| //===--- TargetInfo.h - Expose information about the target -----*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// Defines the clang::TargetInfo interface. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_CLANG_BASIC_TARGETINFO_H |
| #define LLVM_CLANG_BASIC_TARGETINFO_H |
| |
| #include "clang/Basic/AddressSpaces.h" |
| #include "clang/Basic/LLVM.h" |
| #include "clang/Basic/Specifiers.h" |
| #include "clang/Basic/TargetCXXABI.h" |
| #include "clang/Basic/TargetOptions.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/IntrusiveRefCntPtr.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/Support/DataTypes.h" |
| #include "llvm/Support/VersionTuple.h" |
| #include <cassert> |
| #include <string> |
| #include <vector> |
| |
| namespace llvm { |
| struct fltSemantics; |
| } |
| |
| namespace clang { |
| class DiagnosticsEngine; |
| class LangOptions; |
| class CodeGenOptions; |
| class MacroBuilder; |
| class QualType; |
| class SourceLocation; |
| class SourceManager; |
| |
| namespace Builtin { struct Info; } |
| |
| /// Exposes information about the current target. |
| /// |
| class TargetInfo : public RefCountedBase<TargetInfo> { |
| std::shared_ptr<TargetOptions> TargetOpts; |
| llvm::Triple Triple; |
| protected: |
| // Target values set by the ctor of the actual target implementation. Default |
| // values are specified by the TargetInfo constructor. |
| bool BigEndian; |
| bool TLSSupported; |
| bool VLASupported; |
| bool NoAsmVariants; // True if {|} are normal characters. |
| bool HasLegalHalfType; // True if the backend supports operations on the half |
| // LLVM IR type. |
| bool HasFloat128; |
| unsigned char PointerWidth, PointerAlign; |
| unsigned char BoolWidth, BoolAlign; |
| unsigned char IntWidth, IntAlign; |
| unsigned char HalfWidth, HalfAlign; |
| unsigned char FloatWidth, FloatAlign; |
| unsigned char DoubleWidth, DoubleAlign; |
| unsigned char LongDoubleWidth, LongDoubleAlign, Float128Align; |
| unsigned char LargeArrayMinWidth, LargeArrayAlign; |
| unsigned char LongWidth, LongAlign; |
| unsigned char LongLongWidth, LongLongAlign; |
| |
| // Fixed point bit widths |
| unsigned char ShortAccumWidth, ShortAccumAlign; |
| unsigned char AccumWidth, AccumAlign; |
| unsigned char LongAccumWidth, LongAccumAlign; |
| unsigned char ShortFractWidth, ShortFractAlign; |
| unsigned char FractWidth, FractAlign; |
| unsigned char LongFractWidth, LongFractAlign; |
| |
| // If true, unsigned fixed point types have the same number of fractional bits |
| // as their signed counterparts, forcing the unsigned types to have one extra |
| // bit of padding. Otherwise, unsigned fixed point types have |
| // one more fractional bit than its corresponding signed type. This is false |
| // by default. |
| bool PaddingOnUnsignedFixedPoint; |
| |
| // Fixed point integral and fractional bit sizes |
| // Saturated types share the same integral/fractional bits as their |
| // corresponding unsaturated types. |
| // For simplicity, the fractional bits in a _Fract type will be one less the |
| // width of that _Fract type. This leaves all signed _Fract types having no |
| // padding and unsigned _Fract types will only have 1 bit of padding after the |
| // sign if PaddingOnUnsignedFixedPoint is set. |
| unsigned char ShortAccumScale; |
| unsigned char AccumScale; |
| unsigned char LongAccumScale; |
| |
| unsigned char SuitableAlign; |
| unsigned char DefaultAlignForAttributeAligned; |
| unsigned char MinGlobalAlign; |
| unsigned char MaxAtomicPromoteWidth, MaxAtomicInlineWidth; |
| unsigned short MaxVectorAlign; |
| unsigned short MaxTLSAlign; |
| unsigned short SimdDefaultAlign; |
| unsigned short NewAlign; |
| std::unique_ptr<llvm::DataLayout> DataLayout; |
| const char *MCountName; |
| const llvm::fltSemantics *HalfFormat, *FloatFormat, *DoubleFormat, |
| *LongDoubleFormat, *Float128Format; |
| unsigned char RegParmMax, SSERegParmMax; |
| TargetCXXABI TheCXXABI; |
| const LangASMap *AddrSpaceMap; |
| |
| mutable StringRef PlatformName; |
| mutable VersionTuple PlatformMinVersion; |
| |
| unsigned HasAlignMac68kSupport : 1; |
| unsigned RealTypeUsesObjCFPRet : 3; |
| unsigned ComplexLongDoubleUsesFP2Ret : 1; |
| |
| unsigned HasBuiltinMSVaList : 1; |
| |
| unsigned IsRenderScriptTarget : 1; |
| |
| // TargetInfo Constructor. Default initializes all fields. |
| TargetInfo(const llvm::Triple &T); |
| |
| void resetDataLayout(StringRef DL) { |
| DataLayout.reset(new llvm::DataLayout(DL)); |
| } |
| |
| public: |
| /// Construct a target for the given options. |
| /// |
| /// \param Opts - The options to use to initialize the target. The target may |
| /// modify the options to canonicalize the target feature information to match |
| /// what the backend expects. |
| static TargetInfo * |
| CreateTargetInfo(DiagnosticsEngine &Diags, |
| const std::shared_ptr<TargetOptions> &Opts); |
| |
| virtual ~TargetInfo(); |
| |
| /// Retrieve the target options. |
| TargetOptions &getTargetOpts() const { |
| assert(TargetOpts && "Missing target options"); |
| return *TargetOpts; |
| } |
| |
| ///===---- Target Data Type Query Methods -------------------------------===// |
| enum IntType { |
| NoInt = 0, |
| SignedChar, |
| UnsignedChar, |
| SignedShort, |
| UnsignedShort, |
| SignedInt, |
| UnsignedInt, |
| SignedLong, |
| UnsignedLong, |
| SignedLongLong, |
| UnsignedLongLong |
| }; |
| |
| enum RealType { |
| NoFloat = 255, |
| Float = 0, |
| Double, |
| LongDouble, |
| Float128 |
| }; |
| |
| /// The different kinds of __builtin_va_list types defined by |
| /// the target implementation. |
| enum BuiltinVaListKind { |
| /// typedef char* __builtin_va_list; |
| CharPtrBuiltinVaList = 0, |
| |
| /// typedef void* __builtin_va_list; |
| VoidPtrBuiltinVaList, |
| |
| /// __builtin_va_list as defined by the AArch64 ABI |
| /// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055a/IHI0055A_aapcs64.pdf |
| AArch64ABIBuiltinVaList, |
| |
| /// __builtin_va_list as defined by the PNaCl ABI: |
| /// http://www.chromium.org/nativeclient/pnacl/bitcode-abi#TOC-Machine-Types |
| PNaClABIBuiltinVaList, |
| |
| /// __builtin_va_list as defined by the Power ABI: |
| /// https://www.power.org |
| /// /resources/downloads/Power-Arch-32-bit-ABI-supp-1.0-Embedded.pdf |
