| //===-- IRMemoryMap.cpp -----------------------------------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "lldb/Expression/IRMemoryMap.h" |
| #include "lldb/Core/Scalar.h" |
| #include "lldb/Target/MemoryRegionInfo.h" |
| #include "lldb/Target/Process.h" |
| #include "lldb/Target/Target.h" |
| #include "lldb/Utility/DataBufferHeap.h" |
| #include "lldb/Utility/DataExtractor.h" |
| #include "lldb/Utility/LLDBAssert.h" |
| #include "lldb/Utility/Log.h" |
| #include "lldb/Utility/Status.h" |
| |
| using namespace lldb_private; |
| |
| IRMemoryMap::IRMemoryMap(lldb::TargetSP target_sp) : m_target_wp(target_sp) { |
| if (target_sp) |
| m_process_wp = target_sp->GetProcessSP(); |
| } |
| |
| IRMemoryMap::~IRMemoryMap() { |
| lldb::ProcessSP process_sp = m_process_wp.lock(); |
| |
| if (process_sp) { |
| AllocationMap::iterator iter; |
| |
| Status err; |
| |
| while ((iter = m_allocations.begin()) != m_allocations.end()) { |
| err.Clear(); |
| if (iter->second.m_leak) |
| m_allocations.erase(iter); |
| else |
| Free(iter->first, err); |
| } |
| } |
| } |
| |
| lldb::addr_t IRMemoryMap::FindSpace(size_t size) { |
| // The FindSpace algorithm's job is to find a region of memory that the |
| // underlying process is unlikely to be using. |
| // |
| // The memory returned by this function will never be written to. The only |
| // point is that it should not shadow process memory if possible, so that |
| // expressions processing real values from the process do not use the wrong |
| // data. |
| // |
| // If the process can in fact allocate memory (CanJIT() lets us know this) |
| // then this can be accomplished just be allocating memory in the inferior. |
| // Then no guessing is required. |
| |
| lldb::TargetSP target_sp = m_target_wp.lock(); |
| lldb::ProcessSP process_sp = m_process_wp.lock(); |
| |
| const bool process_is_alive = process_sp && process_sp->IsAlive(); |
| |
| lldb::addr_t ret = LLDB_INVALID_ADDRESS; |
| if (size == 0) |
| return ret; |
| |
| if (process_is_alive && process_sp->CanJIT()) { |
| Status alloc_error; |
| |
| ret = process_sp->AllocateMemory(size, lldb::ePermissionsReadable | |
| lldb::ePermissionsWritable, |
| alloc_error); |
| |
| if (!alloc_error.Success()) |
| return LLDB_INVALID_ADDRESS; |
| else |
| return ret; |
| } |
| |
| // At this point we know that we need to hunt. |
| // |
| // First, go to the end of the existing allocations we've made if there are |
| // any allocations. Otherwise start at the beginning of memory. |
| |
| if (m_allocations.empty()) { |
| ret = 0x0; |
| } else { |
| auto back = m_allocations.rbegin(); |
| lldb::addr_t addr = back->first; |
| size_t alloc_size = back->second.m_size; |
| ret = llvm::alignTo(addr + alloc_size, 4096); |
| } |
| |
| // Now, if it's possible to use the GetMemoryRegionInfo API to detect mapped |
| // regions, walk forward through memory until a region is found that has |
| // adequate space for our allocation. |
| if (process_is_alive) { |
| const uint64_t end_of_memory = process_sp->GetAddressByteSize() == 8 |
| ? 0xffffffffffffffffull |
| : 0xffffffffull; |
| |
| lldbassert(process_sp->GetAddressByteSize() == 4 || |
| end_of_memory != 0xffffffffull); |
| |
| MemoryRegionInfo region_info; |
| Status err = process_sp->GetMemoryRegionInfo(ret, region_info); |
| if (err.Success()) { |
| while (true) { |
| if (region_info.GetReadable() != MemoryRegionInfo::OptionalBool::eNo || |
| region_info.GetWritable() != MemoryRegionInfo::OptionalBool::eNo || |
| region_info.GetExecutable() != |
| MemoryRegionInfo::OptionalBool::eNo) { |
| if (region_info.GetRange().GetRangeEnd() - 1 >= end_of_memory) { |
| ret = LLDB_INVALID_ADDRESS; |
