| //===- Preprocessor.h - C Language Family Preprocessor ----------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// Defines the clang::Preprocessor interface. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_CLANG_LEX_PREPROCESSOR_H |
| #define LLVM_CLANG_LEX_PREPROCESSOR_H |
| |
| #include "clang/Basic/Builtins.h" |
| #include "clang/Basic/Diagnostic.h" |
| #include "clang/Basic/IdentifierTable.h" |
| #include "clang/Basic/LLVM.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "clang/Basic/Module.h" |
| #include "clang/Basic/SourceLocation.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TokenKinds.h" |
| #include "clang/Lex/Lexer.h" |
| #include "clang/Lex/MacroInfo.h" |
| #include "clang/Lex/ModuleLoader.h" |
| #include "clang/Lex/ModuleMap.h" |
| #include "clang/Lex/PPCallbacks.h" |
| #include "clang/Lex/PTHLexer.h" |
| #include "clang/Lex/Token.h" |
| #include "clang/Lex/TokenLexer.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/PointerUnion.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/TinyPtrVector.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/Support/Allocator.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Registry.h" |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <memory> |
| #include <map> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| namespace llvm { |
| |
| template<unsigned InternalLen> class SmallString; |
| |
| } // namespace llvm |
| |
| namespace clang { |
| |
| class CodeCompletionHandler; |
| class CommentHandler; |
| class DirectoryEntry; |
| class DirectoryLookup; |
| class ExternalPreprocessorSource; |
| class FileEntry; |
| class FileManager; |
| class HeaderSearch; |
| class MacroArgs; |
| class MemoryBufferCache; |
| class PragmaHandler; |
| class PragmaNamespace; |
| class PreprocessingRecord; |
| class PreprocessorLexer; |
| class PreprocessorOptions; |
| class PTHManager; |
| class ScratchBuffer; |
| class TargetInfo; |
| |
| /// Stores token information for comparing actual tokens with |
| /// predefined values. Only handles simple tokens and identifiers. |
| class TokenValue { |
| tok::TokenKind Kind; |
| IdentifierInfo *II; |
| |
| public: |
| TokenValue(tok::TokenKind Kind) : Kind(Kind), II(nullptr) { |
| assert(Kind != tok::raw_identifier && "Raw identifiers are not supported."); |
| assert(Kind != tok::identifier && |
| "Identifiers should be created by TokenValue(IdentifierInfo *)"); |
| assert(!tok::isLiteral(Kind) && "Literals are not supported."); |
| assert(!tok::isAnnotation(Kind) && "Annotations are not supported."); |
| } |
| |
| TokenValue(IdentifierInfo *II) : Kind(tok::identifier), II(II) {} |
| |
| bool operator==(const Token &Tok) const { |
| return Tok.getKind() == Kind && |
| (!II || II == Tok.getIdentifierInfo()); |
| } |
| }; |
| |
| /// Context in which macro name is used. |
| enum MacroUse { |
| // other than #define or #undef |
| MU_Other = 0, |
| |
| // macro name specified in #define |
| MU_Define = 1, |
| |
| // macro name specified in #undef |
| MU_Undef = 2 |
| }; |
| |
| /// Engages in a tight little dance with the lexer to efficiently |
| /// preprocess tokens. |
| /// |
| /// Lexers know only about tokens within a single source file, and don't |
| /// know anything about preprocessor-level issues like the \#include stack, |
| /// token expansion, etc. |
| class Preprocessor { |
| friend class VAOptDefinitionContext; |
| friend class VariadicMacroScopeGuard; |
| |
| std::shared_ptr<PreprocessorOptions> PPOpts; |
| DiagnosticsEngine *Diags; |
| LangOptions &LangOpts; |
| const TargetInfo *Target = nullptr; |
| const TargetInfo *AuxTarget = nullptr; |
| FileManager &FileMgr; |
| SourceManager &SourceMgr; |
| MemoryBufferCache &PCMCache; |
| std::unique_ptr<ScratchBuffer> ScratchBuf; |
| HeaderSearch &HeaderInfo; |
| ModuleLoader &TheModuleLoader; |
| |
| /// External source of macros. |
| ExternalPreprocessorSource *ExternalSource; |
| |
| /// An optional PTHManager object used for getting tokens from |
| /// a token cache rather than lexing the original source file. |
| std::unique_ptr<PTHManager> PTH; |
| |
| /// A BumpPtrAllocator object used to quickly allocate and release |
| /// objects internal to the Preprocessor. |
| llvm::BumpPtrAllocator BP; |
| |
| /// Identifiers for builtin macros and other builtins. |
| IdentifierInfo *Ident__LINE__, *Ident__FILE__; // __LINE__, __FILE__ |
| IdentifierInfo *Ident__DATE__, *Ident__TIME__; // __DATE__, __TIME__ |
| IdentifierInfo *Ident__INCLUDE_LEVEL__; // __INCLUDE_LEVEL__ |
| IdentifierInfo *Ident__BASE_FILE__; // __BASE_FILE__ |
| IdentifierInfo *Ident__TIMESTAMP__; // __TIMESTAMP__ |
| IdentifierInfo *Ident__COUNTER__; // __COUNTER__ |
| IdentifierInfo *Ident_Pragma, *Ident__pragma; // _Pragma, __pragma |
| IdentifierInfo *Ident__identifier; // __identifier |
| IdentifierInfo *Ident__VA_ARGS__; // __VA_ARGS__ |
| IdentifierInfo *Ident__VA_OPT__; // __VA_OPT__ |
| IdentifierInfo *Ident__has_feature; // __has_feature |
| IdentifierInfo *Ident__has_extension; // __has_extension |
| IdentifierInfo *Ident__has_builtin; // __has_builtin |
| IdentifierInfo *Ident__has_attribute; // __has_attribute |
| IdentifierInfo *Ident__has_include; // __has_include |
| IdentifierInfo *Ident__has_include_next; // __has_include_next |
| IdentifierInfo *Ident__has_warning; // __has_warning |
| IdentifierInfo *Ident__is_identifier; // __is_identifier |
| IdentifierInfo *Ident__building_module; // __building_module |
| IdentifierInfo *Ident__MODULE__; // __MODULE__ |
| IdentifierInfo *Ident__has_cpp_attribute; // __has_cpp_attribute |
| IdentifierInfo *Ident__has_c_attribute; // __has_c_attribute |
| IdentifierInfo *Ident__has_declspec; // __has_declspec_attribute |
| IdentifierInfo *Ident__is_target_arch; // __is_target_arch |
| IdentifierInfo *Ident__is_target_vendor; // __is_target_vendor |
| IdentifierInfo *Ident__is_target_os; // __is_target_os |
| IdentifierInfo *Ident__is_target_environment; // __is_target_environment |
| |
| SourceLocation DATELoc, TIMELoc; |
| |
| // Next __COUNTER__ value, starts at 0. |
| unsigned CounterValue = 0; |
| |
| enum { |
| /// Maximum depth of \#includes. |
| MaxAllowedIncludeStackDepth = 200 |
| }; |
| |
| // State that is set before the preprocessor begins. |
| bool KeepComments : 1; |
| bool KeepMacroComments : 1; |
| bool SuppressIncludeNotFoundError : 1; |
| |
| // State that changes while the preprocessor runs: |
| bool InMacroArgs : 1; // True if parsing fn macro invocation args. |
| |
| /// Whether the preprocessor owns the header search object. |
| bool OwnsHeaderSearch : 1; |
| |
| /// True if macro expansion is disabled. |
| bool DisableMacroExpansion : 1; |
| |
| /// Temporarily disables DisableMacroExpansion (i.e. enables expansion) |
| /// when parsing preprocessor directives. |
| bool MacroExpansionInDirectivesOverride : 1; |
| |
| class ResetMacroExpansionHelper; |
| |
| /// Whether we have already loaded macros from the external source. |
| mutable bool ReadMacrosFromExternalSource : 1; |
| |
| /// True if pragmas are enabled. |
| bool PragmasEnabled : 1; |
| |
| /// True if the current build action is a preprocessing action. |
| bool PreprocessedOutput : 1; |
| |
| /// True if we are currently preprocessing a #if or #elif directive |
| bool ParsingIfOrElifDirective; |
| |
| /// True if we are pre-expanding macro arguments. |
| bool InMacroArgPreExpansion; |
| |
| /// Mapping/lookup information for all identifiers in |
| /// the program, including program keywords. |
| mutable IdentifierTable Identifiers; |
| |
| /// This table contains all the selectors in the program. |
| /// |
| /// Unlike IdentifierTable above, this table *isn't* populated by the |
| /// preprocessor. It is declared/expanded here because its role/lifetime is |
| /// conceptually similar to the IdentifierTable. In addition, the current |
| /// control flow (in clang::ParseAST()), make it convenient to put here. |
| /// |
| /// FIXME: Make sure the lifetime of Identifiers/Selectors *isn't* tied to |
| /// the lifetime of the preprocessor. |
| SelectorTable Selectors; |
| |
| /// Information about builtins. |
| Builtin::Context BuiltinInfo; |
| |
| /// Tracks all of the pragmas that the client registered |
| /// with this preprocessor. |
| std::unique_ptr<PragmaNamespace> PragmaHandlers; |
| |
| /// Pragma handlers of the original source is stored here during the |
| /// parsing of a model file. |
| std::unique_ptr<PragmaNamespace> PragmaHandlersBackup; |
| |
| /// Tracks all of the comment handlers that the client registered |
| /// with this preprocessor. |
| std::vector<CommentHandler *> CommentHandlers; |
| |
| /// True if we want to ignore EOF token and continue later on (thus |
| /// avoid tearing the Lexer and etc. down). |
| bool IncrementalProcessing = false; |
| |
| /// The kind of translation unit we are processing. |
| TranslationUnitKind TUKind; |
| |
| /// The code-completion handler. |
| CodeCompletionHandler *CodeComplete = nullptr; |
| |
| /// The file that we're performing code-completion for, if any. |
| const FileEntry *CodeCompletionFile = nullptr; |
| |
| /// The offset in file for the code-completion point. |
| unsigned CodeCompletionOffset = 0; |
| |
| /// The location for the code-completion point. This gets instantiated |
| /// when the CodeCompletionFile gets \#include'ed for preprocessing. |
| SourceLocation CodeCompletionLoc; |
| |
| /// The start location for the file of the code-completion point. |
| /// |
| /// This gets instantiated when the CodeCompletionFile gets \#include'ed |
| /// for preprocessing. |
| SourceLocation CodeCompletionFileLoc; |
| |
| /// The source location of the \c import contextual keyword we just |
| /// lexed, if any. |
| SourceLocation ModuleImportLoc; |
| |
| /// The module import path that we're currently processing. |
| SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> ModuleImportPath; |
| |
| /// Whether the last token we lexed was an '@'. |
| bool LastTokenWasAt = false; |
| |
| /// Whether the module import expects an identifier next. Otherwise, |
| /// it expects a '.' or ';'. |
| bool ModuleImportExpectsIdentifier = false; |
| |
| /// The source location of the currently-active |
| /// \#pragma clang arc_cf_code_audited begin. |
| SourceLocation PragmaARCCFCodeAuditedLoc; |
| |
| /// The source location of the currently-active |
| /// \#pragma clang assume_nonnull begin. |
| SourceLocation PragmaAssumeNonNullLoc; |
| |
| /// True if we hit the code-completion point. |
| bool CodeCompletionReached = false; |
| |
| /// The code completion token containing the information |
| /// on the stem that is to be code completed. |
| IdentifierInfo *CodeCompletionII = nullptr; |
| |
