fb_info.renderPass = rp;
fb_info.attachmentCount = 1;
fb_info.pAttachments = &iv;
fb_info.width = 100;
fb_info.height = 100;
fb_info.layers = 1;
// Create the framebuffer then destory the view it uses.
VkFramebuffer fb;
err = vk::CreateFramebuffer(device(), &fb_info, NULL, &fb);
vk::DestroyImageView(device(), iv, NULL);
ASSERT_VK_SUCCESS(err);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkRenderPassBeginInfo-framebuffer-parameter");
auto rpbi = lvl_init_struct<VkRenderPassBeginInfo>();
rpbi.renderPass = rp;
rpbi.framebuffer = fb;
rpbi.renderArea = {{0, 0}, {32, 32}};
m_commandBuffer->begin();
vk::CmdBeginRenderPass(m_commandBuffer->handle(), &rpbi, VK_SUBPASS_CONTENTS_INLINE);
// Don't call vk::CmdEndRenderPass; as the begin has been "skipped" based on the error condition
m_errorMonitor->VerifyFound();
m_commandBuffer->end();
vk::DestroyFramebuffer(m_device->device(), fb, NULL);
vk::DestroyRenderPass(m_device->device(), rp, NULL);
}
TEST_F(VkLayerTest, AttachmentDescriptionUndefinedFormat) {
TEST_DESCRIPTION("Create a render pass with an attachment description format set to VK_FORMAT_UNDEFINED");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_WARNING_BIT_EXT, "format is VK_FORMAT_UNDEFINED");
VkAttachmentReference color_attach = {};
color_attach.layout = VK_IMAGE_LAYOUT_GENERAL;
color_attach.attachment = 0;
VkSubpassDescription subpass = {};
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &color_attach;
VkRenderPassCreateInfo rpci = {};
rpci.subpassCount = 1;
rpci.pSubpasses = &subpass;
rpci.attachmentCount = 1;
VkAttachmentDescription attach_desc = {};
attach_desc.format = VK_FORMAT_UNDEFINED;
attach_desc.samples = VK_SAMPLE_COUNT_1_BIT;
attach_desc.finalLayout = VK_IMAGE_LAYOUT_GENERAL;
rpci.pAttachments = &attach_desc;
rpci.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
VkRenderPass rp;
VkResult result = vk::CreateRenderPass(m_device->device(), &rpci, NULL, &rp);
m_errorMonitor->VerifyFound();
if (result == VK_SUCCESS) {
vk::DestroyRenderPass(m_device->device(), rp, NULL);
}
}
TEST_F(VkLayerTest, InvalidCreateDescriptorPool) {
TEST_DESCRIPTION("Attempt to create descriptor pool with invalid parameters");
ASSERT_NO_FATAL_FAILURE(Init());
const uint32_t default_descriptor_count = 1;
const VkDescriptorPoolSize dp_size_template{VK_DESCRIPTOR_TYPE_SAMPLER, default_descriptor_count};
const VkDescriptorPoolCreateInfo dp_ci_template{VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
nullptr, // pNext
0, // flags
1, // maxSets
1, // poolSizeCount
&dp_size_template};
// try maxSets = 0
{
VkDescriptorPoolCreateInfo invalid_dp_ci = dp_ci_template;
invalid_dp_ci.maxSets = 0; // invalid maxSets value
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkDescriptorPoolCreateInfo-maxSets-00301");
{
VkDescriptorPool pool;
vk::CreateDescriptorPool(m_device->device(), &invalid_dp_ci, nullptr, &pool);
}
m_errorMonitor->VerifyFound();
}
// try descriptorCount = 0
{
VkDescriptorPoolSize invalid_dp_size = dp_size_template;
invalid_dp_size.descriptorCount = 0; // invalid descriptorCount value
VkDescriptorPoolCreateInfo dp_ci = dp_ci_template;
dp_ci.pPoolSizes = &invalid_dp_size;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkDescriptorPoolSize-descriptorCount-00302");
{
VkDescriptorPool pool;
vk::CreateDescriptorPool(m_device->device(), &dp_ci, nullptr, &pool);
}
m_errorMonitor->VerifyFound();
}
}
TEST_F(VkLayerTest, DuplicateDescriptorBinding) {
TEST_DESCRIPTION("Create a descriptor set layout with a duplicate binding number.");
ASSERT_NO_FATAL_FAILURE(Init());
// Create layout where two binding #s are "1"
static const uint32_t NUM_BINDINGS = 3;
VkDescriptorSetLayoutBinding dsl_binding[NUM_BINDINGS] = {};
dsl_binding[0].binding = 1;
dsl_binding[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
dsl_binding[0].descriptorCount = 1;
dsl_binding[0].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
dsl_binding[0].pImmutableSamplers = NULL;
dsl_binding[1].binding = 0;
dsl_binding[1].descriptorCount = 1;
dsl_binding[1].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
dsl_binding[1].descriptorCount = 1;
dsl_binding[1].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
dsl_binding[1].pImmutableSamplers = NULL;
dsl_binding[2].binding = 1; // Duplicate binding should cause error
dsl_binding[2].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
dsl_binding[2].descriptorCount = 1;
dsl_binding[2].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
dsl_binding[2].pImmutableSamplers = NULL;
VkDescriptorSetLayoutCreateInfo ds_layout_ci = {};
ds_layout_ci.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
ds_layout_ci.pNext = NULL;
ds_layout_ci.bindingCount = NUM_BINDINGS;
ds_layout_ci.pBindings = dsl_binding;
VkDescriptorSetLayout ds_layout;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkDescriptorSetLayoutCreateInfo-binding-00279");
vk::CreateDescriptorSetLayout(m_device->device(), &ds_layout_ci, NULL, &ds_layout);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, InvalidPushDescriptorSetLayout) {
TEST_DESCRIPTION("Create a push descriptor set layout with invalid bindings.");
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else {
printf("%s Did not find VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME; skipped.\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
if (DeviceExtensionSupported(gpu(), nullptr, VK_KHR_PUSH_DESCRIPTOR_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_KHR_PUSH_DESCRIPTOR_EXTENSION_NAME);
} else {
printf("%s %s Extension not supported, skipping tests\n", kSkipPrefix, VK_KHR_PUSH_DESCRIPTOR_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
// Get the push descriptor limits
auto push_descriptor_prop = GetPushDescriptorProperties(instance(), gpu());
if (push_descriptor_prop.maxPushDescriptors < 1) {
// Some implementations report an invalid maxPushDescriptors of 0
printf("%s maxPushDescriptors is zero, skipping tests\n", kSkipPrefix);
return;
}
VkDescriptorSetLayoutBinding binding = {0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1, VK_SHADER_STAGE_FRAGMENT_BIT, nullptr};
auto ds_layout_ci = lvl_init_struct<VkDescriptorSetLayoutCreateInfo>();
ds_layout_ci.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR;
ds_layout_ci.bindingCount = 1;
ds_layout_ci.pBindings = &binding;
// Note that as binding is referenced in ds_layout_ci, it is effectively in the closure by reference as well.
