| //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the implementation of the scalar evolution analysis |
| // engine, which is used primarily to analyze expressions involving induction |
| // variables in loops. |
| // |
| // There are several aspects to this library. First is the representation of |
| // scalar expressions, which are represented as subclasses of the SCEV class. |
| // These classes are used to represent certain types of subexpressions that we |
| // can handle. We only create one SCEV of a particular shape, so |
| // pointer-comparisons for equality are legal. |
| // |
| // One important aspect of the SCEV objects is that they are never cyclic, even |
| // if there is a cycle in the dataflow for an expression (ie, a PHI node). If |
| // the PHI node is one of the idioms that we can represent (e.g., a polynomial |
| // recurrence) then we represent it directly as a recurrence node, otherwise we |
| // represent it as a SCEVUnknown node. |
| // |
| // In addition to being able to represent expressions of various types, we also |
| // have folders that are used to build the *canonical* representation for a |
| // particular expression. These folders are capable of using a variety of |
| // rewrite rules to simplify the expressions. |
| // |
| // Once the folders are defined, we can implement the more interesting |
| // higher-level code, such as the code that recognizes PHI nodes of various |
| // types, computes the execution count of a loop, etc. |
| // |
| // TODO: We should use these routines and value representations to implement |
| // dependence analysis! |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // There are several good references for the techniques used in this analysis. |
| // |
| // Chains of recurrences -- a method to expedite the evaluation |
| // of closed-form functions |
| // Olaf Bachmann, Paul S. Wang, Eugene V. Zima |
| // |
| // On computational properties of chains of recurrences |
| // Eugene V. Zima |
| // |
| // Symbolic Evaluation of Chains of Recurrences for Loop Optimization |
| // Robert A. van Engelen |
| // |
| // Efficient Symbolic Analysis for Optimizing Compilers |
| // Robert A. van Engelen |
| // |
| // Using the chains of recurrences algebra for data dependence testing and |
| // induction variable substitution |
| // MS Thesis, Johnie Birch |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/EquivalenceClasses.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/ScopeExit.h" |
| #include "llvm/ADT/Sequence.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/ConstantRange.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/InstIterator.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/SaveAndRestore.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <climits> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstdlib> |
| #include <map> |
| #include <memory> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "scalar-evolution" |
| |
| STATISTIC(NumArrayLenItCounts, |
| "Number of trip counts computed with array length"); |
| STATISTIC(NumTripCountsComputed, |
| "Number of loops with predictable loop counts"); |
| STATISTIC(NumTripCountsNotComputed, |
| "Number of loops without predictable loop counts"); |
| STATISTIC(NumBruteForceTripCountsComputed, |
| "Number of loops with trip counts computed by force"); |
| |
| static cl::opt<unsigned> |
| MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, |
| cl::desc("Maximum number of iterations SCEV will " |
| "symbolically execute a constant " |
| "derived loop"), |
| cl::init(100)); |
| |
| // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. |
| static cl::opt<bool> VerifySCEV( |
| "verify-scev", cl::Hidden, |
| cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); |
| static cl::opt<bool> |
| VerifySCEVMap("verify-scev-maps", cl::Hidden, |
| cl::desc("Verify no dangling value in ScalarEvolution's " |
| "ExprValueMap (slow)")); |
| |
| static cl::opt<unsigned> MulOpsInlineThreshold( |
| "scev-mulops-inline-threshold", cl::Hidden, |
| cl::desc("Threshold for inlining multiplication operands into a SCEV"), |
| cl::init(32)); |
| |
| static cl::opt<unsigned> AddOpsInlineThreshold( |
| "scev-addops-inline-threshold", cl::Hidden, |
| cl::desc("Threshold for inlining addition operands into a SCEV"), |
| cl::init(500)); |
| |
| static cl::opt<unsigned> MaxSCEVCompareDepth( |
| "scalar-evolution-max-scev-compare-depth", cl::Hidden, |
| cl::desc("Maximum depth of recursive SCEV complexity comparisons"), |
| cl::init(32)); |
| |
| static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( |
| "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, |
| cl::desc("Maximum depth of recursive SCEV operations implication analysis"), |
| cl::init(2)); |
| |
| static cl::opt<unsigned> MaxValueCompareDepth( |
| "scalar-evolution-max-value-compare-depth", cl::Hidden, |
| cl::desc("Maximum depth of recursive value complexity comparisons"), |
| cl::init(2)); |
| |
| static cl::opt<unsigned> |
| MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, |
| cl::desc("Maximum depth of recursive arithmetics"), |
| cl::init(32)); |
| |
| static cl::opt<unsigned> MaxConstantEvolvingDepth( |
| "scalar-evolution-max-constant-evolving-depth", cl::Hidden, |
| cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); |
| |
| static cl::opt<unsigned> |
| MaxExtDepth("scalar-evolution-max-ext-depth", cl::Hidden, |
| cl::desc("Maximum depth of recursive SExt/ZExt"), |
| cl::init(8)); |
| |
| static cl::opt<unsigned> |
| MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, |
| cl::desc("Max coefficients in AddRec during evolving"), |
| cl::init(16)); |
| |
| //===----------------------------------------------------------------------===// |
| // SCEV class definitions |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // Implementation of the SCEV class. |
| // |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void SCEV::dump() const { |
| print(dbgs()); |
| dbgs() << '\n'; |
| } |
| #endif |
| |
| void SCEV::print(raw_ostream &OS) const { |
| switch (static_cast<SCEVTypes>(getSCEVType())) { |
| case scConstant: |
| cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); |
| return; |
| case scTruncate: { |
| const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); |
| const SCEV *Op = Trunc->getOperand(); |
| OS << "(trunc " << *Op->getType() << " " << *Op << " to " |
| << *Trunc->getType() << ")"; |
| return; |
| } |
| case scZeroExtend: { |
| const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); |
| const SCEV *Op = ZExt->getOperand(); |
| OS << "(zext " << *Op->getType() << " " << *Op << " to " |
| << *ZExt->getType() << ")"; |
| return; |
| } |
| case scSignExtend: { |
| const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); |
| const SCEV *Op = SExt->getOperand(); |
| OS << "(sext " << *Op->getType() << " " << *Op << " to " |
| << *SExt->getType() << ")"; |
| return; |
| } |
| case scAddRecExpr: { |
| const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); |
| OS << "{" << *AR->getOperand(0); |
| for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) |
| OS << ",+," << *AR->getOperand(i); |
| OS << "}<"; |
| if (AR->hasNoUnsignedWrap()) |
| OS << "nuw><"; |
| if (AR->hasNoSignedWrap()) |
| OS << "nsw><"; |
| if (AR->hasNoSelfWrap() && |
| !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) |
| OS << "nw><"; |
| AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); |
| OS << ">"; |
| return; |
| } |
| case scAddExpr: |
| case scMulExpr: |
| case scUMaxExpr: |
| case scSMaxExpr: { |
| const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); |
| const char *OpStr = nullptr; |
| switch (NAry->getSCEVType()) { |
| case scAddExpr: OpStr = " + "; break; |
| case scMulExpr: OpStr = " * "; break; |
| case scUMaxExpr: OpStr = " umax "; break; |
| case scSMaxExpr: OpStr = " smax "; break; |
| } |
| OS << "("; |
| for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); |
| I != E; ++I) { |
| OS << **I; |
| if (std::next(I) != E) |
| OS << OpStr; |
| } |
| OS << ")"; |
| switch (NAry->getSCEVType()) { |
| case scAddExpr: |
| case scMulExpr: |
| if (NAry->hasNoUnsignedWrap()) |
| OS << "<nuw>"; |
| if (NAry->hasNoSignedWrap()) |
| OS << "<nsw>"; |
| } |
| return; |
| } |
| case scUDivExpr: { |
| const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); |
| OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; |
| return; |
| } |
| case scUnknown: { |
| const SCEVUnknown *U = cast<SCEVUnknown>(this); |
| Type *AllocTy; |
| if (U->isSizeOf(AllocTy)) { |
| OS << "sizeof(" << *AllocTy << ")"; |
| return; |
| } |
| if (U->isAlignOf(AllocTy)) { |
| OS << "alignof(" << *AllocTy << ")"; |
| return; |
| } |
| |
| Type *CTy; |
| Constant *FieldNo; |
| if (U->isOffsetOf(CTy, FieldNo)) { |
| OS << "offsetof(" << *CTy << ", "; |
| FieldNo->printAsOperand(OS, false); |
| OS << ")"; |
| return; |
| } |
| |
| // Otherwise just print it normally. |
| U->getValue()->printAsOperand(OS, false); |
| return; |
| } |
| case scCouldNotCompute: |
| OS << "***COULDNOTCOMPUTE***"; |
| return; |
| } |
| llvm_unreachable("Unknown SCEV kind!"); |
| } |
| |
| Type *SCEV::getType() const { |
| switch (static_cast<SCEVTypes>(getSCEVType())) { |
| case scConstant: |
| return cast<SCEVConstant>(this)->getType(); |
| case scTruncate: |
| case scZeroExtend: |
| case scSignExtend: |
| return cast<SCEVCastExpr>(this)->getType(); |
| case scAddRecExpr: |
| case scMulExpr: |
| case scUMaxExpr: |
| case scSMaxExpr: |
| return cast<SCEVNAryExpr>(this)->getType(); |
| case scAddExpr: |
| return cast<SCEVAddExpr>(this)->getType(); |
| case scUDivExpr: |
| return cast<SCEVUDivExpr>(this)->getType(); |
| case scUnknown: |
| return cast<SCEVUnknown>(this)->getType(); |
| case scCouldNotCompute: |
| llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); |
| } |
| llvm_unreachable("Unknown SCEV kind!"); |
| } |
| |
| bool SCEV::isZero() const { |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) |
| return SC->getValue()->isZero(); |
| return false; |
| } |
| |
| bool SCEV::isOne() const { |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) |
| return SC->getValue()->isOne(); |
| return false; |
| } |
| |
| bool SCEV::isAllOnesValue() const { |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) |
| return SC->getValue()->isMinusOne(); |
| return false; |
| } |
| |
| bool SCEV::isNonConstantNegative() const { |
| const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); |
| if (!Mul) return false; |
| |
| // If there is a constant factor, it will be first. |
| const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); |
| if (!SC) return false; |
| |
| // Return true if the value is negative, this matches things like (-42 * V). |
| return SC->getAPInt().isNegative(); |
| } |
| |
| SCEVCouldNotCompute::SCEVCouldNotCompute() : |
| SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} |
| |
| bool SCEVCouldNotCompute::classof(const SCEV *S) { |
| return S->getSCEVType() == scCouldNotCompute; |
| } |
| |
| const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { |
| FoldingSetNodeID ID; |
| ID.AddInteger(scConstant); |
| ID.AddPointer(V); |
| void *IP = nullptr; |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); |
| UniqueSCEVs.InsertNode(S, IP); |
| return S; |
| } |
| |
| const SCEV *ScalarEvolution::getConstant(const APInt &Val) { |
| return getConstant(ConstantInt::get(getContext(), Val)); |
| } |
| |
| const SCEV * |
| ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { |
| IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); |
| return getConstant(ConstantInt::get(ITy, V, isSigned)); |
| } |
| |
| SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, |
