blob: 5f6a024cd13298bd9750c9475a4fcc64aa40add7 [file] [log] [blame]
//===- IRSymtab.h - data definitions for IR symbol tables -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains data definitions and a reader and builder for a symbol
// table for LLVM IR. Its purpose is to allow linkers and other consumers of
// bitcode files to efficiently read the symbol table for symbol resolution
// purposes without needing to construct a module in memory.
//
// As with most object files the symbol table has two parts: the symbol table
// itself and a string table which is referenced by the symbol table.
//
// A symbol table corresponds to a single bitcode file, which may consist of
// multiple modules, so symbol tables may likewise contain symbols for multiple
// modules.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_OBJECT_IRSYMTAB_H
#define LLVM_OBJECT_IRSYMTAB_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/Object/SymbolicFile.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include <cassert>
#include <cstdint>
#include <vector>
namespace llvm {
struct BitcodeFileContents;
class StringTableBuilder;
namespace irsymtab {
namespace storage {
// The data structures in this namespace define the low-level serialization
// format. Clients that just want to read a symbol table should use the
// irsymtab::Reader class.
using Word = support::ulittle32_t;
/// A reference to a string in the string table.
struct Str {
Word Offset, Size;
StringRef get(StringRef Strtab) const {
return {Strtab.data() + Offset, Size};
}
};
/// A reference to a range of objects in the symbol table.
template <typename T> struct Range {
Word Offset, Size;
ArrayRef<T> get(StringRef Symtab) const {
return {reinterpret_cast<const T *>(Symtab.data() + Offset), Size};
}
};
/// Describes the range of a particular module's symbols within the symbol
/// table.
struct Module {
Word Begin, End;
/// The index of the first Uncommon for this Module.
Word UncBegin;
};
/// This is equivalent to an IR comdat.
struct Comdat {
Str Name;
};
/// Contains the information needed by linkers for symbol resolution, as well as
/// by the LTO implementation itself.
struct Symbol {
/// The mangled symbol name.
Str Name;
/// The unmangled symbol name, or the empty string if this is not an IR
/// symbol.
Str IRName;
/// The index into Header::Comdats, or -1 if not a comdat member.
Word ComdatIndex;
Word Flags;
enum FlagBits {
FB_visibility, // 2 bits
FB_has_uncommon = FB_visibility + 2,
FB_undefined,
FB_weak,
FB_common,
FB_indirect,
FB_used,
FB_tls,
FB_may_omit,
FB_global,
FB_format_specific,
FB_unnamed_addr,
FB_executable,
};
};
/// This data structure contains rarely used symbol fields and is optionally
/// referenced by a Symbol.
struct Uncommon {
Word CommonSize, CommonAlign;
/// COFF-specific: the name of the symbol that a weak external resolves to
/// if not defined.
Str COFFWeakExternFallbackName;
/// Specified section name, if any.
Str SectionName;
};
struct Header {
/// Version number of the symtab format. This number should be incremented
/// when the format changes, but it does not need to be incremented if a
/// change to LLVM would cause it to create a different symbol table.
Word Version;
enum { kCurrentVersion = 1 };
/// The producer's version string (LLVM_VERSION_STRING " " LLVM_REVISION).
/// Consumers should rebuild the symbol table from IR if the producer's
/// version does not match the consumer's version due to potential differences
/// in symbol table format, symbol enumeration order and so on.
Str Producer;
Range<Module> Modules;
Range<Comdat> Comdats;
Range<Symbol> Symbols;
Range<Uncommon> Uncommons;
Str TargetTriple, SourceFileName;
/// COFF-specific: linker directives.
Str COFFLinkerOpts;
};
} // end namespace storage
/// Fills in Symtab and StrtabBuilder with a valid symbol and string table for
/// Mods.
Error build(ArrayRef<Module *> Mods, SmallVector<char, 0> &Symtab,
StringTableBuilder &StrtabBuilder, BumpPtrAllocator &Alloc);
/// This represents a symbol that has been read from a storage::Symbol and
/// possibly a storage::Uncommon.
struct Symbol {
// Copied from storage::Symbol.
StringRef Name, IRName;
int ComdatIndex;
uint32_t Flags;
// Copied from storage::Uncommon.
uint32_t CommonSize, CommonAlign;
StringRef COFFWeakExternFallbackName;
StringRef SectionName;
/// Returns the mangled symbol name.
StringRef getName() const { return Name; }
/// Returns the unmangled symbol name, or the empty string if this is not an
/// IR symbol.
StringRef getIRName() const { return IRName; }
/// Returns the index into the comdat table (see Reader::getComdatTable()), or
/// -1 if not a comdat member.
int getComdatIndex() const { return ComdatIndex; }
using S = storage::Symbol;
GlobalValue::VisibilityTypes getVisibility() const {
return GlobalValue::VisibilityTypes((Flags >> S::FB_visibility) & 3);
}
bool isUndefined() const { return (Flags >> S::FB_undefined) & 1; }
bool isWeak() const { return (Flags >> S::FB_weak) & 1; }
bool isCommon() const { return (Flags >> S::FB_common) & 1; }
bool isIndirect() const { return (Flags >> S::FB_indirect) & 1; }
bool isUsed() const { return (Flags >> S::FB_used) & 1; }
bool isTLS() const { return (Flags >> S::FB_tls) & 1; }
bool canBeOmittedFromSymbolTable() const {
return (Flags >> S::FB_may_omit) & 1;
}
bool isGlobal() const { return (Flags >> S::FB_global) & 1; }
bool isFormatSpecific() const { return (Flags >> S::FB_format_specific) & 1; }
bool isUnnamedAddr() const { return (Flags >> S::FB_unnamed_addr) & 1; }
bool isExecutable() const { return (Flags >> S::FB_executable) & 1; }
uint64_t getCommonSize() const {
assert(isCommon());
return CommonSize;
}
uint32_t getCommonAlignment() const {
assert(isCommon());
return CommonAlign;
}
/// COFF-specific: for weak externals, returns the name of the symbol that is
/// used as a fallback if the weak external remains undefined.