auto test_create_ds_layout = [&ds_layout_ci, this](std::string error) {
VkDescriptorSetLayout ds_layout = VK_NULL_HANDLE;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, error);
vk::CreateDescriptorSetLayout(m_device->handle(), &ds_layout_ci, nullptr, &ds_layout);
m_errorMonitor->VerifyFound();
vk::DestroyDescriptorSetLayout(m_device->handle(), ds_layout, nullptr);
};
// Starting with the initial VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC type set above..
test_create_ds_layout("VUID-VkDescriptorSetLayoutCreateInfo-flags-00280");
binding.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC;
test_create_ds_layout(
"VUID-VkDescriptorSetLayoutCreateInfo-flags-00280"); // This is the same VUID as above, just a second error condition.
if (!(push_descriptor_prop.maxPushDescriptors == std::numeric_limits<uint32_t>::max())) {
binding.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
binding.descriptorCount = push_descriptor_prop.maxPushDescriptors + 1;
test_create_ds_layout("VUID-VkDescriptorSetLayoutCreateInfo-flags-00281");
} else {
printf("%s maxPushDescriptors is set to maximum unit32_t value, skipping 'out of range test'.\n", kSkipPrefix);
}
}
TEST_F(VkLayerTest, PushDescriptorSetLayoutWithoutExtension) {
TEST_DESCRIPTION("Create a push descriptor set layout without loading the needed extension.");
ASSERT_NO_FATAL_FAILURE(Init());
VkDescriptorSetLayoutBinding binding = {0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_FRAGMENT_BIT, nullptr};
auto ds_layout_ci = lvl_init_struct<VkDescriptorSetLayoutCreateInfo>();
ds_layout_ci.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR;
ds_layout_ci.bindingCount = 1;
ds_layout_ci.pBindings = &binding;
std::string error = "Attempted to use VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR in ";
error = error + "VkDescriptorSetLayoutCreateInfo::flags but its required extension ";
error = error + VK_KHR_PUSH_DESCRIPTOR_EXTENSION_NAME;
error = error + " has not been enabled.";
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, error.c_str());
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkDescriptorSetLayoutCreateInfo-flags-00281");
VkDescriptorSetLayout ds_layout = VK_NULL_HANDLE;
vk::CreateDescriptorSetLayout(m_device->handle(), &ds_layout_ci, nullptr, &ds_layout);
m_errorMonitor->VerifyFound();
vk::DestroyDescriptorSetLayout(m_device->handle(), ds_layout, nullptr);
}
TEST_F(VkLayerTest, DescriptorIndexingSetLayoutWithoutExtension) {
TEST_DESCRIPTION("Create an update_after_bind set layout without loading the needed extension.");
ASSERT_NO_FATAL_FAILURE(Init());
auto ds_layout_ci = lvl_init_struct<VkDescriptorSetLayoutCreateInfo>();
ds_layout_ci.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT;
std::string error = "Attemped to use VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT in ";
error = error + "VkDescriptorSetLayoutCreateInfo::flags but its required extension ";
error = error + VK_EXT_DESCRIPTOR_INDEXING_EXTENSION_NAME;
error = error + " has not been enabled.";
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, error.c_str());
VkDescriptorSetLayout ds_layout = VK_NULL_HANDLE;
vk::CreateDescriptorSetLayout(m_device->handle(), &ds_layout_ci, nullptr, &ds_layout);
m_errorMonitor->VerifyFound();
vk::DestroyDescriptorSetLayout(m_device->handle(), ds_layout, nullptr);
}
TEST_F(VkLayerTest, DescriptorIndexingSetLayout) {
TEST_DESCRIPTION("Exercise various create/allocate-time errors related to VK_EXT_descriptor_indexing.");
if (!(CheckDescriptorIndexingSupportAndInitFramework(this, m_instance_extension_names, m_device_extension_names, NULL,
m_errorMonitor))) {
printf("%s Descriptor indexing or one of its dependencies not supported, skipping tests\n.", kSkipPrefix);
return;
}
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR");
ASSERT_TRUE(vkGetPhysicalDeviceFeatures2KHR != nullptr);
// Create a device that enables all supported indexing features except descriptorBindingUniformBufferUpdateAfterBind
auto indexing_features = lvl_init_struct<VkPhysicalDeviceDescriptorIndexingFeaturesEXT>();
auto features2 = lvl_init_struct<VkPhysicalDeviceFeatures2KHR>(&indexing_features);
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
indexing_features.descriptorBindingUniformBufferUpdateAfterBind = VK_FALSE;
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
std::array<VkDescriptorBindingFlagsEXT, 2> flags = {VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT,
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT};
auto flags_create_info = lvl_init_struct<VkDescriptorSetLayoutBindingFlagsCreateInfoEXT>();
flags_create_info.bindingCount = (uint32_t)flags.size();
flags_create_info.pBindingFlags = flags.data();
VkDescriptorSetLayoutBinding binding = {0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_FRAGMENT_BIT, nullptr};
auto ds_layout_ci = lvl_init_struct<VkDescriptorSetLayoutCreateInfo>(&flags_create_info);
ds_layout_ci.bindingCount = 1;
ds_layout_ci.pBindings = &binding;
VkDescriptorSetLayout ds_layout = VK_NULL_HANDLE;
// VU for VkDescriptorSetLayoutBindingFlagsCreateInfoEXT::bindingCount
flags_create_info.bindingCount = 2;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-VkDescriptorSetLayoutBindingFlagsCreateInfoEXT-bindingCount-03002");
VkResult err = vk::CreateDescriptorSetLayout(m_device->handle(), &ds_layout_ci, nullptr, &ds_layout);
m_errorMonitor->VerifyFound();
vk::DestroyDescriptorSetLayout(m_device->handle(), ds_layout, nullptr);
flags_create_info.bindingCount = 1;
// set is missing UPDATE_AFTER_BIND_POOL flag.