| unsigned SCEVTy, const SCEV *op, Type *ty) |
| : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} |
| |
| SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, |
| const SCEV *op, Type *ty) |
| : SCEVCastExpr(ID, scTruncate, op, ty) { |
| assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
| "Cannot truncate non-integer value!"); |
| } |
| |
| SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, |
| const SCEV *op, Type *ty) |
| : SCEVCastExpr(ID, scZeroExtend, op, ty) { |
| assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
| "Cannot zero extend non-integer value!"); |
| } |
| |
| SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, |
| const SCEV *op, Type *ty) |
| : SCEVCastExpr(ID, scSignExtend, op, ty) { |
| assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
| "Cannot sign extend non-integer value!"); |
| } |
| |
| void SCEVUnknown::deleted() { |
| // Clear this SCEVUnknown from various maps. |
| SE->forgetMemoizedResults(this); |
| |
| // Remove this SCEVUnknown from the uniquing map. |
| SE->UniqueSCEVs.RemoveNode(this); |
| |
| // Release the value. |
| setValPtr(nullptr); |
| } |
| |
| void SCEVUnknown::allUsesReplacedWith(Value *New) { |
| // Remove this SCEVUnknown from the uniquing map. |
| SE->UniqueSCEVs.RemoveNode(this); |
| |
| // Update this SCEVUnknown to point to the new value. This is needed |
| // because there may still be outstanding SCEVs which still point to |
| // this SCEVUnknown. |
| setValPtr(New); |
| } |
| |
| bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { |
| if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) |
| if (VCE->getOpcode() == Instruction::PtrToInt) |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) |
| if (CE->getOpcode() == Instruction::GetElementPtr && |
| CE->getOperand(0)->isNullValue() && |
| CE->getNumOperands() == 2) |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) |
| if (CI->isOne()) { |
| AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) |
| ->getElementType(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { |
| if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) |
| if (VCE->getOpcode() == Instruction::PtrToInt) |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) |
| if (CE->getOpcode() == Instruction::GetElementPtr && |
| CE->getOperand(0)->isNullValue()) { |
| Type *Ty = |
| cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); |
| if (StructType *STy = dyn_cast<StructType>(Ty)) |
| if (!STy->isPacked() && |
| CE->getNumOperands() == 3 && |
| CE->getOperand(1)->isNullValue()) { |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) |
| if (CI->isOne() && |
| STy->getNumElements() == 2 && |
| STy->getElementType(0)->isIntegerTy(1)) { |
| AllocTy = STy->getElementType(1); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { |
| if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) |
| if (VCE->getOpcode() == Instruction::PtrToInt) |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) |
| if (CE->getOpcode() == Instruction::GetElementPtr && |
| CE->getNumOperands() == 3 && |
| CE->getOperand(0)->isNullValue() && |
| CE->getOperand(1)->isNullValue()) { |
| Type *Ty = |
| cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); |
| // Ignore vector types here so that ScalarEvolutionExpander doesn't |
| // emit getelementptrs that index into vectors. |
| if (Ty->isStructTy() || Ty->isArrayTy()) { |
| CTy = Ty; |
| FieldNo = CE->getOperand(2); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SCEV Utilities |
| //===----------------------------------------------------------------------===// |
| |
| /// Compare the two values \p LV and \p RV in terms of their "complexity" where |
| /// "complexity" is a partial (and somewhat ad-hoc) relation used to order |
| /// operands in SCEV expressions. \p EqCache is a set of pairs of values that |
| /// have been previously deemed to be "equally complex" by this routine. It is |
| /// intended to avoid exponential time complexity in cases like: |
| /// |
| /// %a = f(%x, %y) |
| /// %b = f(%a, %a) |
| /// %c = f(%b, %b) |
| /// |
| /// %d = f(%x, %y) |
| /// %e = f(%d, %d) |
| /// %f = f(%e, %e) |
| /// |
| /// CompareValueComplexity(%f, %c) |
| /// |
| /// Since we do not continue running this routine on expression trees once we |
| /// have seen unequal values, there is no need to track them in the cache. |
| static int |
| CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, |
| const LoopInfo *const LI, Value *LV, Value *RV, |
| unsigned Depth) { |
| if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) |
| return 0; |
| |
| // Order pointer values after integer values. This helps SCEVExpander form |
| // GEPs. |
| bool LIsPointer = LV->getType()->isPointerTy(), |
| RIsPointer = RV->getType()->isPointerTy(); |
| if (LIsPointer != RIsPointer) |
| return (int)LIsPointer - (int)RIsPointer; |
| |
| // Compare getValueID values. |
| unsigned LID = LV->getValueID(), RID = RV->getValueID(); |
| if (LID != RID) |
| return (int)LID - (int)RID; |
| |
| // Sort arguments by their position. |
| if (const auto *LA = dyn_cast<Argument>(LV)) { |
| const auto *RA = cast<Argument>(RV); |
| unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); |
| return (int)LArgNo - (int)RArgNo; |
| } |
| |
| if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { |
| const auto *RGV = cast<GlobalValue>(RV); |
| |
| const auto IsGVNameSemantic = [&](const GlobalValue *GV) { |
| auto LT = GV->getLinkage(); |
| return !(GlobalValue::isPrivateLinkage(LT) || |
| GlobalValue::isInternalLinkage(LT)); |
| }; |
| |
| // Use the names to distinguish the two values, but only if the |
| // names are semantically important. |
| if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) |
| return LGV->getName().compare(RGV->getName()); |
| } |
| |
| // For instructions, compare their loop depth, and their operand count. This |
| // is pretty loose. |
| if (const auto *LInst = dyn_cast<Instruction>(LV)) { |
| const auto *RInst = cast<Instruction>(RV); |
| |
| // Compare loop depths. |
| const BasicBlock *LParent = LInst->getParent(), |
| *RParent = RInst->getParent(); |
| if (LParent != RParent) { |
| unsigned LDepth = LI->getLoopDepth(LParent), |
| RDepth = LI->getLoopDepth(RParent); |
| if (LDepth != RDepth) |
| return (int)LDepth - (int)RDepth; |
| } |
| |
| // Compare the number of operands. |
| unsigned LNumOps = LInst->getNumOperands(), |
| RNumOps = RInst->getNumOperands(); |
| if (LNumOps != RNumOps) |
| return (int)LNumOps - (int)RNumOps; |
| |
| for (unsigned Idx : seq(0u, LNumOps)) { |
| int Result = |
| CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), |
| RInst->getOperand(Idx), Depth + 1); |
| if (Result != 0) |
| return Result; |
| } |
| } |
| |
| EqCacheValue.unionSets(LV, RV); |
| return 0; |
| } |
| |
| // Return negative, zero, or positive, if LHS is less than, equal to, or greater |
| // than RHS, respectively. A three-way result allows recursive comparisons to be |
| // more efficient. |
| static int CompareSCEVComplexity( |
| EquivalenceClasses<const SCEV *> &EqCacheSCEV, |
| EquivalenceClasses<const Value *> &EqCacheValue, |
| const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, |
| DominatorTree &DT, unsigned Depth = 0) { |
| // Fast-path: SCEVs are uniqued so we can do a quick equality check. |
| if (LHS == RHS) |
| return 0; |
| |
| // Primarily, sort the SCEVs by their getSCEVType(). |
| unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); |
| if (LType != RType) |
| return (int)LType - (int)RType; |
| |
| if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS)) |
| return 0; |
| // Aside from the getSCEVType() ordering, the particular ordering |
| // isn't very important except that it's beneficial to be consistent, |
| // so that (a + b) and (b + a) don't end up as different expressions. |
| switch (static_cast<SCEVTypes>(LType)) { |
| case scUnknown: { |
| const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); |
| const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); |
| |
| int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), |
| RU->getValue(), Depth + 1); |
| if (X == 0) |
| EqCacheSCEV.unionSets(LHS, RHS); |
| return X; |
| } |
| |
| case scConstant: { |
| const SCEVConstant *LC = cast<SCEVConstant>(LHS); |
| const SCEVConstant *RC = cast<SCEVConstant>(RHS); |
| |
| // Compare constant values. |
| const APInt &LA = LC->getAPInt(); |
| const APInt &RA = RC->getAPInt(); |
| unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); |
| if (LBitWidth != RBitWidth) |
| return (int)LBitWidth - (int)RBitWidth; |
| return LA.ult(RA) ? -1 : 1; |
| } |
| |
| case scAddRecExpr: { |
| const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); |
| const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); |
| |
| // There is always a dominance between two recs that are used by one SCEV, |
| // so we can safely sort recs by loop header dominance. We require such |
| // order in getAddExpr. |
| const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); |
| if (LLoop != RLoop) { |
| const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); |
| assert(LHead != RHead && "Two loops share the same header?"); |
| if (DT.dominates(LHead, RHead)) |
| return 1; |
| else |
| assert(DT.dominates(RHead, LHead) && |
| "No dominance between recurrences used by one SCEV?"); |
| return -1; |
| } |
| |
| // Addrec complexity grows with operand count. |
| unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); |
| if (LNumOps != RNumOps) |
| return (int)LNumOps - (int)RNumOps; |
| |
| // Compare NoWrap flags. |
| if (LA->getNoWrapFlags() != RA->getNoWrapFlags()) |
| return (int)LA->getNoWrapFlags() - (int)RA->getNoWrapFlags(); |
| |
| // Lexicographically compare. |
| for (unsigned i = 0; i != LNumOps; ++i) { |
| int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, |
| LA->getOperand(i), RA->getOperand(i), DT, |
| Depth + 1); |
| if (X != 0) |
| return X; |
| } |
| EqCacheSCEV.unionSets(LHS, RHS); |
| return 0; |
| } |
| |
| case scAddExpr: |
| case scMulExpr: |
| case scSMaxExpr: |
| case scUMaxExpr: { |
| const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); |
| const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); |
| |
| // Lexicographically compare n-ary expressions. |
| unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); |
| if (LNumOps != RNumOps) |
| return (int)LNumOps - (int)RNumOps; |
| |
| // Compare NoWrap flags. |
| if (LC->getNoWrapFlags() != RC->getNoWrapFlags()) |
| return (int)LC->getNoWrapFlags() - (int)RC->getNoWrapFlags(); |
| |
| for (unsigned i = 0; i != LNumOps; ++i) { |
| int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, |
| LC->getOperand(i), RC->getOperand(i), DT, |
| Depth + 1); |
| if (X != 0) |
| return X; |
| } |
| EqCacheSCEV.unionSets(LHS, RHS); |
| return 0; |
| } |
| |
| case scUDivExpr: { |
| const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); |
| const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); |
| |
| // Lexicographically compare udiv expressions. |
| int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), |
| RC->getLHS(), DT, Depth + 1); |
| if (X != 0) |
| return X; |
| X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), |
| RC->getRHS(), DT, Depth + 1); |
| if (X == 0) |
| EqCacheSCEV.unionSets(LHS, RHS); |
| return X; |
| } |
| |
| case scTruncate: |
| case scZeroExtend: |
| case scSignExtend: { |
| const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); |
| const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); |
| |
| // Compare cast expressions by operand. |
| int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, |
| LC->getOperand(), RC->getOperand(), DT, |
| Depth + 1); |
| if (X == 0) |
