blob: d50e5f3649ebf07ccb97e2df0b7422de70731446 [file] [log] [blame]
//
// Copyright 2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// DynamicHLSL.cpp: Implementation for link and run-time HLSL generation
//
#include "libANGLE/renderer/d3d/DynamicHLSL.h"
#include "common/string_utils.h"
#include "common/utilities.h"
#include "compiler/translator/blocklayoutHLSL.h"
#include "libANGLE/Context.h"
#include "libANGLE/Program.h"
#include "libANGLE/Shader.h"
#include "libANGLE/VaryingPacking.h"
#include "libANGLE/formatutils.h"
#include "libANGLE/renderer/d3d/ProgramD3D.h"
#include "libANGLE/renderer/d3d/RendererD3D.h"
#include "libANGLE/renderer/d3d/ShaderD3D.h"
using namespace gl;
namespace rx
{
namespace
{
#if defined(STARBOARD)
// The following numbers are received from Recommendation ITU - R BT .2100 - 2(07 / 2018),
// table 4 - PQ system reference non linear transfer functions
// c1 = 0.8359375;
// c2 = 18.8515625;
// c3 = 18.6875;
// m1 = 0.159301758125;
// m2 = 78.84375;
const std::string BT709_TO_BT2020_SHADER =
"struct PS_OUTPUT\n"
"{\n"
" float4 gl_Color0 : SV_TARGET0;\n"
"};\n"
"#define kRefWhiteLevelSRGB 100.0f\n" // The reference white point luminance 100 nits.
"#define kLinearLuminanceCoeff 10000.0f\n"
"#define kGamma 2.2f\n"
"#define kMinNits 0.0f\n"
"#define kMaxNits 325.0f\n" //"Common" TVs usually interpret 1.0 to 250-400 nits.
"static const float3x3 BT709_TO_BT2020 = { // ref: ARIB STD-B62 and BT.2087\n"
" 0.6274038959, 0.3292830384, 0.0433130657,\n"
" 0.0690972894, 0.9195403951, 0.0113623156,\n"
" 0.0163914389, 0.0880133079, 0.8955952532\n"
"};\n"
"float3 SRGB_EOTF(float3 E)\n"
"{\n"
" float3 dark = E/12.92;\n"
" float3 light = pow((E+0.055)/(1+0.055), 2.4);\n"
" bool3 cri = E <= 0.04045;\n"
" float3 cri_float = (float3)cri;\n"
" float3 r = lerp(light, dark, cri_float);\n"
" return r;\n"
"}\n"
"float3 SRGB_OETF(float3 L) {\n"
" float3 dark = L * 12.92;\n"
" float3 light = 1.055 * pow(L, 1.0 / 2.4) - 0.055;\n"
" bool3 cri = L <= 0.0031308;\n"
" float3 cri_float = (float3)cri;\n"
" float3 r = lerp(light, dark, cri_float);\n"
" return r;\n"
"}\n"
"float3 BT2100_OOTF(float3 L, float minLNits, float maxLNits, float gamma) {\n"
" float3 nits = L * kRefWhiteLevelSRGB;\n"
" bool3 cri = nits >= minLNits && nits < maxLNits;\n"
" float3 i = (nits - minLNits) / (maxLNits - minLNits);\n"
" float3 j = pow(SRGB_OETF(i), gamma);\n"
" float3 adj = (minLNits + (maxLNits - minLNits) * j) / kRefWhiteLevelSRGB;\n"
" float3 cri_float = (float3)cri;\n"
" float3 ret = lerp(adj, L, cri_float);\n"
" return ret;\n"
"}\n"
"//input: normalized L in units of RefWhite (1.0=100nits), output: normalized E\n"
"float3 PQ_OETF(float3 L)\n"
"{\n"
" const float c1 = 0.8359375;\n"
" const float c2 = 18.8515625;\n"
" const float c3 = 18.6875;\n"
" const float m1 = 0.159301758125;\n"
" const float m2 = 78.84375;\n"
" L = BT2100_OOTF(L, kMinNits, kMaxNits, kGamma);\n"
" L = L * kRefWhiteLevelSRGB / kLinearLuminanceCoeff;\n"
" float3 Lm1 = pow(L, m1);\n"
" float3 X = (c1 + c2 * Lm1) / (1 + c3 * Lm1);\n"
" float3 res = pow(X, m2);\n"
" return res;\n"
"}\n"
"PS_OUTPUT generateOutput()\n"
"{\n"
" PS_OUTPUT output;\n"
" \n"
" float3 input_colors = gl_Color[0].rgb;\n"
" float3 lin_osd_graphics = SRGB_EOTF(input_colors);\n"
" lin_osd_graphics = mul(BT709_TO_BT2020, lin_osd_graphics);\n"
" lin_osd_graphics *= kMaxNits/kRefWhiteLevelSRGB;\n"
" output.gl_Color0.rgb = PQ_OETF(lin_osd_graphics);\n"
" output.gl_Color0.a = gl_Color[0].a;\n"
" return output;\n"
"}\n";
#endif // STARBOARD
const char *HLSLComponentTypeString(GLenum componentType)
{
switch (componentType)
{
case GL_UNSIGNED_INT:
return "uint";
case GL_INT:
return "int";
case GL_UNSIGNED_NORMALIZED:
case GL_SIGNED_NORMALIZED:
case GL_FLOAT:
return "float";
default:
UNREACHABLE();
return "not-component-type";
}
}
void HLSLComponentTypeString(std::ostringstream &ostream, GLenum componentType, int componentCount)
{
ostream << HLSLComponentTypeString(componentType);
if (componentCount > 1)
{
ostream << componentCount;
}
}
const char *HLSLMatrixTypeString(GLenum type)
{
switch (type)
{
case GL_FLOAT_MAT2:
return "float2x2";
case GL_FLOAT_MAT3:
return "float3x3";
case GL_FLOAT_MAT4:
return "float4x4";
case GL_FLOAT_MAT2x3:
return "float2x3";
case GL_FLOAT_MAT3x2:
return "float3x2";
case GL_FLOAT_MAT2x4:
return "float2x4";
case GL_FLOAT_MAT4x2:
return "float4x2";
case GL_FLOAT_MAT3x4:
return "float3x4";
case GL_FLOAT_MAT4x3:
return "float4x3";
default:
UNREACHABLE();
return "not-matrix-type";
}
}
void HLSLTypeString(std::ostringstream &ostream, GLenum type)
{
if (gl::IsMatrixType(type))
{
ostream << HLSLMatrixTypeString(type);
return;
}
HLSLComponentTypeString(ostream, gl::VariableComponentType(type),
gl::VariableComponentCount(type));
}
const PixelShaderOutputVariable *FindOutputAtLocation(
const std::vector<PixelShaderOutputVariable> &outputVariables,
unsigned int location,
size_t index = 0)
{
for (auto &outputVar : outputVariables)
{
if (outputVar.outputLocation == location && outputVar.outputIndex == index)
{
return &outputVar;
}
}
return nullptr;
}
void WriteArrayString(std::ostringstream &strstr, unsigned int i)
{
static_assert(GL_INVALID_INDEX == UINT_MAX,
"GL_INVALID_INDEX must be equal to the max unsigned int.");
if (i == UINT_MAX)
{
return;
}
strstr << "[";
strstr << i;
strstr << "]";
}
constexpr const char *VERTEX_ATTRIBUTE_STUB_STRING = "@@ VERTEX ATTRIBUTES @@";
constexpr const char *VERTEX_OUTPUT_STUB_STRING = "@@ VERTEX OUTPUT @@";
constexpr const char *PIXEL_OUTPUT_STUB_STRING = "@@ PIXEL OUTPUT @@";
constexpr const char *PIXEL_MAIN_PARAMETERS_STUB_STRING = "@@ PIXEL MAIN PARAMETERS @@";
constexpr const char *MAIN_PROLOGUE_STUB_STRING = "@@ MAIN PROLOGUE @@";
} // anonymous namespace
// BuiltinInfo implementation
BuiltinInfo::BuiltinInfo() = default;
BuiltinInfo::~BuiltinInfo() = default;
// DynamicHLSL implementation
DynamicHLSL::DynamicHLSL(RendererD3D *const renderer) : mRenderer(renderer) {}
std::string DynamicHLSL::generateVertexShaderForInputLayout(
const std::string &sourceShader,
const InputLayout &inputLayout,
const std::vector<sh::ShaderVariable> &shaderAttributes) const
{
std::ostringstream structStream;
std::ostringstream initStream;
structStream << "struct VS_INPUT\n"
<< "{\n";
int semanticIndex = 0;
unsigned int inputIndex = 0;
// If gl_PointSize is used in the shader then pointsprites rendering is expected.