| PowerABIBuiltinVaList, |
| |
| /// __builtin_va_list as defined by the x86-64 ABI: |
| /// http://refspecs.linuxbase.org/elf/x86_64-abi-0.21.pdf |
| X86_64ABIBuiltinVaList, |
| |
| /// __builtin_va_list as defined by ARM AAPCS ABI |
| /// http://infocenter.arm.com |
| // /help/topic/com.arm.doc.ihi0042d/IHI0042D_aapcs.pdf |
| AAPCSABIBuiltinVaList, |
| |
| // typedef struct __va_list_tag |
| // { |
| // long __gpr; |
| // long __fpr; |
| // void *__overflow_arg_area; |
| // void *__reg_save_area; |
| // } va_list[1]; |
| SystemZBuiltinVaList |
| }; |
| |
| protected: |
| IntType SizeType, IntMaxType, PtrDiffType, IntPtrType, WCharType, |
| WIntType, Char16Type, Char32Type, Int64Type, SigAtomicType, |
| ProcessIDType; |
| |
| /// Whether Objective-C's built-in boolean type should be signed char. |
| /// |
| /// Otherwise, when this flag is not set, the normal built-in boolean type is |
| /// used. |
| unsigned UseSignedCharForObjCBool : 1; |
| |
| /// Control whether the alignment of bit-field types is respected when laying |
| /// out structures. If true, then the alignment of the bit-field type will be |
| /// used to (a) impact the alignment of the containing structure, and (b) |
| /// ensure that the individual bit-field will not straddle an alignment |
| /// boundary. |
| unsigned UseBitFieldTypeAlignment : 1; |
| |
| /// Whether zero length bitfields (e.g., int : 0;) force alignment of |
| /// the next bitfield. |
| /// |
| /// If the alignment of the zero length bitfield is greater than the member |
| /// that follows it, `bar', `bar' will be aligned as the type of the |
| /// zero-length bitfield. |
| unsigned UseZeroLengthBitfieldAlignment : 1; |
| |
| /// Whether explicit bit field alignment attributes are honored. |
| unsigned UseExplicitBitFieldAlignment : 1; |
| |
| /// If non-zero, specifies a fixed alignment value for bitfields that follow |
| /// zero length bitfield, regardless of the zero length bitfield type. |
| unsigned ZeroLengthBitfieldBoundary; |
| |
| /// Specify if mangling based on address space map should be used or |
| /// not for language specific address spaces |
| bool UseAddrSpaceMapMangling; |
| |
| public: |
| IntType getSizeType() const { return SizeType; } |
| IntType getSignedSizeType() const { |
| switch (SizeType) { |
| case UnsignedShort: |
| return SignedShort; |
| case UnsignedInt: |
| return SignedInt; |
| case UnsignedLong: |
| return SignedLong; |
| case UnsignedLongLong: |
| return SignedLongLong; |
| default: |
| llvm_unreachable("Invalid SizeType"); |
| } |
| } |
| IntType getIntMaxType() const { return IntMaxType; } |
| IntType getUIntMaxType() const { |
| return getCorrespondingUnsignedType(IntMaxType); |
| } |
| IntType getPtrDiffType(unsigned AddrSpace) const { |
| return AddrSpace == 0 ? PtrDiffType : getPtrDiffTypeV(AddrSpace); |
| } |
| IntType getUnsignedPtrDiffType(unsigned AddrSpace) const { |
| return getCorrespondingUnsignedType(getPtrDiffType(AddrSpace)); |
| } |
| IntType getIntPtrType() const { return IntPtrType; } |
| IntType getUIntPtrType() const { |
| return getCorrespondingUnsignedType(IntPtrType); |
| } |
| IntType getWCharType() const { return WCharType; } |
| IntType getWIntType() const { return WIntType; } |
| IntType getChar16Type() const { return Char16Type; } |
| IntType getChar32Type() const { return Char32Type; } |
| IntType getInt64Type() const { return Int64Type; } |
| IntType getUInt64Type() const { |
| return getCorrespondingUnsignedType(Int64Type); |
| } |
| IntType getSigAtomicType() const { return SigAtomicType; } |
| IntType getProcessIDType() const { return ProcessIDType; } |
| |
| static IntType getCorrespondingUnsignedType(IntType T) { |
| switch (T) { |
| case SignedChar: |
| return UnsignedChar; |
| case SignedShort: |
| return UnsignedShort; |
| case SignedInt: |
| return UnsignedInt; |
| case SignedLong: |
| return UnsignedLong; |
| case SignedLongLong: |
| return UnsignedLongLong; |
| default: |
| llvm_unreachable("Unexpected signed integer type"); |
| } |
| } |
| |
| /// Return the width (in bits) of the specified integer type enum. |
| /// |
| /// For example, SignedInt -> getIntWidth(). |
| unsigned getTypeWidth(IntType T) const; |
| |
| /// Return integer type with specified width. |
| virtual IntType getIntTypeByWidth(unsigned BitWidth, bool IsSigned) const; |
| |
| /// Return the smallest integer type with at least the specified width. |
| virtual IntType getLeastIntTypeByWidth(unsigned BitWidth, |
| bool IsSigned) const; |
| |
| /// Return floating point type with specified width. |
| RealType getRealTypeByWidth(unsigned BitWidth) const; |
| |
| /// Return the alignment (in bits) of the specified integer type enum. |
| /// |
| /// For example, SignedInt -> getIntAlign(). |
| unsigned getTypeAlign(IntType T) const; |
| |
| /// Returns true if the type is signed; false otherwise. |
| static bool isTypeSigned(IntType T); |
| |
| /// Return the width of pointers on this target, for the |
| /// specified address space. |
| uint64_t getPointerWidth(unsigned AddrSpace) const { |
| return AddrSpace == 0 ? PointerWidth : getPointerWidthV(AddrSpace); |
| } |
| uint64_t getPointerAlign(unsigned AddrSpace) const { |
| return AddrSpace == 0 ? PointerAlign : getPointerAlignV(AddrSpace); |
| } |
| |
| /// Return the maximum width of pointers on this target. |
| virtual uint64_t getMaxPointerWidth() const { |
| return PointerWidth; |
| } |
| |
| /// Get integer value for null pointer. |
| /// \param AddrSpace address space of pointee in source language. |
| virtual uint64_t getNullPointerValue(LangAS AddrSpace) const { return 0; } |
| |
| /// Return the size of '_Bool' and C++ 'bool' for this target, in bits. |
| unsigned getBoolWidth() const { return BoolWidth; } |
| |
| /// Return the alignment of '_Bool' and C++ 'bool' for this target. |
| unsigned getBoolAlign() const { return BoolAlign; } |
| |
| unsigned getCharWidth() const { return 8; } // FIXME |
| unsigned getCharAlign() const { return 8; } // FIXME |
| |
| /// Return the size of 'signed short' and 'unsigned short' for this |
| /// target, in bits. |
| unsigned getShortWidth() const { return 16; } // FIXME |
| |