| EqCacheSCEV.unionSets(LHS, RHS); |
| return X; |
| } |
| |
| case scCouldNotCompute: |
| llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); |
| } |
| llvm_unreachable("Unknown SCEV kind!"); |
| } |
| |
| /// Given a list of SCEV objects, order them by their complexity, and group |
| /// objects of the same complexity together by value. When this routine is |
| /// finished, we know that any duplicates in the vector are consecutive and that |
| /// complexity is monotonically increasing. |
| /// |
| /// Note that we go take special precautions to ensure that we get deterministic |
| /// results from this routine. In other words, we don't want the results of |
| /// this to depend on where the addresses of various SCEV objects happened to |
| /// land in memory. |
| static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, |
| LoopInfo *LI, DominatorTree &DT) { |
| if (Ops.size() < 2) return; // Noop |
| |
| EquivalenceClasses<const SCEV *> EqCacheSCEV; |
| EquivalenceClasses<const Value *> EqCacheValue; |
| if (Ops.size() == 2) { |
| // This is the common case, which also happens to be trivially simple. |
| // Special case it. |
| const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; |
| if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0) |
| std::swap(LHS, RHS); |
| return; |
| } |
| |
| // Do the rough sort by complexity. |
| std::stable_sort(Ops.begin(), Ops.end(), |
| [&](const SCEV *LHS, const SCEV *RHS) { |
| return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, |
| LHS, RHS, DT) < 0; |
| }); |
| |
| // Now that we are sorted by complexity, group elements of the same |
| // complexity. Note that this is, at worst, N^2, but the vector is likely to |
| // be extremely short in practice. Note that we take this approach because we |
| // do not want to depend on the addresses of the objects we are grouping. |
| for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { |
| const SCEV *S = Ops[i]; |
| unsigned Complexity = S->getSCEVType(); |
| |
| // If there are any objects of the same complexity and same value as this |
| // one, group them. |
| for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { |
| if (Ops[j] == S) { // Found a duplicate. |
| // Move it to immediately after i'th element. |
| std::swap(Ops[i+1], Ops[j]); |
| ++i; // no need to rescan it. |
| if (i == e-2) return; // Done! |
| } |
| } |
| } |
| } |
| |
| // Returns the size of the SCEV S. |
| static inline int sizeOfSCEV(const SCEV *S) { |
| struct FindSCEVSize { |
| int Size = 0; |
| |
| FindSCEVSize() = default; |
| |
| bool follow(const SCEV *S) { |
| ++Size; |
| // Keep looking at all operands of S. |
| return true; |
| } |
| |
| bool isDone() const { |
| return false; |
| } |
| }; |
| |
| FindSCEVSize F; |
| SCEVTraversal<FindSCEVSize> ST(F); |
| ST.visitAll(S); |
| return F.Size; |
| } |
| |
| namespace { |
| |
| struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { |
| public: |
| // Computes the Quotient and Remainder of the division of Numerator by |
| // Denominator. |
| static void divide(ScalarEvolution &SE, const SCEV *Numerator, |
| const SCEV *Denominator, const SCEV **Quotient, |
| const SCEV **Remainder) { |
| assert(Numerator && Denominator && "Uninitialized SCEV"); |
| |
| SCEVDivision D(SE, Numerator, Denominator); |
| |
| // Check for the trivial case here to avoid having to check for it in the |
| // rest of the code. |
| if (Numerator == Denominator) { |
| *Quotient = D.One; |
| *Remainder = D.Zero; |
| return; |
| } |
| |
| if (Numerator->isZero()) { |
| *Quotient = D.Zero; |
| *Remainder = D.Zero; |
| return; |
| } |
| |
| // A simple case when N/1. The quotient is N. |
| if (Denominator->isOne()) { |
| *Quotient = Numerator; |
| *Remainder = D.Zero; |
| return; |
| } |
| |
| // Split the Denominator when it is a product. |
| if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) { |
| const SCEV *Q, *R; |
| *Quotient = Numerator; |
| for (const SCEV *Op : T->operands()) { |
| divide(SE, *Quotient, Op, &Q, &R); |
| *Quotient = Q; |
| |
| // Bail out when the Numerator is not divisible by one of the terms of |
| // the Denominator. |
| if (!R->isZero()) { |
| *Quotient = D.Zero; |
| *Remainder = Numerator; |
| return; |
| } |
| } |
| *Remainder = D.Zero; |
| return; |
| } |
| |
| D.visit(Numerator); |
| *Quotient = D.Quotient; |
| *Remainder = D.Remainder; |
| } |
| |
| // Except in the trivial case described above, we do not know how to divide |
| // Expr by Denominator for the following functions with empty implementation. |
| void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} |
| void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} |
| void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} |
| void visitUDivExpr(const SCEVUDivExpr *Numerator) {} |
| void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} |
| void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} |
| void visitUnknown(const SCEVUnknown *Numerator) {} |
| void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} |
| |
| void visitConstant(const SCEVConstant *Numerator) { |
| if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { |
| APInt NumeratorVal = Numerator->getAPInt(); |
| APInt DenominatorVal = D->getAPInt(); |
| uint32_t NumeratorBW = NumeratorVal.getBitWidth(); |
| uint32_t DenominatorBW = DenominatorVal.getBitWidth(); |
| |
| if (NumeratorBW > DenominatorBW) |
| DenominatorVal = DenominatorVal.sext(NumeratorBW); |
| else if (NumeratorBW < DenominatorBW) |
| NumeratorVal = NumeratorVal.sext(DenominatorBW); |
| |
| APInt QuotientVal(NumeratorVal.getBitWidth(), 0); |
| APInt RemainderVal(NumeratorVal.getBitWidth(), 0); |
| APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); |
| Quotient = SE.getConstant(QuotientVal); |
| Remainder = SE.getConstant(RemainderVal); |
| return; |
| } |
| } |
| |
| void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { |
| const SCEV *StartQ, *StartR, *StepQ, *StepR; |
| if (!Numerator->isAffine()) |
| return cannotDivide(Numerator); |
| divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); |
| divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); |
| // Bail out if the types do not match. |
| Type *Ty = Denominator->getType(); |
| if (Ty != StartQ->getType() || Ty != StartR->getType() || |
| Ty != StepQ->getType() || Ty != StepR->getType()) |
| return cannotDivide(Numerator); |
| Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), |
| Numerator->getNoWrapFlags()); |
| Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), |
| Numerator->getNoWrapFlags()); |
| } |
| |
| void visitAddExpr(const SCEVAddExpr *Numerator) { |
| SmallVector<const SCEV *, 2> Qs, Rs; |
| Type *Ty = Denominator->getType(); |
| |
| for (const SCEV *Op : Numerator->operands()) { |
| const SCEV *Q, *R; |
| divide(SE, Op, Denominator, &Q, &R); |
| |
| // Bail out if types do not match. |
| if (Ty != Q->getType() || Ty != R->getType()) |
| return cannotDivide(Numerator); |
| |
| Qs.push_back(Q); |
| Rs.push_back(R); |
| } |
| |
| if (Qs.size() == 1) { |
| Quotient = Qs[0]; |
| Remainder = Rs[0]; |
| return; |
| } |
| |
| Quotient = SE.getAddExpr(Qs); |
| Remainder = SE.getAddExpr(Rs); |
| } |
| |
| void visitMulExpr(const SCEVMulExpr *Numerator) { |
| SmallVector<const SCEV *, 2> Qs; |
| Type *Ty = Denominator->getType(); |
| |
| bool FoundDenominatorTerm = false; |
| for (const SCEV *Op : Numerator->operands()) { |
| // Bail out if types do not match. |
| if (Ty != Op->getType()) |
| return cannotDivide(Numerator); |
| |
| if (FoundDenominatorTerm) { |
| Qs.push_back(Op); |
| continue; |
| } |
| |
| // Check whether Denominator divides one of the product operands. |
| const SCEV *Q, *R; |
| divide(SE, Op, Denominator, &Q, &R); |
| if (!R->isZero()) { |
| Qs.push_back(Op); |
| continue; |
| } |
| |
| // Bail out if types do not match. |
| if (Ty != Q->getType()) |
| return cannotDivide(Numerator); |
| |
| FoundDenominatorTerm = true; |
| Qs.push_back(Q); |
| } |
| |
| if (FoundDenominatorTerm) { |
| Remainder = Zero; |
| if (Qs.size() == 1) |
| Quotient = Qs[0]; |
| else |
| Quotient = SE.getMulExpr(Qs); |
| return; |
| } |
| |
| if (!isa<SCEVUnknown>(Denominator)) |
| return cannotDivide(Numerator); |
| |
| // The Remainder is obtained by replacing Denominator by 0 in Numerator. |
| ValueToValueMap RewriteMap; |
| RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = |
| cast<SCEVConstant>(Zero)->getValue(); |
| Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); |
| |
| if (Remainder->isZero()) { |
| // The Quotient is obtained by replacing Denominator by 1 in Numerator. |
| RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = |
| cast<SCEVConstant>(One)->getValue(); |
| Quotient = |
| SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); |
| return; |
| } |
| |
| // Quotient is (Numerator - Remainder) divided by Denominator. |
| const SCEV *Q, *R; |
| const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); |
| // This SCEV does not seem to simplify: fail the division here. |
| if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) |
| return cannotDivide(Numerator); |
| divide(SE, Diff, Denominator, &Q, &R); |
| if (R != Zero) |
| return cannotDivide(Numerator); |
| Quotient = Q; |
| } |
| |
| private: |
| SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, |
| const SCEV *Denominator) |
| : SE(S), Denominator(Denominator) { |
| Zero = SE.getZero(Denominator->getType()); |
| One = SE.getOne(Denominator->getType()); |
| |
| // We generally do not know how to divide Expr by Denominator. We |
| // initialize the division to a "cannot divide" state to simplify the rest |
| // of the code. |
| cannotDivide(Numerator); |
| } |
| |
| // Convenience function for giving up on the division. We set the quotient to |
| // be equal to zero and the remainder to be equal to the numerator. |
| void cannotDivide(const SCEV *Numerator) { |
| Quotient = Zero; |
| Remainder = Numerator; |
| } |
| |
| ScalarEvolution &SE; |
| const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; |
| }; |
| |
| } // end anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // Simple SCEV method implementations |
| //===----------------------------------------------------------------------===// |
| |
| /// Compute BC(It, K). The result has width W. Assume, K > 0. |
| static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, |
| ScalarEvolution &SE, |
| Type *ResultTy) { |
| // Handle the simplest case efficiently. |
| if (K == 1) |
| return SE.getTruncateOrZeroExtend(It, ResultTy); |
| |
| // We are using the following formula for BC(It, K): |
| // |
| // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! |
| // |
| // Suppose, W is the bitwidth of the return value. We must be prepared for |
| // overflow. Hence, we must assure that the result of our computation is |
| // equal to the accurate one modulo 2^W. Unfortunately, division isn't |
| // safe in modular arithmetic. |
| // |
| // However, this code doesn't use exactly that formula; the formula it uses |
| // is something like the following, where T is the number of factors of 2 in |
| // K! (i.e. trailing zeros in the binary representation of K!), and ^ is |
| // exponentiation: |
| // |
| // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) |
| // |
| // This formula is trivially equivalent to the previous formula. However, |
| // this formula can be implemented much more efficiently. The trick is that |
| // K! / 2^T is odd, and exact division by an odd number *is* safe in modular |
| // arithmetic. To do exact division in modular arithmetic, all we have |
| // to do is multiply by the inverse. Therefore, this step can be done at |
| // width W. |
| // |
| // The next issue is how to safely do the division by 2^T. The way this |