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkDescriptorSetLayoutCreateInfo-flags-03000");
// binding uses a feature we disabled
m_errorMonitor->SetDesiredFailureMsg(
VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-VkDescriptorSetLayoutBindingFlagsCreateInfoEXT-descriptorBindingUniformBufferUpdateAfterBind-03005");
err = vk::CreateDescriptorSetLayout(m_device->handle(), &ds_layout_ci, nullptr, &ds_layout);
m_errorMonitor->VerifyFound();
vk::DestroyDescriptorSetLayout(m_device->handle(), ds_layout, nullptr);
ds_layout_ci.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT;
ds_layout_ci.bindingCount = 0;
flags_create_info.bindingCount = 0;
err = vk::CreateDescriptorSetLayout(m_device->handle(), &ds_layout_ci, nullptr, &ds_layout);
ASSERT_VK_SUCCESS(err);
VkDescriptorPoolSize pool_size = {binding.descriptorType, binding.descriptorCount};
auto dspci = lvl_init_struct<VkDescriptorPoolCreateInfo>();
dspci.poolSizeCount = 1;
dspci.pPoolSizes = &pool_size;
dspci.maxSets = 1;
VkDescriptorPool pool;
err = vk::CreateDescriptorPool(m_device->handle(), &dspci, nullptr, &pool);
ASSERT_VK_SUCCESS(err);
auto ds_alloc_info = lvl_init_struct<VkDescriptorSetAllocateInfo>();
ds_alloc_info.descriptorPool = pool;
ds_alloc_info.descriptorSetCount = 1;
ds_alloc_info.pSetLayouts = &ds_layout;
VkDescriptorSet ds = VK_NULL_HANDLE;
// mismatch between descriptor set and pool
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkDescriptorSetAllocateInfo-pSetLayouts-03044");
vk::AllocateDescriptorSets(m_device->handle(), &ds_alloc_info, &ds);
m_errorMonitor->VerifyFound();
vk::DestroyDescriptorSetLayout(m_device->handle(), ds_layout, nullptr);
vk::DestroyDescriptorPool(m_device->handle(), pool, nullptr);
if (indexing_features.descriptorBindingVariableDescriptorCount) {
ds_layout_ci.flags = 0;
ds_layout_ci.bindingCount = 1;
flags_create_info.bindingCount = 1;
flags[0] = VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT;
err = vk::CreateDescriptorSetLayout(m_device->handle(), &ds_layout_ci, nullptr, &ds_layout);
ASSERT_VK_SUCCESS(err);
pool_size = {binding.descriptorType, binding.descriptorCount};
dspci = lvl_init_struct<VkDescriptorPoolCreateInfo>();
dspci.poolSizeCount = 1;
dspci.pPoolSizes = &pool_size;
dspci.maxSets = 1;
err = vk::CreateDescriptorPool(m_device->handle(), &dspci, nullptr, &pool);
ASSERT_VK_SUCCESS(err);
auto count_alloc_info = lvl_init_struct<VkDescriptorSetVariableDescriptorCountAllocateInfoEXT>();
count_alloc_info.descriptorSetCount = 1;
// Set variable count larger than what was in the descriptor binding
uint32_t variable_count = 2;
count_alloc_info.pDescriptorCounts = &variable_count;
ds_alloc_info = lvl_init_struct<VkDescriptorSetAllocateInfo>(&count_alloc_info);
ds_alloc_info.descriptorPool = pool;
ds_alloc_info.descriptorSetCount = 1;
ds_alloc_info.pSetLayouts = &ds_layout;
ds = VK_NULL_HANDLE;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"VUID-VkDescriptorSetVariableDescriptorCountAllocateInfoEXT-pSetLayouts-03046");
vk::AllocateDescriptorSets(m_device->handle(), &ds_alloc_info, &ds);
m_errorMonitor->VerifyFound();
vk::DestroyDescriptorSetLayout(m_device->handle(), ds_layout, nullptr);
vk::DestroyDescriptorPool(m_device->handle(), pool, nullptr);
}
}
TEST_F(VkLayerTest, DescriptorIndexingUpdateAfterBind) {
TEST_DESCRIPTION("Exercise errors for updating a descriptor set after it is bound.");
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else {
printf("%s %s Extension not supported, skipping tests\n", kSkipPrefix,
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
if (DeviceExtensionSupported(gpu(), nullptr, VK_EXT_DESCRIPTOR_INDEXING_EXTENSION_NAME) &&
DeviceExtensionSupported(gpu(), nullptr, VK_KHR_MAINTENANCE3_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_EXT_DESCRIPTOR_INDEXING_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_MAINTENANCE3_EXTENSION_NAME);
} else {
printf("%s Descriptor Indexing or Maintenance3 Extension not supported, skipping tests\n", kSkipPrefix);
return;
}
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR");
ASSERT_TRUE(vkGetPhysicalDeviceFeatures2KHR != nullptr);
// Create a device that enables all supported indexing features except descriptorBindingUniformBufferUpdateAfterBind
auto indexing_features = lvl_init_struct<VkPhysicalDeviceDescriptorIndexingFeaturesEXT>();
auto features2 = lvl_init_struct<VkPhysicalDeviceFeatures2KHR>(&indexing_features);
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
indexing_features.descriptorBindingUniformBufferUpdateAfterBind = VK_FALSE;
if (VK_FALSE == indexing_features.descriptorBindingStorageBufferUpdateAfterBind) {
printf("%s Test requires (unsupported) descriptorBindingStorageBufferUpdateAfterBind, skipping\n", kSkipPrefix);
return;
}
if (VK_FALSE == features2.features.fragmentStoresAndAtomics) {
printf("%s Test requires (unsupported) fragmentStoresAndAtomics, skipping\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT));
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