// If the renderer does not support Geometry shaders then Instanced PointSprite emulation
// must be used.
bool usesPointSize = sourceShader.find("GL_USES_POINT_SIZE") != std::string::npos;
bool useInstancedPointSpriteEmulation =
usesPointSize && mRenderer->getFeatures().useInstancedPointSpriteEmulation.enabled;
// Instanced PointSprite emulation requires additional entries in the
// VS_INPUT structure to support the vertices that make up the quad vertices.
// These values must be in sync with the cooresponding values added during inputlayout creation
// in InputLayoutCache::applyVertexBuffers().
//
// The additional entries must appear first in the VS_INPUT layout because
// Windows Phone 8 era devices require per vertex data to physically come
// before per instance data in the shader.
if (useInstancedPointSpriteEmulation)
{
structStream << " float3 spriteVertexPos : SPRITEPOSITION0;\n"
<< " float2 spriteTexCoord : SPRITETEXCOORD0;\n";
}
for (size_t attributeIndex = 0; attributeIndex < shaderAttributes.size(); ++attributeIndex)
{
const sh::ShaderVariable &shaderAttribute = shaderAttributes[attributeIndex];
if (!shaderAttribute.name.empty())
{
ASSERT(inputIndex < MAX_VERTEX_ATTRIBS);
angle::FormatID vertexFormatID =
inputIndex < inputLayout.size() ? inputLayout[inputIndex] : angle::FormatID::NONE;
// HLSL code for input structure
if (IsMatrixType(shaderAttribute.type))
{
// Matrix types are always transposed
structStream << " "
<< HLSLMatrixTypeString(TransposeMatrixType(shaderAttribute.type));
}
else
{
GLenum componentType = mRenderer->getVertexComponentType(vertexFormatID);
if (shaderAttribute.name == "gl_InstanceID" ||
shaderAttribute.name == "gl_VertexID")
{
// The input types of the instance ID and vertex ID in HLSL (uint) differs from
// the ones in ESSL (int).
structStream << " uint";
}
else
{
structStream << " ";
HLSLComponentTypeString(structStream, componentType,
VariableComponentCount(shaderAttribute.type));
}
}
structStream << " " << DecorateVariable(shaderAttribute.name) << " : ";
if (shaderAttribute.name == "gl_InstanceID")
{
structStream << "SV_InstanceID";
}
else if (shaderAttribute.name == "gl_VertexID")
{
structStream << "SV_VertexID";
}
else
{
structStream << "TEXCOORD" << semanticIndex;
semanticIndex += VariableRegisterCount(shaderAttribute.type);
}
structStream << ";\n";
// HLSL code for initialization
initStream << " " << DecorateVariable(shaderAttribute.name) << " = ";
// Mismatched vertex attribute to vertex input may result in an undefined
// data reinterpretation (eg for pure integer->float, float->pure integer)
// TODO: issue warning with gl debug info extension, when supported
if (IsMatrixType(shaderAttribute.type) ||
(mRenderer->getVertexConversionType(vertexFormatID) & VERTEX_CONVERT_GPU) != 0)
{
GenerateAttributeConversionHLSL(vertexFormatID, shaderAttribute, initStream);
}
else
{
initStream << "input." << DecorateVariable(shaderAttribute.name);
}
if (shaderAttribute.name == "gl_VertexID")
{
// dx_VertexID contains the firstVertex offset
initStream << " + dx_VertexID";
}
initStream << ";\n";
inputIndex += VariableRowCount(TransposeMatrixType(shaderAttribute.type));
}
}
structStream << "};\n"
"\n"
"void initAttributes(VS_INPUT input)\n"
"{\n"
<< initStream.str() << "}\n";
std::string vertexHLSL(sourceShader);
bool success =
angle::ReplaceSubstring(&vertexHLSL, VERTEX_ATTRIBUTE_STUB_STRING, structStream.str());
ASSERT(success);
return vertexHLSL;
}
std::string DynamicHLSL::generatePixelShaderForOutputSignature(
const std::string &sourceShader,
const std::vector<PixelShaderOutputVariable> &outputVariables,
bool usesFragDepth,
const std::vector<GLenum> &outputLayout) const
{
const int shaderModel = mRenderer->getMajorShaderModel();
std::string targetSemantic = (shaderModel >= 4) ? "SV_TARGET" : "COLOR";
std::string depthSemantic = (shaderModel >= 4) ? "SV_Depth" : "DEPTH";
std::ostringstream declarationStream;
std::ostringstream copyStream;
declarationStream << "struct PS_OUTPUT\n"
"{\n";
size_t numOutputs = outputLayout.size();
// Workaround for HLSL 3.x: We can't do a depth/stencil only render, the runtime will complain.
if (numOutputs == 0 && (shaderModel == 3 || !mRenderer->getShaderModelSuffix().empty()))
{
numOutputs = 1u;
}
const PixelShaderOutputVariable defaultOutput(GL_FLOAT_VEC4, "dummy", "float4(0, 0, 0, 1)", 0,
0);
size_t outputIndex = 0;
for (size_t layoutIndex = 0; layoutIndex < numOutputs; ++layoutIndex)
{
GLenum binding = outputLayout.empty() ? GL_COLOR_ATTACHMENT0 : outputLayout[layoutIndex];
if (binding != GL_NONE)
{
unsigned int location = (binding - GL_COLOR_ATTACHMENT0);
outputIndex =
layoutIndex > 0 && binding == outputLayout[layoutIndex - 1] ? outputIndex + 1 : 0;
const PixelShaderOutputVariable *outputVariable =
outputLayout.empty() ? &defaultOutput
: FindOutputAtLocation(outputVariables, location, outputIndex);
// OpenGL ES 3.0 spec $4.2.1
// If [...] not all user-defined output variables are written, the values of fragment
// colors corresponding to unwritten variables are similarly undefined.
