| //===- CFG.h - Classes for representing and building CFGs -------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the CFG and CFGBuilder classes for representing and |
| // building Control-Flow Graphs (CFGs) from ASTs. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_CLANG_ANALYSIS_CFG_H |
| #define LLVM_CLANG_ANALYSIS_CFG_H |
| |
| #include "clang/Analysis/Support/BumpVector.h" |
| #include "clang/Analysis/ConstructionContext.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/Basic/LLVM.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/GraphTraits.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/PointerIntPair.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/Support/Allocator.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <bitset> |
| #include <cassert> |
| #include <cstddef> |
| #include <iterator> |
| #include <memory> |
| #include <vector> |
| |
| namespace clang { |
| |
| class ASTContext; |
| class BinaryOperator; |
| class CFG; |
| class CXXBaseSpecifier; |
| class CXXBindTemporaryExpr; |
| class CXXCtorInitializer; |
| class CXXDeleteExpr; |
| class CXXDestructorDecl; |
| class CXXNewExpr; |
| class CXXRecordDecl; |
| class Decl; |
| class FieldDecl; |
| class LangOptions; |
| class VarDecl; |
| |
| /// Represents a top-level expression in a basic block. |
| class CFGElement { |
| public: |
| enum Kind { |
| // main kind |
| Initializer, |
| ScopeBegin, |
| ScopeEnd, |
| NewAllocator, |
| LifetimeEnds, |
| LoopExit, |
| // stmt kind |
| Statement, |
| Constructor, |
| CXXRecordTypedCall, |
| STMT_BEGIN = Statement, |
| STMT_END = CXXRecordTypedCall, |
| // dtor kind |
| AutomaticObjectDtor, |
| DeleteDtor, |
| BaseDtor, |
| MemberDtor, |
| TemporaryDtor, |
| DTOR_BEGIN = AutomaticObjectDtor, |
| DTOR_END = TemporaryDtor |
| }; |
| |
| protected: |
| // The int bits are used to mark the kind. |
| llvm::PointerIntPair<void *, 2> Data1; |
| llvm::PointerIntPair<void *, 2> Data2; |
| |
| CFGElement(Kind kind, const void *Ptr1, const void *Ptr2 = nullptr) |
| : Data1(const_cast<void*>(Ptr1), ((unsigned) kind) & 0x3), |
| Data2(const_cast<void*>(Ptr2), (((unsigned) kind) >> 2) & 0x3) { |
| assert(getKind() == kind); |
| } |
| |
| CFGElement() = default; |
| |
| public: |
| /// Convert to the specified CFGElement type, asserting that this |
| /// CFGElement is of the desired type. |
| template<typename T> |
| T castAs() const { |
| assert(T::isKind(*this)); |
| T t; |
| CFGElement& e = t; |
| e = *this; |
| return t; |
| } |
| |
| /// Convert to the specified CFGElement type, returning None if this |
| /// CFGElement is not of the desired type. |
| template<typename T> |
| Optional<T> getAs() const { |
| if (!T::isKind(*this)) |
| return None; |
| T t; |
| CFGElement& e = t; |
| e = *this; |
| return t; |
| } |
| |
| Kind getKind() const { |
| unsigned x = Data2.getInt(); |
| x <<= 2; |
| x |= Data1.getInt(); |
| return (Kind) x; |
| } |
| }; |
| |
| class CFGStmt : public CFGElement { |
| public: |
| explicit CFGStmt(Stmt *S, Kind K = Statement) : CFGElement(K, S) { |
| assert(isKind(*this)); |
| } |
| |
| const Stmt *getStmt() const { |
| return static_cast<const Stmt *>(Data1.getPointer()); |
| } |
| |
| private: |
| friend class CFGElement; |
| |
| static bool isKind(const CFGElement &E) { |
| return E.getKind() >= STMT_BEGIN && E.getKind() <= STMT_END; |
| } |
| |
| protected: |
| CFGStmt() = default; |
| }; |
| |
| /// Represents C++ constructor call. Maintains information necessary to figure |
| /// out what memory is being initialized by the constructor expression. For now |
| /// this is only used by the analyzer's CFG. |
| class CFGConstructor : public CFGStmt { |
| public: |
| explicit CFGConstructor(CXXConstructExpr *CE, const ConstructionContext *C) |
| : CFGStmt(CE, Constructor) { |
| assert(C); |
| Data2.setPointer(const_cast<ConstructionContext *>(C)); |
| } |
| |
| const ConstructionContext *getConstructionContext() const { |
| return static_cast<ConstructionContext *>(Data2.getPointer()); |
| } |
| |
| private: |
| friend class CFGElement; |
| |
| CFGConstructor() = default; |
| |
| static bool isKind(const CFGElement &E) { |
| return E.getKind() == Constructor; |
| } |
| }; |
| |
| /// Represents a function call that returns a C++ object by value. This, like |
| /// constructor, requires a construction context in order to understand the |
| /// storage of the returned object . In C such tracking is not necessary because |
| /// no additional effort is required for destroying the object or modeling copy |
| /// elision. Like CFGConstructor, this element is for now only used by the |
| /// analyzer's CFG. |
| class CFGCXXRecordTypedCall : public CFGStmt { |
| public: |
| /// Returns true when call expression \p CE needs to be represented |
| /// by CFGCXXRecordTypedCall, as opposed to a regular CFGStmt. |
| static bool isCXXRecordTypedCall(Expr *E) { |
| assert(isa<CallExpr>(E) || isa<ObjCMessageExpr>(E)); |
| // There is no such thing as reference-type expression. If the function |
| // returns a reference, it'll return the respective lvalue or xvalue |
| // instead, and we're only interested in objects. |
| return !E->isGLValue() && |
| E->getType().getCanonicalType()->getAsCXXRecordDecl(); |
| } |
| |
| explicit CFGCXXRecordTypedCall(Expr *E, const ConstructionContext *C) |
| : CFGStmt(E, CXXRecordTypedCall) { |
| assert(isCXXRecordTypedCall(E)); |
| assert(C && (isa<TemporaryObjectConstructionContext>(C) || |
| // These are possible in C++17 due to mandatory copy elision. |
| isa<ReturnedValueConstructionContext>(C) || |
| isa<VariableConstructionContext>(C) || |
| isa<ConstructorInitializerConstructionContext>(C) || |