VkDescriptorBindingFlagsEXT flags[3] = {0, VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT,
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT};
auto flags_create_info = lvl_init_struct<VkDescriptorSetLayoutBindingFlagsCreateInfoEXT>();
flags_create_info.bindingCount = 3;
flags_create_info.pBindingFlags = &flags[0];
// Descriptor set has two bindings - only the second is update_after_bind
VkDescriptorSetLayoutBinding binding[3] = {
{0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_FRAGMENT_BIT, nullptr},
{1, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_FRAGMENT_BIT, nullptr},
{2, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_FRAGMENT_BIT, nullptr},
};
auto ds_layout_ci = lvl_init_struct<VkDescriptorSetLayoutCreateInfo>(&flags_create_info);
ds_layout_ci.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT;
ds_layout_ci.bindingCount = 3;
ds_layout_ci.pBindings = &binding[0];
VkDescriptorSetLayout ds_layout = VK_NULL_HANDLE;
VkResult err = vk::CreateDescriptorSetLayout(m_device->handle(), &ds_layout_ci, nullptr, &ds_layout);
VkDescriptorPoolSize pool_sizes[3] = {
{binding[0].descriptorType, binding[0].descriptorCount},
{binding[1].descriptorType, binding[1].descriptorCount},
{binding[2].descriptorType, binding[2].descriptorCount},
};
auto dspci = lvl_init_struct<VkDescriptorPoolCreateInfo>();
dspci.flags = VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT_EXT;
dspci.poolSizeCount = 3;
dspci.pPoolSizes = &pool_sizes[0];
dspci.maxSets = 1;
VkDescriptorPool pool;
err = vk::CreateDescriptorPool(m_device->handle(), &dspci, nullptr, &pool);
ASSERT_VK_SUCCESS(err);
auto ds_alloc_info = lvl_init_struct<VkDescriptorSetAllocateInfo>();
ds_alloc_info.descriptorPool = pool;
ds_alloc_info.descriptorSetCount = 1;
ds_alloc_info.pSetLayouts = &ds_layout;
VkDescriptorSet ds = VK_NULL_HANDLE;
vk::AllocateDescriptorSets(m_device->handle(), &ds_alloc_info, &ds);
ASSERT_VK_SUCCESS(err);
VkBufferCreateInfo buffCI = {};
buffCI.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buffCI.size = 1024;
buffCI.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
VkBuffer dynamic_uniform_buffer;
err = vk::CreateBuffer(m_device->device(), &buffCI, NULL, &dynamic_uniform_buffer);
ASSERT_VK_SUCCESS(err);
VkDeviceMemory mem;
VkMemoryRequirements mem_reqs;
vk::GetBufferMemoryRequirements(m_device->device(), dynamic_uniform_buffer, &mem_reqs);
VkMemoryAllocateInfo mem_alloc_info = {};
mem_alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
mem_alloc_info.allocationSize = mem_reqs.size;
m_device->phy().set_memory_type(mem_reqs.memoryTypeBits, &mem_alloc_info, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
err = vk::AllocateMemory(m_device->device(), &mem_alloc_info, NULL, &mem);
ASSERT_VK_SUCCESS(err);
err = vk::BindBufferMemory(m_device->device(), dynamic_uniform_buffer, mem, 0);
ASSERT_VK_SUCCESS(err);
VkDescriptorBufferInfo buffInfo[2] = {};
buffInfo[0].buffer = dynamic_uniform_buffer;
buffInfo[0].offset = 0;
buffInfo[0].range = 1024;
VkWriteDescriptorSet descriptor_write[2] = {};
descriptor_write[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptor_write[0].dstSet = ds;
descriptor_write[0].dstBinding = 0;
descriptor_write[0].descriptorCount = 1;
descriptor_write[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
descriptor_write[0].pBufferInfo = buffInfo;
descriptor_write[1] = descriptor_write[0];
descriptor_write[1].dstBinding = 1;
descriptor_write[1].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
VkPipelineLayout pipeline_layout;
VkPipelineLayoutCreateInfo pipeline_layout_ci = {};
pipeline_layout_ci.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipeline_layout_ci.setLayoutCount = 1;
pipeline_layout_ci.pSetLayouts = &ds_layout;
vk::CreatePipelineLayout(m_device->device(), &pipeline_layout_ci, NULL, &pipeline_layout);
// Create a dummy pipeline, since VL inspects which bindings are actually used at draw time
char const *fsSource =
"#version 450\n"
"\n"
"layout(location=0) out vec4 color;\n"
"layout(set=0, binding=0) uniform foo0 { float x0; } bar0;\n"
"layout(set=0, binding=1) buffer foo1 { float x1; } bar1;\n"
"layout(set=0, binding=2) buffer foo2 { float x2; } bar2;\n"
"void main(){\n"
" color = vec4(bar0.x0 + bar1.x1 + bar2.x2);\n"
"}\n";
VkShaderObj vs(m_device, bindStateVertShaderText, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj fs(m_device, fsSource, VK_SHADER_STAGE_FRAGMENT_BIT, this);
VkPipelineObj pipe(m_device);
pipe.SetViewport(m_viewports);
pipe.SetScissor(m_scissors);
pipe.AddDefaultColorAttachment();
pipe.AddShader(&vs);
pipe.AddShader(&fs);
pipe.CreateVKPipeline(pipeline_layout, m_renderPass);
// Make both bindings valid before binding to the command buffer
vk::UpdateDescriptorSets(m_device->device(), 2, &descriptor_write[0], 0, NULL);
m_errorMonitor->VerifyNotFound();
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &m_commandBuffer->handle();
// Two subtests. First only updates the update_after_bind binding and expects
// no error. Second updates the other binding and expects an error when the
// command buffer is ended.