| break; |
| } else { |
| ret = region_info.GetRange().GetRangeEnd(); |
| } |
| } else if (ret + size < region_info.GetRange().GetRangeEnd()) { |
| return ret; |
| } else { |
| // ret stays the same. We just need to walk a bit further. |
| } |
| |
| err = process_sp->GetMemoryRegionInfo( |
| region_info.GetRange().GetRangeEnd(), region_info); |
| if (err.Fail()) { |
| lldbassert(0 && "GetMemoryRegionInfo() succeeded, then failed"); |
| ret = LLDB_INVALID_ADDRESS; |
| break; |
| } |
| } |
| } |
| } |
| |
| // We've tried our algorithm, and it didn't work. Now we have to reset back |
| // to the end of the allocations we've already reported, or use a 'sensible' |
| // default if this is our first allocation. |
| |
| if (m_allocations.empty()) { |
| uint32_t address_byte_size = GetAddressByteSize(); |
| if (address_byte_size != UINT32_MAX) { |
| switch (address_byte_size) { |
| case 8: |
| ret = 0xffffffff00000000ull; |
| break; |
| case 4: |
| ret = 0xee000000ull; |
| break; |
| default: |
| break; |
| } |
| } |
| } else { |
| auto back = m_allocations.rbegin(); |
| lldb::addr_t addr = back->first; |
| size_t alloc_size = back->second.m_size; |
| ret = llvm::alignTo(addr + alloc_size, 4096); |
| } |
| |
| return ret; |
| } |
| |
| IRMemoryMap::AllocationMap::iterator |
| IRMemoryMap::FindAllocation(lldb::addr_t addr, size_t size) { |
| if (addr == LLDB_INVALID_ADDRESS) |
| return m_allocations.end(); |
| |
| AllocationMap::iterator iter = m_allocations.lower_bound(addr); |
| |
| if (iter == m_allocations.end() || iter->first > addr) { |
| if (iter == m_allocations.begin()) |
| return m_allocations.end(); |
| iter--; |
| } |
| |
| if (iter->first <= addr && iter->first + iter->second.m_size >= addr + size) |
| return iter; |
| |
| return m_allocations.end(); |
| } |
| |
| bool IRMemoryMap::IntersectsAllocation(lldb::addr_t addr, size_t size) const { |
| if (addr == LLDB_INVALID_ADDRESS) |
| return false; |
| |
| AllocationMap::const_iterator iter = m_allocations.lower_bound(addr); |
| |
| // Since we only know that the returned interval begins at a location greater |
| // than or equal to where the given interval begins, it's possible that the |
| // given interval intersects either the returned interval or the previous |
| // interval. Thus, we need to check both. Note that we only need to check |
| // these two intervals. Since all intervals are disjoint it is not possible |
| // that an adjacent interval does not intersect, but a non-adjacent interval |
| // does intersect. |
| if (iter != m_allocations.end()) { |
| if (AllocationsIntersect(addr, size, iter->second.m_process_start, |
| iter->second.m_size)) |
| return true; |
| } |
| |
| if (iter != m_allocations.begin()) { |
| --iter; |
| if (AllocationsIntersect(addr, size, iter->second.m_process_start, |
| iter->second.m_size)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool IRMemoryMap::AllocationsIntersect(lldb::addr_t addr1, size_t size1, |
| lldb::addr_t addr2, size_t size2) { |
| // Given two half open intervals [A, B) and [X, Y), the only 6 permutations |
| // that satisfy A<B and X<Y are the following: |
| // A B X Y |
| // A X B Y (intersects) |
| // A X Y B (intersects) |
| // X A B Y (intersects) |
| // X A Y B (intersects) |
| // X Y A B |
| // The first is B <= X, and the last is Y <= A. So the condition is !(B <= X |
| // || Y <= A)), or (X < B && A < Y) |
| return (addr2 < (addr1 + size1)) && (addr1 < (addr2 + size2)); |
| } |
| |
| lldb::ByteOrder IRMemoryMap::GetByteOrder() { |
| lldb::ProcessSP process_sp = m_process_wp.lock(); |
| |
| if (process_sp) |
| return process_sp->GetByteOrder(); |
| |