| /// Return the alignment of 'signed short' and 'unsigned short' for |
| /// this target. |
| unsigned getShortAlign() const { return 16; } // FIXME |
| |
| /// getIntWidth/Align - Return the size of 'signed int' and 'unsigned int' for |
| /// this target, in bits. |
| unsigned getIntWidth() const { return IntWidth; } |
| unsigned getIntAlign() const { return IntAlign; } |
| |
| /// getLongWidth/Align - Return the size of 'signed long' and 'unsigned long' |
| /// for this target, in bits. |
| unsigned getLongWidth() const { return LongWidth; } |
| unsigned getLongAlign() const { return LongAlign; } |
| |
| /// getLongLongWidth/Align - Return the size of 'signed long long' and |
| /// 'unsigned long long' for this target, in bits. |
| unsigned getLongLongWidth() const { return LongLongWidth; } |
| unsigned getLongLongAlign() const { return LongLongAlign; } |
| |
| /// getShortAccumWidth/Align - Return the size of 'signed short _Accum' and |
| /// 'unsigned short _Accum' for this target, in bits. |
| unsigned getShortAccumWidth() const { return ShortAccumWidth; } |
| unsigned getShortAccumAlign() const { return ShortAccumAlign; } |
| |
| /// getAccumWidth/Align - Return the size of 'signed _Accum' and |
| /// 'unsigned _Accum' for this target, in bits. |
| unsigned getAccumWidth() const { return AccumWidth; } |
| unsigned getAccumAlign() const { return AccumAlign; } |
| |
| /// getLongAccumWidth/Align - Return the size of 'signed long _Accum' and |
| /// 'unsigned long _Accum' for this target, in bits. |
| unsigned getLongAccumWidth() const { return LongAccumWidth; } |
| unsigned getLongAccumAlign() const { return LongAccumAlign; } |
| |
| /// getShortFractWidth/Align - Return the size of 'signed short _Fract' and |
| /// 'unsigned short _Fract' for this target, in bits. |
| unsigned getShortFractWidth() const { return ShortFractWidth; } |
| unsigned getShortFractAlign() const { return ShortFractAlign; } |
| |
| /// getFractWidth/Align - Return the size of 'signed _Fract' and |
| /// 'unsigned _Fract' for this target, in bits. |
| unsigned getFractWidth() const { return FractWidth; } |
| unsigned getFractAlign() const { return FractAlign; } |
| |
| /// getLongFractWidth/Align - Return the size of 'signed long _Fract' and |
| /// 'unsigned long _Fract' for this target, in bits. |
| unsigned getLongFractWidth() const { return LongFractWidth; } |
| unsigned getLongFractAlign() const { return LongFractAlign; } |
| |
| /// getShortAccumScale/IBits - Return the number of fractional/integral bits |
| /// in a 'signed short _Accum' type. |
| unsigned getShortAccumScale() const { return ShortAccumScale; } |
| unsigned getShortAccumIBits() const { |
| return ShortAccumWidth - ShortAccumScale - 1; |
| } |
| |
| /// getAccumScale/IBits - Return the number of fractional/integral bits |
| /// in a 'signed _Accum' type. |
| unsigned getAccumScale() const { return AccumScale; } |
| unsigned getAccumIBits() const { return AccumWidth - AccumScale - 1; } |
| |
| /// getLongAccumScale/IBits - Return the number of fractional/integral bits |
| /// in a 'signed long _Accum' type. |
| unsigned getLongAccumScale() const { return LongAccumScale; } |
| unsigned getLongAccumIBits() const { |
| return LongAccumWidth - LongAccumScale - 1; |
| } |
| |
| /// getUnsignedShortAccumScale/IBits - Return the number of |
| /// fractional/integral bits in a 'unsigned short _Accum' type. |
| unsigned getUnsignedShortAccumScale() const { |
| return PaddingOnUnsignedFixedPoint ? ShortAccumScale : ShortAccumScale + 1; |
| } |
| unsigned getUnsignedShortAccumIBits() const { |
| return PaddingOnUnsignedFixedPoint |
| ? getShortAccumIBits() |
| : ShortAccumWidth - getUnsignedShortAccumScale(); |
| } |
| |
| /// getUnsignedAccumScale/IBits - Return the number of fractional/integral |
| /// bits in a 'unsigned _Accum' type. |
| unsigned getUnsignedAccumScale() const { |
| return PaddingOnUnsignedFixedPoint ? AccumScale : AccumScale + 1; |
| } |
| unsigned getUnsignedAccumIBits() const { |
| return PaddingOnUnsignedFixedPoint ? getAccumIBits() |
| : AccumWidth - getUnsignedAccumScale(); |
| } |
| |
| /// getUnsignedLongAccumScale/IBits - Return the number of fractional/integral |
| /// bits in a 'unsigned long _Accum' type. |
| unsigned getUnsignedLongAccumScale() const { |
| return PaddingOnUnsignedFixedPoint ? LongAccumScale : LongAccumScale + 1; |
| } |
| unsigned getUnsignedLongAccumIBits() const { |
| return PaddingOnUnsignedFixedPoint |
| ? getLongAccumIBits() |
| : LongAccumWidth - getUnsignedLongAccumScale(); |
| } |
| |
| /// getShortFractScale - Return the number of fractional bits |
| /// in a 'signed short _Fract' type. |
| unsigned getShortFractScale() const { return ShortFractWidth - 1; } |
| |
| /// getFractScale - Return the number of fractional bits |
| /// in a 'signed _Fract' type. |
| unsigned getFractScale() const { return FractWidth - 1; } |
| |
| /// getLongFractScale - Return the number of fractional bits |
| /// in a 'signed long _Fract' type. |
| unsigned getLongFractScale() const { return LongFractWidth - 1; } |
| |
| /// getUnsignedShortFractScale - Return the number of fractional bits |
| /// in a 'unsigned short _Fract' type. |
| unsigned getUnsignedShortFractScale() const { |
| return PaddingOnUnsignedFixedPoint ? getShortFractScale() |
| : getShortFractScale() + 1; |
| } |
| |
| /// getUnsignedFractScale - Return the number of fractional bits |
| /// in a 'unsigned _Fract' type. |
| unsigned getUnsignedFractScale() const { |
| return PaddingOnUnsignedFixedPoint ? getFractScale() : getFractScale() + 1; |
| } |
| |
| /// getUnsignedLongFractScale - Return the number of fractional bits |
| /// in a 'unsigned long _Fract' type. |
| unsigned getUnsignedLongFractScale() const { |
| return PaddingOnUnsignedFixedPoint ? getLongFractScale() |
| : getLongFractScale() + 1; |
| } |
| |
| /// Determine whether the __int128 type is supported on this target. |
| virtual bool hasInt128Type() const { |
| return (getPointerWidth(0) >= 64) || getTargetOpts().ForceEnableInt128; |
| } // FIXME |
| |
| /// Determine whether _Float16 is supported on this target. |
| virtual bool hasLegalHalfType() const { return HasLegalHalfType; } |
| |
| /// Determine whether the __float128 type is supported on this target. |
