| // |
| // Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| // |
| |
| #include "compiler/translator/ParseContext.h" |
| |
| #include <stdarg.h> |
| #include <stdio.h> |
| |
| #include "compiler/preprocessor/SourceLocation.h" |
| #include "compiler/translator/Cache.h" |
| #include "compiler/translator/glslang.h" |
| #include "compiler/translator/ValidateSwitch.h" |
| #include "compiler/translator/ValidateGlobalInitializer.h" |
| #include "compiler/translator/util.h" |
| |
| namespace sh |
| { |
| |
| /////////////////////////////////////////////////////////////////////// |
| // |
| // Sub- vector and matrix fields |
| // |
| //////////////////////////////////////////////////////////////////////// |
| |
| namespace |
| { |
| |
| const int kWebGLMaxStructNesting = 4; |
| |
| bool ContainsSampler(const TType &type) |
| { |
| if (IsSampler(type.getBasicType())) |
| return true; |
| |
| if (type.getBasicType() == EbtStruct) |
| { |
| const TFieldList &fields = type.getStruct()->fields(); |
| for (unsigned int i = 0; i < fields.size(); ++i) |
| { |
| if (ContainsSampler(*fields[i]->type())) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| // Get a token from an image argument to use as an error message token. |
| const char *GetImageArgumentToken(TIntermTyped *imageNode) |
| { |
| ASSERT(IsImage(imageNode->getBasicType())); |
| while (imageNode->getAsBinaryNode() && |
| (imageNode->getAsBinaryNode()->getOp() == EOpIndexIndirect || |
| imageNode->getAsBinaryNode()->getOp() == EOpIndexDirect)) |
| { |
| imageNode = imageNode->getAsBinaryNode()->getLeft(); |
| } |
| TIntermSymbol *imageSymbol = imageNode->getAsSymbolNode(); |
| if (imageSymbol) |
| { |
| return imageSymbol->getSymbol().c_str(); |
| } |
| return "image"; |
| } |
| |
| } // namespace |
| |
| TParseContext::TParseContext(TSymbolTable &symt, |
| TExtensionBehavior &ext, |
| sh::GLenum type, |
| ShShaderSpec spec, |
| ShCompileOptions options, |
| bool checksPrecErrors, |
| TDiagnostics *diagnostics, |
| const ShBuiltInResources &resources) |
| : intermediate(), |
| symbolTable(symt), |
| mDeferredNonEmptyDeclarationErrorCheck(false), |
| mShaderType(type), |
| mShaderSpec(spec), |
| mCompileOptions(options), |
| mShaderVersion(100), |
| mTreeRoot(nullptr), |
| mLoopNestingLevel(0), |
| mStructNestingLevel(0), |
| mSwitchNestingLevel(0), |
| mCurrentFunctionType(nullptr), |
| mFunctionReturnsValue(false), |
| mChecksPrecisionErrors(checksPrecErrors), |
| mFragmentPrecisionHighOnESSL1(false), |
| mDefaultMatrixPacking(EmpColumnMajor), |
| mDefaultBlockStorage(sh::IsWebGLBasedSpec(spec) ? EbsStd140 : EbsShared), |
| mDiagnostics(diagnostics), |
| mDirectiveHandler(ext, |
| *mDiagnostics, |
| mShaderVersion, |
| mShaderType, |
| resources.WEBGL_debug_shader_precision == 1), |
| mPreprocessor(mDiagnostics, &mDirectiveHandler, pp::PreprocessorSettings()), |
| mScanner(nullptr), |
| mUsesFragData(false), |
| mUsesFragColor(false), |
| mUsesSecondaryOutputs(false), |
| mMinProgramTexelOffset(resources.MinProgramTexelOffset), |
| mMaxProgramTexelOffset(resources.MaxProgramTexelOffset), |
| mMultiviewAvailable(resources.OVR_multiview == 1), |
| mComputeShaderLocalSizeDeclared(false), |
| mNumViews(-1), |
| mMaxNumViews(resources.MaxViewsOVR), |
| mMaxImageUnits(resources.MaxImageUnits), |
| mMaxCombinedTextureImageUnits(resources.MaxCombinedTextureImageUnits), |
| mMaxUniformLocations(resources.MaxUniformLocations), |
| mDeclaringFunction(false) |
| { |
| mComputeShaderLocalSize.fill(-1); |
| } |
| |
| // |
| // Look at a '.' field selector string and change it into offsets |
| // for a vector. |
| // |
| bool TParseContext::parseVectorFields(const TString &compString, |
| int vecSize, |
| TVectorFields &fields, |
| const TSourceLoc &line) |
| { |
| fields.num = (int)compString.size(); |
| if (fields.num > 4) |
| { |
| error(line, "illegal vector field selection", compString.c_str()); |
| return false; |
| } |
| |
| enum |
| { |
| exyzw, |
| ergba, |
| estpq |
| } fieldSet[4]; |
| |
| for (int i = 0; i < fields.num; ++i) |
| { |
| switch (compString[i]) |
| { |
| case 'x': |
| fields.offsets[i] = 0; |
| fieldSet[i] = exyzw; |
| break; |
| case 'r': |
| fields.offsets[i] = 0; |
| fieldSet[i] = ergba; |
| break; |
| case 's': |
| fields.offsets[i] = 0; |
| fieldSet[i] = estpq; |
| break; |
| case 'y': |
| fields.offsets[i] = 1; |
| fieldSet[i] = exyzw; |
| break; |
| case 'g': |
| fields.offsets[i] = 1; |
| fieldSet[i] = ergba; |
| break; |
| case 't': |
| fields.offsets[i] = 1; |
| fieldSet[i] = estpq; |
| break; |
| case 'z': |
| fields.offsets[i] = 2; |
| fieldSet[i] = exyzw; |
| break; |
| case 'b': |
| fields.offsets[i] = 2; |
| fieldSet[i] = ergba; |
| break; |
| case 'p': |
| fields.offsets[i] = 2; |
| fieldSet[i] = estpq; |
| break; |
| |
| case 'w': |
| fields.offsets[i] = 3; |
| fieldSet[i] = exyzw; |
| break; |
| case 'a': |
| fields.offsets[i] = 3; |
| fieldSet[i] = ergba; |
| break; |
| case 'q': |
| fields.offsets[i] = 3; |
| fieldSet[i] = estpq; |
| break; |
| default: |
| error(line, "illegal vector field selection", compString.c_str()); |
| return false; |
| } |
| } |
| |
| for (int i = 0; i < fields.num; ++i) |
| { |
| if (fields.offsets[i] >= vecSize) |
| { |
| error(line, "vector field selection out of range", compString.c_str()); |
| return false; |
| } |
| |
| if (i > 0) |
| { |
| if (fieldSet[i] != fieldSet[i - 1]) |
| { |
| error(line, "illegal - vector component fields not from the same set", |
| compString.c_str()); |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| /////////////////////////////////////////////////////////////////////// |
| // |
| // Errors |
| // |
| //////////////////////////////////////////////////////////////////////// |
| |
| // |
| // Used by flex/bison to output all syntax and parsing errors. |
| // |
| void TParseContext::error(const TSourceLoc &loc, const char *reason, const char *token) |
| { |
| mDiagnostics->error(loc, reason, token); |
| } |
| |
| void TParseContext::warning(const TSourceLoc &loc, const char *reason, const char *token) |
| { |
| mDiagnostics->warning(loc, reason, token); |
| } |
| |
| void TParseContext::outOfRangeError(bool isError, |
| const TSourceLoc &loc, |
| const char *reason, |
| const char *token) |
| { |
| if (isError) |
| { |
| error(loc, reason, token); |
| } |
| else |
| { |
| warning(loc, reason, token); |
| } |
| } |
| |
| // |
| // Same error message for all places assignments don't work. |
| // |
| void TParseContext::assignError(const TSourceLoc &line, const char *op, TString left, TString right) |
| { |
| std::stringstream reasonStream; |
| reasonStream << "cannot convert from '" << right << "' to '" << left << "'"; |
| std::string reason = reasonStream.str(); |
| error(line, reason.c_str(), op); |
| } |
| |
| // |
| // Same error message for all places unary operations don't work. |
| // |
| void TParseContext::unaryOpError(const TSourceLoc &line, const char *op, TString operand) |
| { |
| std::stringstream reasonStream; |
| reasonStream << "wrong operand type - no operation '" << op |
| << "' exists that takes an operand of type " << operand |
| << " (or there is no acceptable conversion)"; |
| std::string reason = reasonStream.str(); |
| error(line, reason.c_str(), op); |
| } |
| |
| // |
| // Same error message for all binary operations don't work. |
| // |
| void TParseContext::binaryOpError(const TSourceLoc &line, |
| const char *op, |
| TString left, |
| TString right) |
| { |
| std::stringstream reasonStream; |
| reasonStream << "wrong operand types - no operation '" << op |
| << "' exists that takes a left-hand operand of type '" << left |
| << "' and a right operand of type '" << right |
| << "' (or there is no acceptable conversion)"; |
| std::string reason = reasonStream.str(); |
| error(line, reason.c_str(), op); |
| } |
| |
| void TParseContext::checkPrecisionSpecified(const TSourceLoc &line, |
| TPrecision precision, |
| TBasicType type) |
| { |
| if (!mChecksPrecisionErrors) |
| return; |
| |
| if (precision != EbpUndefined && !SupportsPrecision(type)) |
| { |
| error(line, "illegal type for precision qualifier", getBasicString(type)); |
| } |
| |
| if (precision == EbpUndefined) |
| { |
| switch (type) |
| { |
| case EbtFloat: |
| error(line, "No precision specified for (float)", ""); |
| return; |
| case EbtInt: |
| case EbtUInt: |
| UNREACHABLE(); // there's always a predeclared qualifier |
| error(line, "No precision specified (int)", ""); |
| return; |
| default: |
| if (IsOpaqueType(type)) |
| { |
| error(line, "No precision specified", getBasicString(type)); |
| return; |
| } |
| } |
| } |
| } |
| |
| // Both test and if necessary, spit out an error, to see if the node is really |
| // an l-value that can be operated on this way. |
| bool TParseContext::checkCanBeLValue(const TSourceLoc &line, const char *op, TIntermTyped *node) |
| { |
| TIntermSymbol *symNode = node->getAsSymbolNode(); |
| TIntermBinary *binaryNode = node->getAsBinaryNode(); |
| TIntermSwizzle *swizzleNode = node->getAsSwizzleNode(); |
| |
| if (swizzleNode) |
| { |
| bool ok = checkCanBeLValue(line, op, swizzleNode->getOperand()); |
| if (ok && swizzleNode->hasDuplicateOffsets()) |
| { |
| error(line, " l-value of swizzle cannot have duplicate components", op); |
| return false; |
| } |
| return ok; |
| } |
| |
| if (binaryNode) |
| { |
| switch (binaryNode->getOp()) |
| { |
| case EOpIndexDirect: |
| case EOpIndexIndirect: |
| case EOpIndexDirectStruct: |
| case EOpIndexDirectInterfaceBlock: |
| return checkCanBeLValue(line, op, binaryNode->getLeft()); |
| default: |
| break; |
| } |
| error(line, " l-value required", op); |
| return false; |
| } |
| |
| std::string message; |
| switch (node->getQualifier()) |
| { |
| case EvqConst: |
| message = "can't modify a const"; |
| break; |
| case EvqConstReadOnly: |
| message = "can't modify a const"; |
| break; |
| case EvqAttribute: |
| message = "can't modify an attribute"; |
| break; |
| case EvqFragmentIn: |
| message = "can't modify an input"; |
| break; |
| case EvqVertexIn: |
| message = "can't modify an input"; |
| break; |
| case EvqUniform: |
| message = "can't modify a uniform"; |
| break; |
| case EvqVaryingIn: |
| message = "can't modify a varying"; |
| break; |
| case EvqFragCoord: |
| message = "can't modify gl_FragCoord"; |
| break; |
| case EvqFrontFacing: |
| message = "can't modify gl_FrontFacing"; |
| break; |
| case EvqPointCoord: |
| message = "can't modify gl_PointCoord"; |
| break; |
| case EvqNumWorkGroups: |
| message = "can't modify gl_NumWorkGroups"; |
| break; |
| case EvqWorkGroupSize: |
| message = "can't modify gl_WorkGroupSize"; |
| break; |
| case EvqWorkGroupID: |
| message = "can't modify gl_WorkGroupID"; |
| break; |
| case EvqLocalInvocationID: |
| message = "can't modify gl_LocalInvocationID"; |
| break; |
| case EvqGlobalInvocationID: |
| message = "can't modify gl_GlobalInvocationID"; |
| break; |
| case EvqLocalInvocationIndex: |
| message = "can't modify gl_LocalInvocationIndex"; |
| break; |
| case EvqViewIDOVR: |
| message = "can't modify gl_ViewID_OVR"; |
| break; |
| case EvqComputeIn: |
| message = "can't modify work group size variable"; |
| break; |
| default: |
| // |
| // Type that can't be written to? |
| // |
| if (node->getBasicType() == EbtVoid) |
| { |
| message = "can't modify void"; |
| } |
| if (IsOpaqueType(node->getBasicType())) |
| { |
| message = "can't modify a variable with type "; |
| message += getBasicString(node->getBasicType()); |
| } |
| } |
| |
| if (message.empty() && binaryNode == 0 && symNode == 0) |
| { |
| error(line, "l-value required", op); |
| |
| return false; |
| } |
| |
| // |
| // Everything else is okay, no error. |