| isa<ArgumentConstructionContext>(C))); |
| Data2.setPointer(const_cast<ConstructionContext *>(C)); |
| } |
| |
| const ConstructionContext *getConstructionContext() const { |
| return static_cast<ConstructionContext *>(Data2.getPointer()); |
| } |
| |
| private: |
| friend class CFGElement; |
| |
| CFGCXXRecordTypedCall() = default; |
| |
| static bool isKind(const CFGElement &E) { |
| return E.getKind() == CXXRecordTypedCall; |
| } |
| }; |
| |
| /// Represents C++ base or member initializer from constructor's initialization |
| /// list. |
| class CFGInitializer : public CFGElement { |
| public: |
| explicit CFGInitializer(CXXCtorInitializer *initializer) |
| : CFGElement(Initializer, initializer) {} |
| |
| CXXCtorInitializer* getInitializer() const { |
| return static_cast<CXXCtorInitializer*>(Data1.getPointer()); |
| } |
| |
| private: |
| friend class CFGElement; |
| |
| CFGInitializer() = default; |
| |
| static bool isKind(const CFGElement &E) { |
| return E.getKind() == Initializer; |
| } |
| }; |
| |
| /// Represents C++ allocator call. |
| class CFGNewAllocator : public CFGElement { |
| public: |
| explicit CFGNewAllocator(const CXXNewExpr *S) |
| : CFGElement(NewAllocator, S) {} |
| |
| // Get the new expression. |
| const CXXNewExpr *getAllocatorExpr() const { |
| return static_cast<CXXNewExpr *>(Data1.getPointer()); |
| } |
| |
| private: |
| friend class CFGElement; |
| |
| CFGNewAllocator() = default; |
| |
| static bool isKind(const CFGElement &elem) { |
| return elem.getKind() == NewAllocator; |
| } |
| }; |
| |
| /// Represents the point where a loop ends. |
| /// This element is is only produced when building the CFG for the static |
| /// analyzer and hidden behind the 'cfg-loopexit' analyzer config flag. |
| /// |
| /// Note: a loop exit element can be reached even when the loop body was never |
| /// entered. |
| class CFGLoopExit : public CFGElement { |
| public: |
| explicit CFGLoopExit(const Stmt *stmt) : CFGElement(LoopExit, stmt) {} |
| |
| const Stmt *getLoopStmt() const { |
| return static_cast<Stmt *>(Data1.getPointer()); |
| } |
| |
| private: |
| friend class CFGElement; |
| |
| CFGLoopExit() = default; |
| |
| static bool isKind(const CFGElement &elem) { |
| return elem.getKind() == LoopExit; |
| } |
| }; |
| |
| /// Represents the point where the lifetime of an automatic object ends |
| class CFGLifetimeEnds : public CFGElement { |
| public: |
| explicit CFGLifetimeEnds(const VarDecl *var, const Stmt *stmt) |
| : CFGElement(LifetimeEnds, var, stmt) {} |
| |
| const VarDecl *getVarDecl() const { |
| return static_cast<VarDecl *>(Data1.getPointer()); |
| } |
| |
| const Stmt *getTriggerStmt() const { |
| return static_cast<Stmt *>(Data2.getPointer()); |
| } |
| |
| private: |
| friend class CFGElement; |
| |
| CFGLifetimeEnds() = default; |
| |
| static bool isKind(const CFGElement &elem) { |
| return elem.getKind() == LifetimeEnds; |
| } |
| }; |
| |
| /// Represents beginning of a scope implicitly generated |
| /// by the compiler on encountering a CompoundStmt |
| class CFGScopeBegin : public CFGElement { |
| public: |
| CFGScopeBegin() {} |
| CFGScopeBegin(const VarDecl *VD, const Stmt *S) |
| : CFGElement(ScopeBegin, VD, S) {} |
| |
| // Get statement that triggered a new scope. |
| const Stmt *getTriggerStmt() const { |
| return static_cast<Stmt*>(Data2.getPointer()); |
| } |
| |
| // Get VD that triggered a new scope. |
| const VarDecl *getVarDecl() const { |
| return static_cast<VarDecl *>(Data1.getPointer()); |
| } |
| |
| private: |
| friend class CFGElement; |
| static bool isKind(const CFGElement &E) { |
| Kind kind = E.getKind(); |
| return kind == ScopeBegin; |
| } |
| }; |
| |
| /// Represents end of a scope implicitly generated by |
| /// the compiler after the last Stmt in a CompoundStmt's body |
| class CFGScopeEnd : public CFGElement { |
| public: |
| CFGScopeEnd() {} |
| CFGScopeEnd(const VarDecl *VD, const Stmt *S) : CFGElement(ScopeEnd, VD, S) {} |
| |
| const VarDecl *getVarDecl() const { |
| return static_cast<VarDecl *>(Data1.getPointer()); |
| } |
| |
| const Stmt *getTriggerStmt() const { |
| return static_cast<Stmt *>(Data2.getPointer()); |
| } |
| |
| private: |
| friend class CFGElement; |
| static bool isKind(const CFGElement &E) { |
| Kind kind = E.getKind(); |
| return kind == ScopeEnd; |
| } |
| }; |
| |
| /// Represents C++ object destructor implicitly generated by compiler on various |
| /// occasions. |
| class CFGImplicitDtor : public CFGElement { |
| protected: |
| CFGImplicitDtor() = default; |
| |
| CFGImplicitDtor(Kind kind, const void *data1, const void *data2 = nullptr) |
| : CFGElement(kind, data1, data2) { |
| assert(kind >= DTOR_BEGIN && kind <= DTOR_END); |
| } |
| |
| public: |
| const CXXDestructorDecl *getDestructorDecl(ASTContext &astContext) const; |
| bool isNoReturn(ASTContext &astContext) const; |
| |
| private: |
| friend class CFGElement; |
| |
| static bool isKind(const CFGElement &E) { |
| Kind kind = E.getKind(); |
| return kind >= DTOR_BEGIN && kind <= DTOR_END; |
| } |
| }; |
| |
| /// Represents C++ object destructor implicitly generated for automatic object |
| /// or temporary bound to const reference at the point of leaving its local |
| /// scope. |
| class CFGAutomaticObjDtor: public CFGImplicitDtor { |
| public: |
| CFGAutomaticObjDtor(const VarDecl *var, const Stmt *stmt) |
| : CFGImplicitDtor(AutomaticObjectDtor, var, stmt) {} |
| |
| const VarDecl *getVarDecl() const { |
| return static_cast<VarDecl*>(Data1.getPointer()); |
| } |
| |
| // Get statement end of which triggered the destructor call. |
| const Stmt *getTriggerStmt() const { |
| return static_cast<Stmt*>(Data2.getPointer()); |
| } |
| |
| private: |