| // is done is by doing the multiplication step at a width of at least W + T |
| // bits. This way, the bottom W+T bits of the product are accurate. Then, |
| // when we perform the division by 2^T (which is equivalent to a right shift |
| // by T), the bottom W bits are accurate. Extra bits are okay; they'll get |
| // truncated out after the division by 2^T. |
| // |
| // In comparison to just directly using the first formula, this technique |
| // is much more efficient; using the first formula requires W * K bits, |
| // but this formula less than W + K bits. Also, the first formula requires |
| // a division step, whereas this formula only requires multiplies and shifts. |
| // |
| // It doesn't matter whether the subtraction step is done in the calculation |
| // width or the input iteration count's width; if the subtraction overflows, |
| // the result must be zero anyway. We prefer here to do it in the width of |
| // the induction variable because it helps a lot for certain cases; CodeGen |
| // isn't smart enough to ignore the overflow, which leads to much less |
| // efficient code if the width of the subtraction is wider than the native |
| // register width. |
| // |
| // (It's possible to not widen at all by pulling out factors of 2 before |
| // the multiplication; for example, K=2 can be calculated as |
| // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires |
| // extra arithmetic, so it's not an obvious win, and it gets |
| // much more complicated for K > 3.) |
| |
| // Protection from insane SCEVs; this bound is conservative, |
| // but it probably doesn't matter. |
| if (K > 1000) |
| return SE.getCouldNotCompute(); |
| |
| unsigned W = SE.getTypeSizeInBits(ResultTy); |
| |
| // Calculate K! / 2^T and T; we divide out the factors of two before |
| // multiplying for calculating K! / 2^T to avoid overflow. |
| // Other overflow doesn't matter because we only care about the bottom |
| // W bits of the result. |
| APInt OddFactorial(W, 1); |
| unsigned T = 1; |
| for (unsigned i = 3; i <= K; ++i) { |
| APInt Mult(W, i); |
| unsigned TwoFactors = Mult.countTrailingZeros(); |
| T += TwoFactors; |
| Mult.lshrInPlace(TwoFactors); |
| OddFactorial *= Mult; |
| } |
| |
| // We need at least W + T bits for the multiplication step |
| unsigned CalculationBits = W + T; |
| |
| // Calculate 2^T, at width T+W. |
| APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); |
| |
| // Calculate the multiplicative inverse of K! / 2^T; |
| // this multiplication factor will perform the exact division by |
| // K! / 2^T. |
| APInt Mod = APInt::getSignedMinValue(W+1); |
| APInt MultiplyFactor = OddFactorial.zext(W+1); |
| MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); |
| MultiplyFactor = MultiplyFactor.trunc(W); |
| |
| // Calculate the product, at width T+W |
| IntegerType *CalculationTy = IntegerType::get(SE.getContext(), |
| CalculationBits); |
| const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); |
| for (unsigned i = 1; i != K; ++i) { |
| const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); |
| Dividend = SE.getMulExpr(Dividend, |
| SE.getTruncateOrZeroExtend(S, CalculationTy)); |
| } |
| |
| // Divide by 2^T |
| const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); |
| |
| // Truncate the result, and divide by K! / 2^T. |
| |
| return SE.getMulExpr(SE.getConstant(MultiplyFactor), |
| SE.getTruncateOrZeroExtend(DivResult, ResultTy)); |
| } |
| |
| /// Return the value of this chain of recurrences at the specified iteration |
| /// number. We can evaluate this recurrence by multiplying each element in the |
| /// chain by the binomial coefficient corresponding to it. In other words, we |
| /// can evaluate {A,+,B,+,C,+,D} as: |
| /// |
| /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) |
| /// |
| /// where BC(It, k) stands for binomial coefficient. |
| const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, |
| ScalarEvolution &SE) const { |
| const SCEV *Result = getStart(); |
| for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { |
| // The computation is correct in the face of overflow provided that the |
| // multiplication is performed _after_ the evaluation of the binomial |
| // coefficient. |
| const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); |
| if (isa<SCEVCouldNotCompute>(Coeff)) |
| return Coeff; |
| |
| Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); |
| } |
| return Result; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SCEV Expression folder implementations |
| //===----------------------------------------------------------------------===// |
| |
| const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, |
| Type *Ty) { |
| assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && |
| "This is not a truncating conversion!"); |
| assert(isSCEVable(Ty) && |
| "This is not a conversion to a SCEVable type!"); |
| Ty = getEffectiveSCEVType(Ty); |
| |
| FoldingSetNodeID ID; |
| ID.AddInteger(scTruncate); |
| ID.AddPointer(Op); |
| ID.AddPointer(Ty); |
| void *IP = nullptr; |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| |
| // Fold if the operand is constant. |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) |
| return getConstant( |
| cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); |
| |
| // trunc(trunc(x)) --> trunc(x) |
| if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) |
| return getTruncateExpr(ST->getOperand(), Ty); |
| |
| // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing |
| if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) |
| return getTruncateOrSignExtend(SS->getOperand(), Ty); |
| |
| // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing |
| if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) |
| return getTruncateOrZeroExtend(SZ->getOperand(), Ty); |
| |
| // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and |
| // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), |
| // if after transforming we have at most one truncate, not counting truncates |
| // that replace other casts. |
| if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { |
| auto *CommOp = cast<SCEVCommutativeExpr>(Op); |
| SmallVector<const SCEV *, 4> Operands; |
| unsigned numTruncs = 0; |
| for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; |
| ++i) { |
| const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty); |
| if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S)) |
| numTruncs++; |
| Operands.push_back(S); |
| } |
| if (numTruncs < 2) { |
| if (isa<SCEVAddExpr>(Op)) |
| return getAddExpr(Operands); |
| else if (isa<SCEVMulExpr>(Op)) |
| return getMulExpr(Operands); |
| else |
| llvm_unreachable("Unexpected SCEV type for Op."); |
| } |
| // Although we checked in the beginning that ID is not in the cache, it is |
| // possible that during recursion and different modification ID was inserted |
| // into the cache. So if we find it, just return it. |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) |
| return S; |
| } |
| |
| // If the input value is a chrec scev, truncate the chrec's operands. |
| if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { |
| SmallVector<const SCEV *, 4> Operands; |
| for (const SCEV *Op : AddRec->operands()) |
| Operands.push_back(getTruncateExpr(Op, Ty)); |
| return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); |
| } |
| |
| // The cast wasn't folded; create an explicit cast node. We can reuse |
| // the existing insert position since if we get here, we won't have |
| // made any changes which would invalidate it. |
| SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), |
| Op, Ty); |
| UniqueSCEVs.InsertNode(S, IP); |
| addToLoopUseLists(S); |
| return S; |
| } |
| |
| // Get the limit of a recurrence such that incrementing by Step cannot cause |
| // signed overflow as long as the value of the recurrence within the |
| // loop does not exceed this limit before incrementing. |
| static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, |
| ICmpInst::Predicate *Pred, |
| ScalarEvolution *SE) { |
| unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); |
| if (SE->isKnownPositive(Step)) { |
| *Pred = ICmpInst::ICMP_SLT; |
| return SE->getConstant(APInt::getSignedMinValue(BitWidth) - |
| SE->getSignedRangeMax(Step)); |
| } |
| if (SE->isKnownNegative(Step)) { |
| *Pred = ICmpInst::ICMP_SGT; |
| return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - |
| SE->getSignedRangeMin(Step)); |
| } |
| return nullptr; |
| } |
| |
| // Get the limit of a recurrence such that incrementing by Step cannot cause |
| // unsigned overflow as long as the value of the recurrence within the loop does |
| // not exceed this limit before incrementing. |
| static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, |
| ICmpInst::Predicate *Pred, |
| ScalarEvolution *SE) { |
| unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); |
| *Pred = ICmpInst::ICMP_ULT; |
| |
| return SE->getConstant(APInt::getMinValue(BitWidth) - |
| SE->getUnsignedRangeMax(Step)); |
| } |
| |
| namespace { |
| |
| struct ExtendOpTraitsBase { |
| typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, |
| unsigned); |
| }; |
| |
| // Used to make code generic over signed and unsigned overflow. |
| template <typename ExtendOp> struct ExtendOpTraits { |
| // Members present: |
| // |
| // static const SCEV::NoWrapFlags WrapType; |
| // |
| // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; |
| // |
| // static const SCEV *getOverflowLimitForStep(const SCEV *Step, |
| // ICmpInst::Predicate *Pred, |
| // ScalarEvolution *SE); |
| }; |
| |
| template <> |
| struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { |
| static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; |
| |
| static const GetExtendExprTy GetExtendExpr; |
| |
| static const SCEV *getOverflowLimitForStep(const SCEV *Step, |
| ICmpInst::Predicate *Pred, |
| ScalarEvolution *SE) { |
| return getSignedOverflowLimitForStep(Step, Pred, SE); |
| } |
| }; |
| |
| const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< |
| SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; |
| |
| template <> |
| struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { |
| static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; |
| |
| static const GetExtendExprTy GetExtendExpr; |
| |
| static const SCEV *getOverflowLimitForStep(const SCEV *Step, |
| ICmpInst::Predicate *Pred, |
| ScalarEvolution *SE) { |
| return getUnsignedOverflowLimitForStep(Step, Pred, SE); |
| } |
| }; |
| |
| const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< |
| SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; |
| |
| } // end anonymous namespace |
| |
| // The recurrence AR has been shown to have no signed/unsigned wrap or something |
| // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as |
| // easily prove NSW/NUW for its preincrement or postincrement sibling. This |
| // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + |
| // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the |
| // expression "Step + sext/zext(PreIncAR)" is congruent with |
| // "sext/zext(PostIncAR)" |
| template <typename ExtendOpTy> |
| static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, |
| ScalarEvolution *SE, unsigned Depth) { |
| auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; |
| auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; |
| |
| const Loop *L = AR->getLoop(); |
| const SCEV *Start = AR->getStart(); |
| const SCEV *Step = AR->getStepRecurrence(*SE); |
| |
| // Check for a simple looking step prior to loop entry. |
| const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); |
| if (!SA) |
| return nullptr; |