for (uint32_t i = 0; i < 2; ++i) {
m_commandBuffer->begin();
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout, 0, 1, &ds, 0, NULL);
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.handle());
vk::CmdDraw(m_commandBuffer->handle(), 0, 0, 0, 0);
vk::CmdEndRenderPass(m_commandBuffer->handle());
m_errorMonitor->VerifyNotFound();
// Valid to update binding 1 after being bound
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write[1], 0, NULL);
m_errorMonitor->VerifyNotFound();
if (i == 0) {
// expect no errors
m_commandBuffer->end();
m_errorMonitor->VerifyNotFound();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"UNASSIGNED-CoreValidation-DrawState-DescriptorSetNotUpdated");
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
m_errorMonitor->VerifyFound();
vk::QueueWaitIdle(m_device->m_queue);
} else {
// Invalid to update binding 0 after being bound. But the error is actually
// generated during vk::EndCommandBuffer
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write[0], 0, NULL);
m_errorMonitor->VerifyNotFound();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT,
"UNASSIGNED-CoreValidation-DrawState-InvalidCommandBuffer-VkDescriptorSet");
vk::EndCommandBuffer(m_commandBuffer->handle());
m_errorMonitor->VerifyFound();
}
}
vk::DestroyDescriptorSetLayout(m_device->handle(), ds_layout, nullptr);
vk::DestroyDescriptorPool(m_device->handle(), pool, nullptr);
vk::DestroyBuffer(m_device->handle(), dynamic_uniform_buffer, NULL);
vk::FreeMemory(m_device->handle(), mem, NULL);
vk::DestroyPipelineLayout(m_device->handle(), pipeline_layout, NULL);
}
TEST_F(VkLayerTest, AllocatePushDescriptorSet) {
TEST_DESCRIPTION("Attempt to allocate a push descriptor set.");
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else {
printf("%s %s Extension not supported, skipping tests\n", kSkipPrefix,
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
if (DeviceExtensionSupported(gpu(), nullptr, VK_KHR_PUSH_DESCRIPTOR_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_KHR_PUSH_DESCRIPTOR_EXTENSION_NAME);
} else {
printf("%s %s Extension not supported, skipping tests\n", kSkipPrefix, VK_KHR_PUSH_DESCRIPTOR_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
auto push_descriptor_prop = GetPushDescriptorProperties(instance(), gpu());
if (push_descriptor_prop.maxPushDescriptors < 1) {
// Some implementations report an invalid maxPushDescriptors of 0
printf("%s maxPushDescriptors is zero, skipping tests\n", kSkipPrefix);
return;
}
VkDescriptorSetLayoutBinding binding = {0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_FRAGMENT_BIT, nullptr};
auto ds_layout_ci = lvl_init_struct<VkDescriptorSetLayoutCreateInfo>();
ds_layout_ci.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR;
ds_layout_ci.bindingCount = 1;
ds_layout_ci.pBindings = &binding;
VkDescriptorSetLayout ds_layout = VK_NULL_HANDLE;
VkResult err = vk::CreateDescriptorSetLayout(m_device->handle(), &ds_layout_ci, nullptr, &ds_layout);
ASSERT_VK_SUCCESS(err);
VkDescriptorPoolSize pool_size = {binding.descriptorType, binding.descriptorCount};
auto dspci = lvl_init_struct<VkDescriptorPoolCreateInfo>();
dspci.poolSizeCount = 1;
dspci.pPoolSizes = &pool_size;
dspci.maxSets = 1;
VkDescriptorPool pool;
err = vk::CreateDescriptorPool(m_device->handle(), &dspci, nullptr, &pool);
ASSERT_VK_SUCCESS(err);
auto ds_alloc_info = lvl_init_struct<VkDescriptorSetAllocateInfo>();
ds_alloc_info.descriptorPool = pool;
ds_alloc_info.descriptorSetCount = 1;
ds_alloc_info.pSetLayouts = &ds_layout;
VkDescriptorSet ds = VK_NULL_HANDLE;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkDescriptorSetAllocateInfo-pSetLayouts-00308");
vk::AllocateDescriptorSets(m_device->handle(), &ds_alloc_info, &ds);
m_errorMonitor->VerifyFound();
vk::DestroyDescriptorPool(m_device->handle(), pool, nullptr);
vk::DestroyDescriptorSetLayout(m_device->handle(), ds_layout, nullptr);
}
TEST_F(VkLayerTest, CreateDescriptorUpdateTemplate) {
TEST_DESCRIPTION("Verify error messages for invalid vkCreateDescriptorUpdateTemplate calls.");
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else {
printf("%s Did not find VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME; skipped.\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
// Note: Includes workaround for some implementations which incorrectly return 0 maxPushDescriptors
if (DeviceExtensionSupported(gpu(), nullptr, VK_KHR_PUSH_DESCRIPTOR_EXTENSION_NAME) &&