if (outputVariable)
{
declarationStream << " ";
HLSLTypeString(declarationStream, outputVariable->type);
declarationStream << " " << outputVariable->name << " : " << targetSemantic
<< static_cast<int>(layoutIndex) << ";\n";
copyStream << " output." << outputVariable->name << " = "
<< outputVariable->source << ";\n";
}
}
}
if (usesFragDepth)
{
declarationStream << " float gl_Depth : " << depthSemantic << ";\n";
copyStream << " output.gl_Depth = gl_Depth; \n";
}
declarationStream << "};\n"
"\n"
"PS_OUTPUT generateOutput()\n"
"{\n"
" PS_OUTPUT output;\n"
<< copyStream.str()
<< " return output;\n"
"}\n";
std::string pixelHLSL(sourceShader);
bool success =
angle::ReplaceSubstring(&pixelHLSL, PIXEL_OUTPUT_STUB_STRING, declarationStream.str());
ASSERT(success);
return pixelHLSL;
}
#if defined(STARBOARD)
std::string DynamicHLSL::generatePixelShaderForHdrOutputSignature(
const std::string &sourceShader,
const std::vector<PixelShaderOutputVariable> &outputVariables,
bool usesFragDepth,
const std::vector<GLenum> &outputLayout) const
{
std::string pixelHLSL(sourceShader);
size_t outputInsertionPos = pixelHLSL.find(PIXEL_OUTPUT_STUB_STRING);
pixelHLSL.replace(outputInsertionPos, strlen(PIXEL_OUTPUT_STUB_STRING), BT709_TO_BT2020_SHADER);
return pixelHLSL;
}
#endif // STARBOARD
std::string DynamicHLSL::generateComputeShaderForImage2DBindSignature(
const d3d::Context *context,
ProgramD3D &programD3D,
const gl::ProgramState &programData,
std::vector<sh::ShaderVariable> &image2DUniforms,
const gl::ImageUnitTextureTypeMap &image2DBindLayout) const
{
std::string computeHLSL(
programData.getAttachedShader(ShaderType::Compute)->getTranslatedSource());
if (image2DUniforms.empty())
{
return computeHLSL;
}
return GenerateComputeShaderForImage2DBindSignature(context, programD3D, programData,
image2DUniforms, image2DBindLayout);
}
void DynamicHLSL::generateVaryingLinkHLSL(const VaryingPacking &varyingPacking,
const BuiltinInfo &builtins,
bool programUsesPointSize,
std::ostringstream &hlslStream) const
{
ASSERT(builtins.dxPosition.enabled);
hlslStream << "{\n"
<< " float4 dx_Position : " << builtins.dxPosition.str() << ";\n";
if (builtins.glPosition.enabled)
{
hlslStream << " float4 gl_Position : " << builtins.glPosition.str() << ";\n";
}
if (builtins.glFragCoord.enabled)
{
hlslStream << " float4 gl_FragCoord : " << builtins.glFragCoord.str() << ";\n";
}
if (builtins.glPointCoord.enabled)
{
hlslStream << " float2 gl_PointCoord : " << builtins.glPointCoord.str() << ";\n";
}
if (builtins.glPointSize.enabled)
{
hlslStream << " float gl_PointSize : " << builtins.glPointSize.str() << ";\n";
}
if (builtins.glViewIDOVR.enabled)
{
hlslStream << " nointerpolation uint gl_ViewID_OVR : " << builtins.glViewIDOVR.str()
<< ";\n";
}
std::string varyingSemantic =
GetVaryingSemantic(mRenderer->getMajorShaderModel(), programUsesPointSize);
const auto &registerInfos = varyingPacking.getRegisterList();
for (GLuint registerIndex = 0u; registerIndex < registerInfos.size(); ++registerIndex)
{
const PackedVaryingRegister &registerInfo = registerInfos[registerIndex];
const auto &varying = *registerInfo.packedVarying->varying;
ASSERT(!varying.isStruct());
// TODO: Add checks to ensure D3D interpolation modifiers don't result in too many
// registers being used.
// For example, if there are N registers, and we have N vec3 varyings and 1 float
// varying, then D3D will pack them into N registers.
// If the float varying has the 'nointerpolation' modifier on it then we would need
// N + 1 registers, and D3D compilation will fail.
switch (registerInfo.packedVarying->interpolation)
{
case sh::INTERPOLATION_SMOOTH:
hlslStream << " ";
break;
case sh::INTERPOLATION_FLAT:
hlslStream << " nointerpolation ";
break;
case sh::INTERPOLATION_CENTROID:
hlslStream << " centroid ";
break;
default:
UNREACHABLE();
}
GLenum transposedType = gl::TransposeMatrixType(varying.type);
GLenum componentType = gl::VariableComponentType(transposedType);
int columnCount = gl::VariableColumnCount(transposedType);
HLSLComponentTypeString(hlslStream, componentType, columnCount);
hlslStream << " v" << registerIndex << " : " << varyingSemantic << registerIndex << ";\n";
}
// Note that the following outputs need to be declared after the others. They are not included
// in pixel shader inputs even when they are in vertex/geometry shader outputs, and the pixel
// shader input struct must be a prefix of the vertex/geometry shader output struct.
if (builtins.glViewportIndex.enabled)
{
hlslStream << " nointerpolation uint gl_ViewportIndex : "
<< builtins.glViewportIndex.str() << ";\n";
}
if (builtins.glLayer.enabled)
{
hlslStream << " nointerpolation uint gl_Layer : " << builtins.glLayer.str() << ";\n";
}
hlslStream << "};\n";
}
void DynamicHLSL::generateShaderLinkHLSL(const gl::Caps &caps,
const gl::ProgramState &programData,
const ProgramD3DMetadata &programMetadata,
const VaryingPacking &varyingPacking,
const BuiltinVaryingsD3D &builtinsD3D,
gl::ShaderMap<std::string> *shaderHLSL) const
{
ASSERT(shaderHLSL);
ASSERT((*shaderHLSL)[gl::ShaderType::Vertex].empty() &&
(*shaderHLSL)[gl::ShaderType::Fragment].empty());
gl::Shader *vertexShaderGL = programData.getAttachedShader(ShaderType::Vertex);
gl::Shader *fragmentShaderGL = programData.getAttachedShader(ShaderType::Fragment);
const int shaderModel = mRenderer->getMajorShaderModel();
const ShaderD3D *fragmentShader = nullptr;
if (fragmentShaderGL)
{
fragmentShader = GetImplAs<ShaderD3D>(fragmentShaderGL);
}
// usesViewScale() isn't supported in the D3D9 renderer
ASSERT(shaderModel >= 4 || !programMetadata.usesViewScale());
bool useInstancedPointSpriteEmulation =
programMetadata.usesPointSize() &&
mRenderer->getFeatures().useInstancedPointSpriteEmulation.enabled;
// Validation done in the compiler
ASSERT(!fragmentShader || !fragmentShader->usesFragColor() || !fragmentShader->usesFragData());
std::ostringstream vertexStream;
vertexStream << "struct VS_OUTPUT\n";
const auto &vertexBuiltins = builtinsD3D[gl::ShaderType::Vertex];
generateVaryingLinkHLSL(varyingPacking, vertexBuiltins, builtinsD3D.usesPointSize(),
vertexStream);
// Instanced PointSprite emulation requires additional entries originally generated in the
// GeometryShader HLSL. These include pointsize clamp values.