StringRef getCOFFWeakExternalFallback() const {
assert(isWeak() && isIndirect());
return COFFWeakExternFallbackName;
}
StringRef getSectionName() const { return SectionName; }
};
/// This class can be used to read a Symtab and Strtab produced by
/// irsymtab::build.
class Reader {
StringRef Symtab, Strtab;
ArrayRef<storage::Module> Modules;
ArrayRef<storage::Comdat> Comdats;
ArrayRef<storage::Symbol> Symbols;
ArrayRef<storage::Uncommon> Uncommons;
StringRef str(storage::Str S) const { return S.get(Strtab); }
template <typename T> ArrayRef<T> range(storage::Range<T> R) const {
return R.get(Symtab);
}
const storage::Header &header() const {
return *reinterpret_cast<const storage::Header *>(Symtab.data());
}
public:
class SymbolRef;
Reader() = default;
Reader(StringRef Symtab, StringRef Strtab) : Symtab(Symtab), Strtab(Strtab) {
Modules = range(header().Modules);
Comdats = range(header().Comdats);
Symbols = range(header().Symbols);
Uncommons = range(header().Uncommons);
}
using symbol_range = iterator_range<object::content_iterator<SymbolRef>>;
/// Returns the symbol table for the entire bitcode file.
/// The symbols enumerated by this method are ephemeral, but they can be
/// copied into an irsymtab::Symbol object.
symbol_range symbols() const;
size_t getNumModules() const { return Modules.size(); }
/// Returns a slice of the symbol table for the I'th module in the file.
/// The symbols enumerated by this method are ephemeral, but they can be
/// copied into an irsymtab::Symbol object.
symbol_range module_symbols(unsigned I) const;
StringRef getTargetTriple() const { return str(header().TargetTriple); }
/// Returns the source file path specified at compile time.
StringRef getSourceFileName() const { return str(header().SourceFileName); }
/// Returns a table with all the comdats used by this file.
std::vector<StringRef> getComdatTable() const {
std::vector<StringRef> ComdatTable;
ComdatTable.reserve(Comdats.size());
for (auto C : Comdats)
ComdatTable.push_back(str(C.Name));
return ComdatTable;
}
/// COFF-specific: returns linker options specified in the input file.
StringRef getCOFFLinkerOpts() const { return str(header().COFFLinkerOpts); }
};
/// Ephemeral symbols produced by Reader::symbols() and
/// Reader::module_symbols().
class Reader::SymbolRef : public Symbol {
const storage::Symbol *SymI, *SymE;
const storage::Uncommon *UncI;
const Reader *R;
void read() {
if (SymI == SymE)
return;
Name = R->str(SymI->Name);
IRName = R->str(SymI->IRName);
ComdatIndex = SymI->ComdatIndex;
Flags = SymI->Flags;
if (Flags & (1 << storage::Symbol::FB_has_uncommon)) {
CommonSize = UncI->CommonSize;
CommonAlign = UncI->CommonAlign;
COFFWeakExternFallbackName = R->str(UncI->COFFWeakExternFallbackName);
SectionName = R->str(UncI->SectionName);
} else
// Reset this field so it can be queried unconditionally for all symbols.
SectionName = "";
}
public:
SymbolRef(const storage::Symbol *SymI, const storage::Symbol *SymE,
const storage::Uncommon *UncI, const Reader *R)
: SymI(SymI), SymE(SymE), UncI(UncI), R(R) {
read();
}
void moveNext() {
++SymI;
if (Flags & (1 << storage::Symbol::FB_has_uncommon))
++UncI;
read();
}
bool operator==(const SymbolRef &Other) const { return SymI == Other.SymI; }
};
inline Reader::symbol_range Reader::symbols() const {
return {SymbolRef(Symbols.begin(), Symbols.end(), Uncommons.begin(), this),
SymbolRef(Symbols.end(), Symbols.end(), nullptr, this)};
}
inline Reader::symbol_range Reader::module_symbols(unsigned I) const {
const storage::Module &M = Modules[I];
const storage::Symbol *MBegin = Symbols.begin() + M.Begin,
*MEnd = Symbols.begin() + M.End;
return {SymbolRef(MBegin, MEnd, Uncommons.begin() + M.UncBegin, this),
SymbolRef(MEnd, MEnd, nullptr, this)};
}
/// The contents of the irsymtab in a bitcode file. Any underlying data for the
/// irsymtab are owned by Symtab and Strtab.
struct FileContents {
SmallVector<char, 0> Symtab, Strtab;
Reader TheReader;
};
/// Reads the contents of a bitcode file, creating its irsymtab if necessary.
Expected<FileContents> readBitcode(const BitcodeFileContents &BFC);
} // end namespace irsymtab
} // end namespace llvm
#endif // LLVM_OBJECT_IRSYMTAB_H