| /// The directory that the main file should be considered to occupy, |
| /// if it does not correspond to a real file (as happens when building a |
| /// module). |
| const DirectoryEntry *MainFileDir = nullptr; |
| |
| /// The number of bytes that we will initially skip when entering the |
| /// main file, along with a flag that indicates whether skipping this number |
| /// of bytes will place the lexer at the start of a line. |
| /// |
| /// This is used when loading a precompiled preamble. |
| std::pair<int, bool> SkipMainFilePreamble; |
| |
| public: |
| struct PreambleSkipInfo { |
| SourceLocation HashTokenLoc; |
| SourceLocation IfTokenLoc; |
| bool FoundNonSkipPortion; |
| bool FoundElse; |
| SourceLocation ElseLoc; |
| |
| PreambleSkipInfo(SourceLocation HashTokenLoc, SourceLocation IfTokenLoc, |
| bool FoundNonSkipPortion, bool FoundElse, |
| SourceLocation ElseLoc) |
| : HashTokenLoc(HashTokenLoc), IfTokenLoc(IfTokenLoc), |
| FoundNonSkipPortion(FoundNonSkipPortion), FoundElse(FoundElse), |
| ElseLoc(ElseLoc) {} |
| }; |
| |
| private: |
| friend class ASTReader; |
| friend class MacroArgs; |
| |
| class PreambleConditionalStackStore { |
| enum State { |
| Off = 0, |
| Recording = 1, |
| Replaying = 2, |
| }; |
| |
| public: |
| PreambleConditionalStackStore() = default; |
| |
| void startRecording() { ConditionalStackState = Recording; } |
| void startReplaying() { ConditionalStackState = Replaying; } |
| bool isRecording() const { return ConditionalStackState == Recording; } |
| bool isReplaying() const { return ConditionalStackState == Replaying; } |
| |
| ArrayRef<PPConditionalInfo> getStack() const { |
| return ConditionalStack; |
| } |
| |
| void doneReplaying() { |
| ConditionalStack.clear(); |
| ConditionalStackState = Off; |
| } |
| |
| void setStack(ArrayRef<PPConditionalInfo> s) { |
| if (!isRecording() && !isReplaying()) |
| return; |
| ConditionalStack.clear(); |
| ConditionalStack.append(s.begin(), s.end()); |
| } |
| |
| bool hasRecordedPreamble() const { return !ConditionalStack.empty(); } |
| |
| bool reachedEOFWhileSkipping() const { return SkipInfo.hasValue(); } |
| |
| void clearSkipInfo() { SkipInfo.reset(); } |
| |
| llvm::Optional<PreambleSkipInfo> SkipInfo; |
| |
| private: |
| SmallVector<PPConditionalInfo, 4> ConditionalStack; |
| State ConditionalStackState = Off; |
| } PreambleConditionalStack; |
| |
| /// The current top of the stack that we're lexing from if |
| /// not expanding a macro and we are lexing directly from source code. |
| /// |
| /// Only one of CurLexer, CurPTHLexer, or CurTokenLexer will be non-null. |
| std::unique_ptr<Lexer> CurLexer; |
| |
| /// The current top of stack that we're lexing from if |
| /// not expanding from a macro and we are lexing from a PTH cache. |
| /// |
| /// Only one of CurLexer, CurPTHLexer, or CurTokenLexer will be non-null. |
| std::unique_ptr<PTHLexer> CurPTHLexer; |
| |
| /// The current top of the stack what we're lexing from |
| /// if not expanding a macro. |
| /// |
| /// This is an alias for either CurLexer or CurPTHLexer. |
| PreprocessorLexer *CurPPLexer = nullptr; |
| |
| /// Used to find the current FileEntry, if CurLexer is non-null |
| /// and if applicable. |
| /// |
| /// This allows us to implement \#include_next and find directory-specific |
| /// properties. |
| const DirectoryLookup *CurDirLookup = nullptr; |
| |
| /// The current macro we are expanding, if we are expanding a macro. |
| /// |
| /// One of CurLexer and CurTokenLexer must be null. |
| std::unique_ptr<TokenLexer> CurTokenLexer; |
| |
| /// The kind of lexer we're currently working with. |
| enum CurLexerKind { |
| CLK_Lexer, |
| CLK_PTHLexer, |
| CLK_TokenLexer, |
| CLK_CachingLexer, |
| CLK_LexAfterModuleImport |
| } CurLexerKind = CLK_Lexer; |
| |
| /// If the current lexer is for a submodule that is being built, this |
| /// is that submodule. |
| Module *CurLexerSubmodule = nullptr; |
| |
| /// Keeps track of the stack of files currently |
| /// \#included, and macros currently being expanded from, not counting |
| /// CurLexer/CurTokenLexer. |
| struct IncludeStackInfo { |
| enum CurLexerKind CurLexerKind; |
| Module *TheSubmodule; |
| std::unique_ptr<Lexer> TheLexer; |
| std::unique_ptr<PTHLexer> ThePTHLexer; |
| PreprocessorLexer *ThePPLexer; |
| std::unique_ptr<TokenLexer> TheTokenLexer; |
| const DirectoryLookup *TheDirLookup; |
| |
| // The following constructors are completely useless copies of the default |
| // versions, only needed to pacify MSVC. |
| IncludeStackInfo(enum CurLexerKind CurLexerKind, Module *TheSubmodule, |
| std::unique_ptr<Lexer> &&TheLexer, |
| std::unique_ptr<PTHLexer> &&ThePTHLexer, |
| PreprocessorLexer *ThePPLexer, |
| std::unique_ptr<TokenLexer> &&TheTokenLexer, |
| const DirectoryLookup *TheDirLookup) |
| : CurLexerKind(std::move(CurLexerKind)), |
| TheSubmodule(std::move(TheSubmodule)), TheLexer(std::move(TheLexer)), |
| ThePTHLexer(std::move(ThePTHLexer)), |
| ThePPLexer(std::move(ThePPLexer)), |
| TheTokenLexer(std::move(TheTokenLexer)), |
| TheDirLookup(std::move(TheDirLookup)) {} |
| }; |
| std::vector<IncludeStackInfo> IncludeMacroStack; |
| |
| /// Actions invoked when some preprocessor activity is |
| /// encountered (e.g. a file is \#included, etc). |
| std::unique_ptr<PPCallbacks> Callbacks; |
| |
| struct MacroExpandsInfo { |
| Token Tok; |
| MacroDefinition MD; |
| SourceRange Range; |
| |
| MacroExpandsInfo(Token Tok, MacroDefinition MD, SourceRange Range) |
| : Tok(Tok), MD(MD), Range(Range) {} |
| }; |
| SmallVector<MacroExpandsInfo, 2> DelayedMacroExpandsCallbacks; |
| |
| /// Information about a name that has been used to define a module macro. |
| struct ModuleMacroInfo { |
| /// The most recent macro directive for this identifier. |
| MacroDirective *MD; |
| |
| /// The active module macros for this identifier. |
| llvm::TinyPtrVector<ModuleMacro *> ActiveModuleMacros; |
| |
| /// The generation number at which we last updated ActiveModuleMacros. |
| /// \see Preprocessor::VisibleModules. |
| unsigned ActiveModuleMacrosGeneration = 0; |
| |
| /// Whether this macro name is ambiguous. |
| bool IsAmbiguous = false; |
| |
| /// The module macros that are overridden by this macro. |
| llvm::TinyPtrVector<ModuleMacro *> OverriddenMacros; |
| |
| ModuleMacroInfo(MacroDirective *MD) : MD(MD) {} |
| }; |
| |
| /// The state of a macro for an identifier. |
| class MacroState { |
| mutable llvm::PointerUnion<MacroDirective *, ModuleMacroInfo *> State; |
| |
| ModuleMacroInfo *getModuleInfo(Preprocessor &PP, |
| const IdentifierInfo *II) const { |
| if (II->isOutOfDate()) |
| PP.updateOutOfDateIdentifier(const_cast<IdentifierInfo&>(*II)); |
| // FIXME: Find a spare bit on IdentifierInfo and store a |
| // HasModuleMacros flag. |
| if (!II->hasMacroDefinition() || |
| (!PP.getLangOpts().Modules && |
| !PP.getLangOpts().ModulesLocalVisibility) || |
| !PP.CurSubmoduleState->VisibleModules.getGeneration()) |
| return nullptr; |
| |
| auto *Info = State.dyn_cast<ModuleMacroInfo*>(); |
| if (!Info) { |
| Info = new (PP.getPreprocessorAllocator()) |
| ModuleMacroInfo(State.get<MacroDirective *>()); |
| State = Info; |
| } |
| |
| if (PP.CurSubmoduleState->VisibleModules.getGeneration() != |
| Info->ActiveModuleMacrosGeneration) |
| PP.updateModuleMacroInfo(II, *Info); |
| return Info; |
| } |
| |
| public: |
| MacroState() : MacroState(nullptr) {} |
| MacroState(MacroDirective *MD) : State(MD) {} |
| |
| MacroState(MacroState &&O) noexcept : State(O.State) { |
| O.State = (MacroDirective *)nullptr; |
| } |
| |
| MacroState &operator=(MacroState &&O) noexcept { |
| auto S = O.State; |
| O.State = (MacroDirective *)nullptr; |
| State = S; |
| return *this; |
| } |
| |
| ~MacroState() { |
| if (auto *Info = State.dyn_cast<ModuleMacroInfo*>()) |
| Info->~ModuleMacroInfo(); |
| } |
| |
| MacroDirective *getLatest() const { |
| if (auto *Info = State.dyn_cast<ModuleMacroInfo*>()) |
| return Info->MD; |
| return State.get<MacroDirective*>(); |
| } |
| |
| void setLatest(MacroDirective *MD) { |
| if (auto *Info = State.dyn_cast<ModuleMacroInfo*>()) |
| Info->MD = MD; |
| else |
| State = MD; |
| } |
| |
| bool isAmbiguous(Preprocessor &PP, const IdentifierInfo *II) const { |
| auto *Info = getModuleInfo(PP, II); |
| return Info ? Info->IsAmbiguous : false; |
| } |
| |
| ArrayRef<ModuleMacro *> |
| getActiveModuleMacros(Preprocessor &PP, const IdentifierInfo *II) const { |
| if (auto *Info = getModuleInfo(PP, II)) |
| return Info->ActiveModuleMacros; |
| return None; |
| } |
| |
| MacroDirective::DefInfo findDirectiveAtLoc(SourceLocation Loc, |
| SourceManager &SourceMgr) const { |
| // FIXME: Incorporate module macros into the result of this. |
| if (auto *Latest = getLatest()) |
| return Latest->findDirectiveAtLoc(Loc, SourceMgr); |
| return {}; |
| } |
| |
| void overrideActiveModuleMacros(Preprocessor &PP, IdentifierInfo *II) { |
| if (auto *Info = getModuleInfo(PP, II)) { |
| Info->OverriddenMacros.insert(Info->OverriddenMacros.end(), |
| Info->ActiveModuleMacros.begin(), |
| Info->ActiveModuleMacros.end()); |
| Info->ActiveModuleMacros.clear(); |
| Info->IsAmbiguous = false; |
| } |
| } |
| |
| ArrayRef<ModuleMacro*> getOverriddenMacros() const { |
| if (auto *Info = State.dyn_cast<ModuleMacroInfo*>()) |
| return Info->OverriddenMacros; |
| return None; |
| } |
| |
| void setOverriddenMacros(Preprocessor &PP, |
| ArrayRef<ModuleMacro *> Overrides) { |
| auto *Info = State.dyn_cast<ModuleMacroInfo*>(); |
| if (!Info) { |
| if (Overrides.empty()) |
| return; |
| Info = new (PP.getPreprocessorAllocator()) |
| ModuleMacroInfo(State.get<MacroDirective *>()); |
| State = Info; |
| } |
| Info->OverriddenMacros.clear(); |
| Info->OverriddenMacros.insert(Info->OverriddenMacros.end(), |
| Overrides.begin(), Overrides.end()); |
| Info->ActiveModuleMacrosGeneration = 0; |
| } |
| }; |
| |
| /// For each IdentifierInfo that was associated with a macro, we |
| /// keep a mapping to the history of all macro definitions and #undefs in |
| /// the reverse order (the latest one is in the head of the list). |
| /// |
| /// This mapping lives within the \p CurSubmoduleState. |
| using MacroMap = llvm::DenseMap<const IdentifierInfo *, MacroState>; |
| |
| struct SubmoduleState; |
| |
| /// Information about a submodule that we're currently building. |
| struct BuildingSubmoduleInfo { |
| /// The module that we are building. |
| Module *M; |
| |
| /// The location at which the module was included. |
| SourceLocation ImportLoc; |
| |
| /// Whether we entered this submodule via a pragma. |
| bool IsPragma; |
| |
| /// The previous SubmoduleState. |
| SubmoduleState *OuterSubmoduleState; |
| |
| /// The number of pending module macro names when we started building this. |