if (useInstancedPointSpriteEmulation)
{
vertexStream << "static float minPointSize = " << static_cast<int>(caps.minAliasedPointSize)
<< ".0f;\n"
<< "static float maxPointSize = " << static_cast<int>(caps.maxAliasedPointSize)
<< ".0f;\n";
}
std::ostringstream vertexGenerateOutput;
vertexGenerateOutput << "VS_OUTPUT generateOutput(VS_INPUT input)\n"
<< "{\n"
<< " VS_OUTPUT output;\n";
if (vertexBuiltins.glPosition.enabled)
{
vertexGenerateOutput << " output.gl_Position = gl_Position;\n";
}
if (vertexBuiltins.glViewIDOVR.enabled)
{
vertexGenerateOutput << " output.gl_ViewID_OVR = ViewID_OVR;\n";
}
if (programMetadata.hasANGLEMultiviewEnabled() && programMetadata.canSelectViewInVertexShader())
{
ASSERT(vertexBuiltins.glViewportIndex.enabled && vertexBuiltins.glLayer.enabled);
vertexGenerateOutput << " if (multiviewSelectViewportIndex)\n"
<< " {\n"
<< " output.gl_ViewportIndex = ViewID_OVR;\n"
<< " } else {\n"
<< " output.gl_ViewportIndex = 0;\n"
<< " output.gl_Layer = ViewID_OVR;\n"
<< " }\n";
}
// On D3D9 or D3D11 Feature Level 9, we need to emulate large viewports using dx_ViewAdjust.
if (shaderModel >= 4 && mRenderer->getShaderModelSuffix() == "")
{
vertexGenerateOutput << " output.dx_Position.x = gl_Position.x;\n";
if (programMetadata.usesViewScale())
{
// This code assumes that dx_ViewScale.y = -1.0f when rendering to texture, and +1.0f
// when rendering to the default framebuffer. No other values are valid.
vertexGenerateOutput << " output.dx_Position.y = dx_ViewScale.y * gl_Position.y;\n";
}
else
{
vertexGenerateOutput << " output.dx_Position.y = - gl_Position.y;\n";
}
vertexGenerateOutput
<< " output.dx_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n"
<< " output.dx_Position.w = gl_Position.w;\n";
}
else
{
vertexGenerateOutput << " output.dx_Position.x = gl_Position.x * dx_ViewAdjust.z + "
"dx_ViewAdjust.x * gl_Position.w;\n";
// If usesViewScale() is true and we're using the D3D11 renderer via Feature Level 9_*,
// then we need to multiply the gl_Position.y by the viewScale.
// usesViewScale() isn't supported when using the D3D9 renderer.
if (programMetadata.usesViewScale() &&
(shaderModel >= 4 && mRenderer->getShaderModelSuffix() != ""))
{
vertexGenerateOutput << " output.dx_Position.y = dx_ViewScale.y * (gl_Position.y * "
"dx_ViewAdjust.w + dx_ViewAdjust.y * gl_Position.w);\n";
}
else
{
vertexGenerateOutput
<< " output.dx_Position.y = -(gl_Position.y * dx_ViewAdjust.w + "
"dx_ViewAdjust.y * gl_Position.w);\n";
}
vertexGenerateOutput
<< " output.dx_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n"
<< " output.dx_Position.w = gl_Position.w;\n";
}
// We don't need to output gl_PointSize if we use are emulating point sprites via instancing.
if (vertexBuiltins.glPointSize.enabled)
{
vertexGenerateOutput << " output.gl_PointSize = gl_PointSize;\n";
}
if (vertexBuiltins.glFragCoord.enabled)
{
vertexGenerateOutput << " output.gl_FragCoord = gl_Position;\n";
}
const auto &registerInfos = varyingPacking.getRegisterList();
for (GLuint registerIndex = 0u; registerIndex < registerInfos.size(); ++registerIndex)
{
const PackedVaryingRegister &registerInfo = registerInfos[registerIndex];
const auto &packedVarying = *registerInfo.packedVarying;
const auto &varying = *packedVarying.varying;
ASSERT(!varying.isStruct());
vertexGenerateOutput << " output.v" << registerIndex << " = ";
if (packedVarying.isStructField())
{
vertexGenerateOutput << DecorateVariable(packedVarying.parentStructName) << ".";
}
vertexGenerateOutput << DecorateVariable(varying.name);
if (varying.isArray())
{
WriteArrayString(vertexGenerateOutput, registerInfo.varyingArrayIndex);
}
if (VariableRowCount(varying.type) > 1)
{
WriteArrayString(vertexGenerateOutput, registerInfo.varyingRowIndex);
}
vertexGenerateOutput << ";\n";
}
// Instanced PointSprite emulation requires additional entries to calculate
// the final output vertex positions of the quad that represents each sprite.
if (useInstancedPointSpriteEmulation)
{
vertexGenerateOutput
<< "\n"
<< " gl_PointSize = clamp(gl_PointSize, minPointSize, maxPointSize);\n";
vertexGenerateOutput
<< " output.dx_Position.x += (input.spriteVertexPos.x * gl_PointSize / "
"(dx_ViewCoords.x*2)) * output.dx_Position.w;";
if (programMetadata.usesViewScale())
{
// Multiply by ViewScale to invert the rendering when appropriate
vertexGenerateOutput
<< " output.dx_Position.y += (-dx_ViewScale.y * "
"input.spriteVertexPos.y * gl_PointSize / (dx_ViewCoords.y*2)) * "
"output.dx_Position.w;";
}
else
{
vertexGenerateOutput
<< " output.dx_Position.y += (input.spriteVertexPos.y * gl_PointSize / "
"(dx_ViewCoords.y*2)) * output.dx_Position.w;";
}
vertexGenerateOutput
<< " output.dx_Position.z += input.spriteVertexPos.z * output.dx_Position.w;\n";
if (programMetadata.usesPointCoord())
{
vertexGenerateOutput << "\n"
<< " output.gl_PointCoord = input.spriteTexCoord;\n";
}
}
// Renderers that enable instanced pointsprite emulation require the vertex shader output member
// gl_PointCoord to be set to a default value if used without gl_PointSize. 0.5,0.5 is the same
// default value used in the generated pixel shader.
