| //=-lib/fp_extend_impl.inc - low precision -> high precision conversion -*-- -// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is dual licensed under the MIT and the University of Illinois Open |
| // Source Licenses. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a fairly generic conversion from a narrower to a wider |
| // IEEE-754 floating-point type. The constants and types defined following the |
| // includes below parameterize the conversion. |
| // |
| // It does not support types that don't use the usual IEEE-754 interchange |
| // formats; specifically, some work would be needed to adapt it to |
| // (for example) the Intel 80-bit format or PowerPC double-double format. |
| // |
| // Note please, however, that this implementation is only intended to support |
| // *widening* operations; if you need to convert to a *narrower* floating-point |
| // type (e.g. double -> float), then this routine will not do what you want it |
| // to. |
| // |
| // It also requires that integer types at least as large as both formats |
| // are available on the target platform; this may pose a problem when trying |
| // to add support for quad on some 32-bit systems, for example. You also may |
| // run into trouble finding an appropriate CLZ function for wide source types; |
| // you will likely need to roll your own on some platforms. |
| // |
| // Finally, the following assumptions are made: |
| // |
| // 1. floating-point types and integer types have the same endianness on the |
| // target platform |
| // |
| // 2. quiet NaNs, if supported, are indicated by the leading bit of the |
| // significand field being set |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "fp_extend.h" |
| |
| static __inline dst_t __extendXfYf2__(src_t a) { |
| // Various constants whose values follow from the type parameters. |
| // Any reasonable optimizer will fold and propagate all of these. |
| const int srcBits = sizeof(src_t)*CHAR_BIT; |
| const int srcExpBits = srcBits - srcSigBits - 1; |
| const int srcInfExp = (1 << srcExpBits) - 1; |
| const int srcExpBias = srcInfExp >> 1; |
| |
| const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits; |
| const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits; |
| const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits); |
| const src_rep_t srcAbsMask = srcSignMask - 1; |
| const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1); |
| const src_rep_t srcNaNCode = srcQNaN - 1; |
| |
| const int dstBits = sizeof(dst_t)*CHAR_BIT; |
| const int dstExpBits = dstBits - dstSigBits - 1; |
| const int dstInfExp = (1 << dstExpBits) - 1; |
| const int dstExpBias = dstInfExp >> 1; |
| |
| const dst_rep_t dstMinNormal = DST_REP_C(1) << dstSigBits; |
| |
| // Break a into a sign and representation of the absolute value |
| const src_rep_t aRep = srcToRep(a); |
| const src_rep_t aAbs = aRep & srcAbsMask; |
| const src_rep_t sign = aRep & srcSignMask; |
| dst_rep_t absResult; |
| |
| // If sizeof(src_rep_t) < sizeof(int), the subtraction result is promoted |
| // to (signed) int. To avoid that, explicitly cast to src_rep_t. |
| if ((src_rep_t)(aAbs - srcMinNormal) < srcInfinity - srcMinNormal) { |
| // a is a normal number. |
| // Extend to the destination type by shifting the significand and |
| // exponent into the proper position and rebiasing the exponent. |
| absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits); |
| absResult += (dst_rep_t)(dstExpBias - srcExpBias) << dstSigBits; |
| } |
| |
| else if (aAbs >= srcInfinity) { |
| // a is NaN or infinity. |
| // Conjure the result by beginning with infinity, then setting the qNaN |
| // bit (if needed) and right-aligning the rest of the trailing NaN |
| // payload field. |
| absResult = (dst_rep_t)dstInfExp << dstSigBits; |
| absResult |= (dst_rep_t)(aAbs & srcQNaN) << (dstSigBits - srcSigBits); |
| absResult |= (dst_rep_t)(aAbs & srcNaNCode) << (dstSigBits - srcSigBits); |
| } |
| |
| else if (aAbs) { |
| // a is denormal. |
| // renormalize the significand and clear the leading bit, then insert |
| // the correct adjusted exponent in the destination type. |
| const int scale = src_rep_t_clz(aAbs) - src_rep_t_clz(srcMinNormal); |
| absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits + scale); |
| absResult ^= dstMinNormal; |
| const int resultExponent = dstExpBias - srcExpBias - scale + 1; |
| absResult |= (dst_rep_t)resultExponent << dstSigBits; |
| } |
| |
| else { |
| // a is zero. |
| absResult = 0; |
| } |
| |
| // Apply the signbit to (dst_t)abs(a). |
| const dst_rep_t result = absResult | (dst_rep_t)sign << (dstBits - srcBits); |
| return dstFromRep(result); |
| } |