| unsigned OuterPendingModuleMacroNames; |
| |
| BuildingSubmoduleInfo(Module *M, SourceLocation ImportLoc, bool IsPragma, |
| SubmoduleState *OuterSubmoduleState, |
| unsigned OuterPendingModuleMacroNames) |
| : M(M), ImportLoc(ImportLoc), IsPragma(IsPragma), |
| OuterSubmoduleState(OuterSubmoduleState), |
| OuterPendingModuleMacroNames(OuterPendingModuleMacroNames) {} |
| }; |
| SmallVector<BuildingSubmoduleInfo, 8> BuildingSubmoduleStack; |
| |
| /// Information about a submodule's preprocessor state. |
| struct SubmoduleState { |
| /// The macros for the submodule. |
| MacroMap Macros; |
| |
| /// The set of modules that are visible within the submodule. |
| VisibleModuleSet VisibleModules; |
| |
| // FIXME: CounterValue? |
| // FIXME: PragmaPushMacroInfo? |
| }; |
| std::map<Module *, SubmoduleState> Submodules; |
| |
| /// The preprocessor state for preprocessing outside of any submodule. |
| SubmoduleState NullSubmoduleState; |
| |
| /// The current submodule state. Will be \p NullSubmoduleState if we're not |
| /// in a submodule. |
| SubmoduleState *CurSubmoduleState; |
| |
| /// The set of known macros exported from modules. |
| llvm::FoldingSet<ModuleMacro> ModuleMacros; |
| |
| /// The names of potential module macros that we've not yet processed. |
| llvm::SmallVector<const IdentifierInfo *, 32> PendingModuleMacroNames; |
| |
| /// The list of module macros, for each identifier, that are not overridden by |
| /// any other module macro. |
| llvm::DenseMap<const IdentifierInfo *, llvm::TinyPtrVector<ModuleMacro *>> |
| LeafModuleMacros; |
| |
| /// Macros that we want to warn because they are not used at the end |
| /// of the translation unit. |
| /// |
| /// We store just their SourceLocations instead of |
| /// something like MacroInfo*. The benefit of this is that when we are |
| /// deserializing from PCH, we don't need to deserialize identifier & macros |
| /// just so that we can report that they are unused, we just warn using |
| /// the SourceLocations of this set (that will be filled by the ASTReader). |
| /// We are using SmallPtrSet instead of a vector for faster removal. |
| using WarnUnusedMacroLocsTy = llvm::SmallPtrSet<SourceLocation, 32>; |
| WarnUnusedMacroLocsTy WarnUnusedMacroLocs; |
| |
| /// A "freelist" of MacroArg objects that can be |
| /// reused for quick allocation. |
| MacroArgs *MacroArgCache = nullptr; |
| |
| /// For each IdentifierInfo used in a \#pragma push_macro directive, |
| /// we keep a MacroInfo stack used to restore the previous macro value. |
| llvm::DenseMap<IdentifierInfo *, std::vector<MacroInfo *>> |
| PragmaPushMacroInfo; |
| |
| // Various statistics we track for performance analysis. |
| unsigned NumDirectives = 0; |
| unsigned NumDefined = 0; |
| unsigned NumUndefined = 0; |
| unsigned NumPragma = 0; |
| unsigned NumIf = 0; |
| unsigned NumElse = 0; |
| unsigned NumEndif = 0; |
| unsigned NumEnteredSourceFiles = 0; |
| unsigned MaxIncludeStackDepth = 0; |
| unsigned NumMacroExpanded = 0; |
| unsigned NumFnMacroExpanded = 0; |
| unsigned NumBuiltinMacroExpanded = 0; |
| unsigned NumFastMacroExpanded = 0; |
| unsigned NumTokenPaste = 0; |
| unsigned NumFastTokenPaste = 0; |
| unsigned NumSkipped = 0; |
| |
| /// The predefined macros that preprocessor should use from the |
| /// command line etc. |
| std::string Predefines; |
| |
| /// The file ID for the preprocessor predefines. |
| FileID PredefinesFileID; |
| |
| /// The file ID for the PCH through header. |
| FileID PCHThroughHeaderFileID; |
| |
| /// Whether tokens are being skipped until the through header is seen. |
| bool SkippingUntilPCHThroughHeader = false; |
| |
| /// \{ |
| /// Cache of macro expanders to reduce malloc traffic. |
| enum { TokenLexerCacheSize = 8 }; |
| unsigned NumCachedTokenLexers; |
| std::unique_ptr<TokenLexer> TokenLexerCache[TokenLexerCacheSize]; |
| /// \} |
| |
| /// Keeps macro expanded tokens for TokenLexers. |
| // |
| /// Works like a stack; a TokenLexer adds the macro expanded tokens that is |
| /// going to lex in the cache and when it finishes the tokens are removed |
| /// from the end of the cache. |
| SmallVector<Token, 16> MacroExpandedTokens; |
| std::vector<std::pair<TokenLexer *, size_t>> MacroExpandingLexersStack; |
| |
| /// A record of the macro definitions and expansions that |
| /// occurred during preprocessing. |
| /// |
| /// This is an optional side structure that can be enabled with |
| /// \c createPreprocessingRecord() prior to preprocessing. |
| PreprocessingRecord *Record = nullptr; |
| |
| /// Cached tokens state. |
| using CachedTokensTy = SmallVector<Token, 1>; |
| |
| /// Cached tokens are stored here when we do backtracking or |
| /// lookahead. They are "lexed" by the CachingLex() method. |
| CachedTokensTy CachedTokens; |
| |
| /// The position of the cached token that CachingLex() should |
| /// "lex" next. |
| /// |
| /// If it points beyond the CachedTokens vector, it means that a normal |
| /// Lex() should be invoked. |
| CachedTokensTy::size_type CachedLexPos = 0; |
| |
| /// Stack of backtrack positions, allowing nested backtracks. |
| /// |
| /// The EnableBacktrackAtThisPos() method pushes a position to |
| /// indicate where CachedLexPos should be set when the BackTrack() method is |
| /// invoked (at which point the last position is popped). |
| std::vector<CachedTokensTy::size_type> BacktrackPositions; |
| |
| struct MacroInfoChain { |
| MacroInfo MI; |
| MacroInfoChain *Next; |
| }; |
| |
| /// MacroInfos are managed as a chain for easy disposal. This is the head |
| /// of that list. |
| MacroInfoChain *MIChainHead = nullptr; |
| |
| void updateOutOfDateIdentifier(IdentifierInfo &II) const; |
| |
| public: |
| Preprocessor(std::shared_ptr<PreprocessorOptions> PPOpts, |
| DiagnosticsEngine &diags, LangOptions &opts, SourceManager &SM, |
| MemoryBufferCache &PCMCache, |
| HeaderSearch &Headers, ModuleLoader &TheModuleLoader, |
| IdentifierInfoLookup *IILookup = nullptr, |
| bool OwnsHeaderSearch = false, |
| TranslationUnitKind TUKind = TU_Complete); |
| |
| ~Preprocessor(); |
| |
| /// Initialize the preprocessor using information about the target. |
| /// |
| /// \param Target is owned by the caller and must remain valid for the |
| /// lifetime of the preprocessor. |
| /// \param AuxTarget is owned by the caller and must remain valid for |
| /// the lifetime of the preprocessor. |
| void Initialize(const TargetInfo &Target, |
| const TargetInfo *AuxTarget = nullptr); |
| |
| /// Initialize the preprocessor to parse a model file |
| /// |
| /// To parse model files the preprocessor of the original source is reused to |
| /// preserver the identifier table. However to avoid some duplicate |
| /// information in the preprocessor some cleanup is needed before it is used |
| /// to parse model files. This method does that cleanup. |
| void InitializeForModelFile(); |
| |
| /// Cleanup after model file parsing |
| void FinalizeForModelFile(); |
| |
| /// Retrieve the preprocessor options used to initialize this |
| /// preprocessor. |
| PreprocessorOptions &getPreprocessorOpts() const { return *PPOpts; } |
| |
| DiagnosticsEngine &getDiagnostics() const { return *Diags; } |
| void setDiagnostics(DiagnosticsEngine &D) { Diags = &D; } |
| |
| const LangOptions &getLangOpts() const { return LangOpts; } |
| const TargetInfo &getTargetInfo() const { return *Target; } |
| const TargetInfo *getAuxTargetInfo() const { return AuxTarget; } |
| FileManager &getFileManager() const { return FileMgr; } |
| SourceManager &getSourceManager() const { return SourceMgr; } |
| MemoryBufferCache &getPCMCache() const { return PCMCache; } |
| HeaderSearch &getHeaderSearchInfo() const { return HeaderInfo; } |
| |
| IdentifierTable &getIdentifierTable() { return Identifiers; } |
| const IdentifierTable &getIdentifierTable() const { return Identifiers; } |
| SelectorTable &getSelectorTable() { return Selectors; } |
| Builtin::Context &getBuiltinInfo() { return BuiltinInfo; } |
| llvm::BumpPtrAllocator &getPreprocessorAllocator() { return BP; } |
| |
| void setPTHManager(PTHManager* pm); |
| |
| PTHManager *getPTHManager() { return PTH.get(); } |
| |
| void setExternalSource(ExternalPreprocessorSource *Source) { |
| ExternalSource = Source; |
| } |
| |
| ExternalPreprocessorSource *getExternalSource() const { |
| return ExternalSource; |
| } |
| |
| /// Retrieve the module loader associated with this preprocessor. |
| ModuleLoader &getModuleLoader() const { return TheModuleLoader; } |
| |
| bool hadModuleLoaderFatalFailure() const { |
| return TheModuleLoader.HadFatalFailure; |
| } |
| |
| /// True if we are currently preprocessing a #if or #elif directive |
| bool isParsingIfOrElifDirective() const { |
| return ParsingIfOrElifDirective; |
| } |
| |
| /// Control whether the preprocessor retains comments in output. |
| void SetCommentRetentionState(bool KeepComments, bool KeepMacroComments) { |
| this->KeepComments = KeepComments | KeepMacroComments; |
| this->KeepMacroComments = KeepMacroComments; |
| } |
| |
| bool getCommentRetentionState() const { return KeepComments; } |
| |
| void setPragmasEnabled(bool Enabled) { PragmasEnabled = Enabled; } |
| bool getPragmasEnabled() const { return PragmasEnabled; } |
| |
| void SetSuppressIncludeNotFoundError(bool Suppress) { |
| SuppressIncludeNotFoundError = Suppress; |
| } |
| |
| bool GetSuppressIncludeNotFoundError() { |
| return SuppressIncludeNotFoundError; |
| } |
| |
| /// Sets whether the preprocessor is responsible for producing output or if |
| /// it is producing tokens to be consumed by Parse and Sema. |
| void setPreprocessedOutput(bool IsPreprocessedOutput) { |
| PreprocessedOutput = IsPreprocessedOutput; |
| } |
| |
| /// Returns true if the preprocessor is responsible for generating output, |
| /// false if it is producing tokens to be consumed by Parse and Sema. |
| bool isPreprocessedOutput() const { return PreprocessedOutput; } |
| |
| /// Return true if we are lexing directly from the specified lexer. |
| bool isCurrentLexer(const PreprocessorLexer *L) const { |
| return CurPPLexer == L; |
| } |
| |
| /// Return the current lexer being lexed from. |
| /// |
| /// Note that this ignores any potentially active macro expansions and _Pragma |
| /// expansions going on at the time. |
| PreprocessorLexer *getCurrentLexer() const { return CurPPLexer; } |
| |
| /// Return the current file lexer being lexed from. |
| /// |
| /// Note that this ignores any potentially active macro expansions and _Pragma |
| /// expansions going on at the time. |
| PreprocessorLexer *getCurrentFileLexer() const; |
| |
| /// Return the submodule owning the file being lexed. This may not be |