if (programMetadata.usesInsertedPointCoordValue())
{
ASSERT(!useInstancedPointSpriteEmulation);
vertexGenerateOutput << "\n"
<< " output.gl_PointCoord = float2(0.5, 0.5);\n";
}
vertexGenerateOutput << "\n"
<< " return output;\n"
<< "}";
if (vertexShaderGL)
{
std::string vertexSource = vertexShaderGL->getTranslatedSource();
angle::ReplaceSubstring(&vertexSource, std::string(MAIN_PROLOGUE_STUB_STRING),
" initAttributes(input);\n");
angle::ReplaceSubstring(&vertexSource, std::string(VERTEX_OUTPUT_STUB_STRING),
vertexGenerateOutput.str());
vertexStream << vertexSource;
}
const auto &pixelBuiltins = builtinsD3D[gl::ShaderType::Fragment];
std::ostringstream pixelStream;
pixelStream << "struct PS_INPUT\n";
generateVaryingLinkHLSL(varyingPacking, pixelBuiltins, builtinsD3D.usesPointSize(),
pixelStream);
pixelStream << "\n";
std::ostringstream pixelPrologue;
if (fragmentShader && fragmentShader->usesViewID())
{
ASSERT(pixelBuiltins.glViewIDOVR.enabled);
pixelPrologue << " ViewID_OVR = input.gl_ViewID_OVR;\n";
}
if (pixelBuiltins.glFragCoord.enabled)
{
pixelPrologue << " float rhw = 1.0 / input.gl_FragCoord.w;\n";
// Certain Shader Models (4_0+ and 3_0) allow reading from dx_Position in the pixel shader.
// Other Shader Models (4_0_level_9_3 and 2_x) don't support this, so we emulate it using
// dx_ViewCoords.
if (shaderModel >= 4 && mRenderer->getShaderModelSuffix() == "")
{
pixelPrologue << " gl_FragCoord.x = input.dx_Position.x;\n"
<< " gl_FragCoord.y = input.dx_Position.y;\n";
}
else if (shaderModel == 3)
{
pixelPrologue << " gl_FragCoord.x = input.dx_Position.x + 0.5;\n"
<< " gl_FragCoord.y = input.dx_Position.y + 0.5;\n";
}
else
{
// dx_ViewCoords contains the viewport width/2, height/2, center.x and center.y. See
// Renderer::setViewport()
pixelPrologue
<< " gl_FragCoord.x = (input.gl_FragCoord.x * rhw) * dx_ViewCoords.x + "
"dx_ViewCoords.z;\n"
<< " gl_FragCoord.y = (input.gl_FragCoord.y * rhw) * dx_ViewCoords.y + "
"dx_ViewCoords.w;\n";
}
if (programMetadata.usesViewScale())
{
// For Feature Level 9_3 and below, we need to correct gl_FragCoord.y to account
// for dx_ViewScale. On Feature Level 10_0+, gl_FragCoord.y is calculated above using
// dx_ViewCoords and is always correct irrespective of dx_ViewScale's value.
// NOTE: usesViewScale() can only be true on D3D11 (i.e. Shader Model 4.0+).
if (shaderModel >= 4 && mRenderer->getShaderModelSuffix() == "")
{
// Some assumptions:
// - dx_ViewScale.y = -1.0f when rendering to texture
// - dx_ViewScale.y = +1.0f when rendering to the default framebuffer
// - gl_FragCoord.y has been set correctly above.
//
// When rendering to the backbuffer, the code inverts gl_FragCoord's y coordinate.
// This involves subtracting the y coordinate from the height of the area being
// rendered to.
//
// First we calculate the height of the area being rendered to:
// render_area_height = (2.0f / (1.0f - input.gl_FragCoord.y * rhw)) *
// gl_FragCoord.y
//
// Note that when we're rendering to default FB, we want our output to be
// equivalent to:
// "gl_FragCoord.y = render_area_height - gl_FragCoord.y"
//
// When we're rendering to a texture, we want our output to be equivalent to:
// "gl_FragCoord.y = gl_FragCoord.y;"
//
// If we set scale_factor = ((1.0f + dx_ViewScale.y) / 2.0f), then notice that
// - When rendering to default FB: scale_factor = 1.0f
// - When rendering to texture: scale_factor = 0.0f
//
// Therefore, we can get our desired output by setting:
// "gl_FragCoord.y = scale_factor * render_area_height - dx_ViewScale.y *
// gl_FragCoord.y"
//
// Simplifying, this becomes:
pixelPrologue
<< " gl_FragCoord.y = (1.0f + dx_ViewScale.y) * gl_FragCoord.y /"
"(1.0f - input.gl_FragCoord.y * rhw) - dx_ViewScale.y * gl_FragCoord.y;\n";
}
}
pixelPrologue << " gl_FragCoord.z = (input.gl_FragCoord.z * rhw) * dx_DepthFront.x + "
"dx_DepthFront.y;\n"
<< " gl_FragCoord.w = rhw;\n";
}
if (pixelBuiltins.glPointCoord.enabled && shaderModel >= 3)
{
pixelPrologue << " gl_PointCoord.x = input.gl_PointCoord.x;\n"
<< " gl_PointCoord.y = 1.0 - input.gl_PointCoord.y;\n";
}
if (fragmentShader && fragmentShader->usesFrontFacing())
{
if (shaderModel <= 3)
{
pixelPrologue << " gl_FrontFacing = (vFace * dx_DepthFront.z >= 0.0);\n";
}
else
{
pixelPrologue << " gl_FrontFacing = isFrontFace;\n";
}
}
for (GLuint registerIndex = 0u; registerIndex < registerInfos.size(); ++registerIndex)
{
const PackedVaryingRegister &registerInfo = registerInfos[registerIndex];
const auto &packedVarying = *registerInfo.packedVarying;
const auto &varying = *packedVarying.varying;
ASSERT(!varying.isBuiltIn() && !varying.isStruct());
// Don't reference VS-only transform feedback varyings in the PS. Note that we're relying on
// that the active flag is set according to usage in the fragment shader.