| lldb::TargetSP target_sp = m_target_wp.lock(); |
| |
| if (target_sp) |
| return target_sp->GetArchitecture().GetByteOrder(); |
| |
| return lldb::eByteOrderInvalid; |
| } |
| |
| uint32_t IRMemoryMap::GetAddressByteSize() { |
| lldb::ProcessSP process_sp = m_process_wp.lock(); |
| |
| if (process_sp) |
| return process_sp->GetAddressByteSize(); |
| |
| lldb::TargetSP target_sp = m_target_wp.lock(); |
| |
| if (target_sp) |
| return target_sp->GetArchitecture().GetAddressByteSize(); |
| |
| return UINT32_MAX; |
| } |
| |
| ExecutionContextScope *IRMemoryMap::GetBestExecutionContextScope() const { |
| lldb::ProcessSP process_sp = m_process_wp.lock(); |
| |
| if (process_sp) |
| return process_sp.get(); |
| |
| lldb::TargetSP target_sp = m_target_wp.lock(); |
| |
| if (target_sp) |
| return target_sp.get(); |
| |
| return NULL; |
| } |
| |
| IRMemoryMap::Allocation::Allocation(lldb::addr_t process_alloc, |
| lldb::addr_t process_start, size_t size, |
| uint32_t permissions, uint8_t alignment, |
| AllocationPolicy policy) |
| : m_process_alloc(process_alloc), m_process_start(process_start), |
| m_size(size), m_permissions(permissions), m_alignment(alignment), |
| m_policy(policy), m_leak(false) { |
| switch (policy) { |
| default: |
| assert(0 && "We cannot reach this!"); |
| case eAllocationPolicyHostOnly: |
| m_data.SetByteSize(size); |
| memset(m_data.GetBytes(), 0, size); |
| break; |
| case eAllocationPolicyProcessOnly: |
| break; |
| case eAllocationPolicyMirror: |
| m_data.SetByteSize(size); |
| memset(m_data.GetBytes(), 0, size); |
| break; |
| } |
| } |
| |
| lldb::addr_t IRMemoryMap::Malloc(size_t size, uint8_t alignment, |
| uint32_t permissions, AllocationPolicy policy, |
| bool zero_memory, Status &error) { |
| lldb_private::Log *log( |
| lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); |
| error.Clear(); |
| |
| lldb::ProcessSP process_sp; |
| lldb::addr_t allocation_address = LLDB_INVALID_ADDRESS; |
| lldb::addr_t aligned_address = LLDB_INVALID_ADDRESS; |
| |
| size_t allocation_size; |
| |
| if (size == 0) { |
| // FIXME: Malloc(0) should either return an invalid address or assert, in |
| // order to cut down on unnecessary allocations. |
| allocation_size = alignment; |
| } else { |
| // Round up the requested size to an aligned value. |
| allocation_size = llvm::alignTo(size, alignment); |
| |
| // The process page cache does not see the requested alignment. We can't |
| // assume its result will be any more than 1-byte aligned. To work around |
| // this, request `alignment - 1` additional bytes. |
| allocation_size += alignment - 1; |
| } |
| |
| switch (policy) { |
| default: |
| error.SetErrorToGenericError(); |
| error.SetErrorString("Couldn't malloc: invalid allocation policy"); |
| return LLDB_INVALID_ADDRESS; |
| case eAllocationPolicyHostOnly: |
| allocation_address = FindSpace(allocation_size); |
| if (allocation_address == LLDB_INVALID_ADDRESS) { |
| error.SetErrorToGenericError(); |
| error.SetErrorString("Couldn't malloc: address space is full"); |
| return LLDB_INVALID_ADDRESS; |
| } |
| break; |
| case eAllocationPolicyMirror: |
| process_sp = m_process_wp.lock(); |
| if (log) |
| log->Printf("IRMemoryMap::%s process_sp=0x%" PRIx64 |
| ", process_sp->CanJIT()=%s, process_sp->IsAlive()=%s", |
| __FUNCTION__, (lldb::addr_t)process_sp.get(), |
| process_sp && process_sp->CanJIT() ? "true" : "false", |
| process_sp && process_sp->IsAlive() ? "true" : "false"); |
| if (process_sp && process_sp->CanJIT() && process_sp->IsAlive()) { |
| if (!zero_memory) |
| allocation_address = |
| process_sp->AllocateMemory(allocation_size, permissions, error); |
| else |
| allocation_address = |