| // |
| if (message.empty()) |
| return true; |
| |
| // |
| // If we get here, we have an error and a message. |
| // |
| if (symNode) |
| { |
| const char *symbol = symNode->getSymbol().c_str(); |
| std::stringstream reasonStream; |
| reasonStream << "l-value required (" << message << " \"" << symbol << "\")"; |
| std::string reason = reasonStream.str(); |
| error(line, reason.c_str(), op); |
| } |
| else |
| { |
| std::stringstream reasonStream; |
| reasonStream << "l-value required (" << message << ")"; |
| std::string reason = reasonStream.str(); |
| error(line, reason.c_str(), op); |
| } |
| |
| return false; |
| } |
| |
| // Both test, and if necessary spit out an error, to see if the node is really |
| // a constant. |
| void TParseContext::checkIsConst(TIntermTyped *node) |
| { |
| if (node->getQualifier() != EvqConst) |
| { |
| error(node->getLine(), "constant expression required", ""); |
| } |
| } |
| |
| // Both test, and if necessary spit out an error, to see if the node is really |
| // an integer. |
| void TParseContext::checkIsScalarInteger(TIntermTyped *node, const char *token) |
| { |
| if (!node->isScalarInt()) |
| { |
| error(node->getLine(), "integer expression required", token); |
| } |
| } |
| |
| // Both test, and if necessary spit out an error, to see if we are currently |
| // globally scoped. |
| bool TParseContext::checkIsAtGlobalLevel(const TSourceLoc &line, const char *token) |
| { |
| if (!symbolTable.atGlobalLevel()) |
| { |
| error(line, "only allowed at global scope", token); |
| return false; |
| } |
| return true; |
| } |
| |
| // For now, keep it simple: if it starts "gl_", it's reserved, independent |
| // of scope. Except, if the symbol table is at the built-in push-level, |
| // which is when we are parsing built-ins. |
| // Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a |
| // webgl shader. |
| bool TParseContext::checkIsNotReserved(const TSourceLoc &line, const TString &identifier) |
| { |
| static const char *reservedErrMsg = "reserved built-in name"; |
| if (!symbolTable.atBuiltInLevel()) |
| { |
| if (identifier.compare(0, 3, "gl_") == 0) |
| { |
| error(line, reservedErrMsg, "gl_"); |
| return false; |
| } |
| if (sh::IsWebGLBasedSpec(mShaderSpec)) |
| { |
| if (identifier.compare(0, 6, "webgl_") == 0) |
| { |
| error(line, reservedErrMsg, "webgl_"); |
| return false; |
| } |
| if (identifier.compare(0, 7, "_webgl_") == 0) |
| { |
| error(line, reservedErrMsg, "_webgl_"); |
| return false; |
| } |
| } |
| if (identifier.find("__") != TString::npos) |
| { |
| error(line, |
| "identifiers containing two consecutive underscores (__) are reserved as " |
| "possible future keywords", |
| identifier.c_str()); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| // Make sure the argument types are correct for constructing a specific type. |
| bool TParseContext::checkConstructorArguments(const TSourceLoc &line, |
| const TIntermSequence *arguments, |
| const TType &type) |
| { |
| if (arguments->empty()) |
| { |
| error(line, "constructor does not have any arguments", "constructor"); |
| return false; |
| } |
| |
| for (TIntermNode *arg : *arguments) |
| { |
| const TIntermTyped *argTyped = arg->getAsTyped(); |
| ASSERT(argTyped != nullptr); |
| if (type.getBasicType() != EbtStruct && IsOpaqueType(argTyped->getBasicType())) |
| { |
| std::string reason("cannot convert a variable with type "); |
| reason += getBasicString(argTyped->getBasicType()); |
| error(line, reason.c_str(), "constructor"); |
| return false; |
| } |
| if (argTyped->getBasicType() == EbtVoid) |
| { |
| error(line, "cannot convert a void", "constructor"); |
| return false; |
| } |
| } |
| |
| if (type.isArray()) |
| { |
| // The size of an unsized constructor should already have been determined. |
| ASSERT(!type.isUnsizedArray()); |
| if (static_cast<size_t>(type.getArraySize()) != arguments->size()) |
| { |
| error(line, "array constructor needs one argument per array element", "constructor"); |
| return false; |
| } |
| // GLSL ES 3.00 section 5.4.4: Each argument must be the same type as the element type of |
| // the array. |
| for (TIntermNode *const &argNode : *arguments) |
| { |
| const TType &argType = argNode->getAsTyped()->getType(); |
| if (argType.isArray()) |
| { |
| error(line, "constructing from a non-dereferenced array", "constructor"); |
| return false; |
| } |
| if (!argType.sameElementType(type)) |
| { |
| error(line, "Array constructor argument has an incorrect type", "constructor"); |
| return false; |
| } |
| } |
| } |
| else if (type.getBasicType() == EbtStruct) |
| { |
| const TFieldList &fields = type.getStruct()->fields(); |
| if (fields.size() != arguments->size()) |
| { |
| error(line, |
| "Number of constructor parameters does not match the number of structure fields", |
| "constructor"); |
| return false; |
| } |
| |
| for (size_t i = 0; i < fields.size(); i++) |
| { |
| if (i >= arguments->size() || |
| (*arguments)[i]->getAsTyped()->getType() != *fields[i]->type()) |
| { |
| error(line, "Structure constructor arguments do not match structure fields", |
| "constructor"); |
| return false; |
| } |
| } |
| } |
| else |
| { |
| // We're constructing a scalar, vector, or matrix. |
| |
| // Note: It's okay to have too many components available, but not okay to have unused |
| // arguments. 'full' will go to true when enough args have been seen. If we loop again, |
| // there is an extra argument, so 'overFull' will become true. |
| |
| size_t size = 0; |
| bool full = false; |
| bool overFull = false; |
| bool matrixArg = false; |
| for (TIntermNode *arg : *arguments) |
| { |
| const TIntermTyped *argTyped = arg->getAsTyped(); |
| ASSERT(argTyped != nullptr); |
| |
| if (argTyped->getType().isArray()) |
| { |
| error(line, "constructing from a non-dereferenced array", "constructor"); |
| return false; |
| } |
| if (argTyped->getType().isMatrix()) |
| { |
| matrixArg = true; |
| } |
| |
| size += argTyped->getType().getObjectSize(); |
| if (full) |
| { |
| overFull = true; |
| } |
| if (type.getBasicType() != EbtStruct && !type.isArray() && size >= type.getObjectSize()) |
| { |
| full = true; |
| } |
| } |
| |
| if (type.isMatrix() && matrixArg) |
| { |
| if (arguments->size() != 1) |
| { |
| error(line, "constructing matrix from matrix can only take one argument", |
| "constructor"); |
| return false; |
| } |
| } |
| else |
| { |
| if (size != 1 && size < type.getObjectSize()) |
| { |
| error(line, "not enough data provided for construction", "constructor"); |
| return false; |
| } |
| if (overFull) |
| { |
| error(line, "too many arguments", "constructor"); |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| // This function checks to see if a void variable has been declared and raise an error message for |
| // such a case |
| // |
| // returns true in case of an error |
| // |
| bool TParseContext::checkIsNonVoid(const TSourceLoc &line, |
| const TString &identifier, |
| const TBasicType &type) |
| { |
| if (type == EbtVoid) |
| { |
| error(line, "illegal use of type 'void'", identifier.c_str()); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // This function checks to see if the node (for the expression) contains a scalar boolean expression |
| // or not. |
| void TParseContext::checkIsScalarBool(const TSourceLoc &line, const TIntermTyped *type) |
| { |
| if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) |
| { |
| error(line, "boolean expression expected", ""); |
| } |
| } |
| |
| // This function checks to see if the node (for the expression) contains a scalar boolean expression |
| // or not. |
| void TParseContext::checkIsScalarBool(const TSourceLoc &line, const TPublicType &pType) |
| { |
| if (pType.getBasicType() != EbtBool || pType.isAggregate()) |
| { |
| error(line, "boolean expression expected", ""); |
| } |
| } |
| |
| bool TParseContext::checkIsNotOpaqueType(const TSourceLoc &line, |
| const TTypeSpecifierNonArray &pType, |
| const char *reason) |
| { |
| if (pType.type == EbtStruct) |
| { |
| if (ContainsSampler(*pType.userDef)) |
| { |
| std::stringstream reasonStream; |
| reasonStream << reason << " (structure contains a sampler)"; |
| std::string reasonStr = reasonStream.str(); |
| error(line, reasonStr.c_str(), getBasicString(pType.type)); |
| return false; |
| } |
| // only samplers need to be checked from structs, since other opaque types can't be struct |
| // members. |
| return true; |
| } |
| else if (IsOpaqueType(pType.type)) |
| { |
| error(line, reason, getBasicString(pType.type)); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void TParseContext::checkDeclaratorLocationIsNotSpecified(const TSourceLoc &line, |
| const TPublicType &pType) |
| { |
| if (pType.layoutQualifier.location != -1) |
| { |
| error(line, "location must only be specified for a single input or output variable", |
| "location"); |
| } |
| } |
| |
| void TParseContext::checkLocationIsNotSpecified(const TSourceLoc &location, |
| const TLayoutQualifier &layoutQualifier) |
| { |
| if (layoutQualifier.location != -1) |
| { |
| const char *errorMsg = "invalid layout qualifier: only valid on program inputs and outputs"; |
| if (mShaderVersion >= 310) |
| { |
| errorMsg = |
| "invalid layout qualifier: only valid on program inputs, outputs, and uniforms"; |
| } |
| error(location, errorMsg, "location"); |
| } |
| } |
| |
| void TParseContext::checkOutParameterIsNotOpaqueType(const TSourceLoc &line, |
| TQualifier qualifier, |
| const TType &type) |
| { |
| ASSERT(qualifier == EvqOut || qualifier == EvqInOut); |
| if (IsOpaqueType(type.getBasicType())) |
| { |
| error(line, "opaque types cannot be output parameters", type.getBasicString()); |
| } |
| } |
| |
| // Do size checking for an array type's size. |
| unsigned int TParseContext::checkIsValidArraySize(const TSourceLoc &line, TIntermTyped *expr) |
| { |
| TIntermConstantUnion *constant = expr->getAsConstantUnion(); |
| |
| // TODO(oetuaho@nvidia.com): Get rid of the constant == nullptr check here once all constant |
| // expressions can be folded. Right now we don't allow constant expressions that ANGLE can't |
| // fold as array size. |
| if (expr->getQualifier() != EvqConst || constant == nullptr || !constant->isScalarInt()) |
| { |
| error(line, "array size must be a constant integer expression", ""); |
| return 1u; |
| } |
| |
| unsigned int size = 0u; |
| |
| if (constant->getBasicType() == EbtUInt) |
| { |
| size = constant->getUConst(0); |
| } |
| else |
| { |
| int signedSize = constant->getIConst(0); |
| |
| if (signedSize < 0) |
| { |
| error(line, "array size must be non-negative", ""); |
| return 1u; |
| } |
| |
| size = static_cast<unsigned int>(signedSize); |
| } |
| |
| if (size == 0u) |
| { |
| error(line, "array size must be greater than zero", ""); |
| return 1u; |
| } |
| |
| // The size of arrays is restricted here to prevent issues further down the |
| // compiler/translator/driver stack. Shader Model 5 generation hardware is limited to |
| // 4096 registers so this should be reasonable even for aggressively optimizable code. |
| const unsigned int sizeLimit = 65536; |
| |
| if (size > sizeLimit) |
| { |
| error(line, "array size too large", ""); |
| return 1u; |
| } |
| |
| return size; |
| } |
| |
| // See if this qualifier can be an array. |
| bool TParseContext::checkIsValidQualifierForArray(const TSourceLoc &line, |
| const TPublicType &elementQualifier) |
| { |
| if ((elementQualifier.qualifier == EvqAttribute) || |
| (elementQualifier.qualifier == EvqVertexIn) || |
| (elementQualifier.qualifier == EvqConst && mShaderVersion < 300)) |
| { |
| error(line, "cannot declare arrays of this qualifier", |