| /// the current module if we have changed modules since entering the file. |
| Module *getCurrentLexerSubmodule() const { return CurLexerSubmodule; } |
| |
| /// Returns the FileID for the preprocessor predefines. |
| FileID getPredefinesFileID() const { return PredefinesFileID; } |
| |
| /// \{ |
| /// Accessors for preprocessor callbacks. |
| /// |
| /// Note that this class takes ownership of any PPCallbacks object given to |
| /// it. |
| PPCallbacks *getPPCallbacks() const { return Callbacks.get(); } |
| void addPPCallbacks(std::unique_ptr<PPCallbacks> C) { |
| if (Callbacks) |
| C = llvm::make_unique<PPChainedCallbacks>(std::move(C), |
| std::move(Callbacks)); |
| Callbacks = std::move(C); |
| } |
| /// \} |
| |
| bool isMacroDefined(StringRef Id) { |
| return isMacroDefined(&Identifiers.get(Id)); |
| } |
| bool isMacroDefined(const IdentifierInfo *II) { |
| return II->hasMacroDefinition() && |
| (!getLangOpts().Modules || (bool)getMacroDefinition(II)); |
| } |
| |
| /// Determine whether II is defined as a macro within the module M, |
| /// if that is a module that we've already preprocessed. Does not check for |
| /// macros imported into M. |
| bool isMacroDefinedInLocalModule(const IdentifierInfo *II, Module *M) { |
| if (!II->hasMacroDefinition()) |
| return false; |
| auto I = Submodules.find(M); |
| if (I == Submodules.end()) |
| return false; |
| auto J = I->second.Macros.find(II); |
| if (J == I->second.Macros.end()) |
| return false; |
| auto *MD = J->second.getLatest(); |
| return MD && MD->isDefined(); |
| } |
| |
| MacroDefinition getMacroDefinition(const IdentifierInfo *II) { |
| if (!II->hasMacroDefinition()) |
| return {}; |
| |
| MacroState &S = CurSubmoduleState->Macros[II]; |
| auto *MD = S.getLatest(); |
| while (MD && isa<VisibilityMacroDirective>(MD)) |
| MD = MD->getPrevious(); |
| return MacroDefinition(dyn_cast_or_null<DefMacroDirective>(MD), |
| S.getActiveModuleMacros(*this, II), |
| S.isAmbiguous(*this, II)); |
| } |
| |
| MacroDefinition getMacroDefinitionAtLoc(const IdentifierInfo *II, |
| SourceLocation Loc) { |
| if (!II->hadMacroDefinition()) |
| return {}; |
| |
| MacroState &S = CurSubmoduleState->Macros[II]; |
| MacroDirective::DefInfo DI; |
| if (auto *MD = S.getLatest()) |
| DI = MD->findDirectiveAtLoc(Loc, getSourceManager()); |
| // FIXME: Compute the set of active module macros at the specified location. |
| return MacroDefinition(DI.getDirective(), |
| S.getActiveModuleMacros(*this, II), |
| S.isAmbiguous(*this, II)); |
| } |
| |
| /// Given an identifier, return its latest non-imported MacroDirective |
| /// if it is \#define'd and not \#undef'd, or null if it isn't \#define'd. |
| MacroDirective *getLocalMacroDirective(const IdentifierInfo *II) const { |
| if (!II->hasMacroDefinition()) |
| return nullptr; |
| |
| auto *MD = getLocalMacroDirectiveHistory(II); |
| if (!MD || MD->getDefinition().isUndefined()) |
| return nullptr; |
| |
| return MD; |
| } |
| |
| const MacroInfo *getMacroInfo(const IdentifierInfo *II) const { |
| return const_cast<Preprocessor*>(this)->getMacroInfo(II); |
| } |
| |
| MacroInfo *getMacroInfo(const IdentifierInfo *II) { |
| if (!II->hasMacroDefinition()) |
| return nullptr; |
| if (auto MD = getMacroDefinition(II)) |
| return MD.getMacroInfo(); |
| return nullptr; |
| } |
| |
| /// Given an identifier, return the latest non-imported macro |
| /// directive for that identifier. |
| /// |
| /// One can iterate over all previous macro directives from the most recent |
| /// one. |
| MacroDirective *getLocalMacroDirectiveHistory(const IdentifierInfo *II) const; |
| |
| /// Add a directive to the macro directive history for this identifier. |
| void appendMacroDirective(IdentifierInfo *II, MacroDirective *MD); |
| DefMacroDirective *appendDefMacroDirective(IdentifierInfo *II, MacroInfo *MI, |
| SourceLocation Loc) { |
| DefMacroDirective *MD = AllocateDefMacroDirective(MI, Loc); |
| appendMacroDirective(II, MD); |
| return MD; |
| } |
| DefMacroDirective *appendDefMacroDirective(IdentifierInfo *II, |
| MacroInfo *MI) { |
| return appendDefMacroDirective(II, MI, MI->getDefinitionLoc()); |
| } |
| |
| /// Set a MacroDirective that was loaded from a PCH file. |
| void setLoadedMacroDirective(IdentifierInfo *II, MacroDirective *ED, |
| MacroDirective *MD); |
| |
| /// Register an exported macro for a module and identifier. |
| ModuleMacro *addModuleMacro(Module *Mod, IdentifierInfo *II, MacroInfo *Macro, |
| ArrayRef<ModuleMacro *> Overrides, bool &IsNew); |
| ModuleMacro *getModuleMacro(Module *Mod, IdentifierInfo *II); |
| |
| /// Get the list of leaf (non-overridden) module macros for a name. |
| ArrayRef<ModuleMacro*> getLeafModuleMacros(const IdentifierInfo *II) const { |
| if (II->isOutOfDate()) |
| updateOutOfDateIdentifier(const_cast<IdentifierInfo&>(*II)); |
| auto I = LeafModuleMacros.find(II); |
| if (I != LeafModuleMacros.end()) |
| return I->second; |
| return None; |
| } |
| |
| /// \{ |
| /// Iterators for the macro history table. Currently defined macros have |
| /// IdentifierInfo::hasMacroDefinition() set and an empty |
| /// MacroInfo::getUndefLoc() at the head of the list. |
| using macro_iterator = MacroMap::const_iterator; |
| |
| macro_iterator macro_begin(bool IncludeExternalMacros = true) const; |
| macro_iterator macro_end(bool IncludeExternalMacros = true) const; |
| |
| llvm::iterator_range<macro_iterator> |
| macros(bool IncludeExternalMacros = true) const { |
| macro_iterator begin = macro_begin(IncludeExternalMacros); |
| macro_iterator end = macro_end(IncludeExternalMacros); |
| return llvm::make_range(begin, end); |
| } |
| |
| /// \} |
| |
| /// Return the name of the macro defined before \p Loc that has |
| /// spelling \p Tokens. If there are multiple macros with same spelling, |
| /// return the last one defined. |
| StringRef getLastMacroWithSpelling(SourceLocation Loc, |
| ArrayRef<TokenValue> Tokens) const; |
| |
| const std::string &getPredefines() const { return Predefines; } |
| |
| /// Set the predefines for this Preprocessor. |
| /// |
| /// These predefines are automatically injected when parsing the main file. |
| void setPredefines(const char *P) { Predefines = P; } |
| void setPredefines(StringRef P) { Predefines = P; } |
| |
| /// Return information about the specified preprocessor |
| /// identifier token. |
| IdentifierInfo *getIdentifierInfo(StringRef Name) const { |
| return &Identifiers.get(Name); |
| } |
| |
| /// Add the specified pragma handler to this preprocessor. |
| /// |
| /// If \p Namespace is non-null, then it is a token required to exist on the |
| /// pragma line before the pragma string starts, e.g. "STDC" or "GCC". |
| void AddPragmaHandler(StringRef Namespace, PragmaHandler *Handler); |
| void AddPragmaHandler(PragmaHandler *Handler) { |
| AddPragmaHandler(StringRef(), Handler); |
| } |
| |
| /// Remove the specific pragma handler from this preprocessor. |
| /// |
| /// If \p Namespace is non-null, then it should be the namespace that |
| /// \p Handler was added to. It is an error to remove a handler that |
| /// has not been registered. |
| void RemovePragmaHandler(StringRef Namespace, PragmaHandler *Handler); |
| void RemovePragmaHandler(PragmaHandler *Handler) { |
| RemovePragmaHandler(StringRef(), Handler); |
| } |
| |
| /// Install empty handlers for all pragmas (making them ignored). |
| void IgnorePragmas(); |
| |
| /// Add the specified comment handler to the preprocessor. |
| void addCommentHandler(CommentHandler *Handler); |
| |
| /// Remove the specified comment handler. |
| /// |
| /// It is an error to remove a handler that has not been registered. |
| void removeCommentHandler(CommentHandler *Handler); |
| |
| /// Set the code completion handler to the given object. |
| void setCodeCompletionHandler(CodeCompletionHandler &Handler) { |
| CodeComplete = &Handler; |
| } |
| |
| /// Retrieve the current code-completion handler. |
| CodeCompletionHandler *getCodeCompletionHandler() const { |
| return CodeComplete; |
| } |
| |
| /// Clear out the code completion handler. |
| void clearCodeCompletionHandler() { |
| CodeComplete = nullptr; |
| } |
| |
| /// Hook used by the lexer to invoke the "natural language" code |
| /// completion point. |
| void CodeCompleteNaturalLanguage(); |
| |
| /// Set the code completion token for filtering purposes. |
| void setCodeCompletionIdentifierInfo(IdentifierInfo *Filter) { |
| CodeCompletionII = Filter; |
| } |
| |
| /// Get the code completion token for filtering purposes. |
| StringRef getCodeCompletionFilter() { |
| if (CodeCompletionII) |
| return CodeCompletionII->getName(); |
| return {}; |
| } |
| |
| /// Retrieve the preprocessing record, or NULL if there is no |
| /// preprocessing record. |
| PreprocessingRecord *getPreprocessingRecord() const { return Record; } |
| |
| /// Create a new preprocessing record, which will keep track of |
| /// all macro expansions, macro definitions, etc. |
| void createPreprocessingRecord(); |
| |
| /// Returns true if the FileEntry is the PCH through header. |
| bool isPCHThroughHeader(const FileEntry *File); |
| |
| /// True if creating a PCH with a through header. |
| bool creatingPCHWithThroughHeader(); |
| |
| /// True if using a PCH with a through header. |
| bool usingPCHWithThroughHeader(); |
| |
| /// Skip tokens until after the #include of the through header. |
| void SkipTokensUntilPCHThroughHeader(); |
| |
| /// Process directives while skipping until the through header is found. |
| void HandleSkippedThroughHeaderDirective(Token &Result, |
| SourceLocation HashLoc); |
| |
| /// Enter the specified FileID as the main source file, |
| /// which implicitly adds the builtin defines etc. |
| void EnterMainSourceFile(); |
| |
| /// Inform the preprocessor callbacks that processing is complete. |
| void EndSourceFile(); |
| |
| /// Add a source file to the top of the include stack and |
| /// start lexing tokens from it instead of the current buffer. |
| /// |
| /// Emits a diagnostic, doesn't enter the file, and returns true on error. |
| bool EnterSourceFile(FileID CurFileID, const DirectoryLookup *Dir, |
| SourceLocation Loc); |
| |
| /// Add a Macro to the top of the include stack and start lexing |
| /// tokens from it instead of the current buffer. |
| /// |
| /// \param Args specifies the tokens input to a function-like macro. |
| /// \param ILEnd specifies the location of the ')' for a function-like macro |
| /// or the identifier for an object-like macro. |
| void EnterMacro(Token &Identifier, SourceLocation ILEnd, MacroInfo *Macro, |
| MacroArgs *Args); |
| |
| /// Add a "macro" context to the top of the include stack, |
| /// which will cause the lexer to start returning the specified tokens. |