| process_sp->CallocateMemory(allocation_size, permissions, error); |
| |
| if (!error.Success()) |
| return LLDB_INVALID_ADDRESS; |
| } else { |
| if (log) |
| log->Printf("IRMemoryMap::%s switching to eAllocationPolicyHostOnly " |
| "due to failed condition (see previous expr log message)", |
| __FUNCTION__); |
| policy = eAllocationPolicyHostOnly; |
| allocation_address = FindSpace(allocation_size); |
| if (allocation_address == LLDB_INVALID_ADDRESS) { |
| error.SetErrorToGenericError(); |
| error.SetErrorString("Couldn't malloc: address space is full"); |
| return LLDB_INVALID_ADDRESS; |
| } |
| } |
| break; |
| case eAllocationPolicyProcessOnly: |
| process_sp = m_process_wp.lock(); |
| if (process_sp) { |
| if (process_sp->CanJIT() && process_sp->IsAlive()) { |
| if (!zero_memory) |
| allocation_address = |
| process_sp->AllocateMemory(allocation_size, permissions, error); |
| else |
| allocation_address = |
| process_sp->CallocateMemory(allocation_size, permissions, error); |
| |
| if (!error.Success()) |
| return LLDB_INVALID_ADDRESS; |
| } else { |
| error.SetErrorToGenericError(); |
| error.SetErrorString( |
| "Couldn't malloc: process doesn't support allocating memory"); |
| return LLDB_INVALID_ADDRESS; |
| } |
| } else { |
| error.SetErrorToGenericError(); |
| error.SetErrorString("Couldn't malloc: process doesn't exist, and this " |
| "memory must be in the process"); |
| return LLDB_INVALID_ADDRESS; |
| } |
| break; |
| } |
| |
| lldb::addr_t mask = alignment - 1; |
| aligned_address = (allocation_address + mask) & (~mask); |
| |
| m_allocations[aligned_address] = |
| Allocation(allocation_address, aligned_address, allocation_size, |
| permissions, alignment, policy); |
| |
| if (zero_memory) { |
| Status write_error; |
| std::vector<uint8_t> zero_buf(size, 0); |
| WriteMemory(aligned_address, zero_buf.data(), size, write_error); |
| } |
| |
| if (log) { |
| const char *policy_string; |
| |
| switch (policy) { |
| default: |
| policy_string = "<invalid policy>"; |
| break; |
| case eAllocationPolicyHostOnly: |
| policy_string = "eAllocationPolicyHostOnly"; |
| break; |
| case eAllocationPolicyProcessOnly: |
| policy_string = "eAllocationPolicyProcessOnly"; |
| break; |
| case eAllocationPolicyMirror: |
| policy_string = "eAllocationPolicyMirror"; |
| break; |
| } |
| |
| log->Printf("IRMemoryMap::Malloc (%" PRIu64 ", 0x%" PRIx64 ", 0x%" PRIx64 |
| ", %s) -> 0x%" PRIx64, |
| (uint64_t)allocation_size, (uint64_t)alignment, |
| (uint64_t)permissions, policy_string, aligned_address); |
| } |
| |
| return aligned_address; |
| } |
| |
| void IRMemoryMap::Leak(lldb::addr_t process_address, Status &error) { |
| error.Clear(); |
| |
| AllocationMap::iterator iter = m_allocations.find(process_address); |
| |
| if (iter == m_allocations.end()) { |
| error.SetErrorToGenericError(); |
| error.SetErrorString("Couldn't leak: allocation doesn't exist"); |
| return; |
| } |
| |
| Allocation &allocation = iter->second; |
| |
| allocation.m_leak = true; |
| } |
| |
| void IRMemoryMap::Free(lldb::addr_t process_address, Status &error) { |
| error.Clear(); |
| |
| AllocationMap::iterator iter = m_allocations.find(process_address); |
| |
| if (iter == m_allocations.end()) { |
| error.SetErrorToGenericError(); |
| error.SetErrorString("Couldn't free: allocation doesn't exist"); |
| return; |
| } |
| |
| Allocation &allocation = iter->second; |
| |
| switch (allocation.m_policy) { |
| default: |
| case eAllocationPolicyHostOnly: { |
| lldb::ProcessSP process_sp = m_process_wp.lock(); |
| if (process_sp) { |
| if (process_sp->CanJIT() && process_sp->IsAlive()) |
| process_sp->DeallocateMemory( |