| TType(elementQualifier).getQualifierString()); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // See if this element type can be formed into an array. |
| bool TParseContext::checkIsValidTypeForArray(const TSourceLoc &line, const TPublicType &elementType) |
| { |
| // |
| // Can the type be an array? |
| // |
| if (elementType.array) |
| { |
| error(line, "cannot declare arrays of arrays", |
| TType(elementType).getCompleteString().c_str()); |
| return false; |
| } |
| // In ESSL1.00 shaders, structs cannot be varying (section 4.3.5). This is checked elsewhere. |
| // In ESSL3.00 shaders, struct inputs/outputs are allowed but not arrays of structs (section |
| // 4.3.4). |
| if (mShaderVersion >= 300 && elementType.getBasicType() == EbtStruct && |
| sh::IsVarying(elementType.qualifier)) |
| { |
| error(line, "cannot declare arrays of structs of this qualifier", |
| TType(elementType).getCompleteString().c_str()); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Check if this qualified element type can be formed into an array. |
| bool TParseContext::checkIsValidTypeAndQualifierForArray(const TSourceLoc &indexLocation, |
| const TPublicType &elementType) |
| { |
| if (checkIsValidTypeForArray(indexLocation, elementType)) |
| { |
| return checkIsValidQualifierForArray(indexLocation, elementType); |
| } |
| return false; |
| } |
| |
| // Enforce non-initializer type/qualifier rules. |
| void TParseContext::checkCanBeDeclaredWithoutInitializer(const TSourceLoc &line, |
| const TString &identifier, |
| TPublicType *type) |
| { |
| ASSERT(type != nullptr); |
| if (type->qualifier == EvqConst) |
| { |
| // Make the qualifier make sense. |
| type->qualifier = EvqTemporary; |
| |
| // Generate informative error messages for ESSL1. |
| // In ESSL3 arrays and structures containing arrays can be constant. |
| if (mShaderVersion < 300 && type->isStructureContainingArrays()) |
| { |
| error(line, |
| "structures containing arrays may not be declared constant since they cannot be " |
| "initialized", |
| identifier.c_str()); |
| } |
| else |
| { |
| error(line, "variables with qualifier 'const' must be initialized", identifier.c_str()); |
| } |
| return; |
| } |
| if (type->isUnsizedArray()) |
| { |
| error(line, "implicitly sized arrays need to be initialized", identifier.c_str()); |
| } |
| } |
| |
| // Do some simple checks that are shared between all variable declarations, |
| // and update the symbol table. |
| // |
| // Returns true if declaring the variable succeeded. |
| // |
| bool TParseContext::declareVariable(const TSourceLoc &line, |
| const TString &identifier, |
| const TType &type, |
| TVariable **variable) |
| { |
| ASSERT((*variable) == nullptr); |
| |
| checkBindingIsValid(line, type); |
| |
| bool needsReservedCheck = true; |
| |
| // gl_LastFragData may be redeclared with a new precision qualifier |
| if (type.isArray() && identifier.compare(0, 15, "gl_LastFragData") == 0) |
| { |
| const TVariable *maxDrawBuffers = static_cast<const TVariable *>( |
| symbolTable.findBuiltIn("gl_MaxDrawBuffers", mShaderVersion)); |
| if (static_cast<int>(type.getArraySize()) == maxDrawBuffers->getConstPointer()->getIConst()) |
| { |
| if (TSymbol *builtInSymbol = symbolTable.findBuiltIn(identifier, mShaderVersion)) |
| { |
| needsReservedCheck = !checkCanUseExtension(line, builtInSymbol->getExtension()); |
| } |
| } |
| else |
| { |
| error(line, "redeclaration of gl_LastFragData with size != gl_MaxDrawBuffers", |
| identifier.c_str()); |
| return false; |
| } |
| } |
| |
| if (needsReservedCheck && !checkIsNotReserved(line, identifier)) |
| return false; |
| |
| (*variable) = new TVariable(&identifier, type); |
| if (!symbolTable.declare(*variable)) |
| { |
| error(line, "redefinition", identifier.c_str()); |
| *variable = nullptr; |
| return false; |
| } |
| |
| if (!checkIsNonVoid(line, identifier, type.getBasicType())) |
| return false; |
| |
| return true; |
| } |
| |
| void TParseContext::checkIsParameterQualifierValid( |
| const TSourceLoc &line, |
| const TTypeQualifierBuilder &typeQualifierBuilder, |
| TType *type) |
| { |
| TTypeQualifier typeQualifier = typeQualifierBuilder.getParameterTypeQualifier(mDiagnostics); |
| |
| if (typeQualifier.qualifier == EvqOut || typeQualifier.qualifier == EvqInOut) |
| { |
| checkOutParameterIsNotOpaqueType(line, typeQualifier.qualifier, *type); |
| } |
| |
| if (!IsImage(type->getBasicType())) |
| { |
| checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, line); |
| } |
| else |
| { |
| type->setMemoryQualifier(typeQualifier.memoryQualifier); |
| } |
| |
| type->setQualifier(typeQualifier.qualifier); |
| |
| if (typeQualifier.precision != EbpUndefined) |
| { |
| type->setPrecision(typeQualifier.precision); |
| } |
| } |
| |
| bool TParseContext::checkCanUseExtension(const TSourceLoc &line, const TString &extension) |
| { |
| const TExtensionBehavior &extBehavior = extensionBehavior(); |
| TExtensionBehavior::const_iterator iter = extBehavior.find(extension.c_str()); |
| if (iter == extBehavior.end()) |
| { |
| error(line, "extension is not supported", extension.c_str()); |
| return false; |
| } |
| // In GLSL ES, an extension's default behavior is "disable". |
| if (iter->second == EBhDisable || iter->second == EBhUndefined) |
| { |
| // TODO(oetuaho@nvidia.com): This is slightly hacky. Might be better if symbols could be |
| // associated with more than one extension. |
| if (extension == "GL_OVR_multiview") |
| { |
| return checkCanUseExtension(line, "GL_OVR_multiview2"); |
| } |
| error(line, "extension is disabled", extension.c_str()); |
| return false; |
| } |
| if (iter->second == EBhWarn) |
| { |
| warning(line, "extension is being used", extension.c_str()); |
| return true; |
| } |
| |
| return true; |
| } |
| |
| // ESSL 3.00.6 section 4.8 Empty Declarations: "The combinations of qualifiers that cause |
| // compile-time or link-time errors are the same whether or not the declaration is empty". |
| // This function implements all the checks that are done on qualifiers regardless of if the |
| // declaration is empty. |
| void TParseContext::declarationQualifierErrorCheck(const sh::TQualifier qualifier, |
| const sh::TLayoutQualifier &layoutQualifier, |
| const TSourceLoc &location) |
| { |
| if (qualifier == EvqShared && !layoutQualifier.isEmpty()) |
| { |
| error(location, "Shared memory declarations cannot have layout specified", "layout"); |
| } |
| |
| if (layoutQualifier.matrixPacking != EmpUnspecified) |
| { |
| error(location, "layout qualifier only valid for interface blocks", |
| getMatrixPackingString(layoutQualifier.matrixPacking)); |
| return; |
| } |
| |
| if (layoutQualifier.blockStorage != EbsUnspecified) |
| { |
| error(location, "layout qualifier only valid for interface blocks", |
| getBlockStorageString(layoutQualifier.blockStorage)); |
| return; |
| } |
| |
| if (qualifier == EvqFragmentOut) |
| { |
| if (layoutQualifier.location != -1 && layoutQualifier.yuv == true) |
| { |
| error(location, "invalid layout qualifier combination", "yuv"); |
| return; |
| } |
| } |
| else |
| { |
| checkYuvIsNotSpecified(location, layoutQualifier.yuv); |
| } |
| |
| bool canHaveLocation = qualifier == EvqVertexIn || qualifier == EvqFragmentOut; |
| if (mShaderVersion >= 310 && qualifier == EvqUniform) |
| { |
| canHaveLocation = true; |
| // We're not checking whether the uniform location is in range here since that depends on |
| // the type of the variable. |
| // The type can only be fully determined for non-empty declarations. |
| } |
| if (!canHaveLocation) |
| { |
| checkLocationIsNotSpecified(location, layoutQualifier); |
| } |
| } |
| |
| void TParseContext::emptyDeclarationErrorCheck(const TPublicType &publicType, |
| const TSourceLoc &location) |
| { |
| if (publicType.isUnsizedArray()) |
| { |
| // ESSL3 spec section 4.1.9: Array declaration which leaves the size unspecified is an |
| // error. It is assumed that this applies to empty declarations as well. |
| error(location, "empty array declaration needs to specify a size", ""); |
| } |
| } |
| |
| // These checks are done for all declarations that are non-empty. They're done for non-empty |
| // declarations starting a declarator list, and declarators that follow an empty declaration. |
| void TParseContext::nonEmptyDeclarationErrorCheck(const TPublicType &publicType, |
| const TSourceLoc &identifierLocation) |
| { |
| switch (publicType.qualifier) |
| { |
| case EvqVaryingIn: |
| case EvqVaryingOut: |
| case EvqAttribute: |
| case EvqVertexIn: |
| case EvqFragmentOut: |
| case EvqComputeIn: |
| if (publicType.getBasicType() == EbtStruct) |
| { |
| error(identifierLocation, "cannot be used with a structure", |
| getQualifierString(publicType.qualifier)); |
| return; |
| } |
| |
| default: |
| break; |
| } |
| std::string reason(getBasicString(publicType.getBasicType())); |
| reason += "s must be uniform"; |
| if (publicType.qualifier != EvqUniform && |
| !checkIsNotOpaqueType(identifierLocation, publicType.typeSpecifierNonArray, reason.c_str())) |
| { |
| return; |
| } |
| |
| if ((publicType.qualifier != EvqTemporary && publicType.qualifier != EvqGlobal && |
| publicType.qualifier != EvqConst) && |
| publicType.getBasicType() == EbtYuvCscStandardEXT) |
| { |
| error(identifierLocation, "cannot be used with a yuvCscStandardEXT", |
| getQualifierString(publicType.qualifier)); |
| return; |
| } |
| |
| if (mShaderVersion >= 310 && publicType.qualifier == EvqUniform) |
| { |
| // Valid uniform declarations can't be unsized arrays since uniforms can't be initialized. |
| // But invalid shaders may still reach here with an unsized array declaration. |
| if (!publicType.isUnsizedArray()) |
| { |
| TType type(publicType); |
| checkUniformLocationInRange(identifierLocation, type.getLocationCount(), |
| publicType.layoutQualifier); |
| } |
| } |
| |
| // check for layout qualifier issues |
| const TLayoutQualifier layoutQualifier = publicType.layoutQualifier; |
| |
| if (IsImage(publicType.getBasicType())) |
| { |
| |
| switch (layoutQualifier.imageInternalFormat) |
| { |
| case EiifRGBA32F: |
| case EiifRGBA16F: |
| case EiifR32F: |
| case EiifRGBA8: |
| case EiifRGBA8_SNORM: |
| if (!IsFloatImage(publicType.getBasicType())) |
| { |
| error(identifierLocation, |
| "internal image format requires a floating image type", |
| getBasicString(publicType.getBasicType())); |
| return; |
| } |
| break; |
| case EiifRGBA32I: |
| case EiifRGBA16I: |
| case EiifRGBA8I: |
| case EiifR32I: |
| if (!IsIntegerImage(publicType.getBasicType())) |
| { |
| error(identifierLocation, |
| "internal image format requires an integer image type", |
| getBasicString(publicType.getBasicType())); |
| return; |
| } |
| break; |
| case EiifRGBA32UI: |
| case EiifRGBA16UI: |
| case EiifRGBA8UI: |
| case EiifR32UI: |
| if (!IsUnsignedImage(publicType.getBasicType())) |
| { |
| error(identifierLocation, |
| "internal image format requires an unsigned image type", |
| getBasicString(publicType.getBasicType())); |
| return; |
| } |
| break; |
| case EiifUnspecified: |
| error(identifierLocation, "layout qualifier", "No image internal format specified"); |
| return; |
| default: |
| error(identifierLocation, "layout qualifier", "unrecognized token"); |
| return; |
| } |
| |
| // GLSL ES 3.10 Revision 4, 4.9 Memory Access Qualifiers |
| switch (layoutQualifier.imageInternalFormat) |
| { |
| case EiifR32F: |
| case EiifR32I: |
| case EiifR32UI: |
| break; |
| default: |
| if (!publicType.memoryQualifier.readonly && !publicType.memoryQualifier.writeonly) |
| { |
| error(identifierLocation, "layout qualifier", |
| "Except for images with the r32f, r32i and r32ui format qualifiers, " |
| "image variables must be qualified readonly and/or writeonly"); |