| |
| // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV |
| // subtraction is expensive. For this purpose, perform a quick and dirty |
| // difference, by checking for Step in the operand list. |
| SmallVector<const SCEV *, 4> DiffOps; |
| for (const SCEV *Op : SA->operands()) |
| if (Op != Step) |
| DiffOps.push_back(Op); |
| |
| if (DiffOps.size() == SA->getNumOperands()) |
| return nullptr; |
| |
| // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + |
| // `Step`: |
| |
| // 1. NSW/NUW flags on the step increment. |
| auto PreStartFlags = |
| ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); |
| const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); |
| const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( |
| SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); |
| |
| // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies |
| // "S+X does not sign/unsign-overflow". |
| // |
| |
| const SCEV *BECount = SE->getBackedgeTakenCount(L); |
| if (PreAR && PreAR->getNoWrapFlags(WrapType) && |
| !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) |
| return PreStart; |
| |
| // 2. Direct overflow check on the step operation's expression. |
| unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); |
| Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); |
| const SCEV *OperandExtendedStart = |
| SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), |
| (SE->*GetExtendExpr)(Step, WideTy, Depth)); |
| if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { |
| if (PreAR && AR->getNoWrapFlags(WrapType)) { |
| // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW |
| // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then |
| // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. |
| const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); |
| } |
| return PreStart; |
| } |
| |
| // 3. Loop precondition. |
| ICmpInst::Predicate Pred; |
| const SCEV *OverflowLimit = |
| ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); |
| |
| if (OverflowLimit && |
| SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) |
| return PreStart; |
| |
| return nullptr; |
| } |
| |
| // Get the normalized zero or sign extended expression for this AddRec's Start. |
| template <typename ExtendOpTy> |
| static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, |
| ScalarEvolution *SE, |
| unsigned Depth) { |
| auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; |
| |
| const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); |
| if (!PreStart) |
| return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); |
| |
| return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, |
| Depth), |
| (SE->*GetExtendExpr)(PreStart, Ty, Depth)); |
| } |
| |
| // Try to prove away overflow by looking at "nearby" add recurrences. A |
| // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it |
| // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. |
| // |
| // Formally: |
| // |
| // {S,+,X} == {S-T,+,X} + T |
| // => Ext({S,+,X}) == Ext({S-T,+,X} + T) |
| // |
| // If ({S-T,+,X} + T) does not overflow ... (1) |
| // |
| // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) |
| // |
| // If {S-T,+,X} does not overflow ... (2) |
| // |
| // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) |
| // == {Ext(S-T)+Ext(T),+,Ext(X)} |
| // |
| // If (S-T)+T does not overflow ... (3) |
| // |
| // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} |
| // == {Ext(S),+,Ext(X)} == LHS |
| // |
| // Thus, if (1), (2) and (3) are true for some T, then |
| // Ext({S,+,X}) == {Ext(S),+,Ext(X)} |
| // |
| // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) |
| // does not overflow" restricted to the 0th iteration. Therefore we only need |
| // to check for (1) and (2). |
| // |
| // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T |
| // is `Delta` (defined below). |
| template <typename ExtendOpTy> |
| bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, |
| const SCEV *Step, |
| const Loop *L) { |
| auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; |
| |
| // We restrict `Start` to a constant to prevent SCEV from spending too much |
| // time here. It is correct (but more expensive) to continue with a |
| // non-constant `Start` and do a general SCEV subtraction to compute |
| // `PreStart` below. |
| const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); |
| if (!StartC) |
| return false; |
| |
| APInt StartAI = StartC->getAPInt(); |
| |
| for (unsigned Delta : {-2, -1, 1, 2}) { |
| const SCEV *PreStart = getConstant(StartAI - Delta); |
| |
| FoldingSetNodeID ID; |
| ID.AddInteger(scAddRecExpr); |
| ID.AddPointer(PreStart); |
| ID.AddPointer(Step); |
| ID.AddPointer(L); |
| void *IP = nullptr; |
| const auto *PreAR = |
| static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); |
| |
| // Give up if we don't already have the add recurrence we need because |
| // actually constructing an add recurrence is relatively expensive. |
| if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) |
| const SCEV *DeltaS = getConstant(StartC->getType(), Delta); |
| ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; |
| const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( |
| DeltaS, &Pred, this); |
| if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| // Finds an integer D for an expression (C + x + y + ...) such that the top |
| // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or |
| // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is |
| // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and |
| // the (C + x + y + ...) expression is \p WholeAddExpr. |
| static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, |
| const SCEVConstant *ConstantTerm, |
| const SCEVAddExpr *WholeAddExpr) { |
| const APInt C = ConstantTerm->getAPInt(); |
| const unsigned BitWidth = C.getBitWidth(); |
| // Find number of trailing zeros of (x + y + ...) w/o the C first: |
| uint32_t TZ = BitWidth; |
| for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) |
| TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); |
| if (TZ) { |
| // Set D to be as many least significant bits of C as possible while still |
| // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: |
| return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; |
| } |
| return APInt(BitWidth, 0); |
| } |
| |
| // Finds an integer D for an affine AddRec expression {C,+,x} such that the top |
| // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the |
| // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p |
| // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. |
| static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, |
| const APInt &ConstantStart, |
| const SCEV *Step) { |
| const unsigned BitWidth = ConstantStart.getBitWidth(); |
| const uint32_t TZ = SE.GetMinTrailingZeros(Step); |
| if (TZ) |
| return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) |
| : ConstantStart; |
| return APInt(BitWidth, 0); |
| } |
| |
| const SCEV * |
| ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { |
| assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && |
| "This is not an extending conversion!"); |
| assert(isSCEVable(Ty) && |
| "This is not a conversion to a SCEVable type!"); |
| Ty = getEffectiveSCEVType(Ty); |
| |
| // Fold if the operand is constant. |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) |
| return getConstant( |
| cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); |
| |
| // zext(zext(x)) --> zext(x) |
| if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) |
| return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); |
| |
| // Before doing any expensive analysis, check to see if we've already |
| // computed a SCEV for this Op and Ty. |
| FoldingSetNodeID ID; |
| ID.AddInteger(scZeroExtend); |
| ID.AddPointer(Op); |
| ID.AddPointer(Ty); |
| void *IP = nullptr; |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| if (Depth > MaxExtDepth) { |
| SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), |
| Op, Ty); |
| UniqueSCEVs.InsertNode(S, IP); |
| addToLoopUseLists(S); |
| return S; |
| } |
| |
| // zext(trunc(x)) --> zext(x) or x or trunc(x) |
| if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { |
| // It's possible the bits taken off by the truncate were all zero bits. If |
| // so, we should be able to simplify this further. |
| const SCEV *X = ST->getOperand(); |
| ConstantRange CR = getUnsignedRange(X); |
| unsigned TruncBits = getTypeSizeInBits(ST->getType()); |
| unsigned NewBits = getTypeSizeInBits(Ty); |
| if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( |
| CR.zextOrTrunc(NewBits))) |
| return getTruncateOrZeroExtend(X, Ty); |
| } |
| |
| // If the input value is a chrec scev, and we can prove that the value |
| // did not overflow the old, smaller, value, we can zero extend all of the |
| // operands (often constants). This allows analysis of something like |
| // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) |
| if (AR->isAffine()) { |
| const SCEV *Start = AR->getStart(); |
| const SCEV *Step = AR->getStepRecurrence(*this); |
| unsigned BitWidth = getTypeSizeInBits(AR->getType()); |
| const Loop *L = AR->getLoop(); |
| |
| if (!AR->hasNoUnsignedWrap()) { |
| auto NewFlags = proveNoWrapViaConstantRanges(AR); |
| const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); |
| } |
| |
| // If we have special knowledge that this addrec won't overflow, |
| // we don't need to do any further analysis. |
| if (AR->hasNoUnsignedWrap()) |
| return getAddRecExpr( |
| getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), |
| getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); |
| |
| // Check whether the backedge-taken count is SCEVCouldNotCompute. |
| // Note that this serves two purposes: It filters out loops that are |
| // simply not analyzable, and it covers the case where this code is |
| // being called from within backedge-taken count analysis, such that |
| // attempting to ask for the backedge-taken count would likely result |
| // in infinite recursion. In the later case, the analysis code will |
| // cope with a conservative value, and it will take care to purge |
| // that value once it has finished. |
| const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); |
| if (!isa<SCEVCouldNotCompute>(MaxBECount)) { |
| // Manually compute the final value for AR, checking for |
| // overflow. |
| |
| // Check whether the backedge-taken count can be losslessly casted to |
| // the addrec's type. The count is always unsigned. |
| const SCEV *CastedMaxBECount = |
| getTruncateOrZeroExtend(MaxBECount, Start->getType()); |
| const SCEV *RecastedMaxBECount = |
| getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); |
| if (MaxBECount == RecastedMaxBECount) { |
| Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); |
| // Check whether Start+Step*MaxBECount has no unsigned overflow. |
| const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, |
| SCEV::FlagAnyWrap, Depth + 1); |
| const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, |
| SCEV::FlagAnyWrap, |
| Depth + 1), |
| WideTy, Depth + 1); |
| const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); |
| const SCEV *WideMaxBECount = |
| getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); |
| const SCEV *OperandExtendedAdd = |
| getAddExpr(WideStart, |
| getMulExpr(WideMaxBECount, |
| getZeroExtendExpr(Step, WideTy, Depth + 1), |
| SCEV::FlagAnyWrap, Depth + 1), |
| SCEV::FlagAnyWrap, Depth + 1); |
| if (ZAdd == OperandExtendedAdd) { |
| // Cache knowledge of AR NUW, which is propagated to this AddRec. |
| const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); |