| friend class CFGElement; |
| |
| CFGAutomaticObjDtor() = default; |
| |
| static bool isKind(const CFGElement &elem) { |
| return elem.getKind() == AutomaticObjectDtor; |
| } |
| }; |
| |
| /// Represents C++ object destructor generated from a call to delete. |
| class CFGDeleteDtor : public CFGImplicitDtor { |
| public: |
| CFGDeleteDtor(const CXXRecordDecl *RD, const CXXDeleteExpr *DE) |
| : CFGImplicitDtor(DeleteDtor, RD, DE) {} |
| |
| const CXXRecordDecl *getCXXRecordDecl() const { |
| return static_cast<CXXRecordDecl*>(Data1.getPointer()); |
| } |
| |
| // Get Delete expression which triggered the destructor call. |
| const CXXDeleteExpr *getDeleteExpr() const { |
| return static_cast<CXXDeleteExpr *>(Data2.getPointer()); |
| } |
| |
| private: |
| friend class CFGElement; |
| |
| CFGDeleteDtor() = default; |
| |
| static bool isKind(const CFGElement &elem) { |
| return elem.getKind() == DeleteDtor; |
| } |
| }; |
| |
| /// Represents C++ object destructor implicitly generated for base object in |
| /// destructor. |
| class CFGBaseDtor : public CFGImplicitDtor { |
| public: |
| CFGBaseDtor(const CXXBaseSpecifier *base) |
| : CFGImplicitDtor(BaseDtor, base) {} |
| |
| const CXXBaseSpecifier *getBaseSpecifier() const { |
| return static_cast<const CXXBaseSpecifier*>(Data1.getPointer()); |
| } |
| |
| private: |
| friend class CFGElement; |
| |
| CFGBaseDtor() = default; |
| |
| static bool isKind(const CFGElement &E) { |
| return E.getKind() == BaseDtor; |
| } |
| }; |
| |
| /// Represents C++ object destructor implicitly generated for member object in |
| /// destructor. |
| class CFGMemberDtor : public CFGImplicitDtor { |
| public: |
| CFGMemberDtor(const FieldDecl *field) |
| : CFGImplicitDtor(MemberDtor, field, nullptr) {} |
| |
| const FieldDecl *getFieldDecl() const { |
| return static_cast<const FieldDecl*>(Data1.getPointer()); |
| } |
| |
| private: |
| friend class CFGElement; |
| |
| CFGMemberDtor() = default; |
| |
| static bool isKind(const CFGElement &E) { |
| return E.getKind() == MemberDtor; |
| } |
| }; |
| |
| /// Represents C++ object destructor implicitly generated at the end of full |
| /// expression for temporary object. |
| class CFGTemporaryDtor : public CFGImplicitDtor { |
| public: |
| CFGTemporaryDtor(CXXBindTemporaryExpr *expr) |
| : CFGImplicitDtor(TemporaryDtor, expr, nullptr) {} |
| |
| const CXXBindTemporaryExpr *getBindTemporaryExpr() const { |
| return static_cast<const CXXBindTemporaryExpr *>(Data1.getPointer()); |
| } |
| |
| private: |
| friend class CFGElement; |
| |
| CFGTemporaryDtor() = default; |
| |
| static bool isKind(const CFGElement &E) { |
| return E.getKind() == TemporaryDtor; |
| } |
| }; |
| |
| /// Represents CFGBlock terminator statement. |
| /// |
| /// TemporaryDtorsBranch bit is set to true if the terminator marks a branch |
| /// in control flow of destructors of temporaries. In this case terminator |
| /// statement is the same statement that branches control flow in evaluation |
| /// of matching full expression. |
| class CFGTerminator { |
| llvm::PointerIntPair<Stmt *, 1> Data; |
| |
| public: |
| CFGTerminator() = default; |
| CFGTerminator(Stmt *S, bool TemporaryDtorsBranch = false) |
| : Data(S, TemporaryDtorsBranch) {} |
| |
| Stmt *getStmt() { return Data.getPointer(); } |
| const Stmt *getStmt() const { return Data.getPointer(); } |
| |
| bool isTemporaryDtorsBranch() const { return Data.getInt(); } |
| |
| operator Stmt *() { return getStmt(); } |
| operator const Stmt *() const { return getStmt(); } |
| |
| Stmt *operator->() { return getStmt(); } |
| const Stmt *operator->() const { return getStmt(); } |
| |
| Stmt &operator*() { return *getStmt(); } |
| const Stmt &operator*() const { return *getStmt(); } |
| |
| explicit operator bool() const { return getStmt(); } |
| }; |
| |
| /// Represents a single basic block in a source-level CFG. |
| /// It consists of: |
| /// |
| /// (1) A set of statements/expressions (which may contain subexpressions). |
| /// (2) A "terminator" statement (not in the set of statements). |
| /// (3) A list of successors and predecessors. |
| /// |
| /// Terminator: The terminator represents the type of control-flow that occurs |
| /// at the end of the basic block. The terminator is a Stmt* referring to an |
| /// AST node that has control-flow: if-statements, breaks, loops, etc. |
| /// If the control-flow is conditional, the condition expression will appear |
| /// within the set of statements in the block (usually the last statement). |
| /// |
| /// Predecessors: the order in the set of predecessors is arbitrary. |
| /// |
| /// Successors: the order in the set of successors is NOT arbitrary. We |
| /// currently have the following orderings based on the terminator: |
| /// |
| /// Terminator Successor Ordering |
| /// ----------------------------------------------------- |
| /// if Then Block; Else Block |
| /// ? operator LHS expression; RHS expression |
| /// &&, || expression that uses result of && or ||, RHS |
| /// |
| /// But note that any of that may be NULL in case of optimized-out edges. |
| class CFGBlock { |
| class ElementList { |
| using ImplTy = BumpVector<CFGElement>; |
| |
| ImplTy Impl; |
| |
| public: |
| ElementList(BumpVectorContext &C) : Impl(C, 4) {} |
| |
| using iterator = std::reverse_iterator<ImplTy::iterator>; |
| using const_iterator = std::reverse_iterator<ImplTy::const_iterator>; |
| using reverse_iterator = ImplTy::iterator; |
| using const_reverse_iterator = ImplTy::const_iterator; |
| using const_reference = ImplTy::const_reference; |
| |
| void push_back(CFGElement e, BumpVectorContext &C) { Impl.push_back(e, C); } |
| |
