| //= lib/fp_trunc_impl.inc - high precision -> low precision conversion *-*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is dual licensed under the MIT and the University of Illinois Open |
| // Source Licenses. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a fairly generic conversion from a wider to a narrower |
| // IEEE-754 floating-point type in the default (round to nearest, ties to even) |
| // rounding mode. The constants and types defined following the includes below |
| // parameterize the conversion. |
| // |
| // This routine can be trivially adapted to support conversions to |
| // half-precision or from quad-precision. It does not support types that don't |
| // use the usual IEEE-754 interchange formats; specifically, some work would be |
| // needed to adapt it to (for example) the Intel 80-bit format or PowerPC |
| // double-double format. |
| // |
| // Note please, however, that this implementation is only intended to support |
| // *narrowing* operations; if you need to convert to a *wider* floating-point |
| // type (e.g. float -> double), then this routine will not do what you want it |
| // to. |
| // |
| // It also requires that integer types at least as large as both formats |
| // are available on the target platform; this may pose a problem when trying |
| // to add support for quad on some 32-bit systems, for example. |
| // |
| // Finally, the following assumptions are made: |
| // |
| // 1. floating-point types and integer types have the same endianness on the |
| // target platform |
| // |
| // 2. quiet NaNs, if supported, are indicated by the leading bit of the |
| // significand field being set |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "fp_trunc.h" |
| |
| static __inline dst_t __truncXfYf2__(src_t a) { |
| // Various constants whose values follow from the type parameters. |
| // Any reasonable optimizer will fold and propagate all of these. |
| const int srcBits = sizeof(src_t)*CHAR_BIT; |
| const int srcExpBits = srcBits - srcSigBits - 1; |
| const int srcInfExp = (1 << srcExpBits) - 1; |
| const int srcExpBias = srcInfExp >> 1; |
| |
| const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits; |
| const src_rep_t srcSignificandMask = srcMinNormal - 1; |
| const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits; |
| const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits); |
| const src_rep_t srcAbsMask = srcSignMask - 1; |
| const src_rep_t roundMask = (SRC_REP_C(1) << (srcSigBits - dstSigBits)) - 1; |
| const src_rep_t halfway = SRC_REP_C(1) << (srcSigBits - dstSigBits - 1); |
| const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1); |
| const src_rep_t srcNaNCode = srcQNaN - 1; |
| |
| const int dstBits = sizeof(dst_t)*CHAR_BIT; |
| const int dstExpBits = dstBits - dstSigBits - 1; |
| const int dstInfExp = (1 << dstExpBits) - 1; |
| const int dstExpBias = dstInfExp >> 1; |
| |
| const int underflowExponent = srcExpBias + 1 - dstExpBias; |
| const int overflowExponent = srcExpBias + dstInfExp - dstExpBias; |
| const src_rep_t underflow = (src_rep_t)underflowExponent << srcSigBits; |
| const src_rep_t overflow = (src_rep_t)overflowExponent << srcSigBits; |
| |
| const dst_rep_t dstQNaN = DST_REP_C(1) << (dstSigBits - 1); |
| const dst_rep_t dstNaNCode = dstQNaN - 1; |
| |
| // Break a into a sign and representation of the absolute value |
| const src_rep_t aRep = srcToRep(a); |
| const src_rep_t aAbs = aRep & srcAbsMask; |
| const src_rep_t sign = aRep & srcSignMask; |
| dst_rep_t absResult; |
| |
| if (aAbs - underflow < aAbs - overflow) { |
| // The exponent of a is within the range of normal numbers in the |
| // destination format. We can convert by simply right-shifting with |
| // rounding and adjusting the exponent. |
| absResult = aAbs >> (srcSigBits - dstSigBits); |
| absResult -= (dst_rep_t)(srcExpBias - dstExpBias) << dstSigBits; |
| |
| const src_rep_t roundBits = aAbs & roundMask; |
| // Round to nearest |
| if (roundBits > halfway) |
| absResult++; |
| // Ties to even |
| else if (roundBits == halfway) |
| absResult += absResult & 1; |
| } |
| else if (aAbs > srcInfinity) { |
| // a is NaN. |
| // Conjure the result by beginning with infinity, setting the qNaN |
| // bit and inserting the (truncated) trailing NaN field. |
| absResult = (dst_rep_t)dstInfExp << dstSigBits; |
| absResult |= dstQNaN; |
| absResult |= ((aAbs & srcNaNCode) >> (srcSigBits - dstSigBits)) & dstNaNCode; |
| } |
| else if (aAbs >= overflow) { |
| // a overflows to infinity. |
| absResult = (dst_rep_t)dstInfExp << dstSigBits; |
| } |
| else { |
| // a underflows on conversion to the destination type or is an exact |
| // zero. The result may be a denormal or zero. Extract the exponent |
| // to get the shift amount for the denormalization. |
| const int aExp = aAbs >> srcSigBits; |
| const int shift = srcExpBias - dstExpBias - aExp + 1; |
| |
| const src_rep_t significand = (aRep & srcSignificandMask) | srcMinNormal; |
| |
| // Right shift by the denormalization amount with sticky. |
| if (shift > srcSigBits) { |
| absResult = 0; |
| } else { |
| const bool sticky = significand << (srcBits - shift); |
| src_rep_t denormalizedSignificand = significand >> shift | sticky; |
| absResult = denormalizedSignificand >> (srcSigBits - dstSigBits); |
| const src_rep_t roundBits = denormalizedSignificand & roundMask; |
| // Round to nearest |
| if (roundBits > halfway) |
| absResult++; |
| // Ties to even |
| else if (roundBits == halfway) |
| absResult += absResult & 1; |
| } |
| } |
| |
| // Apply the signbit to (dst_t)abs(a). |
| const dst_rep_t result = absResult | sign >> (srcBits - dstBits); |
| return dstFromRep(result); |
| } |