| virtual bool hasFloat128Type() const { return HasFloat128; } |
| |
| /// Return the alignment that is suitable for storing any |
| /// object with a fundamental alignment requirement. |
| unsigned getSuitableAlign() const { return SuitableAlign; } |
| |
| /// Return the default alignment for __attribute__((aligned)) on |
| /// this target, to be used if no alignment value is specified. |
| unsigned getDefaultAlignForAttributeAligned() const { |
| return DefaultAlignForAttributeAligned; |
| } |
| |
| /// getMinGlobalAlign - Return the minimum alignment of a global variable, |
| /// unless its alignment is explicitly reduced via attributes. |
| unsigned getMinGlobalAlign() const { return MinGlobalAlign; } |
| |
| /// Return the largest alignment for which a suitably-sized allocation with |
| /// '::operator new(size_t)' is guaranteed to produce a correctly-aligned |
| /// pointer. |
| unsigned getNewAlign() const { |
| return NewAlign ? NewAlign : std::max(LongDoubleAlign, LongLongAlign); |
| } |
| |
| /// getWCharWidth/Align - Return the size of 'wchar_t' for this target, in |
| /// bits. |
| unsigned getWCharWidth() const { return getTypeWidth(WCharType); } |
| unsigned getWCharAlign() const { return getTypeAlign(WCharType); } |
| |
| /// getChar16Width/Align - Return the size of 'char16_t' for this target, in |
| /// bits. |
| unsigned getChar16Width() const { return getTypeWidth(Char16Type); } |
| unsigned getChar16Align() const { return getTypeAlign(Char16Type); } |
| |
| /// getChar32Width/Align - Return the size of 'char32_t' for this target, in |
| /// bits. |
| unsigned getChar32Width() const { return getTypeWidth(Char32Type); } |
| unsigned getChar32Align() const { return getTypeAlign(Char32Type); } |
| |
| /// getHalfWidth/Align/Format - Return the size/align/format of 'half'. |
| unsigned getHalfWidth() const { return HalfWidth; } |
| unsigned getHalfAlign() const { return HalfAlign; } |
| const llvm::fltSemantics &getHalfFormat() const { return *HalfFormat; } |
| |
| /// getFloatWidth/Align/Format - Return the size/align/format of 'float'. |
| unsigned getFloatWidth() const { return FloatWidth; } |
| unsigned getFloatAlign() const { return FloatAlign; } |
| const llvm::fltSemantics &getFloatFormat() const { return *FloatFormat; } |
| |
| /// getDoubleWidth/Align/Format - Return the size/align/format of 'double'. |
| unsigned getDoubleWidth() const { return DoubleWidth; } |
| unsigned getDoubleAlign() const { return DoubleAlign; } |
| const llvm::fltSemantics &getDoubleFormat() const { return *DoubleFormat; } |
| |
| /// getLongDoubleWidth/Align/Format - Return the size/align/format of 'long |
| /// double'. |
| unsigned getLongDoubleWidth() const { return LongDoubleWidth; } |
| unsigned getLongDoubleAlign() const { return LongDoubleAlign; } |
| const llvm::fltSemantics &getLongDoubleFormat() const { |
| return *LongDoubleFormat; |
| } |
| |
| /// getFloat128Width/Align/Format - Return the size/align/format of |
| /// '__float128'. |
| unsigned getFloat128Width() const { return 128; } |
| unsigned getFloat128Align() const { return Float128Align; } |
| const llvm::fltSemantics &getFloat128Format() const { |
| return *Float128Format; |
| } |
| |
| /// Return true if the 'long double' type should be mangled like |
| /// __float128. |
| virtual bool useFloat128ManglingForLongDouble() const { return false; } |
| |
| /// Return the value for the C99 FLT_EVAL_METHOD macro. |
| virtual unsigned getFloatEvalMethod() const { return 0; } |
| |
| // getLargeArrayMinWidth/Align - Return the minimum array size that is |
| // 'large' and its alignment. |
| unsigned getLargeArrayMinWidth() const { return LargeArrayMinWidth; } |
| unsigned getLargeArrayAlign() const { return LargeArrayAlign; } |
| |
| /// Return the maximum width lock-free atomic operation which will |
| /// ever be supported for the given target |
| unsigned getMaxAtomicPromoteWidth() const { return MaxAtomicPromoteWidth; } |
| /// Return the maximum width lock-free atomic operation which can be |
| /// inlined given the supported features of the given target. |
| unsigned getMaxAtomicInlineWidth() const { return MaxAtomicInlineWidth; } |
| /// Set the maximum inline or promote width lock-free atomic operation |
| /// for the given target. |
| virtual void setMaxAtomicWidth() {} |
| /// Returns true if the given target supports lock-free atomic |
| /// operations at the specified width and alignment. |
| virtual bool hasBuiltinAtomic(uint64_t AtomicSizeInBits, |
| uint64_t AlignmentInBits) const { |
| return AtomicSizeInBits <= AlignmentInBits && |
| AtomicSizeInBits <= getMaxAtomicInlineWidth() && |
| (AtomicSizeInBits <= getCharWidth() || |
| llvm::isPowerOf2_64(AtomicSizeInBits / getCharWidth())); |
| } |
| |
| /// Return the maximum vector alignment supported for the given target. |
| unsigned getMaxVectorAlign() const { return MaxVectorAlign; } |
| /// Return default simd alignment for the given target. Generally, this |
| /// value is type-specific, but this alignment can be used for most of the |
| /// types for the given target. |
| unsigned getSimdDefaultAlign() const { return SimdDefaultAlign; } |
| |
| /// Return the size of intmax_t and uintmax_t for this target, in bits. |
| unsigned getIntMaxTWidth() const { |
| return getTypeWidth(IntMaxType); |
| } |
| |
| // Return the size of unwind_word for this target. |
| virtual unsigned getUnwindWordWidth() const { return getPointerWidth(0); } |
| |
| /// Return the "preferred" register width on this target. |
| virtual unsigned getRegisterWidth() const { |
| // Currently we assume the register width on the target matches the pointer |
| // width, we can introduce a new variable for this if/when some target wants |
| // it. |
| return PointerWidth; |
| } |
| |
| /// Returns the name of the mcount instrumentation function. |
| const char *getMCountName() const { |
| return MCountName; |
| } |
| |
| /// Check if the Objective-C built-in boolean type should be signed |
| /// char. |
| /// |
| /// Otherwise, if this returns false, the normal built-in boolean type |
| /// should also be used for Objective-C. |
| bool useSignedCharForObjCBool() const { |
| return UseSignedCharForObjCBool; |