| // Return the expression with the addrec on the outside. |
| return getAddRecExpr( |
| getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, |
| Depth + 1), |
| getZeroExtendExpr(Step, Ty, Depth + 1), L, |
| AR->getNoWrapFlags()); |
| } |
| // Similar to above, only this time treat the step value as signed. |
| // This covers loops that count down. |
| OperandExtendedAdd = |
| getAddExpr(WideStart, |
| getMulExpr(WideMaxBECount, |
| getSignExtendExpr(Step, WideTy, Depth + 1), |
| SCEV::FlagAnyWrap, Depth + 1), |
| SCEV::FlagAnyWrap, Depth + 1); |
| if (ZAdd == OperandExtendedAdd) { |
| // Cache knowledge of AR NW, which is propagated to this AddRec. |
| // Negative step causes unsigned wrap, but it still can't self-wrap. |
| const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); |
| // Return the expression with the addrec on the outside. |
| return getAddRecExpr( |
| getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, |
| Depth + 1), |
| getSignExtendExpr(Step, Ty, Depth + 1), L, |
| AR->getNoWrapFlags()); |
| } |
| } |
| } |
| |
| // Normally, in the cases we can prove no-overflow via a |
| // backedge guarding condition, we can also compute a backedge |
| // taken count for the loop. The exceptions are assumptions and |
| // guards present in the loop -- SCEV is not great at exploiting |
| // these to compute max backedge taken counts, but can still use |
| // these to prove lack of overflow. Use this fact to avoid |
| // doing extra work that may not pay off. |
| if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || |
| !AC.assumptions().empty()) { |
| // If the backedge is guarded by a comparison with the pre-inc |
| // value the addrec is safe. Also, if the entry is guarded by |
| // a comparison with the start value and the backedge is |
| // guarded by a comparison with the post-inc value, the addrec |
| // is safe. |
| if (isKnownPositive(Step)) { |
| const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - |
| getUnsignedRangeMax(Step)); |
| if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || |
| isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { |
| // Cache knowledge of AR NUW, which is propagated to this |
| // AddRec. |
| const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); |
| // Return the expression with the addrec on the outside. |
| return getAddRecExpr( |
| getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, |
| Depth + 1), |
| getZeroExtendExpr(Step, Ty, Depth + 1), L, |
| AR->getNoWrapFlags()); |
| } |
| } else if (isKnownNegative(Step)) { |
| const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - |
| getSignedRangeMin(Step)); |
| if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || |
| isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { |
| // Cache knowledge of AR NW, which is propagated to this |
| // AddRec. Negative step causes unsigned wrap, but it |
| // still can't self-wrap. |
| const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); |
| // Return the expression with the addrec on the outside. |
| return getAddRecExpr( |
| getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, |
| Depth + 1), |
| getSignExtendExpr(Step, Ty, Depth + 1), L, |
| AR->getNoWrapFlags()); |
| } |
| } |
| } |
| |
| // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> |
| // if D + (C - D + Step * n) could be proven to not unsigned wrap |
| // where D maximizes the number of trailing zeros of (C - D + Step * n) |
| if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { |
| const APInt &C = SC->getAPInt(); |
| const APInt &D = extractConstantWithoutWrapping(*this, C, Step); |
| if (D != 0) { |
| const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); |
| const SCEV *SResidual = |
| getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); |
| const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); |
| return getAddExpr(SZExtD, SZExtR, |
| (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), |
| Depth + 1); |
| } |
| } |
| |
| if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { |
| const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); |
| return getAddRecExpr( |
| getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), |
| getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); |
| } |
| } |
| |
| // zext(A % B) --> zext(A) % zext(B) |
| { |
| const SCEV *LHS; |
| const SCEV *RHS; |
| if (matchURem(Op, LHS, RHS)) |
| return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), |
| getZeroExtendExpr(RHS, Ty, Depth + 1)); |
| } |
| |
| // zext(A / B) --> zext(A) / zext(B). |
| if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) |
| return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), |
| getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); |
| |
| if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { |
| // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> |
| if (SA->hasNoUnsignedWrap()) { |
| // If the addition does not unsign overflow then we can, by definition, |
| // commute the zero extension with the addition operation. |
| SmallVector<const SCEV *, 4> Ops; |
| for (const auto *Op : SA->operands()) |
| Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); |
| return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); |
| } |
| |
| // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) |
| // if D + (C - D + x + y + ...) could be proven to not unsigned wrap |
| // where D maximizes the number of trailing zeros of (C - D + x + y + ...) |
| // |
| // Often address arithmetics contain expressions like |
| // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). |
| // This transformation is useful while proving that such expressions are |
| // equal or differ by a small constant amount, see LoadStoreVectorizer pass. |
| if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { |
| const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); |
| if (D != 0) { |
| const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); |
| const SCEV *SResidual = |
| getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); |
| const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); |
| return getAddExpr(SZExtD, SZExtR, |
| (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), |
| Depth + 1); |
| } |
| } |
| } |
| |
| if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { |
| // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> |
| if (SM->hasNoUnsignedWrap()) { |
| // If the multiply does not unsign overflow then we can, by definition, |
| // commute the zero extension with the multiply operation. |
| SmallVector<const SCEV *, 4> Ops; |
| for (const auto *Op : SM->operands()) |
| Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); |
| return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); |
| } |
| |
| // zext(2^K * (trunc X to iN)) to iM -> |
| // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> |
| // |
| // Proof: |
| // |
| // zext(2^K * (trunc X to iN)) to iM |
| // = zext((trunc X to iN) << K) to iM |
| // = zext((trunc X to i{N-K}) << K)<nuw> to iM |
| // (because shl removes the top K bits) |
| // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM |
| // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. |
| // |
| if (SM->getNumOperands() == 2) |
| if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) |
| if (MulLHS->getAPInt().isPowerOf2()) |
| if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { |
| int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - |
| MulLHS->getAPInt().logBase2(); |
| Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); |
| return getMulExpr( |
| getZeroExtendExpr(MulLHS, Ty), |
| getZeroExtendExpr( |
| getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), |
| SCEV::FlagNUW, Depth + 1); |
| } |
| } |
| |
| // The cast wasn't folded; create an explicit cast node. |
| // Recompute the insert position, as it may have been invalidated. |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), |
| Op, Ty); |
| UniqueSCEVs.InsertNode(S, IP); |
| addToLoopUseLists(S); |
| return S; |
| } |
| |
| const SCEV * |
| ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { |
| assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && |
| "This is not an extending conversion!"); |
| assert(isSCEVable(Ty) && |
| "This is not a conversion to a SCEVable type!"); |
| Ty = getEffectiveSCEVType(Ty); |
| |
| // Fold if the operand is constant. |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) |
| return getConstant( |
| cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); |
| |
| // sext(sext(x)) --> sext(x) |
| if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) |
| return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); |
| |
| // sext(zext(x)) --> zext(x) |
| if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) |
| return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); |
| |
| // Before doing any expensive analysis, check to see if we've already |
| // computed a SCEV for this Op and Ty. |
| FoldingSetNodeID ID; |
| ID.AddInteger(scSignExtend); |
| ID.AddPointer(Op); |
| ID.AddPointer(Ty); |
| void *IP = nullptr; |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| // Limit recursion depth. |
| if (Depth > MaxExtDepth) { |
| SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), |
| Op, Ty); |
| UniqueSCEVs.InsertNode(S, IP); |
| addToLoopUseLists(S); |
| return S; |
| } |
| |
| // sext(trunc(x)) --> sext(x) or x or trunc(x) |
| if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { |
| // It's possible the bits taken off by the truncate were all sign bits. If |
| // so, we should be able to simplify this further. |
| const SCEV *X = ST->getOperand(); |
| ConstantRange CR = getSignedRange(X); |
| unsigned TruncBits = getTypeSizeInBits(ST->getType()); |
| unsigned NewBits = getTypeSizeInBits(Ty); |
| if (CR.truncate(TruncBits).signExtend(NewBits).contains( |
| CR.sextOrTrunc(NewBits))) |
| return getTruncateOrSignExtend(X, Ty); |
| } |
| |
| if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { |
| // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> |
| if (SA->hasNoSignedWrap()) { |
| // If the addition does not sign overflow then we can, by definition, |
| // commute the sign extension with the addition operation. |
| SmallVector<const SCEV *, 4> Ops; |
| for (const auto *Op : SA->operands()) |
| Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); |
| return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); |
| } |
| |
| // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) |
| // if D + (C - D + x + y + ...) could be proven to not signed wrap |
| // where D maximizes the number of trailing zeros of (C - D + x + y + ...) |
| // |
| // For instance, this will bring two seemingly different expressions: |
| // 1 + sext(5 + 20 * %x + 24 * %y) and |
| // sext(6 + 20 * %x + 24 * %y) |
| // to the same form: |
| // 2 + sext(4 + 20 * %x + 24 * %y) |
| if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { |
| const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); |
| if (D != 0) { |
| const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); |
| const SCEV *SResidual = |
| getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); |
| const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); |
| return getAddExpr(SSExtD, SSExtR, |
| (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), |
| Depth + 1); |
| } |
| } |
| } |
| // If the input value is a chrec scev, and we can prove that the value |
| // did not overflow the old, smaller, value, we can sign extend all of the |
| // operands (often constants). This allows analysis of something like |
| // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) |
| if (AR->isAffine()) { |