DeviceExtensionSupported(gpu(), nullptr, VK_KHR_DESCRIPTOR_UPDATE_TEMPLATE_EXTENSION_NAME) &&
(GetPushDescriptorProperties(instance(), gpu()).maxPushDescriptors > 0)) {
m_device_extension_names.push_back(VK_KHR_PUSH_DESCRIPTOR_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_DESCRIPTOR_UPDATE_TEMPLATE_EXTENSION_NAME);
} else {
printf("%s Push Descriptors and Descriptor Update Template Extensions not supported, skipping tests\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
VkDescriptorSetLayoutBinding dsl_binding = {};
dsl_binding.binding = 0;
dsl_binding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
dsl_binding.descriptorCount = 1;
dsl_binding.stageFlags = VK_SHADER_STAGE_ALL;
dsl_binding.pImmutableSamplers = NULL;
const VkDescriptorSetLayoutObj ds_layout_ub(m_device, {dsl_binding});
const VkDescriptorSetLayoutObj ds_layout_ub1(m_device, {dsl_binding});
const VkDescriptorSetLayoutObj ds_layout_ub_push(m_device, {dsl_binding},
VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR);
const VkPipelineLayoutObj pipeline_layout(m_device, {{&ds_layout_ub, &ds_layout_ub1, &ds_layout_ub_push}});
PFN_vkCreateDescriptorUpdateTemplateKHR vkCreateDescriptorUpdateTemplateKHR =
(PFN_vkCreateDescriptorUpdateTemplateKHR)vk::GetDeviceProcAddr(m_device->device(), "vkCreateDescriptorUpdateTemplateKHR");
ASSERT_NE(vkCreateDescriptorUpdateTemplateKHR, nullptr);
PFN_vkDestroyDescriptorUpdateTemplateKHR vkDestroyDescriptorUpdateTemplateKHR =
(PFN_vkDestroyDescriptorUpdateTemplateKHR)vk::GetDeviceProcAddr(m_device->device(), "vkDestroyDescriptorUpdateTemplateKHR");
ASSERT_NE(vkDestroyDescriptorUpdateTemplateKHR, nullptr);
VkDescriptorUpdateTemplateEntry entries = {0, 0, 1, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, sizeof(VkBuffer)};
VkDescriptorUpdateTemplateCreateInfo create_info = {};
create_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_CREATE_INFO;
create_info.pNext = nullptr;
create_info.flags = 0;
create_info.descriptorUpdateEntryCount = 1;
create_info.pDescriptorUpdateEntries = &entries;
auto do_test = [&](std::string err) {
VkDescriptorUpdateTemplateKHR dut = VK_NULL_HANDLE;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, err);
if (VK_SUCCESS == vkCreateDescriptorUpdateTemplateKHR(m_device->handle(), &create_info, nullptr, &dut)) {
vkDestroyDescriptorUpdateTemplateKHR(m_device->handle(), dut, nullptr);
}
m_errorMonitor->VerifyFound();
};
// Descriptor set type template
create_info.templateType = VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET;
// descriptorSetLayout is NULL
do_test("VUID-VkDescriptorUpdateTemplateCreateInfo-templateType-00350");
// Push descriptor type template
create_info.templateType = VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR;
create_info.pipelineBindPoint = VK_PIPELINE_BIND_POINT_COMPUTE;
create_info.pipelineLayout = pipeline_layout.handle();
create_info.set = 2;
// Bad bindpoint -- force fuzz the bind point
memset(&create_info.pipelineBindPoint, 0xFE, sizeof(create_info.pipelineBindPoint));
do_test("VUID-VkDescriptorUpdateTemplateCreateInfo-templateType-00351");
create_info.pipelineBindPoint = VK_PIPELINE_BIND_POINT_COMPUTE;
// Bad pipeline layout
create_info.pipelineLayout = VK_NULL_HANDLE;
do_test("VUID-VkDescriptorUpdateTemplateCreateInfo-templateType-00352");
create_info.pipelineLayout = pipeline_layout.handle();
// Wrong set #
create_info.set = 0;
do_test("VUID-VkDescriptorUpdateTemplateCreateInfo-templateType-00353");
// Invalid set #
create_info.set = 42;
do_test("VUID-VkDescriptorUpdateTemplateCreateInfo-templateType-00353");
}
TEST_F(VkLayerTest, InlineUniformBlockEXT) {
TEST_DESCRIPTION("Test VK_EXT_inline_uniform_block.");
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else {
printf("%s Did not find required instance extension %s; skipped.\n", kSkipPrefix,
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(myDbgFunc, m_errorMonitor));
std::array<const char *, 2> required_device_extensions = {VK_KHR_MAINTENANCE1_EXTENSION_NAME,
VK_EXT_INLINE_UNIFORM_BLOCK_EXTENSION_NAME};
for (auto device_extension : required_device_extensions) {
if (DeviceExtensionSupported(gpu(), nullptr, device_extension)) {
m_device_extension_names.push_back(device_extension);
} else {
printf("%s %s Extension not supported, skipping tests\n", kSkipPrefix, device_extension);
return;
}
}
// Enable descriptor indexing if supported, but don't require it.