| allocation.m_process_alloc); // FindSpace allocated this for real |
| } |
| |
| break; |
| } |
| case eAllocationPolicyMirror: |
| case eAllocationPolicyProcessOnly: { |
| lldb::ProcessSP process_sp = m_process_wp.lock(); |
| if (process_sp) |
| process_sp->DeallocateMemory(allocation.m_process_alloc); |
| } |
| } |
| |
| if (lldb_private::Log *log = |
| lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)) { |
| log->Printf("IRMemoryMap::Free (0x%" PRIx64 ") freed [0x%" PRIx64 |
| "..0x%" PRIx64 ")", |
| (uint64_t)process_address, iter->second.m_process_start, |
| iter->second.m_process_start + iter->second.m_size); |
| } |
| |
| m_allocations.erase(iter); |
| } |
| |
| bool IRMemoryMap::GetAllocSize(lldb::addr_t address, size_t &size) { |
| AllocationMap::iterator iter = FindAllocation(address, size); |
| if (iter == m_allocations.end()) |
| return false; |
| |
| Allocation &al = iter->second; |
| |
| if (address > (al.m_process_start + al.m_size)) { |
| size = 0; |
| return false; |
| } |
| |
| if (address > al.m_process_start) { |
| int dif = address - al.m_process_start; |
| size = al.m_size - dif; |
| return true; |
| } |
| |
| size = al.m_size; |
| return true; |
| } |
| |
| void IRMemoryMap::WriteMemory(lldb::addr_t process_address, |
| const uint8_t *bytes, size_t size, |
| Status &error) { |
| error.Clear(); |
| |
| AllocationMap::iterator iter = FindAllocation(process_address, size); |
| |
| if (iter == m_allocations.end()) { |
| lldb::ProcessSP process_sp = m_process_wp.lock(); |
| |
| if (process_sp) { |
| process_sp->WriteMemory(process_address, bytes, size, error); |
| return; |
| } |
| |
| error.SetErrorToGenericError(); |
| error.SetErrorString("Couldn't write: no allocation contains the target " |
| "range and the process doesn't exist"); |
| return; |
| } |
| |
| Allocation &allocation = iter->second; |
| |
| uint64_t offset = process_address - allocation.m_process_start; |
| |
| lldb::ProcessSP process_sp; |
| |
| switch (allocation.m_policy) { |
| default: |
| error.SetErrorToGenericError(); |
| error.SetErrorString("Couldn't write: invalid allocation policy"); |
| return; |
| case eAllocationPolicyHostOnly: |
| if (!allocation.m_data.GetByteSize()) { |
| error.SetErrorToGenericError(); |
| error.SetErrorString("Couldn't write: data buffer is empty"); |
| return; |
| } |
| ::memcpy(allocation.m_data.GetBytes() + offset, bytes, size); |
| break; |
| case eAllocationPolicyMirror: |
| if (!allocation.m_data.GetByteSize()) { |
| error.SetErrorToGenericError(); |
| error.SetErrorString("Couldn't write: data buffer is empty"); |
| return; |
| } |
| ::memcpy(allocation.m_data.GetBytes() + offset, bytes, size); |
| process_sp = m_process_wp.lock(); |
| if (process_sp) { |
| process_sp->WriteMemory(process_address, bytes, size, error); |
| if (!error.Success()) |
| return; |
| } |
| break; |
| case eAllocationPolicyProcessOnly: |
| process_sp = m_process_wp.lock(); |
| if (process_sp) { |
| process_sp->WriteMemory(process_address, bytes, size, error); |
| if (!error.Success()) |
| return; |
| } |
| break; |
| } |
| |
| if (lldb_private::Log *log = |
| lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)) { |
| log->Printf("IRMemoryMap::WriteMemory (0x%" PRIx64 ", 0x%" PRIx64 |
| ", 0x%" PRId64 ") went to [0x%" PRIx64 "..0x%" PRIx64 ")", |
| (uint64_t)process_address, (uint64_t)bytes, (uint64_t)size, |
| (uint64_t)allocation.m_process_start, |
| (uint64_t)allocation.m_process_start + |
| (uint64_t)allocation.m_size); |
| } |
| } |
| |
| void IRMemoryMap::WriteScalarToMemory(lldb::addr_t process_address, |
| Scalar &scalar, size_t size, |
| Status &error) { |
| error.Clear(); |