| } |
| void noSignedCharForObjCBool() { |
| UseSignedCharForObjCBool = false; |
| } |
| |
| /// Check whether the alignment of bit-field types is respected |
| /// when laying out structures. |
| bool useBitFieldTypeAlignment() const { |
| return UseBitFieldTypeAlignment; |
| } |
| |
| /// Check whether zero length bitfields should force alignment of |
| /// the next member. |
| bool useZeroLengthBitfieldAlignment() const { |
| return UseZeroLengthBitfieldAlignment; |
| } |
| |
| /// Get the fixed alignment value in bits for a member that follows |
| /// a zero length bitfield. |
| unsigned getZeroLengthBitfieldBoundary() const { |
| return ZeroLengthBitfieldBoundary; |
| } |
| |
| /// Check whether explicit bitfield alignment attributes should be |
| // honored, as in "__attribute__((aligned(2))) int b : 1;". |
| bool useExplicitBitFieldAlignment() const { |
| return UseExplicitBitFieldAlignment; |
| } |
| |
| /// Check whether this target support '\#pragma options align=mac68k'. |
| bool hasAlignMac68kSupport() const { |
| return HasAlignMac68kSupport; |
| } |
| |
| /// Return the user string for the specified integer type enum. |
| /// |
| /// For example, SignedShort -> "short". |
| static const char *getTypeName(IntType T); |
| |
| /// Return the constant suffix for the specified integer type enum. |
| /// |
| /// For example, SignedLong -> "L". |
| const char *getTypeConstantSuffix(IntType T) const; |
| |
| /// Return the printf format modifier for the specified |
| /// integer type enum. |
| /// |
| /// For example, SignedLong -> "l". |
| static const char *getTypeFormatModifier(IntType T); |
| |
| /// Check whether the given real type should use the "fpret" flavor of |
| /// Objective-C message passing on this target. |
| bool useObjCFPRetForRealType(RealType T) const { |
| return RealTypeUsesObjCFPRet & (1 << T); |
| } |
| |
| /// Check whether _Complex long double should use the "fp2ret" flavor |
| /// of Objective-C message passing on this target. |
| bool useObjCFP2RetForComplexLongDouble() const { |
| return ComplexLongDoubleUsesFP2Ret; |
| } |
| |
| /// Check whether llvm intrinsics such as llvm.convert.to.fp16 should be used |
| /// to convert to and from __fp16. |
| /// FIXME: This function should be removed once all targets stop using the |
| /// conversion intrinsics. |
| virtual bool useFP16ConversionIntrinsics() const { |
| return true; |
| } |
| |
| /// Specify if mangling based on address space map should be used or |
| /// not for language specific address spaces |
| bool useAddressSpaceMapMangling() const { |
| return UseAddrSpaceMapMangling; |
| } |
| |
| ///===---- Other target property query methods --------------------------===// |
| |
| /// Appends the target-specific \#define values for this |
| /// target set to the specified buffer. |
| virtual void getTargetDefines(const LangOptions &Opts, |
| MacroBuilder &Builder) const = 0; |
| |
| |
| /// Return information about target-specific builtins for |
| /// the current primary target, and info about which builtins are non-portable |
| /// across the current set of primary and secondary targets. |
| virtual ArrayRef<Builtin::Info> getTargetBuiltins() const = 0; |
| |
| /// The __builtin_clz* and __builtin_ctz* built-in |
| /// functions are specified to have undefined results for zero inputs, but |
| /// on targets that support these operations in a way that provides |
| /// well-defined results for zero without loss of performance, it is a good |
| /// idea to avoid optimizing based on that undef behavior. |
| virtual bool isCLZForZeroUndef() const { return true; } |
| |
| /// Returns the kind of __builtin_va_list type that should be used |
| /// with this target. |
| virtual BuiltinVaListKind getBuiltinVaListKind() const = 0; |
| |
| /// Returns whether or not type \c __builtin_ms_va_list type is |
| /// available on this target. |
| bool hasBuiltinMSVaList() const { return HasBuiltinMSVaList; } |
| |
| /// Returns true for RenderScript. |
| bool isRenderScriptTarget() const { return IsRenderScriptTarget; } |
| |
| /// Returns whether the passed in string is a valid clobber in an |
| /// inline asm statement. |
| /// |
| /// This is used by Sema. |
| bool isValidClobber(StringRef Name) const; |
| |
| /// Returns whether the passed in string is a valid register name |
| /// according to GCC. |
| /// |
| /// This is used by Sema for inline asm statements. |
| virtual bool isValidGCCRegisterName(StringRef Name) const; |
| |
| /// Returns the "normalized" GCC register name. |
| /// |
| /// ReturnCannonical true will return the register name without any additions |
| /// such as "{}" or "%" in it's canonical form, for example: |
| /// ReturnCanonical = true and Name = "rax", will return "ax". |
| StringRef getNormalizedGCCRegisterName(StringRef Name, |
| bool ReturnCanonical = false) const; |
| |
| /// Extracts a register from the passed constraint (if it is a |
| /// single-register constraint) and the asm label expression related to a |
| /// variable in the input or output list of an inline asm statement. |
| /// |
| /// This function is used by Sema in order to diagnose conflicts between |
| /// the clobber list and the input/output lists. |
| virtual StringRef getConstraintRegister(StringRef Constraint, |
| StringRef Expression) const { |
| return ""; |
| } |
| |
| struct ConstraintInfo { |
| enum { |
| CI_None = 0x00, |
| CI_AllowsMemory = 0x01, |
| CI_AllowsRegister = 0x02, |
| CI_ReadWrite = 0x04, // "+r" output constraint (read and write). |
| CI_HasMatchingInput = 0x08, // This output operand has a matching input. |
| CI_ImmediateConstant = 0x10, // This operand must be an immediate constant |
| CI_EarlyClobber = 0x20, // "&" output constraint (early clobber). |
| }; |
| unsigned Flags; |
| int TiedOperand; |
| struct { |
| int Min; |
| int Max; |
| } ImmRange; |
| llvm::SmallSet<int, 4> ImmSet; |
| |
| std::string ConstraintStr; // constraint: "=rm" |
| std::string Name; // Operand name: [foo] with no []'s. |
| public: |
| ConstraintInfo(StringRef ConstraintStr, StringRef Name) |
| : Flags(0), TiedOperand(-1), ConstraintStr(ConstraintStr.str()), |
| Name(Name.str()) { |
| ImmRange.Min = ImmRange.Max = 0; |
| } |
| |