| return; |
| } |
| break; |
| } |
| } |
| else |
| { |
| checkInternalFormatIsNotSpecified(identifierLocation, layoutQualifier.imageInternalFormat); |
| |
| checkMemoryQualifierIsNotSpecified(publicType.memoryQualifier, identifierLocation); |
| } |
| } |
| |
| void TParseContext::checkBindingIsValid(const TSourceLoc &identifierLocation, const TType &type) |
| { |
| TLayoutQualifier layoutQualifier = type.getLayoutQualifier(); |
| int arraySize = type.isArray() ? type.getArraySize() : 1; |
| if (IsImage(type.getBasicType())) |
| { |
| checkImageBindingIsValid(identifierLocation, layoutQualifier.binding, arraySize); |
| } |
| else if (IsSampler(type.getBasicType())) |
| { |
| checkSamplerBindingIsValid(identifierLocation, layoutQualifier.binding, arraySize); |
| } |
| else |
| { |
| ASSERT(!IsOpaqueType(type.getBasicType())); |
| checkBindingIsNotSpecified(identifierLocation, layoutQualifier.binding); |
| } |
| } |
| |
| void TParseContext::checkLayoutQualifierSupported(const TSourceLoc &location, |
| const TString &layoutQualifierName, |
| int versionRequired) |
| { |
| |
| if (mShaderVersion < versionRequired) |
| { |
| error(location, "invalid layout qualifier: not supported", layoutQualifierName.c_str()); |
| } |
| } |
| |
| bool TParseContext::checkWorkGroupSizeIsNotSpecified(const TSourceLoc &location, |
| const TLayoutQualifier &layoutQualifier) |
| { |
| const sh::WorkGroupSize &localSize = layoutQualifier.localSize; |
| for (size_t i = 0u; i < localSize.size(); ++i) |
| { |
| if (localSize[i] != -1) |
| { |
| error(location, |
| "invalid layout qualifier: only valid when used with 'in' in a compute shader " |
| "global layout declaration", |
| getWorkGroupSizeString(i)); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| void TParseContext::checkInternalFormatIsNotSpecified(const TSourceLoc &location, |
| TLayoutImageInternalFormat internalFormat) |
| { |
| if (internalFormat != EiifUnspecified) |
| { |
| error(location, "invalid layout qualifier: only valid when used with images", |
| getImageInternalFormatString(internalFormat)); |
| } |
| } |
| |
| void TParseContext::checkBindingIsNotSpecified(const TSourceLoc &location, int binding) |
| { |
| if (binding != -1) |
| { |
| error(location, |
| "invalid layout qualifier: only valid when used with opaque types or blocks", |
| "binding"); |
| } |
| } |
| |
| void TParseContext::checkImageBindingIsValid(const TSourceLoc &location, int binding, int arraySize) |
| { |
| // Expects arraySize to be 1 when setting binding for only a single variable. |
| if (binding >= 0 && binding + arraySize > mMaxImageUnits) |
| { |
| error(location, "image binding greater than gl_MaxImageUnits", "binding"); |
| } |
| } |
| |
| void TParseContext::checkSamplerBindingIsValid(const TSourceLoc &location, |
| int binding, |
| int arraySize) |
| { |
| // Expects arraySize to be 1 when setting binding for only a single variable. |
| if (binding >= 0 && binding + arraySize > mMaxCombinedTextureImageUnits) |
| { |
| error(location, "sampler binding greater than maximum texture units", "binding"); |
| } |
| } |
| |
| void TParseContext::checkUniformLocationInRange(const TSourceLoc &location, |
| int objectLocationCount, |
| const TLayoutQualifier &layoutQualifier) |
| { |
| int loc = layoutQualifier.location; |
| if (loc >= 0 && loc + objectLocationCount > mMaxUniformLocations) |
| { |
| error(location, "Uniform location out of range", "location"); |
| } |
| } |
| |
| void TParseContext::checkYuvIsNotSpecified(const TSourceLoc &location, bool yuv) |
| { |
| if (yuv != false) |
| { |
| error(location, "invalid layout qualifier: only valid on program outputs", "yuv"); |
| } |
| } |
| |
| void TParseContext::functionCallLValueErrorCheck(const TFunction *fnCandidate, |
| TIntermAggregate *fnCall) |
| { |
| for (size_t i = 0; i < fnCandidate->getParamCount(); ++i) |
| { |
| TQualifier qual = fnCandidate->getParam(i).type->getQualifier(); |
| if (qual == EvqOut || qual == EvqInOut) |
| { |
| TIntermTyped *argument = (*(fnCall->getSequence()))[i]->getAsTyped(); |
| if (!checkCanBeLValue(argument->getLine(), "assign", argument)) |
| { |
| error(argument->getLine(), |
| "Constant value cannot be passed for 'out' or 'inout' parameters.", |
| fnCall->getFunctionSymbolInfo()->getName().c_str()); |
| return; |
| } |
| } |
| } |
| } |
| |
| void TParseContext::checkInvariantVariableQualifier(bool invariant, |
| const TQualifier qualifier, |
| const TSourceLoc &invariantLocation) |
| { |
| if (!invariant) |
| return; |
| |
| if (mShaderVersion < 300) |
| { |
| // input variables in the fragment shader can be also qualified as invariant |
| if (!sh::CanBeInvariantESSL1(qualifier)) |
| { |
| error(invariantLocation, "Cannot be qualified as invariant.", "invariant"); |
| } |
| } |
| else |
| { |
| if (!sh::CanBeInvariantESSL3OrGreater(qualifier)) |
| { |
| error(invariantLocation, "Cannot be qualified as invariant.", "invariant"); |
| } |
| } |
| } |
| |
| bool TParseContext::supportsExtension(const char *extension) |
| { |
| const TExtensionBehavior &extbehavior = extensionBehavior(); |
| TExtensionBehavior::const_iterator iter = extbehavior.find(extension); |
| return (iter != extbehavior.end()); |
| } |
| |
| bool TParseContext::isExtensionEnabled(const char *extension) const |
| { |
| return ::IsExtensionEnabled(extensionBehavior(), extension); |
| } |
| |
| void TParseContext::handleExtensionDirective(const TSourceLoc &loc, |
| const char *extName, |
| const char *behavior) |
| { |
| pp::SourceLocation srcLoc; |
| srcLoc.file = loc.first_file; |
| srcLoc.line = loc.first_line; |
| mDirectiveHandler.handleExtension(srcLoc, extName, behavior); |
| } |
| |
| void TParseContext::handlePragmaDirective(const TSourceLoc &loc, |
| const char *name, |
| const char *value, |
| bool stdgl) |
| { |
| pp::SourceLocation srcLoc; |
| srcLoc.file = loc.first_file; |
| srcLoc.line = loc.first_line; |
| mDirectiveHandler.handlePragma(srcLoc, name, value, stdgl); |
| } |
| |
| sh::WorkGroupSize TParseContext::getComputeShaderLocalSize() const |
| { |
| sh::WorkGroupSize result; |
| for (size_t i = 0u; i < result.size(); ++i) |
| { |
| if (mComputeShaderLocalSizeDeclared && mComputeShaderLocalSize[i] == -1) |
| { |
| result[i] = 1; |
| } |
| else |
| { |
| result[i] = mComputeShaderLocalSize[i]; |
| } |
| } |
| return result; |
| } |
| |
| ///////////////////////////////////////////////////////////////////////////////// |
| // |
| // Non-Errors. |
| // |
| ///////////////////////////////////////////////////////////////////////////////// |
| |
| const TVariable *TParseContext::getNamedVariable(const TSourceLoc &location, |
| const TString *name, |
| const TSymbol *symbol) |
| { |
| const TVariable *variable = nullptr; |
| |
| if (!symbol) |
| { |
| error(location, "undeclared identifier", name->c_str()); |
| } |
| else if (!symbol->isVariable()) |
| { |
| error(location, "variable expected", name->c_str()); |
| } |
| else |
| { |
| variable = static_cast<const TVariable *>(symbol); |
| |
| if (symbolTable.findBuiltIn(variable->getName(), mShaderVersion) && |
| !variable->getExtension().empty()) |
| { |
| checkCanUseExtension(location, variable->getExtension()); |
| } |
| |
| // Reject shaders using both gl_FragData and gl_FragColor |
| TQualifier qualifier = variable->getType().getQualifier(); |
| if (qualifier == EvqFragData || qualifier == EvqSecondaryFragDataEXT) |
| { |
| mUsesFragData = true; |
| } |
| else if (qualifier == EvqFragColor || qualifier == EvqSecondaryFragColorEXT) |
| { |
| mUsesFragColor = true; |
| } |
| if (qualifier == EvqSecondaryFragDataEXT || qualifier == EvqSecondaryFragColorEXT) |
| { |
| mUsesSecondaryOutputs = true; |
| } |
| |
| // This validation is not quite correct - it's only an error to write to |
| // both FragData and FragColor. For simplicity, and because users shouldn't |
| // be rewarded for reading from undefined varaibles, return an error |
| // if they are both referenced, rather than assigned. |
| if (mUsesFragData && mUsesFragColor) |
| { |
| const char *errorMessage = "cannot use both gl_FragData and gl_FragColor"; |
| if (mUsesSecondaryOutputs) |
| { |
| errorMessage = |
| "cannot use both output variable sets (gl_FragData, gl_SecondaryFragDataEXT)" |
| " and (gl_FragColor, gl_SecondaryFragColorEXT)"; |
| } |
| error(location, errorMessage, name->c_str()); |
| } |
| |
| // GLSL ES 3.1 Revision 4, 7.1.3 Compute Shader Special Variables |
| if (getShaderType() == GL_COMPUTE_SHADER && !mComputeShaderLocalSizeDeclared && |
| qualifier == EvqWorkGroupSize) |
| { |
| error(location, |
| "It is an error to use gl_WorkGroupSize before declaring the local group size", |
| "gl_WorkGroupSize"); |
| } |
| } |
| |
| if (!variable) |
| { |
| TType type(EbtFloat, EbpUndefined); |
| TVariable *fakeVariable = new TVariable(name, type); |
| symbolTable.declare(fakeVariable); |
| variable = fakeVariable; |
| } |
| |
| return variable; |
| } |
| |
| TIntermTyped *TParseContext::parseVariableIdentifier(const TSourceLoc &location, |
| const TString *name, |
| const TSymbol *symbol) |
| { |
| const TVariable *variable = getNamedVariable(location, name, symbol); |
| |
| if (variable->getType().getQualifier() == EvqViewIDOVR && IsWebGLBasedSpec(mShaderSpec) && |
| mShaderType == GL_FRAGMENT_SHADER && !isExtensionEnabled("GL_OVR_multiview2")) |
| { |
| // WEBGL_multiview spec |
| error(location, "Need to enable OVR_multiview2 to use gl_ViewID_OVR in fragment shader", |
| "gl_ViewID_OVR"); |
| } |
| |
| if (variable->getConstPointer()) |
| { |
| const TConstantUnion *constArray = variable->getConstPointer(); |
| return intermediate.addConstantUnion(constArray, variable->getType(), location); |
| } |
| else if (variable->getType().getQualifier() == EvqWorkGroupSize && |
| mComputeShaderLocalSizeDeclared) |
| { |
| // gl_WorkGroupSize can be used to size arrays according to the ESSL 3.10.4 spec, so it |
| // needs to be added to the AST as a constant and not as a symbol. |
| sh::WorkGroupSize workGroupSize = getComputeShaderLocalSize(); |
| TConstantUnion *constArray = new TConstantUnion[3]; |
| for (size_t i = 0; i < 3; ++i) |
| { |
| constArray[i].setUConst(static_cast<unsigned int>(workGroupSize[i])); |
| } |
| |
| ASSERT(variable->getType().getBasicType() == EbtUInt); |
| ASSERT(variable->getType().getObjectSize() == 3); |
| |
| TType type(variable->getType()); |
| type.setQualifier(EvqConst); |
| return intermediate.addConstantUnion(constArray, type, location); |
| } |
| else |
| { |
| return intermediate.addSymbol(variable->getUniqueId(), variable->getName(), |
| variable->getType(), location); |
| } |
| } |
| |
| // |
| // Initializers show up in several places in the grammar. Have one set of |
| // code to handle them here. |
| // |
| // Returns true on error, false if no error |
| // |
| bool TParseContext::executeInitializer(const TSourceLoc &line, |
| const TString &identifier, |
| const TPublicType &pType, |
| TIntermTyped *initializer, |
| TIntermBinary **initNode) |
| { |
| ASSERT(initNode != nullptr); |
| ASSERT(*initNode == nullptr); |
| TType type = TType(pType); |
| |
| TVariable *variable = nullptr; |
| if (type.isUnsizedArray()) |
| { |
| // We have not checked yet whether the initializer actually is an array or not. |
| if (initializer->isArray()) |
| { |
| type.setArraySize(initializer->getArraySize()); |
| } |
| else |
| { |
| // Having a non-array initializer for an unsized array will result in an error later, |
| // so we don't generate an error message here. |
| type.setArraySize(1u); |
| } |
| } |
| if (!declareVariable(line, identifier, type, &variable)) |
| { |
| return true; |
| } |
| |
| bool globalInitWarning = false; |