| const SCEV *Start = AR->getStart(); |
| const SCEV *Step = AR->getStepRecurrence(*this); |
| unsigned BitWidth = getTypeSizeInBits(AR->getType()); |
| const Loop *L = AR->getLoop(); |
| |
| if (!AR->hasNoSignedWrap()) { |
| auto NewFlags = proveNoWrapViaConstantRanges(AR); |
| const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); |
| } |
| |
| // If we have special knowledge that this addrec won't overflow, |
| // we don't need to do any further analysis. |
| if (AR->hasNoSignedWrap()) |
| return getAddRecExpr( |
| getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), |
| getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); |
| |
| // Check whether the backedge-taken count is SCEVCouldNotCompute. |
| // Note that this serves two purposes: It filters out loops that are |
| // simply not analyzable, and it covers the case where this code is |
| // being called from within backedge-taken count analysis, such that |
| // attempting to ask for the backedge-taken count would likely result |
| // in infinite recursion. In the later case, the analysis code will |
| // cope with a conservative value, and it will take care to purge |
| // that value once it has finished. |
| const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); |
| if (!isa<SCEVCouldNotCompute>(MaxBECount)) { |
| // Manually compute the final value for AR, checking for |
| // overflow. |
| |
| // Check whether the backedge-taken count can be losslessly casted to |
| // the addrec's type. The count is always unsigned. |
| const SCEV *CastedMaxBECount = |
| getTruncateOrZeroExtend(MaxBECount, Start->getType()); |
| const SCEV *RecastedMaxBECount = |
| getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); |
| if (MaxBECount == RecastedMaxBECount) { |
| Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); |
| // Check whether Start+Step*MaxBECount has no signed overflow. |
| const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, |
| SCEV::FlagAnyWrap, Depth + 1); |
| const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, |
| SCEV::FlagAnyWrap, |
| Depth + 1), |
| WideTy, Depth + 1); |
| const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); |
| const SCEV *WideMaxBECount = |
| getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); |
| const SCEV *OperandExtendedAdd = |
| getAddExpr(WideStart, |
| getMulExpr(WideMaxBECount, |
| getSignExtendExpr(Step, WideTy, Depth + 1), |
| SCEV::FlagAnyWrap, Depth + 1), |
| SCEV::FlagAnyWrap, Depth + 1); |
| if (SAdd == OperandExtendedAdd) { |
| // Cache knowledge of AR NSW, which is propagated to this AddRec. |
| const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); |
| // Return the expression with the addrec on the outside. |
| return getAddRecExpr( |
| getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, |
| Depth + 1), |
| getSignExtendExpr(Step, Ty, Depth + 1), L, |
| AR->getNoWrapFlags()); |
| } |
| // Similar to above, only this time treat the step value as unsigned. |
| // This covers loops that count up with an unsigned step. |
| OperandExtendedAdd = |
| getAddExpr(WideStart, |
| getMulExpr(WideMaxBECount, |
| getZeroExtendExpr(Step, WideTy, Depth + 1), |
| SCEV::FlagAnyWrap, Depth + 1), |
| SCEV::FlagAnyWrap, Depth + 1); |
| if (SAdd == OperandExtendedAdd) { |
| // If AR wraps around then |
| // |
| // abs(Step) * MaxBECount > unsigned-max(AR->getType()) |
| // => SAdd != OperandExtendedAdd |
| // |
| // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> |
| // (SAdd == OperandExtendedAdd => AR is NW) |
| |
| const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); |
| |
| // Return the expression with the addrec on the outside. |
| return getAddRecExpr( |
| getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, |
| Depth + 1), |
| getZeroExtendExpr(Step, Ty, Depth + 1), L, |
| AR->getNoWrapFlags()); |
| } |
| } |
| } |
| |
| // Normally, in the cases we can prove no-overflow via a |
| // backedge guarding condition, we can also compute a backedge |
| // taken count for the loop. The exceptions are assumptions and |
| // guards present in the loop -- SCEV is not great at exploiting |
| // these to compute max backedge taken counts, but can still use |
| // these to prove lack of overflow. Use this fact to avoid |
| // doing extra work that may not pay off. |
| |
| if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || |
| !AC.assumptions().empty()) { |
| // If the backedge is guarded by a comparison with the pre-inc |
| // value the addrec is safe. Also, if the entry is guarded by |
| // a comparison with the start value and the backedge is |
| // guarded by a comparison with the post-inc value, the addrec |
| // is safe. |
| ICmpInst::Predicate Pred; |
| const SCEV *OverflowLimit = |
| getSignedOverflowLimitForStep(Step, &Pred, this); |
| if (OverflowLimit && |
| (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || |
| isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { |
| // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. |
| const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); |
| return getAddRecExpr( |
| getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), |
| getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); |
| } |
| } |
| |
| // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> |
| // if D + (C - D + Step * n) could be proven to not signed wrap |
| // where D maximizes the number of trailing zeros of (C - D + Step * n) |
| if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { |
| const APInt &C = SC->getAPInt(); |
| const APInt &D = extractConstantWithoutWrapping(*this, C, Step); |
| if (D != 0) { |
| const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); |
| const SCEV *SResidual = |
| getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); |
| const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); |
| return getAddExpr(SSExtD, SSExtR, |
| (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), |
| Depth + 1); |
| } |
| } |
| |
| if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { |
| const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); |
| return getAddRecExpr( |
| getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), |
| getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); |
| } |
| } |
| |
| // If the input value is provably positive and we could not simplify |
| // away the sext build a zext instead. |
| if (isKnownNonNegative(Op)) |
| return getZeroExtendExpr(Op, Ty, Depth + 1); |
| |
| // The cast wasn't folded; create an explicit cast node. |
| // Recompute the insert position, as it may have been invalidated. |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), |
| Op, Ty); |
| UniqueSCEVs.InsertNode(S, IP); |
| addToLoopUseLists(S); |
| return S; |
| } |
| |
| /// getAnyExtendExpr - Return a SCEV for the given operand extended with |
| /// unspecified bits out to the given type. |
| const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, |
| Type *Ty) { |
| assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && |
| "This is not an extending conversion!"); |
| assert(isSCEVable(Ty) && |
| "This is not a conversion to a SCEVable type!"); |
| Ty = getEffectiveSCEVType(Ty); |
| |
| // Sign-extend negative constants. |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) |
| if (SC->getAPInt().isNegative()) |
| return getSignExtendExpr(Op, Ty); |
| |
| // Peel off a truncate cast. |
| if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { |
| const SCEV *NewOp = T->getOperand(); |
| if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) |
| return getAnyExtendExpr(NewOp, Ty); |
| return getTruncateOrNoop(NewOp, Ty); |
| } |
| |
| // Next try a zext cast. If the cast is folded, use it. |
| const SCEV *ZExt = getZeroExtendExpr(Op, Ty); |
| if (!isa<SCEVZeroExtendExpr>(ZExt)) |
| return ZExt; |
| |
| // Next try a sext cast. If the cast is folded, use it. |
| const SCEV *SExt = getSignExtendExpr(Op, Ty); |
| if (!isa<SCEVSignExtendExpr>(SExt)) |
| return SExt; |
| |
| // Force the cast to be folded into the operands of an addrec. |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { |
| SmallVector<const SCEV *, 4> Ops; |
| for (const SCEV *Op : AR->operands()) |
| Ops.push_back(getAnyExtendExpr(Op, Ty)); |
| return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); |
| } |
| |
| // If the expression is obviously signed, use the sext cast value. |
| if (isa<SCEVSMaxExpr>(Op)) |
| return SExt; |
| |
| // Absent any other information, use the zext cast value. |
| return ZExt; |
| } |
| |
| /// Process the given Ops list, which is a list of operands to be added under |
| /// the given scale, update the given map. This is a helper function for |
| /// getAddRecExpr. As an example of what it does, given a sequence of operands |
| /// that would form an add expression like this: |
| /// |
| /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) |
| /// |
| /// where A and B are constants, update the map with these values: |
| /// |
| /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) |
| /// |
| /// and add 13 + A*B*29 to AccumulatedConstant. |
| /// This will allow getAddRecExpr to produce this: |
| /// |
| /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) |
| /// |
| /// This form often exposes folding opportunities that are hidden in |
| /// the original operand list. |
| /// |
| /// Return true iff it appears that any interesting folding opportunities |
| /// may be exposed. This helps getAddRecExpr short-circuit extra work in |
| /// the common case where no interesting opportunities are present, and |
| /// is also used as a check to avoid infinite recursion. |
| static bool |
| CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, |
| SmallVectorImpl<const SCEV *> &NewOps, |
| APInt &AccumulatedConstant, |
| const SCEV *const *Ops, size_t NumOperands, |
| const APInt &Scale, |
| ScalarEvolution &SE) { |
| bool Interesting = false; |
| |
| // Iterate over the add operands. They are sorted, with constants first. |
| unsigned i = 0; |
| while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { |
| ++i; |
| // Pull a buried constant out to the outside. |
| if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) |
| Interesting = true; |
| AccumulatedConstant += Scale * C->getAPInt(); |
| } |
| |
| // Next comes everything else. We're especially interested in multiplies |
| // here, but they're in the middle, so just visit the rest with one loop. |
| for (; i != NumOperands; ++i) { |
| const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); |
| if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { |
| APInt NewScale = |
| Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); |
| if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { |
| // A multiplication of a constant with another add; recurse. |
| const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); |
| Interesting |= |
| CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, |
| Add->op_begin(), Add->getNumOperands(), |
| NewScale, SE); |
| } else { |
| // A multiplication of a constant with some other value. Update |
| // the map. |
| SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); |
| const SCEV *Key = SE.getMulExpr(MulOps); |
| auto Pair = M.insert({Key, NewScale}); |
| if (Pair.second) { |
| NewOps.push_back(Pair.first->first); |
| } else { |
| Pair.first->second += NewScale; |
| // The map already had an entry for this value, which may indicate |
| // a folding opportunity. |
| Interesting = true; |
| } |
| } |
| } else { |
| // An ordinary operand. Update the map. |
| std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = |
| M.insert({Ops[i], Scale}); |
| if (Pair.second) { |
| NewOps.push_back(Pair.first->first); |