if (packedVarying.vertexOnly || !varying.active)
continue;
pixelPrologue << " ";
if (packedVarying.isStructField())
{
pixelPrologue << DecorateVariable(packedVarying.parentStructName) << ".";
}
pixelPrologue << DecorateVariable(varying.name);
if (varying.isArray())
{
WriteArrayString(pixelPrologue, registerInfo.varyingArrayIndex);
}
GLenum transposedType = TransposeMatrixType(varying.type);
if (VariableRowCount(transposedType) > 1)
{
WriteArrayString(pixelPrologue, registerInfo.varyingRowIndex);
}
pixelPrologue << " = input.v" << registerIndex;
switch (VariableColumnCount(transposedType))
{
case 1:
pixelPrologue << ".x";
break;
case 2:
pixelPrologue << ".xy";
break;
case 3:
pixelPrologue << ".xyz";
break;
case 4:
break;
default:
UNREACHABLE();
}
pixelPrologue << ";\n";
}
if (fragmentShaderGL)
{
std::string pixelSource = fragmentShaderGL->getTranslatedSource();
if (fragmentShader->usesFrontFacing())
{
if (shaderModel >= 4)
{
angle::ReplaceSubstring(&pixelSource,
std::string(PIXEL_MAIN_PARAMETERS_STUB_STRING),
"PS_INPUT input, bool isFrontFace : SV_IsFrontFace");
}
else
{
angle::ReplaceSubstring(&pixelSource,
std::string(PIXEL_MAIN_PARAMETERS_STUB_STRING),
"PS_INPUT input, float vFace : VFACE");
}
}
else
{
angle::ReplaceSubstring(&pixelSource, std::string(PIXEL_MAIN_PARAMETERS_STUB_STRING),
"PS_INPUT input");
}
angle::ReplaceSubstring(&pixelSource, std::string(MAIN_PROLOGUE_STUB_STRING),
pixelPrologue.str());
pixelStream << pixelSource;
}
(*shaderHLSL)[gl::ShaderType::Vertex] = vertexStream.str();
(*shaderHLSL)[gl::ShaderType::Fragment] = pixelStream.str();
}
std::string DynamicHLSL::generateGeometryShaderPreamble(const VaryingPacking &varyingPacking,
const BuiltinVaryingsD3D &builtinsD3D,
const bool hasANGLEMultiviewEnabled,
const bool selectViewInVS) const
{
ASSERT(mRenderer->getMajorShaderModel() >= 4);
std::ostringstream preambleStream;
const auto &vertexBuiltins = builtinsD3D[gl::ShaderType::Vertex];
preambleStream << "struct GS_INPUT\n";
generateVaryingLinkHLSL(varyingPacking, vertexBuiltins, builtinsD3D.usesPointSize(),
preambleStream);
preambleStream << "\n"
<< "struct GS_OUTPUT\n";
generateVaryingLinkHLSL(varyingPacking, builtinsD3D[gl::ShaderType::Geometry],
builtinsD3D.usesPointSize(), preambleStream);
preambleStream
<< "\n"
<< "void copyVertex(inout GS_OUTPUT output, GS_INPUT input, GS_INPUT flatinput)\n"
<< "{\n"
<< " output.gl_Position = input.gl_Position;\n";
if (vertexBuiltins.glPointSize.enabled)
{
preambleStream << " output.gl_PointSize = input.gl_PointSize;\n";
}
if (hasANGLEMultiviewEnabled)
{
preambleStream << " output.gl_ViewID_OVR = input.gl_ViewID_OVR;\n";
if (selectViewInVS)
{
ASSERT(builtinsD3D[gl::ShaderType::Geometry].glViewportIndex.enabled &&
builtinsD3D[gl::ShaderType::Geometry].glLayer.enabled);
// If the view is already selected in the VS, then we just pass the gl_ViewportIndex and
// gl_Layer to the output.
preambleStream << " output.gl_ViewportIndex = input.gl_ViewportIndex;\n"
<< " output.gl_Layer = input.gl_Layer;\n";
}
}
const auto &registerInfos = varyingPacking.getRegisterList();
for (GLuint registerIndex = 0u; registerIndex < registerInfos.size(); ++registerIndex)
{
const PackedVaryingRegister &varyingRegister = registerInfos[registerIndex];
preambleStream << " output.v" << registerIndex << " = ";
if (varyingRegister.packedVarying->interpolation == sh::INTERPOLATION_FLAT)
{
preambleStream << "flat";
}
preambleStream << "input.v" << registerIndex << "; \n";
}
if (vertexBuiltins.glFragCoord.enabled)
{
preambleStream << " output.gl_FragCoord = input.gl_FragCoord;\n";
}
// Only write the dx_Position if we aren't using point sprites
preambleStream << "#ifndef ANGLE_POINT_SPRITE_SHADER\n"
<< " output.dx_Position = input.dx_Position;\n"
<< "#endif // ANGLE_POINT_SPRITE_SHADER\n"
<< "}\n";
if (hasANGLEMultiviewEnabled && !selectViewInVS)
{
ASSERT(builtinsD3D[gl::ShaderType::Geometry].glViewportIndex.enabled &&
builtinsD3D[gl::ShaderType::Geometry].glLayer.enabled);
// According to the HLSL reference, using SV_RenderTargetArrayIndex is only valid if the
// render target is an array resource. Because of this we do not write to gl_Layer if we are
// taking the side-by-side code path. We still select the viewport index in the layered code
// path as that is always valid. See:
// https://msdn.microsoft.com/en-us/library/windows/desktop/bb509647(v=vs.85).aspx
preambleStream << "\n"
<< "void selectView(inout GS_OUTPUT output, GS_INPUT input)\n"
<< "{\n"
<< " if (multiviewSelectViewportIndex)\n"
<< " {\n"
<< " output.gl_ViewportIndex = input.gl_ViewID_OVR;\n"
<< " } else {\n"
<< " output.gl_ViewportIndex = 0;\n"
<< " output.gl_Layer = input.gl_ViewID_OVR;\n"
<< " }\n"
<< "}\n";
}
return preambleStream.str();
}
std::string DynamicHLSL::generateGeometryShaderHLSL(const gl::Caps &caps,
gl::PrimitiveMode primitiveType,
const gl::ProgramState &programData,
const bool useViewScale,
const bool hasANGLEMultiviewEnabled,
const bool selectViewInVS,
const bool pointSpriteEmulation,
const std::string &preambleString) const
{
ASSERT(mRenderer->getMajorShaderModel() >= 4);
std::stringstream shaderStream;
const bool pointSprites = (primitiveType == gl::PrimitiveMode::Points) && pointSpriteEmulation;
const bool usesPointCoord = preambleString.find("gl_PointCoord") != std::string::npos;
const char *inputPT = nullptr;
const char *outputPT = nullptr;
int inputSize = 0;
int maxVertexOutput = 0;
switch (primitiveType)
{
case gl::PrimitiveMode::Points:
inputPT = "point";
inputSize = 1;
if (pointSprites)
{
outputPT = "Triangle";
maxVertexOutput = 4;
}
else
{
outputPT = "Point";
maxVertexOutput = 1;
}
break;
case gl::PrimitiveMode::Lines:
case gl::PrimitiveMode::LineStrip:
case gl::PrimitiveMode::LineLoop:
inputPT = "line";
outputPT = "Line";
inputSize = 2;
maxVertexOutput = 2;
break;
case gl::PrimitiveMode::Triangles:
case gl::PrimitiveMode::TriangleStrip:
case gl::PrimitiveMode::TriangleFan:
inputPT = "triangle";
outputPT = "Triangle";
inputSize = 3;
maxVertexOutput = 3;
break;
default:
UNREACHABLE();
break;
}
if (pointSprites || hasANGLEMultiviewEnabled)
{
shaderStream << "cbuffer DriverConstants : register(b0)\n"
"{\n";
if (pointSprites)
{
shaderStream << " float4 dx_ViewCoords : packoffset(c1);\n";
if (useViewScale)
{
shaderStream << " float2 dx_ViewScale : packoffset(c3);\n";
}
}
if (hasANGLEMultiviewEnabled)
{
// We have to add a value which we can use to keep track of which multi-view code path
// is to be selected in the GS.