| reverse_iterator insert(reverse_iterator I, size_t Cnt, CFGElement E, |
| BumpVectorContext &C) { |
| return Impl.insert(I, Cnt, E, C); |
| } |
| |
| const_reference front() const { return Impl.back(); } |
| const_reference back() const { return Impl.front(); } |
| |
| iterator begin() { return Impl.rbegin(); } |
| iterator end() { return Impl.rend(); } |
| const_iterator begin() const { return Impl.rbegin(); } |
| const_iterator end() const { return Impl.rend(); } |
| reverse_iterator rbegin() { return Impl.begin(); } |
| reverse_iterator rend() { return Impl.end(); } |
| const_reverse_iterator rbegin() const { return Impl.begin(); } |
| const_reverse_iterator rend() const { return Impl.end(); } |
| |
| CFGElement operator[](size_t i) const { |
| assert(i < Impl.size()); |
| return Impl[Impl.size() - 1 - i]; |
| } |
| |
| size_t size() const { return Impl.size(); } |
| bool empty() const { return Impl.empty(); } |
| }; |
| |
| /// The set of statements in the basic block. |
| ElementList Elements; |
| |
| /// An (optional) label that prefixes the executable statements in the block. |
| /// When this variable is non-NULL, it is either an instance of LabelStmt, |
| /// SwitchCase or CXXCatchStmt. |
| Stmt *Label = nullptr; |
| |
| /// The terminator for a basic block that indicates the type of control-flow |
| /// that occurs between a block and its successors. |
| CFGTerminator Terminator; |
| |
| /// Some blocks are used to represent the "loop edge" to the start of a loop |
| /// from within the loop body. This Stmt* will be refer to the loop statement |
| /// for such blocks (and be null otherwise). |
| const Stmt *LoopTarget = nullptr; |
| |
| /// A numerical ID assigned to a CFGBlock during construction of the CFG. |
| unsigned BlockID; |
| |
| public: |
| /// This class represents a potential adjacent block in the CFG. It encodes |
| /// whether or not the block is actually reachable, or can be proved to be |
| /// trivially unreachable. For some cases it allows one to encode scenarios |
| /// where a block was substituted because the original (now alternate) block |
| /// is unreachable. |
| class AdjacentBlock { |
| enum Kind { |
| AB_Normal, |
| AB_Unreachable, |
| AB_Alternate |
| }; |
| |
| CFGBlock *ReachableBlock; |
| llvm::PointerIntPair<CFGBlock *, 2> UnreachableBlock; |
| |
| public: |
| /// Construct an AdjacentBlock with a possibly unreachable block. |
| AdjacentBlock(CFGBlock *B, bool IsReachable); |
| |
| /// Construct an AdjacentBlock with a reachable block and an alternate |
| /// unreachable block. |
| AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock); |
| |
| /// Get the reachable block, if one exists. |
| CFGBlock *getReachableBlock() const { |
| return ReachableBlock; |
| } |
| |
| /// Get the potentially unreachable block. |
| CFGBlock *getPossiblyUnreachableBlock() const { |
| return UnreachableBlock.getPointer(); |
| } |
| |
| /// Provide an implicit conversion to CFGBlock* so that |
| /// AdjacentBlock can be substituted for CFGBlock*. |
| operator CFGBlock*() const { |
| return getReachableBlock(); |
| } |
| |
| CFGBlock& operator *() const { |
| return *getReachableBlock(); |
| } |
| |
| CFGBlock* operator ->() const { |
| return getReachableBlock(); |
| } |
| |
| bool isReachable() const { |
| Kind K = (Kind) UnreachableBlock.getInt(); |
| return K == AB_Normal || K == AB_Alternate; |
| } |
| }; |
| |
| private: |
| /// Keep track of the predecessor / successor CFG blocks. |
| using AdjacentBlocks = BumpVector<AdjacentBlock>; |
| AdjacentBlocks Preds; |
| AdjacentBlocks Succs; |
| |
| /// This bit is set when the basic block contains a function call |
| /// or implicit destructor that is attributed as 'noreturn'. In that case, |
| /// control cannot technically ever proceed past this block. All such blocks |
| /// will have a single immediate successor: the exit block. This allows them |
| /// to be easily reached from the exit block and using this bit quickly |
| /// recognized without scanning the contents of the block. |
| /// |
| /// Optimization Note: This bit could be profitably folded with Terminator's |
| /// storage if the memory usage of CFGBlock becomes an issue. |
| unsigned HasNoReturnElement : 1; |
| |
| /// The parent CFG that owns this CFGBlock. |
| CFG *Parent; |
| |
| public: |
| explicit CFGBlock(unsigned blockid, BumpVectorContext &C, CFG *parent) |
| : Elements(C), Terminator(nullptr), BlockID(blockid), Preds(C, 1), |
| Succs(C, 1), HasNoReturnElement(false), Parent(parent) {} |
| |
| // Statement iterators |
| using iterator = ElementList::iterator; |
| using const_iterator = ElementList::const_iterator; |
| using reverse_iterator = ElementList::reverse_iterator; |
| using const_reverse_iterator = ElementList::const_reverse_iterator; |
| |
| CFGElement front() const { return Elements.front(); } |
| CFGElement back() const { return Elements.back(); } |
| |
| iterator begin() { return Elements.begin(); } |
| iterator end() { return Elements.end(); } |
| const_iterator begin() const { return Elements.begin(); } |
| const_iterator end() const { return Elements.end(); } |
| |
| reverse_iterator rbegin() { return Elements.rbegin(); } |
| reverse_iterator rend() { return Elements.rend(); } |
| const_reverse_iterator rbegin() const { return Elements.rbegin(); } |
| const_reverse_iterator rend() const { return Elements.rend(); } |
| |
| unsigned size() const { return Elements.size(); } |
| bool empty() const { return Elements.empty(); } |
| |
| CFGElement operator[](size_t i) const { return Elements[i]; } |
| |
| // CFG iterators |
| using pred_iterator = AdjacentBlocks::iterator; |
| using const_pred_iterator = AdjacentBlocks::const_iterator; |