| const std::string &getConstraintStr() const { return ConstraintStr; } |
| const std::string &getName() const { return Name; } |
| bool isReadWrite() const { return (Flags & CI_ReadWrite) != 0; } |
| bool earlyClobber() { return (Flags & CI_EarlyClobber) != 0; } |
| bool allowsRegister() const { return (Flags & CI_AllowsRegister) != 0; } |
| bool allowsMemory() const { return (Flags & CI_AllowsMemory) != 0; } |
| |
| /// Return true if this output operand has a matching |
| /// (tied) input operand. |
| bool hasMatchingInput() const { return (Flags & CI_HasMatchingInput) != 0; } |
| |
| /// Return true if this input operand is a matching |
| /// constraint that ties it to an output operand. |
| /// |
| /// If this returns true then getTiedOperand will indicate which output |
| /// operand this is tied to. |
| bool hasTiedOperand() const { return TiedOperand != -1; } |
| unsigned getTiedOperand() const { |
| assert(hasTiedOperand() && "Has no tied operand!"); |
| return (unsigned)TiedOperand; |
| } |
| |
| bool requiresImmediateConstant() const { |
| return (Flags & CI_ImmediateConstant) != 0; |
| } |
| bool isValidAsmImmediate(const llvm::APInt &Value) const { |
| return (Value.sge(ImmRange.Min) && Value.sle(ImmRange.Max)) || |
| ImmSet.count(Value.getZExtValue()) != 0; |
| } |
| |
| void setIsReadWrite() { Flags |= CI_ReadWrite; } |
| void setEarlyClobber() { Flags |= CI_EarlyClobber; } |
| void setAllowsMemory() { Flags |= CI_AllowsMemory; } |
| void setAllowsRegister() { Flags |= CI_AllowsRegister; } |
| void setHasMatchingInput() { Flags |= CI_HasMatchingInput; } |
| void setRequiresImmediate(int Min, int Max) { |
| Flags |= CI_ImmediateConstant; |
| ImmRange.Min = Min; |
| ImmRange.Max = Max; |
| } |
| void setRequiresImmediate(llvm::ArrayRef<int> Exacts) { |
| Flags |= CI_ImmediateConstant; |
| for (int Exact : Exacts) |
| ImmSet.insert(Exact); |
| } |
| void setRequiresImmediate(int Exact) { |
| Flags |= CI_ImmediateConstant; |
| ImmSet.insert(Exact); |
| } |
| void setRequiresImmediate() { |
| Flags |= CI_ImmediateConstant; |
| ImmRange.Min = INT_MIN; |
| ImmRange.Max = INT_MAX; |
| } |
| |
| /// Indicate that this is an input operand that is tied to |
| /// the specified output operand. |
| /// |
| /// Copy over the various constraint information from the output. |
| void setTiedOperand(unsigned N, ConstraintInfo &Output) { |
| Output.setHasMatchingInput(); |
| Flags = Output.Flags; |
| TiedOperand = N; |
| // Don't copy Name or constraint string. |
| } |
| }; |
| |
| /// Validate register name used for global register variables. |
| /// |
| /// This function returns true if the register passed in RegName can be used |
| /// for global register variables on this target. In addition, it returns |
| /// true in HasSizeMismatch if the size of the register doesn't match the |
| /// variable size passed in RegSize. |
| virtual bool validateGlobalRegisterVariable(StringRef RegName, |
| unsigned RegSize, |
| bool &HasSizeMismatch) const { |
| HasSizeMismatch = false; |
| return true; |
| } |
| |
| // validateOutputConstraint, validateInputConstraint - Checks that |
| // a constraint is valid and provides information about it. |
| // FIXME: These should return a real error instead of just true/false. |
| bool validateOutputConstraint(ConstraintInfo &Info) const; |
| bool validateInputConstraint(MutableArrayRef<ConstraintInfo> OutputConstraints, |
| ConstraintInfo &info) const; |
| |
| virtual bool validateOutputSize(StringRef /*Constraint*/, |
| unsigned /*Size*/) const { |
| return true; |
| } |
| |
| virtual bool validateInputSize(StringRef /*Constraint*/, |
| unsigned /*Size*/) const { |
| return true; |
| } |
| virtual bool |
| validateConstraintModifier(StringRef /*Constraint*/, |
| char /*Modifier*/, |
| unsigned /*Size*/, |
| std::string &/*SuggestedModifier*/) const { |
| return true; |
| } |
| virtual bool |
| validateAsmConstraint(const char *&Name, |
| TargetInfo::ConstraintInfo &info) const = 0; |
| |
| bool resolveSymbolicName(const char *&Name, |
| ArrayRef<ConstraintInfo> OutputConstraints, |
| unsigned &Index) const; |
| |
| // Constraint parm will be left pointing at the last character of |
| // the constraint. In practice, it won't be changed unless the |
| // constraint is longer than one character. |
| virtual std::string convertConstraint(const char *&Constraint) const { |
| // 'p' defaults to 'r', but can be overridden by targets. |
| if (*Constraint == 'p') |
| return std::string("r"); |
| return std::string(1, *Constraint); |
| } |
| |
| /// Returns a string of target-specific clobbers, in LLVM format. |
| virtual const char *getClobbers() const = 0; |
| |
| /// Returns true if NaN encoding is IEEE 754-2008. |
| /// Only MIPS allows a different encoding. |
| virtual bool isNan2008() const { |
| return true; |
| } |
| |
| /// Returns the target triple of the primary target. |
| const llvm::Triple &getTriple() const { |
| return Triple; |
| } |
| |
| const llvm::DataLayout &getDataLayout() const { |
| assert(DataLayout && "Uninitialized DataLayout!"); |
| return *DataLayout; |
| } |
| |
| struct GCCRegAlias { |
| const char * const Aliases[5]; |
| const char * const Register; |
| }; |
| |
| struct AddlRegName { |
| const char * const Names[5]; |
| const unsigned RegNum; |
| }; |
| |
| /// Does this target support "protected" visibility? |
| /// |
| /// Any target which dynamic libraries will naturally support |
| /// something like "default" (meaning that the symbol is visible |
| /// outside this shared object) and "hidden" (meaning that it isn't) |
| /// visibilities, but "protected" is really an ELF-specific concept |
| /// with weird semantics designed around the convenience of dynamic |
| /// linker implementations. Which is not to suggest that there's |
| /// consistent target-independent semantics for "default" visibility |
| /// either; the entire thing is pretty badly mangled. |
| virtual bool hasProtectedVisibility() const { return true; } |
| |
| /// An optional hook that targets can implement to perform semantic |
| /// checking on attribute((section("foo"))) specifiers. |
| /// |
| /// In this case, "foo" is passed in to be checked. If the section |