| /// |
| /// If \p DisableMacroExpansion is true, tokens lexed from the token stream |
| /// will not be subject to further macro expansion. Otherwise, these tokens |
| /// will be re-macro-expanded when/if expansion is enabled. |
| /// |
| /// If \p OwnsTokens is false, this method assumes that the specified stream |
| /// of tokens has a permanent owner somewhere, so they do not need to be |
| /// copied. If it is true, it assumes the array of tokens is allocated with |
| /// \c new[] and the Preprocessor will delete[] it. |
| private: |
| void EnterTokenStream(const Token *Toks, unsigned NumToks, |
| bool DisableMacroExpansion, bool OwnsTokens); |
| |
| public: |
| void EnterTokenStream(std::unique_ptr<Token[]> Toks, unsigned NumToks, |
| bool DisableMacroExpansion) { |
| EnterTokenStream(Toks.release(), NumToks, DisableMacroExpansion, true); |
| } |
| |
| void EnterTokenStream(ArrayRef<Token> Toks, bool DisableMacroExpansion) { |
| EnterTokenStream(Toks.data(), Toks.size(), DisableMacroExpansion, false); |
| } |
| |
| /// Pop the current lexer/macro exp off the top of the lexer stack. |
| /// |
| /// This should only be used in situations where the current state of the |
| /// top-of-stack lexer is known. |
| void RemoveTopOfLexerStack(); |
| |
| /// From the point that this method is called, and until |
| /// CommitBacktrackedTokens() or Backtrack() is called, the Preprocessor |
| /// keeps track of the lexed tokens so that a subsequent Backtrack() call will |
| /// make the Preprocessor re-lex the same tokens. |
| /// |
| /// Nested backtracks are allowed, meaning that EnableBacktrackAtThisPos can |
| /// be called multiple times and CommitBacktrackedTokens/Backtrack calls will |
| /// be combined with the EnableBacktrackAtThisPos calls in reverse order. |
| /// |
| /// NOTE: *DO NOT* forget to call either CommitBacktrackedTokens or Backtrack |
| /// at some point after EnableBacktrackAtThisPos. If you don't, caching of |
| /// tokens will continue indefinitely. |
| /// |
| void EnableBacktrackAtThisPos(); |
| |
| /// Disable the last EnableBacktrackAtThisPos call. |
| void CommitBacktrackedTokens(); |
| |
| struct CachedTokensRange { |
| CachedTokensTy::size_type Begin, End; |
| }; |
| |
| private: |
| /// A range of cached tokens that should be erased after lexing |
| /// when backtracking requires the erasure of such cached tokens. |
| Optional<CachedTokensRange> CachedTokenRangeToErase; |
| |
| public: |
| /// Returns the range of cached tokens that were lexed since |
| /// EnableBacktrackAtThisPos() was previously called. |
| CachedTokensRange LastCachedTokenRange(); |
| |
| /// Erase the range of cached tokens that were lexed since |
| /// EnableBacktrackAtThisPos() was previously called. |
| void EraseCachedTokens(CachedTokensRange TokenRange); |
| |
| /// Make Preprocessor re-lex the tokens that were lexed since |
| /// EnableBacktrackAtThisPos() was previously called. |
| void Backtrack(); |
| |
| /// True if EnableBacktrackAtThisPos() was called and |
| /// caching of tokens is on. |
| bool isBacktrackEnabled() const { return !BacktrackPositions.empty(); } |
| |
| /// Lex the next token for this preprocessor. |
| void Lex(Token &Result); |
| |
| void LexAfterModuleImport(Token &Result); |
| |
| void makeModuleVisible(Module *M, SourceLocation Loc); |
| |
| SourceLocation getModuleImportLoc(Module *M) const { |
| return CurSubmoduleState->VisibleModules.getImportLoc(M); |
| } |
| |
| /// Lex a string literal, which may be the concatenation of multiple |
| /// string literals and may even come from macro expansion. |
| /// \returns true on success, false if a error diagnostic has been generated. |
| bool LexStringLiteral(Token &Result, std::string &String, |
| const char *DiagnosticTag, bool AllowMacroExpansion) { |
| if (AllowMacroExpansion) |
| Lex(Result); |
| else |
| LexUnexpandedToken(Result); |
| return FinishLexStringLiteral(Result, String, DiagnosticTag, |
| AllowMacroExpansion); |
| } |
| |
| /// Complete the lexing of a string literal where the first token has |
| /// already been lexed (see LexStringLiteral). |
| bool FinishLexStringLiteral(Token &Result, std::string &String, |
| const char *DiagnosticTag, |
| bool AllowMacroExpansion); |
| |
| /// Lex a token. If it's a comment, keep lexing until we get |
| /// something not a comment. |
| /// |
| /// This is useful in -E -C mode where comments would foul up preprocessor |
| /// directive handling. |
| void LexNonComment(Token &Result) { |
| do |
| Lex(Result); |
| while (Result.getKind() == tok::comment); |
| } |
| |
| /// Just like Lex, but disables macro expansion of identifier tokens. |
| void LexUnexpandedToken(Token &Result) { |
| // Disable macro expansion. |
| bool OldVal = DisableMacroExpansion; |
| DisableMacroExpansion = true; |
| // Lex the token. |
| Lex(Result); |
| |
| // Reenable it. |
| DisableMacroExpansion = OldVal; |
| } |
| |
| /// Like LexNonComment, but this disables macro expansion of |
| /// identifier tokens. |
| void LexUnexpandedNonComment(Token &Result) { |
| do |
| LexUnexpandedToken(Result); |
| while (Result.getKind() == tok::comment); |
| } |
| |
| /// Parses a simple integer literal to get its numeric value. Floating |
| /// point literals and user defined literals are rejected. Used primarily to |
| /// handle pragmas that accept integer arguments. |
| bool parseSimpleIntegerLiteral(Token &Tok, uint64_t &Value); |
| |
| /// Disables macro expansion everywhere except for preprocessor directives. |
| void SetMacroExpansionOnlyInDirectives() { |
| DisableMacroExpansion = true; |
| MacroExpansionInDirectivesOverride = true; |
| } |
| |
| /// Peeks ahead N tokens and returns that token without consuming any |
| /// tokens. |
| /// |
| /// LookAhead(0) returns the next token that would be returned by Lex(), |
| /// LookAhead(1) returns the token after it, etc. This returns normal |
| /// tokens after phase 5. As such, it is equivalent to using |
| /// 'Lex', not 'LexUnexpandedToken'. |
| const Token &LookAhead(unsigned N) { |
| if (CachedLexPos + N < CachedTokens.size()) |
| return CachedTokens[CachedLexPos+N]; |
| else |
| return PeekAhead(N+1); |
| } |
| |
| /// When backtracking is enabled and tokens are cached, |
| /// this allows to revert a specific number of tokens. |
| /// |
| /// Note that the number of tokens being reverted should be up to the last |
| /// backtrack position, not more. |
| void RevertCachedTokens(unsigned N) { |
| assert(isBacktrackEnabled() && |
| "Should only be called when tokens are cached for backtracking"); |
| assert(signed(CachedLexPos) - signed(N) >= signed(BacktrackPositions.back()) |
| && "Should revert tokens up to the last backtrack position, not more"); |
| assert(signed(CachedLexPos) - signed(N) >= 0 && |
| "Corrupted backtrack positions ?"); |
| CachedLexPos -= N; |
| } |
| |
| /// Enters a token in the token stream to be lexed next. |
| /// |
| /// If BackTrack() is called afterwards, the token will remain at the |
| /// insertion point. |
| void EnterToken(const Token &Tok) { |
| EnterCachingLexMode(); |
| CachedTokens.insert(CachedTokens.begin()+CachedLexPos, Tok); |
| } |
| |
| /// We notify the Preprocessor that if it is caching tokens (because |
| /// backtrack is enabled) it should replace the most recent cached tokens |
| /// with the given annotation token. This function has no effect if |
| /// backtracking is not enabled. |
| /// |
| /// Note that the use of this function is just for optimization, so that the |
| /// cached tokens doesn't get re-parsed and re-resolved after a backtrack is |
| /// invoked. |
| void AnnotateCachedTokens(const Token &Tok) { |
| assert(Tok.isAnnotation() && "Expected annotation token"); |
| if (CachedLexPos != 0 && isBacktrackEnabled()) |
| AnnotatePreviousCachedTokens(Tok); |
| } |
| |
| /// Get the location of the last cached token, suitable for setting the end |
| /// location of an annotation token. |
| SourceLocation getLastCachedTokenLocation() const { |
| assert(CachedLexPos != 0); |
| return CachedTokens[CachedLexPos-1].getLastLoc(); |
| } |
| |
| /// Whether \p Tok is the most recent token (`CachedLexPos - 1`) in |
| /// CachedTokens. |
| bool IsPreviousCachedToken(const Token &Tok) const; |
| |
| /// Replace token in `CachedLexPos - 1` in CachedTokens by the tokens |
| /// in \p NewToks. |
| /// |
| /// Useful when a token needs to be split in smaller ones and CachedTokens |
| /// most recent token must to be updated to reflect that. |
| void ReplacePreviousCachedToken(ArrayRef<Token> NewToks); |
| |
| /// Replace the last token with an annotation token. |
| /// |
| /// Like AnnotateCachedTokens(), this routine replaces an |
| /// already-parsed (and resolved) token with an annotation |
| /// token. However, this routine only replaces the last token with |
| /// the annotation token; it does not affect any other cached |
| /// tokens. This function has no effect if backtracking is not |
| /// enabled. |
| void ReplaceLastTokenWithAnnotation(const Token &Tok) { |
| assert(Tok.isAnnotation() && "Expected annotation token"); |
| if (CachedLexPos != 0 && isBacktrackEnabled()) |
| CachedTokens[CachedLexPos-1] = Tok; |
| } |
| |
| /// Enter an annotation token into the token stream. |
| void EnterAnnotationToken(SourceRange Range, tok::TokenKind Kind, |
| void *AnnotationVal); |
| |
| /// Update the current token to represent the provided |
| /// identifier, in order to cache an action performed by typo correction. |
| void TypoCorrectToken(const Token &Tok) { |
| assert(Tok.getIdentifierInfo() && "Expected identifier token"); |
| if (CachedLexPos != 0 && isBacktrackEnabled()) |
| CachedTokens[CachedLexPos-1] = Tok; |
| } |
| |
| /// Recompute the current lexer kind based on the CurLexer/CurPTHLexer/ |
| /// CurTokenLexer pointers. |
| void recomputeCurLexerKind(); |
| |
| /// Returns true if incremental processing is enabled |
| bool isIncrementalProcessingEnabled() const { return IncrementalProcessing; } |
| |
| /// Enables the incremental processing |
| void enableIncrementalProcessing(bool value = true) { |
| IncrementalProcessing = value; |
| } |
| |
| /// Specify the point at which code-completion will be performed. |
| /// |
| /// \param File the file in which code completion should occur. If |
| /// this file is included multiple times, code-completion will |
| /// perform completion the first time it is included. If NULL, this |
| /// function clears out the code-completion point. |
| /// |
| /// \param Line the line at which code completion should occur |
| /// (1-based). |
| /// |
| /// \param Column the column at which code completion should occur |
| /// (1-based). |
| /// |
| /// \returns true if an error occurred, false otherwise. |