| if (symbolTable.atGlobalLevel() && |
| !ValidateGlobalInitializer(initializer, this, &globalInitWarning)) |
| { |
| // Error message does not completely match behavior with ESSL 1.00, but |
| // we want to steer developers towards only using constant expressions. |
| error(line, "global variable initializers must be constant expressions", "="); |
| return true; |
| } |
| if (globalInitWarning) |
| { |
| warning( |
| line, |
| "global variable initializers should be constant expressions " |
| "(uniforms and globals are allowed in global initializers for legacy compatibility)", |
| "="); |
| } |
| |
| // |
| // identifier must be of type constant, a global, or a temporary |
| // |
| TQualifier qualifier = variable->getType().getQualifier(); |
| if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst)) |
| { |
| error(line, " cannot initialize this type of qualifier ", |
| variable->getType().getQualifierString()); |
| return true; |
| } |
| // |
| // test for and propagate constant |
| // |
| |
| if (qualifier == EvqConst) |
| { |
| if (qualifier != initializer->getType().getQualifier()) |
| { |
| std::stringstream reasonStream; |
| reasonStream << "assigning non-constant to '" << variable->getType().getCompleteString() |
| << "'"; |
| std::string reason = reasonStream.str(); |
| error(line, reason.c_str(), "="); |
| variable->getType().setQualifier(EvqTemporary); |
| return true; |
| } |
| if (type != initializer->getType()) |
| { |
| error(line, " non-matching types for const initializer ", |
| variable->getType().getQualifierString()); |
| variable->getType().setQualifier(EvqTemporary); |
| return true; |
| } |
| |
| // Save the constant folded value to the variable if possible. For example array |
| // initializers are not folded, since that way copying the array literal to multiple places |
| // in the shader is avoided. |
| // TODO(oetuaho@nvidia.com): Consider constant folding array initialization in cases where |
| // it would be beneficial. |
| if (initializer->getAsConstantUnion()) |
| { |
| variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer()); |
| *initNode = nullptr; |
| return false; |
| } |
| else if (initializer->getAsSymbolNode()) |
| { |
| const TSymbol *symbol = |
| symbolTable.find(initializer->getAsSymbolNode()->getSymbol(), 0); |
| const TVariable *tVar = static_cast<const TVariable *>(symbol); |
| |
| const TConstantUnion *constArray = tVar->getConstPointer(); |
| if (constArray) |
| { |
| variable->shareConstPointer(constArray); |
| *initNode = nullptr; |
| return false; |
| } |
| } |
| } |
| |
| TIntermSymbol *intermSymbol = intermediate.addSymbol( |
| variable->getUniqueId(), variable->getName(), variable->getType(), line); |
| *initNode = createAssign(EOpInitialize, intermSymbol, initializer, line); |
| if (*initNode == nullptr) |
| { |
| assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString()); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void TParseContext::addFullySpecifiedType(TPublicType *typeSpecifier) |
| { |
| checkPrecisionSpecified(typeSpecifier->getLine(), typeSpecifier->precision, |
| typeSpecifier->getBasicType()); |
| |
| if (mShaderVersion < 300 && typeSpecifier->array) |
| { |
| error(typeSpecifier->getLine(), "not supported", "first-class array"); |
| typeSpecifier->clearArrayness(); |
| } |
| } |
| |
| TPublicType TParseContext::addFullySpecifiedType(const TTypeQualifierBuilder &typeQualifierBuilder, |
| const TPublicType &typeSpecifier) |
| { |
| TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics); |
| |
| TPublicType returnType = typeSpecifier; |
| returnType.qualifier = typeQualifier.qualifier; |
| returnType.invariant = typeQualifier.invariant; |
| returnType.layoutQualifier = typeQualifier.layoutQualifier; |
| returnType.memoryQualifier = typeQualifier.memoryQualifier; |
| returnType.precision = typeSpecifier.precision; |
| |
| if (typeQualifier.precision != EbpUndefined) |
| { |
| returnType.precision = typeQualifier.precision; |
| } |
| |
| checkPrecisionSpecified(typeSpecifier.getLine(), returnType.precision, |
| typeSpecifier.getBasicType()); |
| |
| checkInvariantVariableQualifier(returnType.invariant, returnType.qualifier, |
| typeSpecifier.getLine()); |
| |
| checkWorkGroupSizeIsNotSpecified(typeSpecifier.getLine(), returnType.layoutQualifier); |
| |
| if (mShaderVersion < 300) |
| { |
| if (typeSpecifier.array) |
| { |
| error(typeSpecifier.getLine(), "not supported", "first-class array"); |
| returnType.clearArrayness(); |
| } |
| |
| if (returnType.qualifier == EvqAttribute && |
| (typeSpecifier.getBasicType() == EbtBool || typeSpecifier.getBasicType() == EbtInt)) |
| { |
| error(typeSpecifier.getLine(), "cannot be bool or int", |
| getQualifierString(returnType.qualifier)); |
| } |
| |
| if ((returnType.qualifier == EvqVaryingIn || returnType.qualifier == EvqVaryingOut) && |
| (typeSpecifier.getBasicType() == EbtBool || typeSpecifier.getBasicType() == EbtInt)) |
| { |
| error(typeSpecifier.getLine(), "cannot be bool or int", |
| getQualifierString(returnType.qualifier)); |
| } |
| } |
| else |
| { |
| if (!returnType.layoutQualifier.isEmpty()) |
| { |
| checkIsAtGlobalLevel(typeSpecifier.getLine(), "layout"); |
| } |
| if (sh::IsVarying(returnType.qualifier) || returnType.qualifier == EvqVertexIn || |
| returnType.qualifier == EvqFragmentOut) |
| { |
| checkInputOutputTypeIsValidES3(returnType.qualifier, typeSpecifier, |
| typeSpecifier.getLine()); |
| } |
| if (returnType.qualifier == EvqComputeIn) |
| { |
| error(typeSpecifier.getLine(), "'in' can be only used to specify the local group size", |
| "in"); |
| } |
| } |
| |
| return returnType; |
| } |
| |
| void TParseContext::checkInputOutputTypeIsValidES3(const TQualifier qualifier, |
| const TPublicType &type, |
| const TSourceLoc &qualifierLocation) |
| { |
| // An input/output variable can never be bool or a sampler. Samplers are checked elsewhere. |
| if (type.getBasicType() == EbtBool) |
| { |
| error(qualifierLocation, "cannot be bool", getQualifierString(qualifier)); |
| } |
| |
| // Specific restrictions apply for vertex shader inputs and fragment shader outputs. |
| switch (qualifier) |
| { |
| case EvqVertexIn: |
| // ESSL 3.00 section 4.3.4 |
| if (type.array) |
| { |
| error(qualifierLocation, "cannot be array", getQualifierString(qualifier)); |
| } |
| // Vertex inputs with a struct type are disallowed in nonEmptyDeclarationErrorCheck |
| return; |
| case EvqFragmentOut: |
| // ESSL 3.00 section 4.3.6 |
| if (type.typeSpecifierNonArray.isMatrix()) |
| { |
| error(qualifierLocation, "cannot be matrix", getQualifierString(qualifier)); |
| } |
| // Fragment outputs with a struct type are disallowed in nonEmptyDeclarationErrorCheck |
| return; |
| default: |
| break; |
| } |
| |
| // Vertex shader outputs / fragment shader inputs have a different, slightly more lenient set of |
| // restrictions. |
| bool typeContainsIntegers = |
| (type.getBasicType() == EbtInt || type.getBasicType() == EbtUInt || |
| type.isStructureContainingType(EbtInt) || type.isStructureContainingType(EbtUInt)); |
| if (typeContainsIntegers && qualifier != EvqFlatIn && qualifier != EvqFlatOut) |
| { |
| error(qualifierLocation, "must use 'flat' interpolation here", |
| getQualifierString(qualifier)); |
| } |
| |
| if (type.getBasicType() == EbtStruct) |
| { |
| // ESSL 3.00 sections 4.3.4 and 4.3.6. |
| // These restrictions are only implied by the ESSL 3.00 spec, but |
| // the ESSL 3.10 spec lists these restrictions explicitly. |
| if (type.array) |
| { |
| error(qualifierLocation, "cannot be an array of structures", |
| getQualifierString(qualifier)); |
| } |
| if (type.isStructureContainingArrays()) |
| { |
| error(qualifierLocation, "cannot be a structure containing an array", |
| getQualifierString(qualifier)); |
| } |
| if (type.isStructureContainingType(EbtStruct)) |
| { |
| error(qualifierLocation, "cannot be a structure containing a structure", |
| getQualifierString(qualifier)); |
| } |
| if (type.isStructureContainingType(EbtBool)) |
| { |
| error(qualifierLocation, "cannot be a structure containing a bool", |
| getQualifierString(qualifier)); |
| } |
| } |
| } |
| |
| void TParseContext::checkLocalVariableConstStorageQualifier(const TQualifierWrapperBase &qualifier) |
| { |
| if (qualifier.getType() == QtStorage) |
| { |
| const TStorageQualifierWrapper &storageQualifier = |
| static_cast<const TStorageQualifierWrapper &>(qualifier); |
| if (!declaringFunction() && storageQualifier.getQualifier() != EvqConst && |
| !symbolTable.atGlobalLevel()) |
| { |
| error(storageQualifier.getLine(), |
| "Local variables can only use the const storage qualifier.", |
| storageQualifier.getQualifierString().c_str()); |
| } |
| } |
| } |
| |
| void TParseContext::checkMemoryQualifierIsNotSpecified(const TMemoryQualifier &memoryQualifier, |
| const TSourceLoc &location) |
| { |
| if (memoryQualifier.readonly) |
| { |
| error(location, "Only allowed with images.", "readonly"); |
| } |
| if (memoryQualifier.writeonly) |
| { |
| error(location, "Only allowed with images.", "writeonly"); |
| } |
| if (memoryQualifier.coherent) |
| { |
| error(location, "Only allowed with images.", "coherent"); |
| } |
| if (memoryQualifier.restrictQualifier) |
| { |
| error(location, "Only allowed with images.", "restrict"); |
| } |
| if (memoryQualifier.volatileQualifier) |
| { |
| error(location, "Only allowed with images.", "volatile"); |
| } |
| } |
| |
| TIntermDeclaration *TParseContext::parseSingleDeclaration( |
| TPublicType &publicType, |
| const TSourceLoc &identifierOrTypeLocation, |
| const TString &identifier) |
| { |
| TType type(publicType); |
| if ((mCompileOptions & SH_FLATTEN_PRAGMA_STDGL_INVARIANT_ALL) && |
| mDirectiveHandler.pragma().stdgl.invariantAll) |
| { |
| TQualifier qualifier = type.getQualifier(); |
| |
| // The directive handler has already taken care of rejecting invalid uses of this pragma |
| // (for example, in ESSL 3.00 fragment shaders), so at this point, flatten it into all |
| // affected variable declarations: |
| // |
| // 1. Built-in special variables which are inputs to the fragment shader. (These are handled |
| // elsewhere, in TranslatorGLSL.) |
| // |
| // 2. Outputs from vertex shaders in ESSL 1.00 and 3.00 (EvqVaryingOut and EvqVertexOut). It |
| // is actually less likely that there will be bugs in the handling of ESSL 3.00 shaders, but |
| // the way this is currently implemented we have to enable this compiler option before |
| // parsing the shader and determining the shading language version it uses. If this were |
| // implemented as a post-pass, the workaround could be more targeted. |
| // |
| // 3. Inputs in ESSL 1.00 fragment shaders (EvqVaryingIn). This is somewhat in violation of |
| // the specification, but there are desktop OpenGL drivers that expect that this is the |
| // behavior of the #pragma when specified in ESSL 1.00 fragment shaders. |
| if (qualifier == EvqVaryingOut || qualifier == EvqVertexOut || qualifier == EvqVaryingIn) |
| { |
| type.setInvariant(true); |
| } |
| } |
| |
| declarationQualifierErrorCheck(publicType.qualifier, publicType.layoutQualifier, |
| identifierOrTypeLocation); |
| |
| bool emptyDeclaration = (identifier == ""); |
| mDeferredNonEmptyDeclarationErrorCheck = emptyDeclaration; |
| |
| TIntermSymbol *symbol = nullptr; |
| if (emptyDeclaration) |
| { |
| emptyDeclarationErrorCheck(publicType, identifierOrTypeLocation); |
| // In most cases we don't need to create a symbol node for an empty declaration. |
| // But if the empty declaration is declaring a struct type, the symbol node will store that. |
| if (type.getBasicType() == EbtStruct) |
| { |
| symbol = intermediate.addSymbol(0, "", type, identifierOrTypeLocation); |