| /// specifier is invalid, the backend should return a non-empty string |
| /// that indicates the problem. |
| /// |
| /// This hook is a simple quality of implementation feature to catch errors |
| /// and give good diagnostics in cases when the assembler or code generator |
| /// would otherwise reject the section specifier. |
| /// |
| virtual std::string isValidSectionSpecifier(StringRef SR) const { |
| return ""; |
| } |
| |
| /// Set forced language options. |
| /// |
| /// Apply changes to the target information with respect to certain |
| /// language options which change the target configuration and adjust |
| /// the language based on the target options where applicable. |
| virtual void adjust(LangOptions &Opts); |
| |
| /// Adjust target options based on codegen options. |
| virtual void adjustTargetOptions(const CodeGenOptions &CGOpts, |
| TargetOptions &TargetOpts) const {} |
| |
| /// Initialize the map with the default set of target features for the |
| /// CPU this should include all legal feature strings on the target. |
| /// |
| /// \return False on error (invalid features). |
| virtual bool initFeatureMap(llvm::StringMap<bool> &Features, |
| DiagnosticsEngine &Diags, StringRef CPU, |
| const std::vector<std::string> &FeatureVec) const; |
| |
| /// Get the ABI currently in use. |
| virtual StringRef getABI() const { return StringRef(); } |
| |
| /// Get the C++ ABI currently in use. |
| TargetCXXABI getCXXABI() const { |
| return TheCXXABI; |
| } |
| |
| /// Target the specified CPU. |
| /// |
| /// \return False on error (invalid CPU name). |
| virtual bool setCPU(const std::string &Name) { |
| return false; |
| } |
| |
| /// Fill a SmallVectorImpl with the valid values to setCPU. |
| virtual void fillValidCPUList(SmallVectorImpl<StringRef> &Values) const {} |
| |
| /// brief Determine whether this TargetInfo supports the given CPU name. |
| virtual bool isValidCPUName(StringRef Name) const { |
| return true; |
| } |
| |
| /// Use the specified ABI. |
| /// |
| /// \return False on error (invalid ABI name). |
| virtual bool setABI(const std::string &Name) { |
| return false; |
| } |
| |
| /// Use the specified unit for FP math. |
| /// |
| /// \return False on error (invalid unit name). |
| virtual bool setFPMath(StringRef Name) { |
| return false; |
| } |
| |
| /// Enable or disable a specific target feature; |
| /// the feature name must be valid. |
| virtual void setFeatureEnabled(llvm::StringMap<bool> &Features, |
| StringRef Name, |
| bool Enabled) const { |
| Features[Name] = Enabled; |
| } |
| |
| /// Determine whether this TargetInfo supports the given feature. |
| virtual bool isValidFeatureName(StringRef Feature) const { |
| return true; |
| } |
| |
| /// Perform initialization based on the user configured |
| /// set of features (e.g., +sse4). |
| /// |
| /// The list is guaranteed to have at most one entry per feature. |
| /// |
| /// The target may modify the features list, to change which options are |
| /// passed onwards to the backend. |
| /// FIXME: This part should be fixed so that we can change handleTargetFeatures |
| /// to merely a TargetInfo initialization routine. |
| /// |
| /// \return False on error. |
| virtual bool handleTargetFeatures(std::vector<std::string> &Features, |
| DiagnosticsEngine &Diags) { |
| return true; |
| } |
| |
| /// Determine whether the given target has the given feature. |
| virtual bool hasFeature(StringRef Feature) const { |
| return false; |
| } |
| |
| /// Identify whether this taret supports multiversioning of functions, |
| /// which requires support for cpu_supports and cpu_is functionality. |
| virtual bool supportsMultiVersioning() const { return false; } |
| |
| // Validate the contents of the __builtin_cpu_supports(const char*) |
| // argument. |
| virtual bool validateCpuSupports(StringRef Name) const { return false; } |
| |
| // Return the target-specific priority for features/cpus/vendors so |
| // that they can be properly sorted for checking. |
| virtual unsigned multiVersionSortPriority(StringRef Name) const { |
| return 0; |
| } |
| |
| // Validate the contents of the __builtin_cpu_is(const char*) |
| // argument. |
| virtual bool validateCpuIs(StringRef Name) const { return false; } |
| |
| // Validate a cpu_dispatch/cpu_specific CPU option, which is a different list |
| // from cpu_is, since it checks via features rather than CPUs directly. |
| virtual bool validateCPUSpecificCPUDispatch(StringRef Name) const { |
| return false; |
| } |
| |
| // Get the character to be added for mangling purposes for cpu_specific. |
| virtual char CPUSpecificManglingCharacter(StringRef Name) const { |
| llvm_unreachable( |
| "cpu_specific Multiversioning not implemented on this target"); |
| } |
| |
| // Get a list of the features that make up the CPU option for |
| // cpu_specific/cpu_dispatch so that it can be passed to llvm as optimization |
| // options. |
| virtual void getCPUSpecificCPUDispatchFeatures( |
| StringRef Name, llvm::SmallVectorImpl<StringRef> &Features) const { |
| llvm_unreachable( |
| "cpu_specific Multiversioning not implemented on this target"); |
| } |
| |
| // Returns maximal number of args passed in registers. |
| unsigned getRegParmMax() const { |
| assert(RegParmMax < 7 && "RegParmMax value is larger than AST can handle"); |
| return RegParmMax; |
| } |
| |
| /// Whether the target supports thread-local storage. |
| bool isTLSSupported() const { |
| return TLSSupported; |
| } |
| |
| /// Return the maximum alignment (in bits) of a TLS variable |
| /// |
| /// Gets the maximum alignment (in bits) of a TLS variable on this target. |
| /// Returns zero if there is no such constraint. |
| unsigned short getMaxTLSAlign() const { |
| return MaxTLSAlign; |
| } |
| |
| /// Whether target supports variable-length arrays. |
| bool isVLASupported() const { return VLASupported; } |
| |
| /// Whether the target supports SEH __try. |
| bool isSEHTrySupported() const { |
| return getTriple().isOSWindows() && |
| (getTriple().getArch() == llvm::Triple::x86 || |
| getTriple().getArch() == llvm::Triple::x86_64 || |
| getTriple().getArch() == llvm::Triple::aarch64); |
| } |
| |
| /// Return true if {|} are normal characters in the asm string. |
| /// |