| using pred_reverse_iterator = AdjacentBlocks::reverse_iterator; |
| using const_pred_reverse_iterator = AdjacentBlocks::const_reverse_iterator; |
| using pred_range = llvm::iterator_range<pred_iterator>; |
| using pred_const_range = llvm::iterator_range<const_pred_iterator>; |
| |
| using succ_iterator = AdjacentBlocks::iterator; |
| using const_succ_iterator = AdjacentBlocks::const_iterator; |
| using succ_reverse_iterator = AdjacentBlocks::reverse_iterator; |
| using const_succ_reverse_iterator = AdjacentBlocks::const_reverse_iterator; |
| using succ_range = llvm::iterator_range<succ_iterator>; |
| using succ_const_range = llvm::iterator_range<const_succ_iterator>; |
| |
| pred_iterator pred_begin() { return Preds.begin(); } |
| pred_iterator pred_end() { return Preds.end(); } |
| const_pred_iterator pred_begin() const { return Preds.begin(); } |
| const_pred_iterator pred_end() const { return Preds.end(); } |
| |
| pred_reverse_iterator pred_rbegin() { return Preds.rbegin(); } |
| pred_reverse_iterator pred_rend() { return Preds.rend(); } |
| const_pred_reverse_iterator pred_rbegin() const { return Preds.rbegin(); } |
| const_pred_reverse_iterator pred_rend() const { return Preds.rend(); } |
| |
| pred_range preds() { |
| return pred_range(pred_begin(), pred_end()); |
| } |
| |
| pred_const_range preds() const { |
| return pred_const_range(pred_begin(), pred_end()); |
| } |
| |
| succ_iterator succ_begin() { return Succs.begin(); } |
| succ_iterator succ_end() { return Succs.end(); } |
| const_succ_iterator succ_begin() const { return Succs.begin(); } |
| const_succ_iterator succ_end() const { return Succs.end(); } |
| |
| succ_reverse_iterator succ_rbegin() { return Succs.rbegin(); } |
| succ_reverse_iterator succ_rend() { return Succs.rend(); } |
| const_succ_reverse_iterator succ_rbegin() const { return Succs.rbegin(); } |
| const_succ_reverse_iterator succ_rend() const { return Succs.rend(); } |
| |
| succ_range succs() { |
| return succ_range(succ_begin(), succ_end()); |
| } |
| |
| succ_const_range succs() const { |
| return succ_const_range(succ_begin(), succ_end()); |
| } |
| |
| unsigned succ_size() const { return Succs.size(); } |
| bool succ_empty() const { return Succs.empty(); } |
| |
| unsigned pred_size() const { return Preds.size(); } |
| bool pred_empty() const { return Preds.empty(); } |
| |
| |
| class FilterOptions { |
| public: |
| unsigned IgnoreNullPredecessors : 1; |
| unsigned IgnoreDefaultsWithCoveredEnums : 1; |
| |
| FilterOptions() |
| : IgnoreNullPredecessors(1), IgnoreDefaultsWithCoveredEnums(0) {} |
| }; |
| |
| static bool FilterEdge(const FilterOptions &F, const CFGBlock *Src, |
| const CFGBlock *Dst); |
| |
| template <typename IMPL, bool IsPred> |
| class FilteredCFGBlockIterator { |
| private: |
| IMPL I, E; |
| const FilterOptions F; |
| const CFGBlock *From; |
| |
| public: |
| explicit FilteredCFGBlockIterator(const IMPL &i, const IMPL &e, |
| const CFGBlock *from, |
| const FilterOptions &f) |
| : I(i), E(e), F(f), From(from) { |
| while (hasMore() && Filter(*I)) |
| ++I; |
| } |
| |
| bool hasMore() const { return I != E; } |
| |
| FilteredCFGBlockIterator &operator++() { |
| do { ++I; } while (hasMore() && Filter(*I)); |
| return *this; |
| } |
| |
| const CFGBlock *operator*() const { return *I; } |
| |
| private: |
| bool Filter(const CFGBlock *To) { |
| return IsPred ? FilterEdge(F, To, From) : FilterEdge(F, From, To); |
| } |
| }; |
| |
| using filtered_pred_iterator = |
| FilteredCFGBlockIterator<const_pred_iterator, true>; |
| |
| using filtered_succ_iterator = |
| FilteredCFGBlockIterator<const_succ_iterator, false>; |
| |
| filtered_pred_iterator filtered_pred_start_end(const FilterOptions &f) const { |
| return filtered_pred_iterator(pred_begin(), pred_end(), this, f); |
| } |
| |
| filtered_succ_iterator filtered_succ_start_end(const FilterOptions &f) const { |
| return filtered_succ_iterator(succ_begin(), succ_end(), this, f); |
| } |
| |
| // Manipulation of block contents |
| |
| void setTerminator(CFGTerminator Term) { Terminator = Term; } |
| void setLabel(Stmt *Statement) { Label = Statement; } |
| void setLoopTarget(const Stmt *loopTarget) { LoopTarget = loopTarget; } |
| void setHasNoReturnElement() { HasNoReturnElement = true; } |
| |
| CFGTerminator getTerminator() { return Terminator; } |
| const CFGTerminator getTerminator() const { return Terminator; } |
| |
| Stmt *getTerminatorCondition(bool StripParens = true); |
| |
| const Stmt *getTerminatorCondition(bool StripParens = true) const { |
| return const_cast<CFGBlock*>(this)->getTerminatorCondition(StripParens); |
| } |
| |
| const Stmt *getLoopTarget() const { return LoopTarget; } |
| |
| Stmt *getLabel() { return Label; } |
| const Stmt *getLabel() const { return Label; } |
| |
| bool hasNoReturnElement() const { return HasNoReturnElement; } |
| |
| unsigned getBlockID() const { return BlockID; } |
| |
| CFG *getParent() const { return Parent; } |
| |
| void dump() const; |
| |
| void dump(const CFG *cfg, const LangOptions &LO, bool ShowColors = false) const; |
| void print(raw_ostream &OS, const CFG* cfg, const LangOptions &LO, |
| bool ShowColors) const; |
| void printTerminator(raw_ostream &OS, const LangOptions &LO) const; |
| void printAsOperand(raw_ostream &OS, bool /*PrintType*/) { |
| OS << "BB#" << getBlockID(); |
| } |
| |
| /// Adds a (potentially unreachable) successor block to the current block. |
| void addSuccessor(AdjacentBlock Succ, BumpVectorContext &C); |
| |
| void appendStmt(Stmt *statement, BumpVectorContext &C) { |
| Elements.push_back(CFGStmt(statement), C); |
| } |
| |
| void appendConstructor(CXXConstructExpr *CE, const ConstructionContext *CC, |
| BumpVectorContext &C) { |