shaderStream << " float multiviewSelectViewportIndex : packoffset(c3.z);\n";
}
shaderStream << "};\n\n";
}
if (pointSprites)
{
shaderStream << "#define ANGLE_POINT_SPRITE_SHADER\n"
"\n"
"static float2 pointSpriteCorners[] = \n"
"{\n"
" float2( 0.5f, -0.5f),\n"
" float2( 0.5f, 0.5f),\n"
" float2(-0.5f, -0.5f),\n"
" float2(-0.5f, 0.5f)\n"
"};\n"
"\n"
"static float2 pointSpriteTexcoords[] = \n"
"{\n"
" float2(1.0f, 1.0f),\n"
" float2(1.0f, 0.0f),\n"
" float2(0.0f, 1.0f),\n"
" float2(0.0f, 0.0f)\n"
"};\n"
"\n"
"static float minPointSize = "
<< static_cast<int>(caps.minAliasedPointSize)
<< ".0f;\n"
"static float maxPointSize = "
<< static_cast<int>(caps.maxAliasedPointSize) << ".0f;\n"
<< "\n";
}
shaderStream << preambleString << "\n"
<< "[maxvertexcount(" << maxVertexOutput << ")]\n"
<< "void main(" << inputPT << " GS_INPUT input[" << inputSize << "], ";
if (primitiveType == gl::PrimitiveMode::TriangleStrip)
{
shaderStream << "uint primitiveID : SV_PrimitiveID, ";
}
shaderStream << " inout " << outputPT << "Stream<GS_OUTPUT> outStream)\n"
<< "{\n"
<< " GS_OUTPUT output = (GS_OUTPUT)0;\n";
if (primitiveType == gl::PrimitiveMode::TriangleStrip)
{
shaderStream << " uint lastVertexIndex = (primitiveID % 2 == 0 ? 2 : 1);\n";
}
else
{
shaderStream << " uint lastVertexIndex = " << (inputSize - 1) << ";\n";
}
for (int vertexIndex = 0; vertexIndex < inputSize; ++vertexIndex)
{
shaderStream << " copyVertex(output, input[" << vertexIndex
<< "], input[lastVertexIndex]);\n";
if (hasANGLEMultiviewEnabled && !selectViewInVS)
{
shaderStream << " selectView(output, input[" << vertexIndex << "]);\n";
}
if (!pointSprites)
{
ASSERT(inputSize == maxVertexOutput);
shaderStream << " outStream.Append(output);\n";
}
}
if (pointSprites)
{
shaderStream << "\n"
" float4 dx_Position = input[0].dx_Position;\n"
" float gl_PointSize = clamp(input[0].gl_PointSize, minPointSize, "
"maxPointSize);\n"
" float2 viewportScale = float2(1.0f / dx_ViewCoords.x, 1.0f / "
"dx_ViewCoords.y) * dx_Position.w;\n";
for (int corner = 0; corner < 4; corner++)
{
if (useViewScale)
{
shaderStream << " \n"
" output.dx_Position = dx_Position + float4(1.0f, "
"-dx_ViewScale.y, 1.0f, 1.0f)"
" * float4(pointSpriteCorners["
<< corner << "] * viewportScale * gl_PointSize, 0.0f, 0.0f);\n";
}
else
{
shaderStream << "\n"
" output.dx_Position = dx_Position + float4(pointSpriteCorners["
<< corner << "] * viewportScale * gl_PointSize, 0.0f, 0.0f);\n";
}
if (usesPointCoord)
{
shaderStream << " output.gl_PointCoord = pointSpriteTexcoords[" << corner
<< "];\n";
}
shaderStream << " outStream.Append(output);\n";
}
}
shaderStream << " \n"
" outStream.RestartStrip();\n"
"}\n";
return shaderStream.str();
}
// static
void DynamicHLSL::GenerateAttributeConversionHLSL(angle::FormatID vertexFormatID,
const sh::ShaderVariable &shaderAttrib,
std::ostringstream &outStream)
{
// Matrix
if (IsMatrixType(shaderAttrib.type))
{
outStream << "transpose(input." << DecorateVariable(shaderAttrib.name) << ")";
return;
}
GLenum shaderComponentType = VariableComponentType(shaderAttrib.type);
int shaderComponentCount = VariableComponentCount(shaderAttrib.type);
const gl::VertexFormat &vertexFormat = gl::GetVertexFormatFromID(vertexFormatID);
// Perform integer to float conversion (if necessary)
if (shaderComponentType == GL_FLOAT && vertexFormat.type != GL_FLOAT)
{
// TODO: normalization for 32-bit integer formats
ASSERT(!vertexFormat.normalized && !vertexFormat.pureInteger);
outStream << "float" << shaderComponentCount << "(input."
<< DecorateVariable(shaderAttrib.name) << ")";
return;
}
// No conversion necessary
outStream << "input." << DecorateVariable(shaderAttrib.name);
}
void DynamicHLSL::getPixelShaderOutputKey(const gl::State &data,
const gl::ProgramState &programData,
const ProgramD3DMetadata &metadata,
std::vector<PixelShaderOutputVariable> *outPixelShaderKey)
{
// Two cases when writing to gl_FragColor and using ESSL 1.0:
// - with a 3.0 context, the output color is copied to channel 0
// - with a 2.0 context, the output color is broadcast to all channels
bool broadcast = metadata.usesBroadcast(data);
const unsigned int numRenderTargets =
(broadcast || metadata.usesMultipleFragmentOuts()
? static_cast<unsigned int>(data.getCaps().maxDrawBuffers)
: 1);
if (!metadata.usesCustomOutVars())
{
for (unsigned int renderTargetIndex = 0; renderTargetIndex < numRenderTargets;
renderTargetIndex++)
{
PixelShaderOutputVariable outputKeyVariable;
outputKeyVariable.type = GL_FLOAT_VEC4;
outputKeyVariable.name = "gl_Color" + Str(renderTargetIndex);
outputKeyVariable.source =
broadcast ? "gl_Color[0]" : "gl_Color[" + Str(renderTargetIndex) + "]";
outputKeyVariable.outputLocation = renderTargetIndex;
outPixelShaderKey->push_back(outputKeyVariable);
}
if (metadata.usesSecondaryColor())
{
for (unsigned int secondaryIndex = 0;
secondaryIndex < data.getExtensions().maxDualSourceDrawBuffers; secondaryIndex++)
{
PixelShaderOutputVariable outputKeyVariable;
outputKeyVariable.type = GL_FLOAT_VEC4;
outputKeyVariable.name = "gl_SecondaryColor" + Str(secondaryIndex);
outputKeyVariable.source = "gl_SecondaryColor[" + Str(secondaryIndex) + "]";
outputKeyVariable.outputLocation = secondaryIndex;
outputKeyVariable.outputIndex = 1;
outPixelShaderKey->push_back(outputKeyVariable);
}
}
}
else
{
const ShaderD3D *fragmentShader = metadata.getFragmentShader();
if (!fragmentShader)
{
return;
}
const auto &shaderOutputVars = fragmentShader->getData().getActiveOutputVariables();
for (size_t outputLocationIndex = 0u;
outputLocationIndex < programData.getOutputLocations().size(); ++outputLocationIndex)
{
const VariableLocation &outputLocation =
programData.getOutputLocations().at(outputLocationIndex);
if (!outputLocation.used())
{
continue;
}
const sh::ShaderVariable &outputVariable = shaderOutputVars[outputLocation.index];
const std::string &variableName = "out_" + outputVariable.name;
// Fragment outputs can't be arrays of arrays. ESSL 3.10 section 4.3.6.