| } |
| } |
| else |
| { |
| nonEmptyDeclarationErrorCheck(publicType, identifierOrTypeLocation); |
| |
| checkCanBeDeclaredWithoutInitializer(identifierOrTypeLocation, identifier, &publicType); |
| |
| TVariable *variable = nullptr; |
| declareVariable(identifierOrTypeLocation, identifier, type, &variable); |
| |
| if (variable) |
| { |
| symbol = intermediate.addSymbol(variable->getUniqueId(), identifier, type, |
| identifierOrTypeLocation); |
| } |
| } |
| |
| TIntermDeclaration *declaration = new TIntermDeclaration(); |
| declaration->setLine(identifierOrTypeLocation); |
| if (symbol) |
| { |
| declaration->appendDeclarator(symbol); |
| } |
| return declaration; |
| } |
| |
| TIntermDeclaration *TParseContext::parseSingleArrayDeclaration(TPublicType &publicType, |
| const TSourceLoc &identifierLocation, |
| const TString &identifier, |
| const TSourceLoc &indexLocation, |
| TIntermTyped *indexExpression) |
| { |
| mDeferredNonEmptyDeclarationErrorCheck = false; |
| |
| declarationQualifierErrorCheck(publicType.qualifier, publicType.layoutQualifier, |
| identifierLocation); |
| |
| nonEmptyDeclarationErrorCheck(publicType, identifierLocation); |
| |
| checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &publicType); |
| |
| checkIsValidTypeAndQualifierForArray(indexLocation, publicType); |
| |
| TType arrayType(publicType); |
| |
| unsigned int size = checkIsValidArraySize(identifierLocation, indexExpression); |
| // Make the type an array even if size check failed. |
| // This ensures useless error messages regarding the variable's non-arrayness won't follow. |
| arrayType.setArraySize(size); |
| |
| TVariable *variable = nullptr; |
| declareVariable(identifierLocation, identifier, arrayType, &variable); |
| |
| TIntermDeclaration *declaration = new TIntermDeclaration(); |
| declaration->setLine(identifierLocation); |
| |
| TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, arrayType, identifierLocation); |
| if (variable && symbol) |
| { |
| symbol->setId(variable->getUniqueId()); |
| declaration->appendDeclarator(symbol); |
| } |
| |
| return declaration; |
| } |
| |
| TIntermDeclaration *TParseContext::parseSingleInitDeclaration(const TPublicType &publicType, |
| const TSourceLoc &identifierLocation, |
| const TString &identifier, |
| const TSourceLoc &initLocation, |
| TIntermTyped *initializer) |
| { |
| mDeferredNonEmptyDeclarationErrorCheck = false; |
| |
| declarationQualifierErrorCheck(publicType.qualifier, publicType.layoutQualifier, |
| identifierLocation); |
| |
| nonEmptyDeclarationErrorCheck(publicType, identifierLocation); |
| |
| TIntermDeclaration *declaration = new TIntermDeclaration(); |
| declaration->setLine(identifierLocation); |
| |
| TIntermBinary *initNode = nullptr; |
| if (!executeInitializer(identifierLocation, identifier, publicType, initializer, &initNode)) |
| { |
| if (initNode) |
| { |
| declaration->appendDeclarator(initNode); |
| } |
| } |
| return declaration; |
| } |
| |
| TIntermDeclaration *TParseContext::parseSingleArrayInitDeclaration( |
| TPublicType &publicType, |
| const TSourceLoc &identifierLocation, |
| const TString &identifier, |
| const TSourceLoc &indexLocation, |
| TIntermTyped *indexExpression, |
| const TSourceLoc &initLocation, |
| TIntermTyped *initializer) |
| { |
| mDeferredNonEmptyDeclarationErrorCheck = false; |
| |
| declarationQualifierErrorCheck(publicType.qualifier, publicType.layoutQualifier, |
| identifierLocation); |
| |
| nonEmptyDeclarationErrorCheck(publicType, identifierLocation); |
| |
| checkIsValidTypeAndQualifierForArray(indexLocation, publicType); |
| |
| TPublicType arrayType(publicType); |
| |
| unsigned int size = 0u; |
| // If indexExpression is nullptr, then the array will eventually get its size implicitly from |
| // the initializer. |
| if (indexExpression != nullptr) |
| { |
| size = checkIsValidArraySize(identifierLocation, indexExpression); |
| } |
| // Make the type an array even if size check failed. |
| // This ensures useless error messages regarding the variable's non-arrayness won't follow. |
| arrayType.setArraySize(size); |
| |
| TIntermDeclaration *declaration = new TIntermDeclaration(); |
| declaration->setLine(identifierLocation); |
| |
| // initNode will correspond to the whole of "type b[n] = initializer". |
| TIntermBinary *initNode = nullptr; |
| if (!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode)) |
| { |
| if (initNode) |
| { |
| declaration->appendDeclarator(initNode); |
| } |
| } |
| |
| return declaration; |
| } |
| |
| TIntermInvariantDeclaration *TParseContext::parseInvariantDeclaration( |
| const TTypeQualifierBuilder &typeQualifierBuilder, |
| const TSourceLoc &identifierLoc, |
| const TString *identifier, |
| const TSymbol *symbol) |
| { |
| TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics); |
| |
| if (!typeQualifier.invariant) |
| { |
| error(identifierLoc, "Expected invariant", identifier->c_str()); |
| return nullptr; |
| } |
| if (!checkIsAtGlobalLevel(identifierLoc, "invariant varying")) |
| { |
| return nullptr; |
| } |
| if (!symbol) |
| { |
| error(identifierLoc, "undeclared identifier declared as invariant", identifier->c_str()); |
| return nullptr; |
| } |
| if (!IsQualifierUnspecified(typeQualifier.qualifier)) |
| { |
| error(identifierLoc, "invariant declaration specifies qualifier", |
| getQualifierString(typeQualifier.qualifier)); |
| } |
| if (typeQualifier.precision != EbpUndefined) |
| { |
| error(identifierLoc, "invariant declaration specifies precision", |
| getPrecisionString(typeQualifier.precision)); |
| } |
| if (!typeQualifier.layoutQualifier.isEmpty()) |
| { |
| error(identifierLoc, "invariant declaration specifies layout", "'layout'"); |
| } |
| |
| const TVariable *variable = getNamedVariable(identifierLoc, identifier, symbol); |
| ASSERT(variable); |
| const TType &type = variable->getType(); |
| |
| checkInvariantVariableQualifier(typeQualifier.invariant, type.getQualifier(), |
| typeQualifier.line); |
| checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line); |
| |
| symbolTable.addInvariantVarying(std::string(identifier->c_str())); |
| |
| TIntermSymbol *intermSymbol = |
| intermediate.addSymbol(variable->getUniqueId(), *identifier, type, identifierLoc); |
| |
| return new TIntermInvariantDeclaration(intermSymbol, identifierLoc); |
| } |
| |
| void TParseContext::parseDeclarator(TPublicType &publicType, |
| const TSourceLoc &identifierLocation, |
| const TString &identifier, |
| TIntermDeclaration *declarationOut) |
| { |
| // If the declaration starting this declarator list was empty (example: int,), some checks were |
| // not performed. |
| if (mDeferredNonEmptyDeclarationErrorCheck) |
| { |
| nonEmptyDeclarationErrorCheck(publicType, identifierLocation); |
| mDeferredNonEmptyDeclarationErrorCheck = false; |
| } |
| |
| checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType); |
| |
| checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &publicType); |
| |
| TVariable *variable = nullptr; |
| TType type(publicType); |
| declareVariable(identifierLocation, identifier, type, &variable); |
| |
| TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, type, identifierLocation); |
| if (variable && symbol) |
| { |
| symbol->setId(variable->getUniqueId()); |
| declarationOut->appendDeclarator(symbol); |
| } |
| } |
| |
| void TParseContext::parseArrayDeclarator(TPublicType &publicType, |
| const TSourceLoc &identifierLocation, |
| const TString &identifier, |
| const TSourceLoc &arrayLocation, |
| TIntermTyped *indexExpression, |
| TIntermDeclaration *declarationOut) |
| { |
| // If the declaration starting this declarator list was empty (example: int,), some checks were |
| // not performed. |
| if (mDeferredNonEmptyDeclarationErrorCheck) |
| { |
| nonEmptyDeclarationErrorCheck(publicType, identifierLocation); |
| mDeferredNonEmptyDeclarationErrorCheck = false; |
| } |
| |
| checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType); |
| |
| checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &publicType); |
| |
| if (checkIsValidTypeAndQualifierForArray(arrayLocation, publicType)) |
| { |
| TType arrayType = TType(publicType); |
| unsigned int size = checkIsValidArraySize(arrayLocation, indexExpression); |
| arrayType.setArraySize(size); |
| |
| TVariable *variable = nullptr; |
| declareVariable(identifierLocation, identifier, arrayType, &variable); |
| |
| TIntermSymbol *symbol = |
| intermediate.addSymbol(0, identifier, arrayType, identifierLocation); |
| if (variable && symbol) |
| symbol->setId(variable->getUniqueId()); |
| |
| declarationOut->appendDeclarator(symbol); |
| } |
| } |
| |
| void TParseContext::parseInitDeclarator(const TPublicType &publicType, |
| const TSourceLoc &identifierLocation, |
| const TString &identifier, |
| const TSourceLoc &initLocation, |
| TIntermTyped *initializer, |
| TIntermDeclaration *declarationOut) |
| { |
| // If the declaration starting this declarator list was empty (example: int,), some checks were |
| // not performed. |
| if (mDeferredNonEmptyDeclarationErrorCheck) |
| { |
| nonEmptyDeclarationErrorCheck(publicType, identifierLocation); |
| mDeferredNonEmptyDeclarationErrorCheck = false; |
| } |
| |
| checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType); |
| |
| TIntermBinary *initNode = nullptr; |
| if (!executeInitializer(identifierLocation, identifier, publicType, initializer, &initNode)) |
| { |
| // |
| // build the intermediate representation |
| // |
| if (initNode) |
| { |
| declarationOut->appendDeclarator(initNode); |
| } |
| } |
| } |
| |
| void TParseContext::parseArrayInitDeclarator(const TPublicType &publicType, |
| const TSourceLoc &identifierLocation, |
| const TString &identifier, |
| const TSourceLoc &indexLocation, |
| TIntermTyped *indexExpression, |
| const TSourceLoc &initLocation, |
| TIntermTyped *initializer, |
| TIntermDeclaration *declarationOut) |
| { |
| // If the declaration starting this declarator list was empty (example: int,), some checks were |
| // not performed. |
| if (mDeferredNonEmptyDeclarationErrorCheck) |
| { |
| nonEmptyDeclarationErrorCheck(publicType, identifierLocation); |
| mDeferredNonEmptyDeclarationErrorCheck = false; |
| } |
| |
| checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType); |
| |
| checkIsValidTypeAndQualifierForArray(indexLocation, publicType); |
| |
| TPublicType arrayType(publicType); |
| |
| unsigned int size = 0u; |
| // If indexExpression is nullptr, then the array will eventually get its size implicitly from |
| // the initializer. |
| if (indexExpression != nullptr) |
| { |
| size = checkIsValidArraySize(identifierLocation, indexExpression); |
| } |
| // Make the type an array even if size check failed. |
| // This ensures useless error messages regarding the variable's non-arrayness won't follow. |
| arrayType.setArraySize(size); |
| |
| // initNode will correspond to the whole of "b[n] = initializer". |
| TIntermBinary *initNode = nullptr; |
| if (!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode)) |
| { |
| if (initNode) |
| { |
| declarationOut->appendDeclarator(initNode); |
| } |
| } |
| } |
| |
| void TParseContext::parseGlobalLayoutQualifier(const TTypeQualifierBuilder &typeQualifierBuilder) |
| { |
| TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics); |
| const TLayoutQualifier layoutQualifier = typeQualifier.layoutQualifier; |
| |
| checkInvariantVariableQualifier(typeQualifier.invariant, typeQualifier.qualifier, |
| typeQualifier.line); |
| |
| // It should never be the case, but some strange parser errors can send us here. |
| if (layoutQualifier.isEmpty()) |
| { |