| |
| if (size == UINT32_MAX) |
| size = scalar.GetByteSize(); |
| |
| if (size > 0) { |
| uint8_t buf[32]; |
| const size_t mem_size = |
| scalar.GetAsMemoryData(buf, size, GetByteOrder(), error); |
| if (mem_size > 0) { |
| return WriteMemory(process_address, buf, mem_size, error); |
| } else { |
| error.SetErrorToGenericError(); |
| error.SetErrorString( |
| "Couldn't write scalar: failed to get scalar as memory data"); |
| } |
| } else { |
| error.SetErrorToGenericError(); |
| error.SetErrorString("Couldn't write scalar: its size was zero"); |
| } |
| return; |
| } |
| |
| void IRMemoryMap::WritePointerToMemory(lldb::addr_t process_address, |
| lldb::addr_t address, Status &error) { |
| error.Clear(); |
| |
| Scalar scalar(address); |
| |
| WriteScalarToMemory(process_address, scalar, GetAddressByteSize(), error); |
| } |
| |
| void IRMemoryMap::ReadMemory(uint8_t *bytes, lldb::addr_t process_address, |
| size_t size, Status &error) { |
| error.Clear(); |
| |
| AllocationMap::iterator iter = FindAllocation(process_address, size); |
| |
| if (iter == m_allocations.end()) { |
| lldb::ProcessSP process_sp = m_process_wp.lock(); |
| |
| if (process_sp) { |
| process_sp->ReadMemory(process_address, bytes, size, error); |
| return; |
| } |
| |
| lldb::TargetSP target_sp = m_target_wp.lock(); |
| |
| if (target_sp) { |
| Address absolute_address(process_address); |
| target_sp->ReadMemory(absolute_address, false, bytes, size, error); |
| return; |
| } |
| |
| error.SetErrorToGenericError(); |
| error.SetErrorString("Couldn't read: no allocation contains the target " |
| "range, and neither the process nor the target exist"); |
| return; |
| } |
| |
| Allocation &allocation = iter->second; |
| |
| uint64_t offset = process_address - allocation.m_process_start; |
| |
| if (offset > allocation.m_size) { |
| error.SetErrorToGenericError(); |
| error.SetErrorString("Couldn't read: data is not in the allocation"); |
| return; |
| } |
| |
| lldb::ProcessSP process_sp; |
| |
| switch (allocation.m_policy) { |
| default: |
| error.SetErrorToGenericError(); |
| error.SetErrorString("Couldn't read: invalid allocation policy"); |
| return; |
| case eAllocationPolicyHostOnly: |
| if (!allocation.m_data.GetByteSize()) { |
| error.SetErrorToGenericError(); |
| error.SetErrorString("Couldn't read: data buffer is empty"); |
| return; |
| } |
| if (allocation.m_data.GetByteSize() < offset + size) { |
| error.SetErrorToGenericError(); |
| error.SetErrorString("Couldn't read: not enough underlying data"); |
| return; |
| } |
| |
| ::memcpy(bytes, allocation.m_data.GetBytes() + offset, size); |
| break; |
| case eAllocationPolicyMirror: |
| process_sp = m_process_wp.lock(); |
| if (process_sp) { |
| process_sp->ReadMemory(process_address, bytes, size, error); |
| if (!error.Success()) |
| return; |
| } else { |
| if (!allocation.m_data.GetByteSize()) { |
| error.SetErrorToGenericError(); |
| error.SetErrorString("Couldn't read: data buffer is empty"); |
| return; |
| } |
| ::memcpy(bytes, allocation.m_data.GetBytes() + offset, size); |
| } |
| break; |
| case eAllocationPolicyProcessOnly: |
| process_sp = m_process_wp.lock(); |
| if (process_sp) { |
| process_sp->ReadMemory(process_address, bytes, size, error); |
| if (!error.Success()) |
| return; |
| } |
| break; |
| } |
| |
| if (lldb_private::Log *log = |
| lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)) { |
| log->Printf("IRMemoryMap::ReadMemory (0x%" PRIx64 ", 0x%" PRIx64 |
| ", 0x%" PRId64 ") came from [0x%" PRIx64 "..0x%" PRIx64 ")", |
| (uint64_t)process_address, (uint64_t)bytes, (uint64_t)size, |
| (uint64_t)allocation.m_process_start, |