const std::string &elementString =
(outputVariable.isArray() ? Str(outputLocation.arrayIndex) : "");
ASSERT(outputVariable.active);
PixelShaderOutputVariable outputKeyVariable;
outputKeyVariable.type = outputVariable.type;
outputKeyVariable.name = variableName + elementString;
outputKeyVariable.source =
variableName +
(outputVariable.isArray() ? ArrayString(outputLocation.arrayIndex) : "");
outputKeyVariable.outputLocation = outputLocationIndex;
outPixelShaderKey->push_back(outputKeyVariable);
}
// Now generate any secondary outputs...
for (size_t outputLocationIndex = 0u;
outputLocationIndex < programData.getSecondaryOutputLocations().size();
++outputLocationIndex)
{
const VariableLocation &outputLocation =
programData.getSecondaryOutputLocations().at(outputLocationIndex);
if (!outputLocation.used())
{
continue;
}
const sh::ShaderVariable &outputVariable = shaderOutputVars[outputLocation.index];
const std::string &variableName = "out_" + outputVariable.name;
// Fragment outputs can't be arrays of arrays. ESSL 3.10 section 4.3.6.
const std::string &elementString =
(outputVariable.isArray() ? Str(outputLocation.arrayIndex) : "");
ASSERT(outputVariable.active);
PixelShaderOutputVariable outputKeyVariable;
outputKeyVariable.type = outputVariable.type;
outputKeyVariable.name = variableName + elementString;
outputKeyVariable.source =
variableName +
(outputVariable.isArray() ? ArrayString(outputLocation.arrayIndex) : "");
outputKeyVariable.outputLocation = outputLocationIndex;
outputKeyVariable.outputIndex = 1;
outPixelShaderKey->push_back(outputKeyVariable);
}
}
}
// BuiltinVarying Implementation.
BuiltinVarying::BuiltinVarying() : enabled(false), index(0), systemValue(false) {}
std::string BuiltinVarying::str() const
{
return (systemValue ? semantic : (semantic + Str(index)));
}
void BuiltinVarying::enableSystem(const std::string &systemValueSemantic)
{
enabled = true;
semantic = systemValueSemantic;
systemValue = true;
}
void BuiltinVarying::enable(const std::string &semanticVal, unsigned int indexVal)
{
enabled = true;
semantic = semanticVal;
index = indexVal;
}
// BuiltinVaryingsD3D Implementation.
BuiltinVaryingsD3D::BuiltinVaryingsD3D(const ProgramD3DMetadata &metadata,
const VaryingPacking &packing)
{
updateBuiltins(gl::ShaderType::Vertex, metadata, packing);
updateBuiltins(gl::ShaderType::Fragment, metadata, packing);
int shaderModel = metadata.getRendererMajorShaderModel();
if (shaderModel >= 4)
{
updateBuiltins(gl::ShaderType::Geometry, metadata, packing);
}
// In shader model >= 4, some builtins need to be the same in vertex and pixel shaders - input
// struct needs to be a prefix of output struct.
ASSERT(shaderModel < 4 || mBuiltinInfo[gl::ShaderType::Vertex].glPosition.enabled ==
mBuiltinInfo[gl::ShaderType::Fragment].glPosition.enabled);
ASSERT(shaderModel < 4 || mBuiltinInfo[gl::ShaderType::Vertex].glFragCoord.enabled ==
mBuiltinInfo[gl::ShaderType::Fragment].glFragCoord.enabled);
ASSERT(shaderModel < 4 || mBuiltinInfo[gl::ShaderType::Vertex].glPointCoord.enabled ==
mBuiltinInfo[gl::ShaderType::Fragment].glPointCoord.enabled);
ASSERT(shaderModel < 4 || mBuiltinInfo[gl::ShaderType::Vertex].glPointSize.enabled ==
mBuiltinInfo[gl::ShaderType::Fragment].glPointSize.enabled);
ASSERT(shaderModel < 4 || mBuiltinInfo[gl::ShaderType::Vertex].glViewIDOVR.enabled ==
mBuiltinInfo[gl::ShaderType::Fragment].glViewIDOVR.enabled);
}
BuiltinVaryingsD3D::~BuiltinVaryingsD3D() = default;
void BuiltinVaryingsD3D::updateBuiltins(gl::ShaderType shaderType,
const ProgramD3DMetadata &metadata,
const VaryingPacking &packing)
{
const std::string &userSemantic = GetVaryingSemantic(metadata.getRendererMajorShaderModel(),
metadata.usesSystemValuePointSize());
// Note that when enabling builtins only for specific shader stages in shader model >= 4, the
// code needs to ensure that the input struct of the shader stage is a prefix of the output
// struct of the previous stage.
unsigned int reservedSemanticIndex = packing.getMaxSemanticIndex();
BuiltinInfo *builtins = &mBuiltinInfo[shaderType];
if (metadata.getRendererMajorShaderModel() >= 4)
{
builtins->dxPosition.enableSystem("SV_Position");
}
else if (shaderType == gl::ShaderType::Fragment)
{
builtins->dxPosition.enableSystem("VPOS");
}
else
{
builtins->dxPosition.enableSystem("POSITION");
}
if (metadata.usesTransformFeedbackGLPosition())
{
builtins->glPosition.enable(userSemantic, reservedSemanticIndex++);
}
if (metadata.usesFragCoord())
{
builtins->glFragCoord.enable(userSemantic, reservedSemanticIndex++);
}
if (shaderType == gl::ShaderType::Vertex ? metadata.addsPointCoordToVertexShader()
: metadata.usesPointCoord())
{
// SM3 reserves the TEXCOORD semantic for point sprite texcoords (gl_PointCoord)
// In D3D11 we manually compute gl_PointCoord in the GS.
if (metadata.getRendererMajorShaderModel() >= 4)
{
builtins->glPointCoord.enable(userSemantic, reservedSemanticIndex++);
}
else
{
builtins->glPointCoord.enable("TEXCOORD", 0);
}
}
if (metadata.hasANGLEMultiviewEnabled())
{
// Although it is possible to compute gl_ViewID_OVR from the value of
// SV_ViewportArrayIndex or SV_RenderTargetArrayIndex and the multi-view state in the
// driver constant buffer, it is easier and cleaner to always pass it as a varying.
builtins->glViewIDOVR.enable(userSemantic, reservedSemanticIndex++);
if (shaderType == gl::ShaderType::Vertex)
{
if (metadata.canSelectViewInVertexShader())
{
builtins->glViewportIndex.enableSystem("SV_ViewportArrayIndex");
builtins->glLayer.enableSystem("SV_RenderTargetArrayIndex");
}
}
if (shaderType == gl::ShaderType::Geometry)
{
// gl_Layer and gl_ViewportIndex are necessary so that we can write to either based on
// the multiview state in the driver constant buffer.
builtins->glViewportIndex.enableSystem("SV_ViewportArrayIndex");
builtins->glLayer.enableSystem("SV_RenderTargetArrayIndex");
}
}
// Special case: do not include PSIZE semantic in HLSL 3 pixel shaders
if (metadata.usesSystemValuePointSize() &&
(shaderType != gl::ShaderType::Fragment || metadata.getRendererMajorShaderModel() >= 4))
{
builtins->glPointSize.enableSystem("PSIZE");
}
}
} // namespace rx