| error(typeQualifier.line, "Error during layout qualifier parsing.", "?"); |
| return; |
| } |
| |
| if (!layoutQualifier.isCombinationValid()) |
| { |
| error(typeQualifier.line, "invalid layout qualifier combination", "layout"); |
| return; |
| } |
| |
| checkBindingIsNotSpecified(typeQualifier.line, layoutQualifier.binding); |
| |
| checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line); |
| |
| checkInternalFormatIsNotSpecified(typeQualifier.line, layoutQualifier.imageInternalFormat); |
| |
| checkYuvIsNotSpecified(typeQualifier.line, layoutQualifier.yuv); |
| |
| if (typeQualifier.qualifier == EvqComputeIn) |
| { |
| if (mComputeShaderLocalSizeDeclared && |
| !layoutQualifier.isLocalSizeEqual(mComputeShaderLocalSize)) |
| { |
| error(typeQualifier.line, "Work group size does not match the previous declaration", |
| "layout"); |
| return; |
| } |
| |
| if (mShaderVersion < 310) |
| { |
| error(typeQualifier.line, "in type qualifier supported in GLSL ES 3.10 only", "layout"); |
| return; |
| } |
| |
| if (!layoutQualifier.localSize.isAnyValueSet()) |
| { |
| error(typeQualifier.line, "No local work group size specified", "layout"); |
| return; |
| } |
| |
| const TVariable *maxComputeWorkGroupSize = static_cast<const TVariable *>( |
| symbolTable.findBuiltIn("gl_MaxComputeWorkGroupSize", mShaderVersion)); |
| |
| const TConstantUnion *maxComputeWorkGroupSizeData = |
| maxComputeWorkGroupSize->getConstPointer(); |
| |
| for (size_t i = 0u; i < layoutQualifier.localSize.size(); ++i) |
| { |
| if (layoutQualifier.localSize[i] != -1) |
| { |
| mComputeShaderLocalSize[i] = layoutQualifier.localSize[i]; |
| const int maxComputeWorkGroupSizeValue = maxComputeWorkGroupSizeData[i].getIConst(); |
| if (mComputeShaderLocalSize[i] < 1 || |
| mComputeShaderLocalSize[i] > maxComputeWorkGroupSizeValue) |
| { |
| std::stringstream reasonStream; |
| reasonStream << "invalid value: Value must be at least 1 and no greater than " |
| << maxComputeWorkGroupSizeValue; |
| const std::string &reason = reasonStream.str(); |
| |
| error(typeQualifier.line, reason.c_str(), getWorkGroupSizeString(i)); |
| return; |
| } |
| } |
| } |
| |
| mComputeShaderLocalSizeDeclared = true; |
| } |
| else if (mMultiviewAvailable && |
| (isExtensionEnabled("GL_OVR_multiview") || isExtensionEnabled("GL_OVR_multiview2")) && |
| typeQualifier.qualifier == EvqVertexIn) |
| { |
| // This error is only specified in WebGL, but tightens unspecified behavior in the native |
| // specification. |
| if (mNumViews != -1 && layoutQualifier.numViews != mNumViews) |
| { |
| error(typeQualifier.line, "Number of views does not match the previous declaration", |
| "layout"); |
| return; |
| } |
| |
| if (layoutQualifier.numViews == -1) |
| { |
| error(typeQualifier.line, "No num_views specified", "layout"); |
| return; |
| } |
| |
| if (layoutQualifier.numViews > mMaxNumViews) |
| { |
| error(typeQualifier.line, "num_views greater than the value of GL_MAX_VIEWS_OVR", |
| "layout"); |
| return; |
| } |
| |
| mNumViews = layoutQualifier.numViews; |
| } |
| else |
| { |
| if (!checkWorkGroupSizeIsNotSpecified(typeQualifier.line, layoutQualifier)) |
| { |
| return; |
| } |
| |
| if (typeQualifier.qualifier != EvqUniform) |
| { |
| error(typeQualifier.line, "invalid qualifier: global layout must be uniform", |
| getQualifierString(typeQualifier.qualifier)); |
| return; |
| } |
| |
| if (mShaderVersion < 300) |
| { |
| error(typeQualifier.line, "layout qualifiers supported in GLSL ES 3.00 and above", |
| "layout"); |
| return; |
| } |
| |
| checkLocationIsNotSpecified(typeQualifier.line, layoutQualifier); |
| |
| if (layoutQualifier.matrixPacking != EmpUnspecified) |
| { |
| mDefaultMatrixPacking = layoutQualifier.matrixPacking; |
| } |
| |
| if (layoutQualifier.blockStorage != EbsUnspecified) |
| { |
| mDefaultBlockStorage = layoutQualifier.blockStorage; |
| } |
| } |
| } |
| |
| TIntermFunctionPrototype *TParseContext::createPrototypeNodeFromFunction( |
| const TFunction &function, |
| const TSourceLoc &location, |
| bool insertParametersToSymbolTable) |
| { |
| TIntermFunctionPrototype *prototype = |
| new TIntermFunctionPrototype(function.getReturnType(), TSymbolUniqueId(function)); |
| // TODO(oetuaho@nvidia.com): Instead of converting the function information here, the node could |
| // point to the data that already exists in the symbol table. |
| prototype->getFunctionSymbolInfo()->setFromFunction(function); |
| prototype->setLine(location); |
| |
| for (size_t i = 0; i < function.getParamCount(); i++) |
| { |
| const TConstParameter ¶m = function.getParam(i); |
| |
| // If the parameter has no name, it's not an error, just don't add it to symbol table (could |
| // be used for unused args). |
| if (param.name != nullptr) |
| { |
| TVariable *variable = new TVariable(param.name, *param.type); |
| |
| // Insert the parameter in the symbol table. |
| if (insertParametersToSymbolTable && !symbolTable.declare(variable)) |
| { |
| error(location, "redefinition", variable->getName().c_str()); |
| prototype->appendParameter(intermediate.addSymbol(0, "", *param.type, location)); |
| continue; |
| } |
| TIntermSymbol *symbol = intermediate.addSymbol( |
| variable->getUniqueId(), variable->getName(), variable->getType(), location); |
| prototype->appendParameter(symbol); |
| } |
| else |
| { |
| prototype->appendParameter(intermediate.addSymbol(0, "", *param.type, location)); |
| } |
| } |
| return prototype; |
| } |
| |
| TIntermFunctionPrototype *TParseContext::addFunctionPrototypeDeclaration( |
| const TFunction &parsedFunction, |
| const TSourceLoc &location) |
| { |
| // Note: function found from the symbol table could be the same as parsedFunction if this is the |
| // first declaration. Either way the instance in the symbol table is used to track whether the |
| // function is declared multiple times. |
| TFunction *function = static_cast<TFunction *>( |
| symbolTable.find(parsedFunction.getMangledName(), getShaderVersion())); |
| if (function->hasPrototypeDeclaration() && mShaderVersion == 100) |
| { |
| // ESSL 1.00.17 section 4.2.7. |
| // Doesn't apply to ESSL 3.00.4: see section 4.2.3. |
| error(location, "duplicate function prototype declarations are not allowed", "function"); |
| } |
| function->setHasPrototypeDeclaration(); |
| |
| TIntermFunctionPrototype *prototype = |
| createPrototypeNodeFromFunction(*function, location, false); |
| |
| symbolTable.pop(); |
| |
| if (!symbolTable.atGlobalLevel()) |
| { |
| // ESSL 3.00.4 section 4.2.4. |
| error(location, "local function prototype declarations are not allowed", "function"); |
| } |
| |
| return prototype; |
| } |
| |
| TIntermFunctionDefinition *TParseContext::addFunctionDefinition( |
| TIntermFunctionPrototype *functionPrototype, |
| TIntermBlock *functionBody, |
| const TSourceLoc &location) |
| { |
| // Check that non-void functions have at least one return statement. |
| if (mCurrentFunctionType->getBasicType() != EbtVoid && !mFunctionReturnsValue) |
| { |
| error(location, "function does not return a value:", |
| functionPrototype->getFunctionSymbolInfo()->getName().c_str()); |
| } |
| |
| if (functionBody == nullptr) |
| { |
| functionBody = new TIntermBlock(); |
| functionBody->setLine(location); |
| } |
| TIntermFunctionDefinition *functionNode = |
| new TIntermFunctionDefinition(functionPrototype, functionBody); |
| functionNode->setLine(location); |
| |
| symbolTable.pop(); |
| return functionNode; |
| } |
| |
| void TParseContext::parseFunctionDefinitionHeader(const TSourceLoc &location, |
| TFunction **function, |
| TIntermFunctionPrototype **prototypeOut) |
| { |
| ASSERT(function); |
| ASSERT(*function); |
| const TSymbol *builtIn = |
| symbolTable.findBuiltIn((*function)->getMangledName(), getShaderVersion()); |
| |
| if (builtIn) |
| { |
| error(location, "built-in functions cannot be redefined", (*function)->getName().c_str()); |
| } |
| else |
| { |
| TFunction *prevDec = static_cast<TFunction *>( |
| symbolTable.find((*function)->getMangledName(), getShaderVersion())); |
| |
| // Note: 'prevDec' could be 'function' if this is the first time we've seen function as it |
| // would have just been put in the symbol table. Otherwise, we're looking up an earlier |
| // occurance. |
| if (*function != prevDec) |
| { |
| // Swap the parameters of the previous declaration to the parameters of the function |
| // definition (parameter names may differ). |
| prevDec->swapParameters(**function); |
| |
| // The function definition will share the same symbol as any previous declaration. |
| *function = prevDec; |
| } |
| |
| if ((*function)->isDefined()) |
| { |
| error(location, "function already has a body", (*function)->getName().c_str()); |
| } |
| |
| (*function)->setDefined(); |
| } |
| |
| // Remember the return type for later checking for return statements. |
| mCurrentFunctionType = &((*function)->getReturnType()); |
| mFunctionReturnsValue = false; |
| |
| *prototypeOut = createPrototypeNodeFromFunction(**function, location, true); |
| setLoopNestingLevel(0); |
| } |
| |
| TFunction *TParseContext::parseFunctionDeclarator(const TSourceLoc &location, TFunction *function) |
| { |
| // |
| // We don't know at this point whether this is a function definition or a prototype. |
| // The definition production code will check for redefinitions. |
| // In the case of ESSL 1.00 the prototype production code will also check for redeclarations. |
| // |
| // Return types and parameter qualifiers must match in all redeclarations, so those are checked |
| // here. |
| // |
| TFunction *prevDec = |
| static_cast<TFunction *>(symbolTable.find(function->getMangledName(), getShaderVersion())); |
| |
| if (getShaderVersion() >= 300 && |
| symbolTable.hasUnmangledBuiltInForShaderVersion(function->getName().c_str(), |
| getShaderVersion())) |
| { |
| // With ESSL 3.00 and above, names of built-in functions cannot be redeclared as functions. |
| // Therefore overloading or redefining builtin functions is an error. |
| error(location, "Name of a built-in function cannot be redeclared as function", |
| function->getName().c_str()); |
| } |
| else if (prevDec) |
| { |
| if (prevDec->getReturnType() != function->getReturnType()) |
| { |
| error(location, "function must have the same return type in all of its declarations", |
| function->getReturnType().getBasicString()); |
| } |
| for (size_t i = 0; i < prevDec->getParamCount(); ++i) |
| { |
| if (prevDec->getParam(i).type->getQualifier() != |
| function->getParam(i).type->getQualifier()) |
| { |
| error(location, |
| "function must have the same parameter qualifiers in all of its declarations", |
| function->getParam(i).type->getQualifierString()); |
| } |
| } |
| } |
| |
| // |
| // Check for previously declared variables using the same name. |
| // |
| TSymbol *prevSym = symbolTable.find(function->getName(), getShaderVersion()); |
| if (prevSym) |
| { |
| if (!prevSym->isFunction()) |
| { |
| error(location, "redefinition of a function", function->getName().c_str()); |
| } |
| } |
| else |
| { |
| // Insert the unmangled name to detect potential future redefinition as a variable. |
| symbolTable.getOuterLevel()->insertUnmangled(function); |
| } |
| |
| // We're at the inner scope level of the function's arguments and body statement. |
| // Add the function prototype to the surrounding scope instead. |
| symbolTable.getOuterLevel()->insert(function); |
| |
| // Raise error message if main function takes any parameters or return anything other than void |
| if (function->getName() == "main") |
| { |
| if (function->getParamCount() > 0) |
| { |
| error(location, "function cannot take any parameter(s)", "main"); |
| } |