| bool SetCodeCompletionPoint(const FileEntry *File, |
| unsigned Line, unsigned Column); |
| |
| /// Determine if we are performing code completion. |
| bool isCodeCompletionEnabled() const { return CodeCompletionFile != nullptr; } |
| |
| /// Returns the location of the code-completion point. |
| /// |
| /// Returns an invalid location if code-completion is not enabled or the file |
| /// containing the code-completion point has not been lexed yet. |
| SourceLocation getCodeCompletionLoc() const { return CodeCompletionLoc; } |
| |
| /// Returns the start location of the file of code-completion point. |
| /// |
| /// Returns an invalid location if code-completion is not enabled or the file |
| /// containing the code-completion point has not been lexed yet. |
| SourceLocation getCodeCompletionFileLoc() const { |
| return CodeCompletionFileLoc; |
| } |
| |
| /// Returns true if code-completion is enabled and we have hit the |
| /// code-completion point. |
| bool isCodeCompletionReached() const { return CodeCompletionReached; } |
| |
| /// Note that we hit the code-completion point. |
| void setCodeCompletionReached() { |
| assert(isCodeCompletionEnabled() && "Code-completion not enabled!"); |
| CodeCompletionReached = true; |
| // Silence any diagnostics that occur after we hit the code-completion. |
| getDiagnostics().setSuppressAllDiagnostics(true); |
| } |
| |
| /// The location of the currently-active \#pragma clang |
| /// arc_cf_code_audited begin. |
| /// |
| /// Returns an invalid location if there is no such pragma active. |
| SourceLocation getPragmaARCCFCodeAuditedLoc() const { |
| return PragmaARCCFCodeAuditedLoc; |
| } |
| |
| /// Set the location of the currently-active \#pragma clang |
| /// arc_cf_code_audited begin. An invalid location ends the pragma. |
| void setPragmaARCCFCodeAuditedLoc(SourceLocation Loc) { |
| PragmaARCCFCodeAuditedLoc = Loc; |
| } |
| |
| /// The location of the currently-active \#pragma clang |
| /// assume_nonnull begin. |
| /// |
| /// Returns an invalid location if there is no such pragma active. |
| SourceLocation getPragmaAssumeNonNullLoc() const { |
| return PragmaAssumeNonNullLoc; |
| } |
| |
| /// Set the location of the currently-active \#pragma clang |
| /// assume_nonnull begin. An invalid location ends the pragma. |
| void setPragmaAssumeNonNullLoc(SourceLocation Loc) { |
| PragmaAssumeNonNullLoc = Loc; |
| } |
| |
| /// Set the directory in which the main file should be considered |
| /// to have been found, if it is not a real file. |
| void setMainFileDir(const DirectoryEntry *Dir) { |
| MainFileDir = Dir; |
| } |
| |
| /// Instruct the preprocessor to skip part of the main source file. |
| /// |
| /// \param Bytes The number of bytes in the preamble to skip. |
| /// |
| /// \param StartOfLine Whether skipping these bytes puts the lexer at the |
| /// start of a line. |
| void setSkipMainFilePreamble(unsigned Bytes, bool StartOfLine) { |
| SkipMainFilePreamble.first = Bytes; |
| SkipMainFilePreamble.second = StartOfLine; |
| } |
| |
| /// Forwarding function for diagnostics. This emits a diagnostic at |
| /// the specified Token's location, translating the token's start |
| /// position in the current buffer into a SourcePosition object for rendering. |
| DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID) const { |
| return Diags->Report(Loc, DiagID); |
| } |
| |
| DiagnosticBuilder Diag(const Token &Tok, unsigned DiagID) const { |
| return Diags->Report(Tok.getLocation(), DiagID); |
| } |
| |
| /// Return the 'spelling' of the token at the given |
| /// location; does not go up to the spelling location or down to the |
| /// expansion location. |
| /// |
| /// \param buffer A buffer which will be used only if the token requires |
| /// "cleaning", e.g. if it contains trigraphs or escaped newlines |
| /// \param invalid If non-null, will be set \c true if an error occurs. |
| StringRef getSpelling(SourceLocation loc, |
| SmallVectorImpl<char> &buffer, |
| bool *invalid = nullptr) const { |
| return Lexer::getSpelling(loc, buffer, SourceMgr, LangOpts, invalid); |
| } |
| |
| /// Return the 'spelling' of the Tok token. |
| /// |
| /// The spelling of a token is the characters used to represent the token in |
| /// the source file after trigraph expansion and escaped-newline folding. In |
| /// particular, this wants to get the true, uncanonicalized, spelling of |
| /// things like digraphs, UCNs, etc. |
| /// |
| /// \param Invalid If non-null, will be set \c true if an error occurs. |
| std::string getSpelling(const Token &Tok, bool *Invalid = nullptr) const { |
| return Lexer::getSpelling(Tok, SourceMgr, LangOpts, Invalid); |
| } |
| |
| /// Get the spelling of a token into a preallocated buffer, instead |
| /// of as an std::string. |
| /// |
| /// The caller is required to allocate enough space for the token, which is |
| /// guaranteed to be at least Tok.getLength() bytes long. The length of the |
| /// actual result is returned. |
| /// |
| /// Note that this method may do two possible things: it may either fill in |
| /// the buffer specified with characters, or it may *change the input pointer* |
| /// to point to a constant buffer with the data already in it (avoiding a |
| /// copy). The caller is not allowed to modify the returned buffer pointer |
| /// if an internal buffer is returned. |
| unsigned getSpelling(const Token &Tok, const char *&Buffer, |
| bool *Invalid = nullptr) const { |
| return Lexer::getSpelling(Tok, Buffer, SourceMgr, LangOpts, Invalid); |
| } |
| |
| /// Get the spelling of a token into a SmallVector. |
| /// |
| /// Note that the returned StringRef may not point to the |
| /// supplied buffer if a copy can be avoided. |
| StringRef getSpelling(const Token &Tok, |
| SmallVectorImpl<char> &Buffer, |
| bool *Invalid = nullptr) const; |
| |
| /// Relex the token at the specified location. |
| /// \returns true if there was a failure, false on success. |
| bool getRawToken(SourceLocation Loc, Token &Result, |
| bool IgnoreWhiteSpace = false) { |
| return Lexer::getRawToken(Loc, Result, SourceMgr, LangOpts, IgnoreWhiteSpace); |
| } |
| |
| /// Given a Token \p Tok that is a numeric constant with length 1, |
| /// return the character. |
| char |
| getSpellingOfSingleCharacterNumericConstant(const Token &Tok, |
| bool *Invalid = nullptr) const { |
| assert(Tok.is(tok::numeric_constant) && |
| Tok.getLength() == 1 && "Called on unsupported token"); |
| assert(!Tok.needsCleaning() && "Token can't need cleaning with length 1"); |
| |
| // If the token is carrying a literal data pointer, just use it. |
| if (const char *D = Tok.getLiteralData()) |
| return *D; |
| |
| // Otherwise, fall back on getCharacterData, which is slower, but always |
| // works. |
| return *SourceMgr.getCharacterData(Tok.getLocation(), Invalid); |
| } |
| |
| /// Retrieve the name of the immediate macro expansion. |
| /// |
| /// This routine starts from a source location, and finds the name of the |
| /// macro responsible for its immediate expansion. It looks through any |
| /// intervening macro argument expansions to compute this. It returns a |
| /// StringRef that refers to the SourceManager-owned buffer of the source |
| /// where that macro name is spelled. Thus, the result shouldn't out-live |
| /// the SourceManager. |
| StringRef getImmediateMacroName(SourceLocation Loc) { |
| return Lexer::getImmediateMacroName(Loc, SourceMgr, getLangOpts()); |
| } |
| |
| /// Plop the specified string into a scratch buffer and set the |
| /// specified token's location and length to it. |
| /// |
| /// If specified, the source location provides a location of the expansion |
| /// point of the token. |
| void CreateString(StringRef Str, Token &Tok, |
| SourceLocation ExpansionLocStart = SourceLocation(), |
| SourceLocation ExpansionLocEnd = SourceLocation()); |
| |
| /// Split the first Length characters out of the token starting at TokLoc |
| /// and return a location pointing to the split token. Re-lexing from the |
| /// split token will return the split token rather than the original. |
| SourceLocation SplitToken(SourceLocation TokLoc, unsigned Length); |
| |
| /// Computes the source location just past the end of the |
| /// token at this source location. |
| /// |
| /// This routine can be used to produce a source location that |
| /// points just past the end of the token referenced by \p Loc, and |
| /// is generally used when a diagnostic needs to point just after a |
| /// token where it expected something different that it received. If |
| /// the returned source location would not be meaningful (e.g., if |
| /// it points into a macro), this routine returns an invalid |
| /// source location. |
| /// |
| /// \param Offset an offset from the end of the token, where the source |
| /// location should refer to. The default offset (0) produces a source |
| /// location pointing just past the end of the token; an offset of 1 produces |
| /// a source location pointing to the last character in the token, etc. |
| SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset = 0) { |
| return Lexer::getLocForEndOfToken(Loc, Offset, SourceMgr, LangOpts); |
| } |
| |
| /// Returns true if the given MacroID location points at the first |
| /// token of the macro expansion. |
| /// |
| /// \param MacroBegin If non-null and function returns true, it is set to |
| /// begin location of the macro. |
| bool isAtStartOfMacroExpansion(SourceLocation loc, |
| SourceLocation *MacroBegin = nullptr) const { |
| return Lexer::isAtStartOfMacroExpansion(loc, SourceMgr, LangOpts, |
| MacroBegin); |
| } |
| |
| /// Returns true if the given MacroID location points at the last |
| /// token of the macro expansion. |
| /// |
| /// \param MacroEnd If non-null and function returns true, it is set to |
| /// end location of the macro. |
| bool isAtEndOfMacroExpansion(SourceLocation loc, |
| SourceLocation *MacroEnd = nullptr) const { |
| return Lexer::isAtEndOfMacroExpansion(loc, SourceMgr, LangOpts, MacroEnd); |
| } |
| |
| /// Print the token to stderr, used for debugging. |
| void DumpToken(const Token &Tok, bool DumpFlags = false) const; |
| void DumpLocation(SourceLocation Loc) const; |
| void DumpMacro(const MacroInfo &MI) const; |
| void dumpMacroInfo(const IdentifierInfo *II); |
| |
| /// Given a location that specifies the start of a |
| /// token, return a new location that specifies a character within the token. |
| SourceLocation AdvanceToTokenCharacter(SourceLocation TokStart, |
| unsigned Char) const { |
| return Lexer::AdvanceToTokenCharacter(TokStart, Char, SourceMgr, LangOpts); |
| } |
| |
| /// Increment the counters for the number of token paste operations |