bool supportsDescriptorIndexing = true;
required_device_extensions = {VK_KHR_MAINTENANCE3_EXTENSION_NAME, VK_EXT_DESCRIPTOR_INDEXING_EXTENSION_NAME};
for (auto device_extension : required_device_extensions) {
if (DeviceExtensionSupported(gpu(), nullptr, device_extension)) {
m_device_extension_names.push_back(device_extension);
} else {
printf("%s %s Extension not supported, skipping tests\n", kSkipPrefix, device_extension);
supportsDescriptorIndexing = false;
return;
}
}
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR");
ASSERT_TRUE(vkGetPhysicalDeviceFeatures2KHR != nullptr);
auto descriptor_indexing_features = lvl_init_struct<VkPhysicalDeviceDescriptorIndexingFeaturesEXT>();
void *pNext = supportsDescriptorIndexing ? &descriptor_indexing_features : nullptr;
// Create a device that enables inline_uniform_block
auto inline_uniform_block_features = lvl_init_struct<VkPhysicalDeviceInlineUniformBlockFeaturesEXT>(pNext);
auto features2 = lvl_init_struct<VkPhysicalDeviceFeatures2KHR>(&inline_uniform_block_features);
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
PFN_vkGetPhysicalDeviceProperties2KHR vkGetPhysicalDeviceProperties2KHR =
(PFN_vkGetPhysicalDeviceProperties2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceProperties2KHR");
assert(vkGetPhysicalDeviceProperties2KHR != nullptr);
// Get the inline uniform block limits
auto inline_uniform_props = lvl_init_struct<VkPhysicalDeviceInlineUniformBlockPropertiesEXT>();
auto prop2 = lvl_init_struct<VkPhysicalDeviceProperties2KHR>(&inline_uniform_props);
vkGetPhysicalDeviceProperties2KHR(gpu(), &prop2);
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
VkDescriptorSetLayoutBinding dslb = {};
std::vector<VkDescriptorSetLayoutBinding> dslb_vec = {};
VkDescriptorSetLayoutCreateInfo ds_layout_ci = {};
ds_layout_ci.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
VkDescriptorSetLayout ds_layout = {};
// Test too many bindings
dslb_vec.clear();
dslb.binding = 0;
dslb.descriptorType = VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT;
dslb.descriptorCount = 4;
dslb.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
if (inline_uniform_props.maxInlineUniformBlockSize < dslb.descriptorCount) {
printf("%sDescriptorCount exceeds InlineUniformBlockSize limit, skipping tests\n", kSkipPrefix);
return;
}
uint32_t maxBlocks = std::max(inline_uniform_props.maxPerStageDescriptorInlineUniformBlocks,
inline_uniform_props.maxDescriptorSetInlineUniformBlocks);
for (uint32_t i = 0; i < 1 + maxBlocks; ++i) {
dslb.binding = i;
dslb_vec.push_back(dslb);
}
ds_layout_ci.bindingCount = dslb_vec.size();
ds_layout_ci.pBindings = dslb_vec.data();
VkResult err = vk::CreateDescriptorSetLayout(m_device->device(), &ds_layout_ci, NULL, &ds_layout);
ASSERT_VK_SUCCESS(err);
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkPipelineLayoutCreateInfo-descriptorType-02214");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkPipelineLayoutCreateInfo-descriptorType-02216");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkPipelineLayoutCreateInfo-descriptorType-02215");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkPipelineLayoutCreateInfo-descriptorType-02217");
VkPipelineLayoutCreateInfo pipeline_layout_ci = {};
pipeline_layout_ci.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipeline_layout_ci.pNext = NULL;
pipeline_layout_ci.setLayoutCount = 1;
pipeline_layout_ci.pSetLayouts = &ds_layout;
VkPipelineLayout pipeline_layout = VK_NULL_HANDLE;
err = vk::CreatePipelineLayout(m_device->device(), &pipeline_layout_ci, NULL, &pipeline_layout);
m_errorMonitor->VerifyFound();
vk::DestroyPipelineLayout(m_device->device(), pipeline_layout, NULL);
pipeline_layout = VK_NULL_HANDLE;
vk::DestroyDescriptorSetLayout(m_device->device(), ds_layout, nullptr);
ds_layout = VK_NULL_HANDLE;
// Single binding that's too large and is not a multiple of 4
dslb.binding = 0;
dslb.descriptorCount = inline_uniform_props.maxInlineUniformBlockSize + 1;
ds_layout_ci.bindingCount = 1;
ds_layout_ci.pBindings = &dslb;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkDescriptorSetLayoutBinding-descriptorType-02209");
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkDescriptorSetLayoutBinding-descriptorType-02210");
err = vk::CreateDescriptorSetLayout(m_device->device(), &ds_layout_ci, NULL, &ds_layout);
m_errorMonitor->VerifyFound();
vk::DestroyDescriptorSetLayout(m_device->device(), ds_layout, nullptr);
ds_layout = VK_NULL_HANDLE;
// Pool size must be a multiple of 4
VkDescriptorPoolSize ds_type_count = {};
ds_type_count.type = VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT;
ds_type_count.descriptorCount = 33;
VkDescriptorPoolCreateInfo ds_pool_ci = {};
ds_pool_ci.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
ds_pool_ci.pNext = NULL;
ds_pool_ci.flags = 0;
ds_pool_ci.maxSets = 2;
ds_pool_ci.poolSizeCount = 1;
ds_pool_ci.pPoolSizes = &ds_type_count;
VkDescriptorPool ds_pool = VK_NULL_HANDLE;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkDescriptorPoolSize-type-02218");
err = vk::CreateDescriptorPool(m_device->device(), &ds_pool_ci, NULL, &ds_pool);
m_errorMonitor->VerifyFound();
if (ds_pool) {
vk::DestroyDescriptorPool(m_device->handle(), ds_pool, nullptr);
ds_pool = VK_NULL_HANDLE;
}
// Create a valid pool
ds_type_count.descriptorCount = 32;
err = vk::CreateDescriptorPool(m_device->device(), &ds_pool_ci, NULL, &ds_pool);
m_errorMonitor->VerifyNotFound();
// Create two valid sets with 8 bytes each
dslb_vec.clear();
dslb.binding = 0;
dslb.descriptorType = VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT;
dslb.descriptorCount = 8;
dslb.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
dslb_vec.push_back(dslb);
dslb.binding = 1;
dslb_vec.push_back(dslb);
ds_layout_ci.bindingCount = dslb_vec.size();
ds_layout_ci.pBindings = &dslb_vec[0];
err = vk::CreateDescriptorSetLayout(m_device->device(), &ds_layout_ci, NULL, &ds_layout);
m_errorMonitor->VerifyNotFound();
VkDescriptorSet descriptor_sets[2];
VkDescriptorSetLayout set_layouts[2] = {ds_layout, ds_layout};
VkDescriptorSetAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
alloc_info.descriptorSetCount = 2;
alloc_info.descriptorPool = ds_pool;
alloc_info.pSetLayouts = set_layouts;
err = vk::AllocateDescriptorSets(m_device->device(), &alloc_info, descriptor_sets);
m_errorMonitor->VerifyNotFound();
// Test invalid VkWriteDescriptorSet parameters (array element and size must be multiple of 4)
VkWriteDescriptorSet descriptor_write = {};
descriptor_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptor_write.dstSet = descriptor_sets[0];
descriptor_write.dstBinding = 0;
descriptor_write.dstArrayElement = 0;
descriptor_write.descriptorCount = 3;
descriptor_write.descriptorType = VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT;
uint32_t dummyData[8] = {};
VkWriteDescriptorSetInlineUniformBlockEXT write_inline_uniform = {};
write_inline_uniform.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK_EXT;
write_inline_uniform.dataSize = 3;
write_inline_uniform.pData = &dummyData[0];
descriptor_write.pNext = &write_inline_uniform;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkWriteDescriptorSet-descriptorType-02220");
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
m_errorMonitor->VerifyFound();
descriptor_write.dstArrayElement = 1;
descriptor_write.descriptorCount = 4;
write_inline_uniform.dataSize = 4;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkWriteDescriptorSet-descriptorType-02219");
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
m_errorMonitor->VerifyFound();
descriptor_write.pNext = nullptr;
descriptor_write.dstArrayElement = 0;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkWriteDescriptorSet-descriptorType-02221");
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
m_errorMonitor->VerifyFound();
descriptor_write.pNext = &write_inline_uniform;
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
m_errorMonitor->VerifyNotFound();
// Test invalid VkCopyDescriptorSet parameters (array element and size must be multiple of 4)
VkCopyDescriptorSet copy_ds_update = {};
copy_ds_update.sType = VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET;
copy_ds_update.srcSet = descriptor_sets[0];
copy_ds_update.srcBinding = 0;
copy_ds_update.srcArrayElement = 0;
copy_ds_update.dstSet = descriptor_sets[1];
copy_ds_update.dstBinding = 0;
copy_ds_update.dstArrayElement = 0;
copy_ds_update.descriptorCount = 4;
copy_ds_update.srcArrayElement = 1;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkCopyDescriptorSet-srcBinding-02223");
vk::UpdateDescriptorSets(m_device->device(), 0, NULL, 1, &copy_ds_update);
m_errorMonitor->VerifyFound();
copy_ds_update.srcArrayElement = 0;
copy_ds_update.dstArrayElement = 1;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkCopyDescriptorSet-dstBinding-02224");
vk::UpdateDescriptorSets(m_device->device(), 0, NULL, 1, &copy_ds_update);
m_errorMonitor->VerifyFound();
copy_ds_update.dstArrayElement = 0;
copy_ds_update.descriptorCount = 5;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkCopyDescriptorSet-srcBinding-02225");
vk::UpdateDescriptorSets(m_device->device(), 0, NULL, 1, &copy_ds_update);
m_errorMonitor->VerifyFound();
copy_ds_update.descriptorCount = 4;
vk::UpdateDescriptorSets(m_device->device(), 0, NULL, 1, &copy_ds_update);
m_errorMonitor->VerifyNotFound();
vk::DestroyDescriptorPool(m_device->handle(), ds_pool, nullptr);
vk::DestroyDescriptorSetLayout(m_device->device(), ds_layout, nullptr);
}
TEST_F(VkLayerTest, WrongdstArrayElement) {
ASSERT_NO_FATAL_FAILURE(Init());
OneOffDescriptorSet descriptor_set(m_device, {
{0, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 1, VK_SHADER_STAGE_ALL, nullptr},
{1, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr},
});
VkImageObj image(m_device);
image.Init(32, 32, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT, VK_IMAGE_TILING_OPTIMAL, 0);
VkImageView view = image.targetView(VK_FORMAT_B8G8R8A8_UNORM);
VkDescriptorImageInfo image_info = {};
image_info.imageView = view;
image_info.sampler = VK_NULL_HANDLE;
image_info.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
descriptor_set.image_infos.emplace_back(image_info);
VkWriteDescriptorSet descriptor_write;
memset(&descriptor_write, 0, sizeof(descriptor_write));
descriptor_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptor_write.dstSet = descriptor_set.set_;
descriptor_write.dstBinding = 0;
descriptor_write.descriptorCount = 1;
descriptor_write.descriptorType = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT;
descriptor_write.pImageInfo = descriptor_set.image_infos.data();
descriptor_write.pBufferInfo = nullptr;
descriptor_write.pTexelBufferView = nullptr;
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkWriteDescriptorSet-dstArrayElement-00321");
descriptor_write.dstArrayElement = 1;
descriptor_set.descriptor_writes.emplace_back(descriptor_write);
descriptor_set.UpdateDescriptorSets();
m_errorMonitor->VerifyFound();
OneOffDescriptorSet descriptor_set2(m_device, {
{0, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 2, VK_SHADER_STAGE_ALL, nullptr},
{1, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr},
});
descriptor_set2.image_infos.emplace_back(image_info);
descriptor_set2.image_infos.emplace_back(image_info);
descriptor_write.dstSet = descriptor_set2.set_;
descriptor_write.descriptorCount = 2;
descriptor_write.pImageInfo = descriptor_set2.image_infos.data();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkWriteDescriptorSet-dstArrayElement-00321");
descriptor_write.dstArrayElement = 1;
descriptor_set2.descriptor_writes.emplace_back(descriptor_write);
descriptor_set2.UpdateDescriptorSets();
m_errorMonitor->VerifyFound();
m_errorMonitor->SetDesiredFailureMsg(VK_DEBUG_REPORT_ERROR_BIT_EXT, "VUID-VkWriteDescriptorSet-dstArrayElement-00321");
descriptor_write.dstArrayElement = 3;
descriptor_set2.descriptor_writes.clear();
descriptor_set2.descriptor_writes.emplace_back(descriptor_write);
descriptor_set2.UpdateDescriptorSets();
m_errorMonitor->VerifyFound();
}