| Elements.push_back(CFGConstructor(CE, CC), C); |
| } |
| |
| void appendCXXRecordTypedCall(Expr *E, |
| const ConstructionContext *CC, |
| BumpVectorContext &C) { |
| Elements.push_back(CFGCXXRecordTypedCall(E, CC), C); |
| } |
| |
| void appendInitializer(CXXCtorInitializer *initializer, |
| BumpVectorContext &C) { |
| Elements.push_back(CFGInitializer(initializer), C); |
| } |
| |
| void appendNewAllocator(CXXNewExpr *NE, |
| BumpVectorContext &C) { |
| Elements.push_back(CFGNewAllocator(NE), C); |
| } |
| |
| void appendScopeBegin(const VarDecl *VD, const Stmt *S, |
| BumpVectorContext &C) { |
| Elements.push_back(CFGScopeBegin(VD, S), C); |
| } |
| |
| void prependScopeBegin(const VarDecl *VD, const Stmt *S, |
| BumpVectorContext &C) { |
| Elements.insert(Elements.rbegin(), 1, CFGScopeBegin(VD, S), C); |
| } |
| |
| void appendScopeEnd(const VarDecl *VD, const Stmt *S, BumpVectorContext &C) { |
| Elements.push_back(CFGScopeEnd(VD, S), C); |
| } |
| |
| void prependScopeEnd(const VarDecl *VD, const Stmt *S, BumpVectorContext &C) { |
| Elements.insert(Elements.rbegin(), 1, CFGScopeEnd(VD, S), C); |
| } |
| |
| void appendBaseDtor(const CXXBaseSpecifier *BS, BumpVectorContext &C) { |
| Elements.push_back(CFGBaseDtor(BS), C); |
| } |
| |
| void appendMemberDtor(FieldDecl *FD, BumpVectorContext &C) { |
| Elements.push_back(CFGMemberDtor(FD), C); |
| } |
| |
| void appendTemporaryDtor(CXXBindTemporaryExpr *E, BumpVectorContext &C) { |
| Elements.push_back(CFGTemporaryDtor(E), C); |
| } |
| |
| void appendAutomaticObjDtor(VarDecl *VD, Stmt *S, BumpVectorContext &C) { |
| Elements.push_back(CFGAutomaticObjDtor(VD, S), C); |
| } |
| |
| void appendLifetimeEnds(VarDecl *VD, Stmt *S, BumpVectorContext &C) { |
| Elements.push_back(CFGLifetimeEnds(VD, S), C); |
| } |
| |
| void appendLoopExit(const Stmt *LoopStmt, BumpVectorContext &C) { |
| Elements.push_back(CFGLoopExit(LoopStmt), C); |
| } |
| |
| void appendDeleteDtor(CXXRecordDecl *RD, CXXDeleteExpr *DE, BumpVectorContext &C) { |
| Elements.push_back(CFGDeleteDtor(RD, DE), C); |
| } |
| |
| // Destructors must be inserted in reversed order. So insertion is in two |
| // steps. First we prepare space for some number of elements, then we insert |
| // the elements beginning at the last position in prepared space. |
| iterator beginAutomaticObjDtorsInsert(iterator I, size_t Cnt, |
| BumpVectorContext &C) { |
| return iterator(Elements.insert(I.base(), Cnt, |
| CFGAutomaticObjDtor(nullptr, nullptr), C)); |
| } |
| iterator insertAutomaticObjDtor(iterator I, VarDecl *VD, Stmt *S) { |
| *I = CFGAutomaticObjDtor(VD, S); |
| return ++I; |
| } |
| |
| // Scope leaving must be performed in reversed order. So insertion is in two |
| // steps. First we prepare space for some number of elements, then we insert |
| // the elements beginning at the last position in prepared space. |
| iterator beginLifetimeEndsInsert(iterator I, size_t Cnt, |
| BumpVectorContext &C) { |
| return iterator( |
| Elements.insert(I.base(), Cnt, CFGLifetimeEnds(nullptr, nullptr), C)); |
| } |
| iterator insertLifetimeEnds(iterator I, VarDecl *VD, Stmt *S) { |
| *I = CFGLifetimeEnds(VD, S); |
| return ++I; |
| } |
| |
| // Scope leaving must be performed in reversed order. So insertion is in two |
| // steps. First we prepare space for some number of elements, then we insert |
| // the elements beginning at the last position in prepared space. |
| iterator beginScopeEndInsert(iterator I, size_t Cnt, BumpVectorContext &C) { |
| return iterator( |
| Elements.insert(I.base(), Cnt, CFGScopeEnd(nullptr, nullptr), C)); |
| } |
| iterator insertScopeEnd(iterator I, VarDecl *VD, Stmt *S) { |
| *I = CFGScopeEnd(VD, S); |
| return ++I; |
| } |
| |
| }; |
| |
| /// CFGCallback defines methods that should be called when a logical |
| /// operator error is found when building the CFG. |
| class CFGCallback { |
| public: |
| CFGCallback() = default; |
| virtual ~CFGCallback() = default; |
| |
| virtual void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) {} |
| virtual void compareBitwiseEquality(const BinaryOperator *B, |
| bool isAlwaysTrue) {} |
| }; |
| |
| /// Represents a source-level, intra-procedural CFG that represents the |
| /// control-flow of a Stmt. The Stmt can represent an entire function body, |
| /// or a single expression. A CFG will always contain one empty block that |
| /// represents the Exit point of the CFG. A CFG will also contain a designated |
| /// Entry block. The CFG solely represents control-flow; it consists of |
| /// CFGBlocks which are simply containers of Stmt*'s in the AST the CFG |
| /// was constructed from. |
| class CFG { |
| public: |
| //===--------------------------------------------------------------------===// |
| // CFG Construction & Manipulation. |
| //===--------------------------------------------------------------------===// |
| |
| class BuildOptions { |
| std::bitset<Stmt::lastStmtConstant> alwaysAddMask; |
| |
| public: |
| using ForcedBlkExprs = llvm::DenseMap<const Stmt *, const CFGBlock *>; |
| |
| ForcedBlkExprs **forcedBlkExprs = nullptr; |
| CFGCallback *Observer = nullptr; |
| bool PruneTriviallyFalseEdges = true; |
| bool AddEHEdges = false; |
| bool AddInitializers = false; |
| bool AddImplicitDtors = false; |
| bool AddLifetime = false; |
| bool AddLoopExit = false; |
| bool AddTemporaryDtors = false; |
| bool AddScopes = false; |
| bool AddStaticInitBranches = false; |
| bool AddCXXNewAllocator = false; |
| bool AddCXXDefaultInitExprInCtors = false; |
| bool AddRichCXXConstructors = false; |
| bool MarkElidedCXXConstructors = false; |
| |
| BuildOptions() = default; |
| |
| bool alwaysAdd(const Stmt *stmt) const { |