| /// If this returns false (the default), then {abc|xyz} is syntax |
| /// that says that when compiling for asm variant #0, "abc" should be |
| /// generated, but when compiling for asm variant #1, "xyz" should be |
| /// generated. |
| bool hasNoAsmVariants() const { |
| return NoAsmVariants; |
| } |
| |
| /// Return the register number that __builtin_eh_return_regno would |
| /// return with the specified argument. |
| /// This corresponds with TargetLowering's getExceptionPointerRegister |
| /// and getExceptionSelectorRegister in the backend. |
| virtual int getEHDataRegisterNumber(unsigned RegNo) const { |
| return -1; |
| } |
| |
| /// Return the section to use for C++ static initialization functions. |
| virtual const char *getStaticInitSectionSpecifier() const { |
| return nullptr; |
| } |
| |
| const LangASMap &getAddressSpaceMap() const { return *AddrSpaceMap; } |
| |
| /// Return an AST address space which can be used opportunistically |
| /// for constant global memory. It must be possible to convert pointers into |
| /// this address space to LangAS::Default. If no such address space exists, |
| /// this may return None, and such optimizations will be disabled. |
| virtual llvm::Optional<LangAS> getConstantAddressSpace() const { |
| return LangAS::Default; |
| } |
| |
| /// Retrieve the name of the platform as it is used in the |
| /// availability attribute. |
| StringRef getPlatformName() const { return PlatformName; } |
| |
| /// Retrieve the minimum desired version of the platform, to |
| /// which the program should be compiled. |
| VersionTuple getPlatformMinVersion() const { return PlatformMinVersion; } |
| |
| bool isBigEndian() const { return BigEndian; } |
| bool isLittleEndian() const { return !BigEndian; } |
| |
| enum CallingConvMethodType { |
| CCMT_Unknown, |
| CCMT_Member, |
| CCMT_NonMember |
| }; |
| |
| /// Gets the default calling convention for the given target and |
| /// declaration context. |
| virtual CallingConv getDefaultCallingConv(CallingConvMethodType MT) const { |
| // Not all targets will specify an explicit calling convention that we can |
| // express. This will always do the right thing, even though it's not |
| // an explicit calling convention. |
| return CC_C; |
| } |
| |
| enum CallingConvCheckResult { |
| CCCR_OK, |
| CCCR_Warning, |
| CCCR_Ignore, |
| }; |
| |
| /// Determines whether a given calling convention is valid for the |
| /// target. A calling convention can either be accepted, produce a warning |
| /// and be substituted with the default calling convention, or (someday) |
| /// produce an error (such as using thiscall on a non-instance function). |
| virtual CallingConvCheckResult checkCallingConvention(CallingConv CC) const { |
| switch (CC) { |
| default: |
| return CCCR_Warning; |
| case CC_C: |
| return CCCR_OK; |
| } |
| } |
| |
| enum CallingConvKind { |
| CCK_Default, |
| CCK_ClangABI4OrPS4, |
| CCK_MicrosoftWin64 |
| }; |
| |
| virtual CallingConvKind getCallingConvKind(bool ClangABICompat4) const; |
| |
| /// Controls if __builtin_longjmp / __builtin_setjmp can be lowered to |
| /// llvm.eh.sjlj.longjmp / llvm.eh.sjlj.setjmp. |
| virtual bool hasSjLjLowering() const { |
| return false; |
| } |
| |
| /// Check if the target supports CFProtection branch. |
| virtual bool |
| checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const; |
| |
| /// Check if the target supports CFProtection branch. |
| virtual bool |
| checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const; |
| |
| /// Whether target allows to overalign ABI-specified preferred alignment |
| virtual bool allowsLargerPreferedTypeAlignment() const { return true; } |
| |
| /// Set supported OpenCL extensions and optional core features. |
| virtual void setSupportedOpenCLOpts() {} |
| |
| /// Set supported OpenCL extensions as written on command line |
| virtual void setOpenCLExtensionOpts() { |
| for (const auto &Ext : getTargetOpts().OpenCLExtensionsAsWritten) { |
| getTargetOpts().SupportedOpenCLOptions.support(Ext); |
| } |
| } |
| |
| /// Get supported OpenCL extensions and optional core features. |
| OpenCLOptions &getSupportedOpenCLOpts() { |
| return getTargetOpts().SupportedOpenCLOptions; |
| } |
| |
| /// Get const supported OpenCL extensions and optional core features. |
| const OpenCLOptions &getSupportedOpenCLOpts() const { |
| return getTargetOpts().SupportedOpenCLOptions; |
| } |
| |
| enum OpenCLTypeKind { |
| OCLTK_Default, |
| OCLTK_ClkEvent, |
| OCLTK_Event, |
| OCLTK_Image, |
| OCLTK_Pipe, |
| OCLTK_Queue, |
| OCLTK_ReserveID, |
| OCLTK_Sampler, |
| }; |
| |
| /// Get address space for OpenCL type. |
| virtual LangAS getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const; |
| |
| /// \returns Target specific vtbl ptr address space. |
| virtual unsigned getVtblPtrAddressSpace() const { |
| return 0; |
| } |
| |
| /// \returns If a target requires an address within a target specific address |
| /// space \p AddressSpace to be converted in order to be used, then return the |
| /// corresponding target specific DWARF address space. |
| /// |
| /// \returns Otherwise return None and no conversion will be emitted in the |
| /// DWARF. |
| virtual Optional<unsigned> getDWARFAddressSpace(unsigned AddressSpace) const { |
| return None; |
| } |
| |
| /// Check the target is valid after it is fully initialized. |
| virtual bool validateTarget(DiagnosticsEngine &Diags) const { |
| return true; |
| } |
| |
| protected: |
| virtual uint64_t getPointerWidthV(unsigned AddrSpace) const { |
| return PointerWidth; |
| } |
| virtual uint64_t getPointerAlignV(unsigned AddrSpace) const { |
| return PointerAlign; |
| } |
| virtual enum IntType getPtrDiffTypeV(unsigned AddrSpace) const { |
| return PtrDiffType; |
| } |
| virtual ArrayRef<const char *> getGCCRegNames() const = 0; |
| virtual ArrayRef<GCCRegAlias> getGCCRegAliases() const = 0; |
| virtual ArrayRef<AddlRegName> getGCCAddlRegNames() const { |
| return None; |
| } |
| |
| private: |
| // Assert the values for the fractional and integral bits for each fixed point |
| // type follow the restrictions given in clause 6.2.6.3 of N1169. |
| void CheckFixedPointBits() const; |
| }; |
| |
| } // end namespace clang |
| |
| #endif |