| /// performed. |
| /// |
| /// If fast was specified, this is a 'fast paste' case we handled. |
| void IncrementPasteCounter(bool isFast) { |
| if (isFast) |
| ++NumFastTokenPaste; |
| else |
| ++NumTokenPaste; |
| } |
| |
| void PrintStats(); |
| |
| size_t getTotalMemory() const; |
| |
| /// When the macro expander pastes together a comment (/##/) in Microsoft |
| /// mode, this method handles updating the current state, returning the |
| /// token on the next source line. |
| void HandleMicrosoftCommentPaste(Token &Tok); |
| |
| //===--------------------------------------------------------------------===// |
| // Preprocessor callback methods. These are invoked by a lexer as various |
| // directives and events are found. |
| |
| /// Given a tok::raw_identifier token, look up the |
| /// identifier information for the token and install it into the token, |
| /// updating the token kind accordingly. |
| IdentifierInfo *LookUpIdentifierInfo(Token &Identifier) const; |
| |
| private: |
| llvm::DenseMap<IdentifierInfo*,unsigned> PoisonReasons; |
| |
| public: |
| /// Specifies the reason for poisoning an identifier. |
| /// |
| /// If that identifier is accessed while poisoned, then this reason will be |
| /// used instead of the default "poisoned" diagnostic. |
| void SetPoisonReason(IdentifierInfo *II, unsigned DiagID); |
| |
| /// Display reason for poisoned identifier. |
| void HandlePoisonedIdentifier(Token & Tok); |
| |
| void MaybeHandlePoisonedIdentifier(Token & Identifier) { |
| if(IdentifierInfo * II = Identifier.getIdentifierInfo()) { |
| if(II->isPoisoned()) { |
| HandlePoisonedIdentifier(Identifier); |
| } |
| } |
| } |
| |
| private: |
| /// Identifiers used for SEH handling in Borland. These are only |
| /// allowed in particular circumstances |
| // __except block |
| IdentifierInfo *Ident__exception_code, |
| *Ident___exception_code, |
| *Ident_GetExceptionCode; |
| // __except filter expression |
| IdentifierInfo *Ident__exception_info, |
| *Ident___exception_info, |
| *Ident_GetExceptionInfo; |
| // __finally |
| IdentifierInfo *Ident__abnormal_termination, |
| *Ident___abnormal_termination, |
| *Ident_AbnormalTermination; |
| |
| const char *getCurLexerEndPos(); |
| void diagnoseMissingHeaderInUmbrellaDir(const Module &Mod); |
| |
| public: |
| void PoisonSEHIdentifiers(bool Poison = true); // Borland |
| |
| /// Callback invoked when the lexer reads an identifier and has |
| /// filled in the tokens IdentifierInfo member. |
| /// |
| /// This callback potentially macro expands it or turns it into a named |
| /// token (like 'for'). |
| /// |
| /// \returns true if we actually computed a token, false if we need to |
| /// lex again. |
| bool HandleIdentifier(Token &Identifier); |
| |
| /// Callback invoked when the lexer hits the end of the current file. |
| /// |
| /// This either returns the EOF token and returns true, or |
| /// pops a level off the include stack and returns false, at which point the |
| /// client should call lex again. |
| bool HandleEndOfFile(Token &Result, bool isEndOfMacro = false); |
| |
| /// Callback invoked when the current TokenLexer hits the end of its |
| /// token stream. |
| bool HandleEndOfTokenLexer(Token &Result); |
| |
| /// Callback invoked when the lexer sees a # token at the start of a |
| /// line. |
| /// |
| /// This consumes the directive, modifies the lexer/preprocessor state, and |
| /// advances the lexer(s) so that the next token read is the correct one. |
| void HandleDirective(Token &Result); |
| |
| /// Ensure that the next token is a tok::eod token. |
| /// |
| /// If not, emit a diagnostic and consume up until the eod. |
| /// If \p EnableMacros is true, then we consider macros that expand to zero |
| /// tokens as being ok. |
| void CheckEndOfDirective(const char *Directive, bool EnableMacros = false); |
| |
| /// Read and discard all tokens remaining on the current line until |
| /// the tok::eod token is found. |
| void DiscardUntilEndOfDirective(); |
| |
| /// Returns true if the preprocessor has seen a use of |
| /// __DATE__ or __TIME__ in the file so far. |
| bool SawDateOrTime() const { |
| return DATELoc != SourceLocation() || TIMELoc != SourceLocation(); |
| } |
| unsigned getCounterValue() const { return CounterValue; } |
| void setCounterValue(unsigned V) { CounterValue = V; } |
| |
| /// Retrieves the module that we're currently building, if any. |
| Module *getCurrentModule(); |
| |
| /// Allocate a new MacroInfo object with the provided SourceLocation. |
| MacroInfo *AllocateMacroInfo(SourceLocation L); |
| |
| /// Turn the specified lexer token into a fully checked and spelled |
| /// filename, e.g. as an operand of \#include. |
| /// |
| /// The caller is expected to provide a buffer that is large enough to hold |
| /// the spelling of the filename, but is also expected to handle the case |
| /// when this method decides to use a different buffer. |
| /// |
| /// \returns true if the input filename was in <>'s or false if it was |
| /// in ""'s. |
| bool GetIncludeFilenameSpelling(SourceLocation Loc,StringRef &Filename); |
| |
| /// Given a "foo" or \<foo> reference, look up the indicated file. |
| /// |
| /// Returns null on failure. \p isAngled indicates whether the file |
| /// reference is for system \#include's or not (i.e. using <> instead of ""). |
| const FileEntry *LookupFile(SourceLocation FilenameLoc, StringRef Filename, |
| bool isAngled, const DirectoryLookup *FromDir, |
| const FileEntry *FromFile, |
| const DirectoryLookup *&CurDir, |
| SmallVectorImpl<char> *SearchPath, |
| SmallVectorImpl<char> *RelativePath, |
| ModuleMap::KnownHeader *SuggestedModule, |
| bool *IsMapped, bool SkipCache = false); |
| |
| /// Get the DirectoryLookup structure used to find the current |
| /// FileEntry, if CurLexer is non-null and if applicable. |
| /// |
| /// This allows us to implement \#include_next and find directory-specific |
| /// properties. |
| const DirectoryLookup *GetCurDirLookup() { return CurDirLookup; } |
| |
| /// Return true if we're in the top-level file, not in a \#include. |
| bool isInPrimaryFile() const; |
| |
| /// Handle cases where the \#include name is expanded |
| /// from a macro as multiple tokens, which need to be glued together. |
| /// |
| /// This occurs for code like: |
| /// \code |
| /// \#define FOO <x/y.h> |
| /// \#include FOO |
| /// \endcode |
| /// because in this case, "<x/y.h>" is returned as 7 tokens, not one. |
| /// |
| /// This code concatenates and consumes tokens up to the '>' token. It |
| /// returns false if the > was found, otherwise it returns true if it finds |
| /// and consumes the EOD marker. |
| bool ConcatenateIncludeName(SmallString<128> &FilenameBuffer, |
| SourceLocation &End); |
| |
| /// Lex an on-off-switch (C99 6.10.6p2) and verify that it is |
| /// followed by EOD. Return true if the token is not a valid on-off-switch. |
| bool LexOnOffSwitch(tok::OnOffSwitch &OOS); |
| |
| bool CheckMacroName(Token &MacroNameTok, MacroUse isDefineUndef, |
| bool *ShadowFlag = nullptr); |
| |
| void EnterSubmodule(Module *M, SourceLocation ImportLoc, bool ForPragma); |
| Module *LeaveSubmodule(bool ForPragma); |
| |
| private: |
| friend void TokenLexer::ExpandFunctionArguments(); |
| |
| void PushIncludeMacroStack() { |
| assert(CurLexerKind != CLK_CachingLexer && "cannot push a caching lexer"); |
| IncludeMacroStack.emplace_back(CurLexerKind, CurLexerSubmodule, |
| std::move(CurLexer), std::move(CurPTHLexer), |
| CurPPLexer, std::move(CurTokenLexer), |
| CurDirLookup); |
| CurPPLexer = nullptr; |
| } |
| |
| void PopIncludeMacroStack() { |
| CurLexer = std::move(IncludeMacroStack.back().TheLexer); |
| CurPTHLexer = std::move(IncludeMacroStack.back().ThePTHLexer); |
| CurPPLexer = IncludeMacroStack.back().ThePPLexer; |
| CurTokenLexer = std::move(IncludeMacroStack.back().TheTokenLexer); |
| CurDirLookup = IncludeMacroStack.back().TheDirLookup; |
| CurLexerSubmodule = IncludeMacroStack.back().TheSubmodule; |
| CurLexerKind = IncludeMacroStack.back().CurLexerKind; |
| IncludeMacroStack.pop_back(); |
| } |
| |
| void PropagateLineStartLeadingSpaceInfo(Token &Result); |
| |
| /// Determine whether we need to create module macros for #defines in the |
| /// current context. |
| bool needModuleMacros() const; |
| |
| /// Update the set of active module macros and ambiguity flag for a module |
| /// macro name. |
| void updateModuleMacroInfo(const IdentifierInfo *II, ModuleMacroInfo &Info); |
| |
| DefMacroDirective *AllocateDefMacroDirective(MacroInfo *MI, |
| SourceLocation Loc); |
| UndefMacroDirective *AllocateUndefMacroDirective(SourceLocation UndefLoc); |
| VisibilityMacroDirective *AllocateVisibilityMacroDirective(SourceLocation Loc, |
| bool isPublic); |
| |
| /// Lex and validate a macro name, which occurs after a |
| /// \#define or \#undef. |
| /// |
| /// \param MacroNameTok Token that represents the name defined or undefined. |
| /// \param IsDefineUndef Kind if preprocessor directive. |
| /// \param ShadowFlag Points to flag that is set if macro name shadows |
| /// a keyword. |
| /// |
| /// This emits a diagnostic, sets the token kind to eod, |
| /// and discards the rest of the macro line if the macro name is invalid. |
| void ReadMacroName(Token &MacroNameTok, MacroUse IsDefineUndef = MU_Other, |
| bool *ShadowFlag = nullptr); |
| |
| /// ReadOptionalMacroParameterListAndBody - This consumes all (i.e. the |
| /// entire line) of the macro's tokens and adds them to MacroInfo, and while |
| /// doing so performs certain validity checks including (but not limited to): |
| /// - # (stringization) is followed by a macro parameter |
| /// \param MacroNameTok - Token that represents the macro name |
| /// \param ImmediatelyAfterHeaderGuard - Macro follows an #ifdef header guard |
| /// |
| /// Either returns a pointer to a MacroInfo object OR emits a diagnostic and |
| /// returns a nullptr if an invalid sequence of tokens is encountered. |
| MacroInfo *ReadOptionalMacroParameterListAndBody( |
| const Token &MacroNameTok, bool ImmediatelyAfterHeaderGuard); |
| |
| /// The ( starting an argument list of a macro definition has just been read. |
| /// Lex the rest of the parameters and the closing ), updating \p MI with |
| /// what we learn and saving in \p LastTok the last token read. |
| /// Return true if an error occurs parsing the arg list. |
| bool ReadMacroParameterList(MacroInfo *MI, Token& LastTok); |
| |
| /// We just read a \#if or related directive and decided that the |
| /// subsequent tokens are in the \#if'd out portion of the |
| /// file. Lex the rest of the file, until we see an \#endif. If \p |
| /// FoundNonSkipPortion is true, then we have already emitted code for part of |