| return alwaysAddMask[stmt->getStmtClass()]; |
| } |
| |
| BuildOptions &setAlwaysAdd(Stmt::StmtClass stmtClass, bool val = true) { |
| alwaysAddMask[stmtClass] = val; |
| return *this; |
| } |
| |
| BuildOptions &setAllAlwaysAdd() { |
| alwaysAddMask.set(); |
| return *this; |
| } |
| }; |
| |
| /// Builds a CFG from an AST. |
| static std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *AST, ASTContext *C, |
| const BuildOptions &BO); |
| |
| /// Create a new block in the CFG. The CFG owns the block; the caller should |
| /// not directly free it. |
| CFGBlock *createBlock(); |
| |
| /// Set the entry block of the CFG. This is typically used only during CFG |
| /// construction. Most CFG clients expect that the entry block has no |
| /// predecessors and contains no statements. |
| void setEntry(CFGBlock *B) { Entry = B; } |
| |
| /// Set the block used for indirect goto jumps. This is typically used only |
| /// during CFG construction. |
| void setIndirectGotoBlock(CFGBlock *B) { IndirectGotoBlock = B; } |
| |
| //===--------------------------------------------------------------------===// |
| // Block Iterators |
| //===--------------------------------------------------------------------===// |
| |
| using CFGBlockListTy = BumpVector<CFGBlock *>; |
| using iterator = CFGBlockListTy::iterator; |
| using const_iterator = CFGBlockListTy::const_iterator; |
| using reverse_iterator = std::reverse_iterator<iterator>; |
| using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
| |
| CFGBlock & front() { return *Blocks.front(); } |
| CFGBlock & back() { return *Blocks.back(); } |
| |
| iterator begin() { return Blocks.begin(); } |
| iterator end() { return Blocks.end(); } |
| const_iterator begin() const { return Blocks.begin(); } |
| const_iterator end() const { return Blocks.end(); } |
| |
| iterator nodes_begin() { return iterator(Blocks.begin()); } |
| iterator nodes_end() { return iterator(Blocks.end()); } |
| const_iterator nodes_begin() const { return const_iterator(Blocks.begin()); } |
| const_iterator nodes_end() const { return const_iterator(Blocks.end()); } |
| |
| reverse_iterator rbegin() { return Blocks.rbegin(); } |
| reverse_iterator rend() { return Blocks.rend(); } |
| const_reverse_iterator rbegin() const { return Blocks.rbegin(); } |
| const_reverse_iterator rend() const { return Blocks.rend(); } |
| |
| CFGBlock & getEntry() { return *Entry; } |
| const CFGBlock & getEntry() const { return *Entry; } |
| CFGBlock & getExit() { return *Exit; } |
| const CFGBlock & getExit() const { return *Exit; } |
| |
| CFGBlock * getIndirectGotoBlock() { return IndirectGotoBlock; } |
| const CFGBlock * getIndirectGotoBlock() const { return IndirectGotoBlock; } |
| |
| using try_block_iterator = std::vector<const CFGBlock *>::const_iterator; |
| |
| try_block_iterator try_blocks_begin() const { |
| return TryDispatchBlocks.begin(); |
| } |
| |
| try_block_iterator try_blocks_end() const { |
| return TryDispatchBlocks.end(); |
| } |
| |
| void addTryDispatchBlock(const CFGBlock *block) { |
| TryDispatchBlocks.push_back(block); |
| } |
| |
| /// Records a synthetic DeclStmt and the DeclStmt it was constructed from. |
| /// |
| /// The CFG uses synthetic DeclStmts when a single AST DeclStmt contains |
| /// multiple decls. |
| void addSyntheticDeclStmt(const DeclStmt *Synthetic, |
| const DeclStmt *Source) { |
| assert(Synthetic->isSingleDecl() && "Can handle single declarations only"); |
| assert(Synthetic != Source && "Don't include original DeclStmts in map"); |
| assert(!SyntheticDeclStmts.count(Synthetic) && "Already in map"); |
| SyntheticDeclStmts[Synthetic] = Source; |
| } |
| |
| using synthetic_stmt_iterator = |
| llvm::DenseMap<const DeclStmt *, const DeclStmt *>::const_iterator; |
| using synthetic_stmt_range = llvm::iterator_range<synthetic_stmt_iterator>; |
| |
| /// Iterates over synthetic DeclStmts in the CFG. |
| /// |
| /// Each element is a (synthetic statement, source statement) pair. |
| /// |
| /// \sa addSyntheticDeclStmt |
| synthetic_stmt_iterator synthetic_stmt_begin() const { |
| return SyntheticDeclStmts.begin(); |
| } |
| |
| /// \sa synthetic_stmt_begin |
| synthetic_stmt_iterator synthetic_stmt_end() const { |
| return SyntheticDeclStmts.end(); |
| } |
| |
| /// \sa synthetic_stmt_begin |
| synthetic_stmt_range synthetic_stmts() const { |
| return synthetic_stmt_range(synthetic_stmt_begin(), synthetic_stmt_end()); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Member templates useful for various batch operations over CFGs. |
| //===--------------------------------------------------------------------===// |
| |
| template <typename CALLBACK> |
| void VisitBlockStmts(CALLBACK& O) const { |
| for (const_iterator I = begin(), E = end(); I != E; ++I) |
| for (CFGBlock::const_iterator BI = (*I)->begin(), BE = (*I)->end(); |
| BI != BE; ++BI) { |
| if (Optional<CFGStmt> stmt = BI->getAs<CFGStmt>()) |
| O(const_cast<Stmt*>(stmt->getStmt())); |
| } |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // CFG Introspection. |
| //===--------------------------------------------------------------------===// |
| |
| /// Returns the total number of BlockIDs allocated (which start at 0). |
| unsigned getNumBlockIDs() const { return NumBlockIDs; } |
| |
| /// Return the total number of CFGBlocks within the CFG This is simply a |
| /// renaming of the getNumBlockIDs(). This is necessary because the dominator |
| /// implementation needs such an interface. |
| unsigned size() const { return NumBlockIDs; } |
| |
| //===--------------------------------------------------------------------===// |
| // CFG Debugging: Pretty-Printing and Visualization. |