| if (function->getReturnType().getBasicType() != EbtVoid) |
| { |
| error(location, "main function cannot return a value", |
| function->getReturnType().getBasicString()); |
| } |
| } |
| |
| // |
| // If this is a redeclaration, it could also be a definition, in which case, we want to use the |
| // variable names from this one, and not the one that's |
| // being redeclared. So, pass back up this declaration, not the one in the symbol table. |
| // |
| return function; |
| } |
| |
| TFunction *TParseContext::parseFunctionHeader(const TPublicType &type, |
| const TString *name, |
| const TSourceLoc &location) |
| { |
| if (type.qualifier != EvqGlobal && type.qualifier != EvqTemporary) |
| { |
| error(location, "no qualifiers allowed for function return", |
| getQualifierString(type.qualifier)); |
| } |
| if (!type.layoutQualifier.isEmpty()) |
| { |
| error(location, "no qualifiers allowed for function return", "layout"); |
| } |
| // make sure an opaque type is not involved as well... |
| std::string reason(getBasicString(type.getBasicType())); |
| reason += "s can't be function return values"; |
| checkIsNotOpaqueType(location, type.typeSpecifierNonArray, reason.c_str()); |
| if (mShaderVersion < 300) |
| { |
| // Array return values are forbidden, but there's also no valid syntax for declaring array |
| // return values in ESSL 1.00. |
| ASSERT(type.arraySize == 0 || mDiagnostics->numErrors() > 0); |
| |
| if (type.isStructureContainingArrays()) |
| { |
| // ESSL 1.00.17 section 6.1 Function Definitions |
| error(location, "structures containing arrays can't be function return values", |
| TType(type).getCompleteString().c_str()); |
| } |
| } |
| |
| // Add the function as a prototype after parsing it (we do not support recursion) |
| return new TFunction(name, new TType(type)); |
| } |
| |
| TFunction *TParseContext::addConstructorFunc(const TPublicType &publicType) |
| { |
| if (publicType.isStructSpecifier()) |
| { |
| error(publicType.getLine(), "constructor can't be a structure definition", |
| getBasicString(publicType.getBasicType())); |
| } |
| |
| TType *type = new TType(publicType); |
| if (!type->canBeConstructed()) |
| { |
| error(publicType.getLine(), "cannot construct this type", |
| getBasicString(publicType.getBasicType())); |
| type->setBasicType(EbtFloat); |
| } |
| |
| return new TFunction(nullptr, type, EOpConstruct); |
| } |
| |
| // This function is used to test for the correctness of the parameters passed to various constructor |
| // functions and also convert them to the right datatype if it is allowed and required. |
| // |
| // Returns a node to add to the tree regardless of if an error was generated or not. |
| // |
| TIntermTyped *TParseContext::addConstructor(TIntermSequence *arguments, |
| TType type, |
| const TSourceLoc &line) |
| { |
| if (type.isUnsizedArray()) |
| { |
| if (arguments->empty()) |
| { |
| error(line, "implicitly sized array constructor must have at least one argument", "[]"); |
| type.setArraySize(1u); |
| return TIntermTyped::CreateZero(type); |
| } |
| type.setArraySize(static_cast<unsigned int>(arguments->size())); |
| } |
| |
| if (!checkConstructorArguments(line, arguments, type)) |
| { |
| return TIntermTyped::CreateZero(type); |
| } |
| |
| TIntermAggregate *constructorNode = TIntermAggregate::CreateConstructor(type, arguments); |
| constructorNode->setLine(line); |
| |
| TIntermTyped *constConstructor = |
| intermediate.foldAggregateBuiltIn(constructorNode, mDiagnostics); |
| if (constConstructor) |
| { |
| return constConstructor; |
| } |
| |
| return constructorNode; |
| } |
| |
| // |
| // Interface/uniform blocks |
| // |
| TIntermDeclaration *TParseContext::addInterfaceBlock( |
| const TTypeQualifierBuilder &typeQualifierBuilder, |
| const TSourceLoc &nameLine, |
| const TString &blockName, |
| TFieldList *fieldList, |
| const TString *instanceName, |
| const TSourceLoc &instanceLine, |
| TIntermTyped *arrayIndex, |
| const TSourceLoc &arrayIndexLine) |
| { |
| checkIsNotReserved(nameLine, blockName); |
| |
| TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics); |
| |
| if (typeQualifier.qualifier != EvqUniform) |
| { |
| error(typeQualifier.line, "invalid qualifier: interface blocks must be uniform", |
| getQualifierString(typeQualifier.qualifier)); |
| } |
| |
| if (typeQualifier.invariant) |
| { |
| error(typeQualifier.line, "invalid qualifier on interface block member", "invariant"); |
| } |
| |
| checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line); |
| |
| // TODO(oetuaho): Remove this and support binding for blocks. |
| checkBindingIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier.binding); |
| |
| checkYuvIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier.yuv); |
| |
| TLayoutQualifier blockLayoutQualifier = typeQualifier.layoutQualifier; |
| checkLocationIsNotSpecified(typeQualifier.line, blockLayoutQualifier); |
| |
| if (blockLayoutQualifier.matrixPacking == EmpUnspecified) |
| { |
| blockLayoutQualifier.matrixPacking = mDefaultMatrixPacking; |
| } |
| |
| if (blockLayoutQualifier.blockStorage == EbsUnspecified) |
| { |
| blockLayoutQualifier.blockStorage = mDefaultBlockStorage; |
| } |
| |
| checkWorkGroupSizeIsNotSpecified(nameLine, blockLayoutQualifier); |
| |
| checkInternalFormatIsNotSpecified(nameLine, blockLayoutQualifier.imageInternalFormat); |
| |
| TSymbol *blockNameSymbol = new TInterfaceBlockName(&blockName); |
| if (!symbolTable.declare(blockNameSymbol)) |
| { |
| error(nameLine, "redefinition of an interface block name", blockName.c_str()); |
| } |
| |
| // check for sampler types and apply layout qualifiers |
| for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) |
| { |
| TField *field = (*fieldList)[memberIndex]; |
| TType *fieldType = field->type(); |
| if (IsOpaqueType(fieldType->getBasicType())) |
| { |
| std::string reason("unsupported type - "); |
| reason += fieldType->getBasicString(); |
| reason += " types are not allowed in interface blocks"; |
| error(field->line(), reason.c_str(), fieldType->getBasicString()); |
| } |
| |
| const TQualifier qualifier = fieldType->getQualifier(); |
| switch (qualifier) |
| { |
| case EvqGlobal: |
| case EvqUniform: |
| break; |
| default: |
| error(field->line(), "invalid qualifier on interface block member", |
| getQualifierString(qualifier)); |
| break; |
| } |
| |
| if (fieldType->isInvariant()) |
| { |
| error(field->line(), "invalid qualifier on interface block member", "invariant"); |
| } |
| |
| // check layout qualifiers |
| TLayoutQualifier fieldLayoutQualifier = fieldType->getLayoutQualifier(); |
| checkLocationIsNotSpecified(field->line(), fieldLayoutQualifier); |
| |
| if (fieldLayoutQualifier.blockStorage != EbsUnspecified) |
| { |
| error(field->line(), "invalid layout qualifier: cannot be used here", |
| getBlockStorageString(fieldLayoutQualifier.blockStorage)); |
| } |
| |
| if (fieldLayoutQualifier.matrixPacking == EmpUnspecified) |
| { |
| fieldLayoutQualifier.matrixPacking = blockLayoutQualifier.matrixPacking; |
| } |
| else if (!fieldType->isMatrix() && fieldType->getBasicType() != EbtStruct) |
| { |
| warning(field->line(), |
| "extraneous layout qualifier: only has an effect on matrix types", |
| getMatrixPackingString(fieldLayoutQualifier.matrixPacking)); |
| } |
| |
| fieldType->setLayoutQualifier(fieldLayoutQualifier); |
| } |
| |
| // add array index |
| unsigned int arraySize = 0; |
| if (arrayIndex != nullptr) |
| { |
| arraySize = checkIsValidArraySize(arrayIndexLine, arrayIndex); |
| } |
| |
| TInterfaceBlock *interfaceBlock = |
| new TInterfaceBlock(&blockName, fieldList, instanceName, arraySize, blockLayoutQualifier); |
| TType interfaceBlockType(interfaceBlock, typeQualifier.qualifier, blockLayoutQualifier, |
| arraySize); |
| |
| TString symbolName = ""; |
| int symbolId = 0; |
| |
| if (!instanceName) |
| { |
| // define symbols for the members of the interface block |
| for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) |
| { |
| TField *field = (*fieldList)[memberIndex]; |
| TType *fieldType = field->type(); |
| |
| // set parent pointer of the field variable |
| fieldType->setInterfaceBlock(interfaceBlock); |
| |
| TVariable *fieldVariable = new TVariable(&field->name(), *fieldType); |
| fieldVariable->setQualifier(typeQualifier.qualifier); |
| |
| if (!symbolTable.declare(fieldVariable)) |
| { |
| error(field->line(), "redefinition of an interface block member name", |
| field->name().c_str()); |
| } |
| } |
| } |
| else |
| { |
| checkIsNotReserved(instanceLine, *instanceName); |
| |
| // add a symbol for this interface block |
| TVariable *instanceTypeDef = new TVariable(instanceName, interfaceBlockType, false); |
| instanceTypeDef->setQualifier(typeQualifier.qualifier); |
| |
| if (!symbolTable.declare(instanceTypeDef)) |
| { |
| error(instanceLine, "redefinition of an interface block instance name", |
| instanceName->c_str()); |
| } |
| |
| symbolId = instanceTypeDef->getUniqueId(); |
| symbolName = instanceTypeDef->getName(); |
| } |
| |
| TIntermSymbol *blockSymbol = |
| intermediate.addSymbol(symbolId, symbolName, interfaceBlockType, typeQualifier.line); |
| TIntermDeclaration *declaration = new TIntermDeclaration(); |
| declaration->appendDeclarator(blockSymbol); |
| declaration->setLine(nameLine); |
| |
| exitStructDeclaration(); |
| return declaration; |
| } |
| |
| void TParseContext::enterStructDeclaration(const TSourceLoc &line, const TString &identifier) |
| { |
| ++mStructNestingLevel; |
| |
| // Embedded structure definitions are not supported per GLSL ES spec. |
| // ESSL 1.00.17 section 10.9. ESSL 3.00.6 section 12.11. |
| if (mStructNestingLevel > 1) |
| { |
| error(line, "Embedded struct definitions are not allowed", "struct"); |
| } |
| } |
| |
| void TParseContext::exitStructDeclaration() |
| { |
| --mStructNestingLevel; |
| } |
| |
| void TParseContext::checkIsBelowStructNestingLimit(const TSourceLoc &line, const TField &field) |
| { |
| if (!sh::IsWebGLBasedSpec(mShaderSpec)) |
| { |
| return; |
| } |
| |
| if (field.type()->getBasicType() != EbtStruct) |
| { |
| return; |
| } |
| |
| // We're already inside a structure definition at this point, so add |
| // one to the field's struct nesting. |
| if (1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting) |
| { |
| std::stringstream reasonStream; |
| reasonStream << "Reference of struct type " << field.type()->getStruct()->name().c_str() |
| << " exceeds maximum allowed nesting level of " << kWebGLMaxStructNesting; |
| std::string reason = reasonStream.str(); |
| error(line, reason.c_str(), field.name().c_str()); |
| return; |
| } |
| } |
| |
| // |
| // Parse an array index expression |
| // |
| TIntermTyped *TParseContext::addIndexExpression(TIntermTyped *baseExpression, |
| const TSourceLoc &location, |
| TIntermTyped *indexExpression) |
| { |
| if (!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector()) |
| { |
| if (baseExpression->getAsSymbolNode()) |
| { |
| error(location, " left of '[' is not of type array, matrix, or vector ", |
| baseExpression->getAsSymbolNode()->getSymbol().c_str()); |
| } |
| else |
| { |
| error(location, " left of '[' is not of type array, matrix, or vector ", "expression"); |
| } |
| |
| TConstantUnion *unionArray = new TConstantUnion[1]; |
| unionArray->setFConst(0.0f); |
| return intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpHigh, EvqConst), |
| location); |
| } |
| |
| TIntermConstantUnion *indexConstantUnion = indexExpression->getAsConstantUnion(); |
| |
| // TODO(oetuaho@nvidia.com): Get rid of indexConstantUnion == nullptr below once ANGLE is able |
| // to constant fold all constant expressions. Right now we don't allow indexing interface blocks |
| |