| /// this \#if directive, so \#else/\#elif blocks should never be entered. If |
| /// \p FoundElse is false, then \#else directives are ok, if not, then we have |
| /// already seen one so a \#else directive is a duplicate. When this returns, |
| /// the caller can lex the first valid token. |
| void SkipExcludedConditionalBlock(SourceLocation HashTokenLoc, |
| SourceLocation IfTokenLoc, |
| bool FoundNonSkipPortion, bool FoundElse, |
| SourceLocation ElseLoc = SourceLocation()); |
| |
| /// A fast PTH version of SkipExcludedConditionalBlock. |
| void PTHSkipExcludedConditionalBlock(); |
| |
| /// Information about the result for evaluating an expression for a |
| /// preprocessor directive. |
| struct DirectiveEvalResult { |
| /// Whether the expression was evaluated as true or not. |
| bool Conditional; |
| |
| /// True if the expression contained identifiers that were undefined. |
| bool IncludedUndefinedIds; |
| }; |
| |
| /// Evaluate an integer constant expression that may occur after a |
| /// \#if or \#elif directive and return a \p DirectiveEvalResult object. |
| /// |
| /// If the expression is equivalent to "!defined(X)" return X in IfNDefMacro. |
| DirectiveEvalResult EvaluateDirectiveExpression(IdentifierInfo *&IfNDefMacro); |
| |
| /// Install the standard preprocessor pragmas: |
| /// \#pragma GCC poison/system_header/dependency and \#pragma once. |
| void RegisterBuiltinPragmas(); |
| |
| /// Register builtin macros such as __LINE__ with the identifier table. |
| void RegisterBuiltinMacros(); |
| |
| /// If an identifier token is read that is to be expanded as a macro, handle |
| /// it and return the next token as 'Tok'. If we lexed a token, return true; |
| /// otherwise the caller should lex again. |
| bool HandleMacroExpandedIdentifier(Token &Tok, const MacroDefinition &MD); |
| |
| /// Cache macro expanded tokens for TokenLexers. |
| // |
| /// Works like a stack; a TokenLexer adds the macro expanded tokens that is |
| /// going to lex in the cache and when it finishes the tokens are removed |
| /// from the end of the cache. |
| Token *cacheMacroExpandedTokens(TokenLexer *tokLexer, |
| ArrayRef<Token> tokens); |
| |
| void removeCachedMacroExpandedTokensOfLastLexer(); |
| |
| /// Determine whether the next preprocessor token to be |
| /// lexed is a '('. If so, consume the token and return true, if not, this |
| /// method should have no observable side-effect on the lexed tokens. |
| bool isNextPPTokenLParen(); |
| |
| /// After reading "MACRO(", this method is invoked to read all of the formal |
| /// arguments specified for the macro invocation. Returns null on error. |
| MacroArgs *ReadMacroCallArgumentList(Token &MacroName, MacroInfo *MI, |
| SourceLocation &ExpansionEnd); |
| |
| /// If an identifier token is read that is to be expanded |
| /// as a builtin macro, handle it and return the next token as 'Tok'. |
| void ExpandBuiltinMacro(Token &Tok); |
| |
| /// Read a \c _Pragma directive, slice it up, process it, then |
| /// return the first token after the directive. |
| /// This assumes that the \c _Pragma token has just been read into \p Tok. |
| void Handle_Pragma(Token &Tok); |
| |
| /// Like Handle_Pragma except the pragma text is not enclosed within |
| /// a string literal. |
| void HandleMicrosoft__pragma(Token &Tok); |
| |
| /// Add a lexer to the top of the include stack and |
| /// start lexing tokens from it instead of the current buffer. |
| void EnterSourceFileWithLexer(Lexer *TheLexer, const DirectoryLookup *Dir); |
| |
| /// Add a lexer to the top of the include stack and |
| /// start getting tokens from it using the PTH cache. |
| void EnterSourceFileWithPTH(PTHLexer *PL, const DirectoryLookup *Dir); |
| |
| /// Set the FileID for the preprocessor predefines. |
| void setPredefinesFileID(FileID FID) { |
| assert(PredefinesFileID.isInvalid() && "PredefinesFileID already set!"); |
| PredefinesFileID = FID; |
| } |
| |
| /// Set the FileID for the PCH through header. |
| void setPCHThroughHeaderFileID(FileID FID); |
| |
| /// Returns true if we are lexing from a file and not a |
| /// pragma or a macro. |
| static bool IsFileLexer(const Lexer* L, const PreprocessorLexer* P) { |
| return L ? !L->isPragmaLexer() : P != nullptr; |
| } |
| |
| static bool IsFileLexer(const IncludeStackInfo& I) { |
| return IsFileLexer(I.TheLexer.get(), I.ThePPLexer); |
| } |
| |
| bool IsFileLexer() const { |
| return IsFileLexer(CurLexer.get(), CurPPLexer); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Caching stuff. |
| void CachingLex(Token &Result); |
| |
| bool InCachingLexMode() const { |
| // If the Lexer pointers are 0 and IncludeMacroStack is empty, it means |
| // that we are past EOF, not that we are in CachingLex mode. |
| return !CurPPLexer && !CurTokenLexer && !CurPTHLexer && |
| !IncludeMacroStack.empty(); |
| } |
| |
| void EnterCachingLexMode(); |
| |
| void ExitCachingLexMode() { |
| if (InCachingLexMode()) |
| RemoveTopOfLexerStack(); |
| } |
| |
| const Token &PeekAhead(unsigned N); |
| void AnnotatePreviousCachedTokens(const Token &Tok); |
| |
| //===--------------------------------------------------------------------===// |
| /// Handle*Directive - implement the various preprocessor directives. These |
| /// should side-effect the current preprocessor object so that the next call |
| /// to Lex() will return the appropriate token next. |
| void HandleLineDirective(); |
| void HandleDigitDirective(Token &Tok); |
| void HandleUserDiagnosticDirective(Token &Tok, bool isWarning); |
| void HandleIdentSCCSDirective(Token &Tok); |
| void HandleMacroPublicDirective(Token &Tok); |
| void HandleMacroPrivateDirective(); |
| |
| // File inclusion. |
| void HandleIncludeDirective(SourceLocation HashLoc, |
| Token &Tok, |
| const DirectoryLookup *LookupFrom = nullptr, |
| const FileEntry *LookupFromFile = nullptr, |
| bool isImport = false); |
| void HandleIncludeNextDirective(SourceLocation HashLoc, Token &Tok); |
| void HandleIncludeMacrosDirective(SourceLocation HashLoc, Token &Tok); |
| void HandleImportDirective(SourceLocation HashLoc, Token &Tok); |
| void HandleMicrosoftImportDirective(Token &Tok); |
| |
| public: |
| /// Check that the given module is available, producing a diagnostic if not. |
| /// \return \c true if the check failed (because the module is not available). |
| /// \c false if the module appears to be usable. |
| static bool checkModuleIsAvailable(const LangOptions &LangOpts, |
| const TargetInfo &TargetInfo, |
| DiagnosticsEngine &Diags, Module *M); |
| |
| // Module inclusion testing. |
| /// Find the module that owns the source or header file that |
| /// \p Loc points to. If the location is in a file that was included |
| /// into a module, or is outside any module, returns nullptr. |
| Module *getModuleForLocation(SourceLocation Loc); |
| |
| /// We want to produce a diagnostic at location IncLoc concerning a |
| /// missing module import. |
| /// |
| /// \param IncLoc The location at which the missing import was detected. |
| /// \param M The desired module. |
| /// \param MLoc A location within the desired module at which some desired |
| /// effect occurred (eg, where a desired entity was declared). |
| /// |
| /// \return A file that can be #included to import a module containing MLoc. |
| /// Null if no such file could be determined or if a #include is not |
| /// appropriate. |
| const FileEntry *getModuleHeaderToIncludeForDiagnostics(SourceLocation IncLoc, |
| Module *M, |
| SourceLocation MLoc); |
| |
| bool isRecordingPreamble() const { |
| return PreambleConditionalStack.isRecording(); |
| } |
| |
| bool hasRecordedPreamble() const { |
| return PreambleConditionalStack.hasRecordedPreamble(); |
| } |
| |
| ArrayRef<PPConditionalInfo> getPreambleConditionalStack() const { |
| return PreambleConditionalStack.getStack(); |
| } |
| |
| void setRecordedPreambleConditionalStack(ArrayRef<PPConditionalInfo> s) { |
| PreambleConditionalStack.setStack(s); |
| } |
| |
| void setReplayablePreambleConditionalStack(ArrayRef<PPConditionalInfo> s, |
| llvm::Optional<PreambleSkipInfo> SkipInfo) { |
| PreambleConditionalStack.startReplaying(); |
| PreambleConditionalStack.setStack(s); |
| PreambleConditionalStack.SkipInfo = SkipInfo; |
| } |
| |
| llvm::Optional<PreambleSkipInfo> getPreambleSkipInfo() const { |
| return PreambleConditionalStack.SkipInfo; |
| } |
| |
| private: |
| /// After processing predefined file, initialize the conditional stack from |
| /// the preamble. |
| void replayPreambleConditionalStack(); |
| |
| // Macro handling. |
| void HandleDefineDirective(Token &Tok, bool ImmediatelyAfterTopLevelIfndef); |
| void HandleUndefDirective(); |
| |
| // Conditional Inclusion. |
| void HandleIfdefDirective(Token &Tok, const Token &HashToken, |
| bool isIfndef, bool ReadAnyTokensBeforeDirective); |
| void HandleIfDirective(Token &Tok, const Token &HashToken, |
| bool ReadAnyTokensBeforeDirective); |
| void HandleEndifDirective(Token &Tok); |
| void HandleElseDirective(Token &Tok, const Token &HashToken); |
| void HandleElifDirective(Token &Tok, const Token &HashToken); |
| |
| // Pragmas. |
| void HandlePragmaDirective(SourceLocation IntroducerLoc, |
| PragmaIntroducerKind Introducer); |
| |
| public: |
| void HandlePragmaOnce(Token &OnceTok); |
| void HandlePragmaMark(); |
| void HandlePragmaPoison(); |
| void HandlePragmaSystemHeader(Token &SysHeaderTok); |
| void HandlePragmaDependency(Token &DependencyTok); |
| void HandlePragmaPushMacro(Token &Tok); |
| void HandlePragmaPopMacro(Token &Tok); |
| void HandlePragmaIncludeAlias(Token &Tok); |
| void HandlePragmaModuleBuild(Token &Tok); |
| IdentifierInfo *ParsePragmaPushOrPopMacro(Token &Tok); |
| |
| // Return true and store the first token only if any CommentHandler |
| // has inserted some tokens and getCommentRetentionState() is false. |
| bool HandleComment(Token &Token, SourceRange Comment); |
| |
| /// A macro is used, update information about macros that need unused |
| /// warnings. |
| void markMacroAsUsed(MacroInfo *MI); |
| }; |
| |
| /// Abstract base class that describes a handler that will receive |
| /// source ranges for each of the comments encountered in the source file. |
| class CommentHandler { |
| public: |
| virtual ~CommentHandler(); |
| |
| // The handler shall return true if it has pushed any tokens |
| // to be read using e.g. EnterToken or EnterTokenStream. |
| virtual bool HandleComment(Preprocessor &PP, SourceRange Comment) = 0; |
| }; |
| |
| /// Registry of pragma handlers added by plugins |
| using PragmaHandlerRegistry = llvm::Registry<PragmaHandler>; |
| |
| } // namespace clang |
| |
| #endif // LLVM_CLANG_LEX_PREPROCESSOR_H |