| (uint64_t)allocation.m_process_start + |
| (uint64_t)allocation.m_size); |
| } |
| } |
| |
| void IRMemoryMap::ReadScalarFromMemory(Scalar &scalar, |
| lldb::addr_t process_address, |
| size_t size, Status &error) { |
| error.Clear(); |
| |
| if (size > 0) { |
| DataBufferHeap buf(size, 0); |
| ReadMemory(buf.GetBytes(), process_address, size, error); |
| |
| if (!error.Success()) |
| return; |
| |
| DataExtractor extractor(buf.GetBytes(), buf.GetByteSize(), GetByteOrder(), |
| GetAddressByteSize()); |
| |
| lldb::offset_t offset = 0; |
| |
| switch (size) { |
| default: |
| error.SetErrorToGenericError(); |
| error.SetErrorStringWithFormat( |
| "Couldn't read scalar: unsupported size %" PRIu64, (uint64_t)size); |
| return; |
| case 1: |
| scalar = extractor.GetU8(&offset); |
| break; |
| case 2: |
| scalar = extractor.GetU16(&offset); |
| break; |
| case 4: |
| scalar = extractor.GetU32(&offset); |
| break; |
| case 8: |
| scalar = extractor.GetU64(&offset); |
| break; |
| } |
| } else { |
| error.SetErrorToGenericError(); |
| error.SetErrorString("Couldn't read scalar: its size was zero"); |
| } |
| return; |
| } |
| |
| void IRMemoryMap::ReadPointerFromMemory(lldb::addr_t *address, |
| lldb::addr_t process_address, |
| Status &error) { |
| error.Clear(); |
| |
| Scalar pointer_scalar; |
| ReadScalarFromMemory(pointer_scalar, process_address, GetAddressByteSize(), |
| error); |
| |
| if (!error.Success()) |
| return; |
| |
| *address = pointer_scalar.ULongLong(); |
| |
| return; |
| } |
| |
| void IRMemoryMap::GetMemoryData(DataExtractor &extractor, |
| lldb::addr_t process_address, size_t size, |
| Status &error) { |
| error.Clear(); |
| |
| if (size > 0) { |
| AllocationMap::iterator iter = FindAllocation(process_address, size); |
| |
| if (iter == m_allocations.end()) { |
| error.SetErrorToGenericError(); |
| error.SetErrorStringWithFormat( |
| "Couldn't find an allocation containing [0x%" PRIx64 "..0x%" PRIx64 |
| ")", |
| process_address, process_address + size); |
| return; |
| } |
| |
| Allocation &allocation = iter->second; |
| |
| switch (allocation.m_policy) { |
| default: |
| error.SetErrorToGenericError(); |
| error.SetErrorString( |
| "Couldn't get memory data: invalid allocation policy"); |
| return; |
| case eAllocationPolicyProcessOnly: |
| error.SetErrorToGenericError(); |
| error.SetErrorString( |
| "Couldn't get memory data: memory is only in the target"); |
| return; |
| case eAllocationPolicyMirror: { |
| lldb::ProcessSP process_sp = m_process_wp.lock(); |
| |
| if (!allocation.m_data.GetByteSize()) { |
| error.SetErrorToGenericError(); |
| error.SetErrorString("Couldn't get memory data: data buffer is empty"); |
| return; |
| } |
| if (process_sp) { |
| process_sp->ReadMemory(allocation.m_process_start, |
| allocation.m_data.GetBytes(), |
| allocation.m_data.GetByteSize(), error); |
| if (!error.Success()) |
| return; |
| uint64_t offset = process_address - allocation.m_process_start; |
| extractor = DataExtractor(allocation.m_data.GetBytes() + offset, size, |
| GetByteOrder(), GetAddressByteSize()); |
| return; |
| } |
| } break; |
| case eAllocationPolicyHostOnly: |
| if (!allocation.m_data.GetByteSize()) { |
| error.SetErrorToGenericError(); |
| error.SetErrorString("Couldn't get memory data: data buffer is empty"); |
| return; |
| } |
| uint64_t offset = process_address - allocation.m_process_start; |
| extractor = DataExtractor(allocation.m_data.GetBytes() + offset, size, |
| GetByteOrder(), GetAddressByteSize()); |
| return; |
| } |
| } else { |
| error.SetErrorToGenericError(); |
| error.SetErrorString("Couldn't get memory data: its size was zero"); |
| return; |
| } |
| } |