| //===--------------------------------------------------------------------===// |
| |
| void viewCFG(const LangOptions &LO) const; |
| void print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const; |
| void dump(const LangOptions &LO, bool ShowColors) const; |
| |
| //===--------------------------------------------------------------------===// |
| // Internal: constructors and data. |
| //===--------------------------------------------------------------------===// |
| |
| CFG() : Blocks(BlkBVC, 10) {} |
| |
| llvm::BumpPtrAllocator& getAllocator() { |
| return BlkBVC.getAllocator(); |
| } |
| |
| BumpVectorContext &getBumpVectorContext() { |
| return BlkBVC; |
| } |
| |
| private: |
| CFGBlock *Entry = nullptr; |
| CFGBlock *Exit = nullptr; |
| |
| // Special block to contain collective dispatch for indirect gotos |
| CFGBlock* IndirectGotoBlock = nullptr; |
| |
| unsigned NumBlockIDs = 0; |
| |
| BumpVectorContext BlkBVC; |
| |
| CFGBlockListTy Blocks; |
| |
| /// C++ 'try' statements are modeled with an indirect dispatch block. |
| /// This is the collection of such blocks present in the CFG. |
| std::vector<const CFGBlock *> TryDispatchBlocks; |
| |
| /// Collects DeclStmts synthesized for this CFG and maps each one back to its |
| /// source DeclStmt. |
| llvm::DenseMap<const DeclStmt *, const DeclStmt *> SyntheticDeclStmts; |
| }; |
| |
| } // namespace clang |
| |
| //===----------------------------------------------------------------------===// |
| // GraphTraits specializations for CFG basic block graphs (source-level CFGs) |
| //===----------------------------------------------------------------------===// |
| |
| namespace llvm { |
| |
| /// Implement simplify_type for CFGTerminator, so that we can dyn_cast from |
| /// CFGTerminator to a specific Stmt class. |
| template <> struct simplify_type< ::clang::CFGTerminator> { |
| using SimpleType = ::clang::Stmt *; |
| |
| static SimpleType getSimplifiedValue(::clang::CFGTerminator Val) { |
| return Val.getStmt(); |
| } |
| }; |
| |
| // Traits for: CFGBlock |
| |
| template <> struct GraphTraits< ::clang::CFGBlock *> { |
| using NodeRef = ::clang::CFGBlock *; |
| using ChildIteratorType = ::clang::CFGBlock::succ_iterator; |
| |
| static NodeRef getEntryNode(::clang::CFGBlock *BB) { return BB; } |
| static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } |
| static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } |
| }; |
| |
| template <> struct GraphTraits< const ::clang::CFGBlock *> { |
| using NodeRef = const ::clang::CFGBlock *; |
| using ChildIteratorType = ::clang::CFGBlock::const_succ_iterator; |
| |
| static NodeRef getEntryNode(const clang::CFGBlock *BB) { return BB; } |
| static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } |
| static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } |
| }; |
| |
| template <> struct GraphTraits<Inverse< ::clang::CFGBlock *>> { |
| using NodeRef = ::clang::CFGBlock *; |
| using ChildIteratorType = ::clang::CFGBlock::const_pred_iterator; |
| |
| static NodeRef getEntryNode(Inverse<::clang::CFGBlock *> G) { |
| return G.Graph; |
| } |
| |
| static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); } |
| static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); } |
| }; |
| |
| template <> struct GraphTraits<Inverse<const ::clang::CFGBlock *>> { |
| using NodeRef = const ::clang::CFGBlock *; |
| using ChildIteratorType = ::clang::CFGBlock::const_pred_iterator; |
| |
| static NodeRef getEntryNode(Inverse<const ::clang::CFGBlock *> G) { |
| return G.Graph; |
| } |
| |
| static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); } |
| static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); } |
| }; |
| |
| // Traits for: CFG |
| |
| template <> struct GraphTraits< ::clang::CFG* > |
| : public GraphTraits< ::clang::CFGBlock *> { |
| using nodes_iterator = ::clang::CFG::iterator; |
| |
| static NodeRef getEntryNode(::clang::CFG *F) { return &F->getEntry(); } |
| static nodes_iterator nodes_begin(::clang::CFG* F) { return F->nodes_begin();} |
| static nodes_iterator nodes_end(::clang::CFG* F) { return F->nodes_end(); } |
| static unsigned size(::clang::CFG* F) { return F->size(); } |
| }; |
| |
| template <> struct GraphTraits<const ::clang::CFG* > |
| : public GraphTraits<const ::clang::CFGBlock *> { |
| using nodes_iterator = ::clang::CFG::const_iterator; |
| |
| static NodeRef getEntryNode(const ::clang::CFG *F) { return &F->getEntry(); } |
| |
| static nodes_iterator nodes_begin( const ::clang::CFG* F) { |
| return F->nodes_begin(); |
| } |
| |
| static nodes_iterator nodes_end( const ::clang::CFG* F) { |
| return F->nodes_end(); |
| } |
| |
| static unsigned size(const ::clang::CFG* F) { |
| return F->size(); |
| } |
| }; |
| |
| template <> struct GraphTraits<Inverse< ::clang::CFG *>> |
| : public GraphTraits<Inverse< ::clang::CFGBlock *>> { |
| using nodes_iterator = ::clang::CFG::iterator; |
| |
| static NodeRef getEntryNode(::clang::CFG *F) { return &F->getExit(); } |
| static nodes_iterator nodes_begin( ::clang::CFG* F) {return F->nodes_begin();} |
| static nodes_iterator nodes_end( ::clang::CFG* F) { return F->nodes_end(); } |
| }; |
| |
| template <> struct GraphTraits<Inverse<const ::clang::CFG *>> |
| : public GraphTraits<Inverse<const ::clang::CFGBlock *>> { |
| using nodes_iterator = ::clang::CFG::const_iterator; |
| |
| static NodeRef getEntryNode(const ::clang::CFG *F) { return &F->getExit(); } |
| |
| static nodes_iterator nodes_begin(const ::clang::CFG* F) { |
| return F->nodes_begin(); |
| } |
| |
| static nodes_iterator nodes_end(const ::clang::CFG* F) { |
| return F->nodes_end(); |
| } |
| }; |
| |
| } // namespace llvm |
| |
| #endif // LLVM_CLANG_ANALYSIS_CFG_H |