| } else { |
| Pair.first->second += Scale; |
| // The map already had an entry for this value, which may indicate |
| // a folding opportunity. |
| Interesting = true; |
| } |
| } |
| } |
| |
| return Interesting; |
| } |
| |
| // We're trying to construct a SCEV of type `Type' with `Ops' as operands and |
| // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of |
| // can't-overflow flags for the operation if possible. |
| static SCEV::NoWrapFlags |
| StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, |
| const SmallVectorImpl<const SCEV *> &Ops, |
| SCEV::NoWrapFlags Flags) { |
| using namespace std::placeholders; |
| |
| using OBO = OverflowingBinaryOperator; |
| |
| bool CanAnalyze = |
| Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; |
| (void)CanAnalyze; |
| assert(CanAnalyze && "don't call from other places!"); |
| |
| int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; |
| SCEV::NoWrapFlags SignOrUnsignWrap = |
| ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); |
| |
| // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. |
| auto IsKnownNonNegative = [&](const SCEV *S) { |
| return SE->isKnownNonNegative(S); |
| }; |
| |
| if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) |
| Flags = |
| ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); |
| |
| SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); |
| |
| if (SignOrUnsignWrap != SignOrUnsignMask && |
| (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && |
| isa<SCEVConstant>(Ops[0])) { |
| |
| auto Opcode = [&] { |
| switch (Type) { |
| case scAddExpr: |
| return Instruction::Add; |
| case scMulExpr: |
| return Instruction::Mul; |
| default: |
| llvm_unreachable("Unexpected SCEV op."); |
| } |
| }(); |
| |
| const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); |
| |
| // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. |
| if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { |
| auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( |
| Opcode, C, OBO::NoSignedWrap); |
| if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) |
| Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); |
| } |
| |
| // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. |
| if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { |
| auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( |
| Opcode, C, OBO::NoUnsignedWrap); |
| if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) |
| Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); |
| } |
| } |
| |
| return Flags; |
| } |
| |
| bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { |
| return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); |
| } |
| |
| /// Get a canonical add expression, or something simpler if possible. |
| const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, |
| SCEV::NoWrapFlags Flags, |
| unsigned Depth) { |
| assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && |
| "only nuw or nsw allowed"); |
| assert(!Ops.empty() && "Cannot get empty add!"); |
| if (Ops.size() == 1) return Ops[0]; |
| #ifndef NDEBUG |
| Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); |
| for (unsigned i = 1, e = Ops.size(); i != e; ++i) |
| assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && |
| "SCEVAddExpr operand types don't match!"); |
| #endif |
| |
| // Sort by complexity, this groups all similar expression types together. |
| GroupByComplexity(Ops, &LI, DT); |
| |
| Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); |
| |
| // If there are any constants, fold them together. |
| unsigned Idx = 0; |
| if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { |
| ++Idx; |
| assert(Idx < Ops.size()); |
| while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { |
| // We found two constants, fold them together! |
| Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); |
| if (Ops.size() == 2) return Ops[0]; |
| Ops.erase(Ops.begin()+1); // Erase the folded element |
| LHSC = cast<SCEVConstant>(Ops[0]); |
| } |
| |
| // If we are left with a constant zero being added, strip it off. |
| if (LHSC->getValue()->isZero()) { |
| Ops.erase(Ops.begin()); |
| --Idx; |
| } |
| |
| if (Ops.size() == 1) return Ops[0]; |
| } |
| |
| // Limit recursion calls depth. |
| if (Depth > MaxArithDepth) |
| return getOrCreateAddExpr(Ops, Flags); |
| |
| // Okay, check to see if the same value occurs in the operand list more than |
| // once. If so, merge them together into an multiply expression. Since we |
| // sorted the list, these values are required to be adjacent. |
| Type *Ty = Ops[0]->getType(); |
| bool FoundMatch = false; |
| for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) |
| if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 |
| // Scan ahead to count how many equal operands there are. |
| unsigned Count = 2; |
| while (i+Count != e && Ops[i+Count] == Ops[i]) |
| ++Count; |
| // Merge the values into a multiply. |
| const SCEV *Scale = getConstant(Ty, Count); |
| const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); |
| if (Ops.size() == Count) |
| return Mul; |
| Ops[i] = Mul; |
| Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); |
| --i; e -= Count - 1; |
| FoundMatch = true; |
| } |
| if (FoundMatch) |
| return getAddExpr(Ops, Flags, Depth + 1); |
| |
| // Check for truncates. If all the operands are truncated from the same |
| // type, see if factoring out the truncate would permit the result to be |
| // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) |
| // if the contents of the resulting outer trunc fold to something simple. |
| auto FindTruncSrcType = [&]() -> Type * { |
| // We're ultimately looking to fold an addrec of truncs and muls of only |
| // constants and truncs, so if we find any other types of SCEV |
| // as operands of the addrec then we bail and return nullptr here. |
| // Otherwise, we return the type of the operand of a trunc that we find. |
| if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) |
| return T->getOperand()->getType(); |
| if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { |
| const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); |
| if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) |
| return T->getOperand()->getType(); |
| } |
| return nullptr; |
| }; |
| if (auto *SrcType = FindTruncSrcType()) { |
| SmallVector<const SCEV *, 8> LargeOps; |
| bool Ok = true; |
| // Check all the operands to see if they can be represented in the |
| // source type of the truncate. |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { |
| if (T->getOperand()->getType() != SrcType) { |
| Ok = false; |
| break; |
| } |
| LargeOps.push_back(T->getOperand()); |
| } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { |
| LargeOps.push_back(getAnyExtendExpr(C, SrcType)); |
| } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { |
| SmallVector<const SCEV *, 8> LargeMulOps; |
| for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { |
| if (const SCEVTruncateExpr *T = |
| dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { |
| if (T->getOperand()->getType() != SrcType) { |
| Ok = false; |
| break; |
| } |
| LargeMulOps.push_back(T->getOperand()); |
| } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { |
| LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); |
| } else { |
| Ok = false; |
| break; |
| } |
| } |
| if (Ok) |
| LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); |
| } else { |
| Ok = false; |
| break; |
| } |
| } |
| if (Ok) { |
| // Evaluate the expression in the larger type. |
| const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); |
| // If it folds to something simple, use it. Otherwise, don't. |
| if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) |
| return getTruncateExpr(Fold, Ty); |
| } |
| } |
| |
| // Skip past any other cast SCEVs. |
| while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) |
| ++Idx; |
| |
| // If there are add operands they would be next. |
| if (Idx < Ops.size()) { |
| bool DeletedAdd = false; |
| while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { |
| if (Ops.size() > AddOpsInlineThreshold || |
| Add->getNumOperands() > AddOpsInlineThreshold) |
| break; |
| // If we have an add, expand the add operands onto the end of the operands |
| // list. |
| Ops.erase(Ops.begin()+Idx); |
| Ops.append(Add->op_begin(), Add->op_end()); |
| DeletedAdd = true; |
| } |
| |
| // If we deleted at least one add, we added operands to the end of the list, |
| // and they are not necessarily sorted. Recurse to resort and resimplify |
| // any operands we just acquired. |
| if (DeletedAdd) |
| return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); |
| } |
| |
| // Skip over the add expression until we get to a multiply. |
| while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) |
| ++Idx; |
| |
| // Check to see if there are any folding opportunities present with |
| // operands multiplied by constant values. |
| if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { |
| uint64_t BitWidth = getTypeSizeInBits(Ty); |
| DenseMap<const SCEV *, APInt> M; |
| SmallVector<const SCEV *, 8> NewOps; |
| APInt AccumulatedConstant(BitWidth, 0); |
| if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, |
| Ops.data(), Ops.size(), |
| APInt(BitWidth, 1), *this)) { |
| struct APIntCompare { |
| bool operator()(const APInt &LHS, const APInt &RHS) const { |
| return LHS.ult(RHS); |
| } |
| }; |
| |
| // Some interesting folding opportunity is present, so its worthwhile to |
| // re-generate the operands list. Group the operands by constant scale, |
| // to avoid multiplying by the same constant scale multiple times. |
| std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; |
| for (const SCEV *NewOp : NewOps) |
| MulOpLists[M.find(NewOp)->second].push_back(NewOp); |
| // Re-generate the operands list. |
| Ops.clear(); |
| if (AccumulatedConstant != 0) |
| Ops.push_back(getConstant(AccumulatedConstant)); |
| for (auto &MulOp : MulOpLists) |
| if (MulOp.first != 0) |
| Ops.push_back(getMulExpr( |
| getConstant(MulOp.first), |
| getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), |
| SCEV::FlagAnyWrap, Depth + 1)); |
| if (Ops.empty()) |
| return getZero(Ty); |
| if (Ops.size() == 1) |
| return Ops[0]; |
| return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); |
| } |
| } |
| |
| // If we are adding something to a multiply expression, make sure the |
| // something is not already an operand of the multiply. If so, merge it into |
| // the multiply. |
| for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { |
| const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); |
| for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { |
| const SCEV *MulOpSCEV = Mul->getOperand(MulOp); |
| if (isa<SCEVConstant>(MulOpSCEV)) |
| continue; |
| for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) |
| if (MulOpSCEV == Ops[AddOp]) { |
| // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) |
| const SCEV *InnerMul = Mul->getOperand(MulOp == 0); |
| if (Mul->getNumOperands() != 2) { |
| // If the multiply has more than two operands, we must get the |
| // Y*Z term. |
| SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), |
| Mul->op_begin()+MulOp); |
| MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); |
| InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); |
| } |
| SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; |
| const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); |
| const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, |
| SCEV::FlagAnyWrap, Depth + 1); |
| if (Ops.size() == 2) return OuterMul; |
| if (AddOp < Idx) { |
| Ops.erase(Ops.begin()+AddOp); |
| Ops.erase(Ops.begin()+Idx-1); |
| } else { |
| Ops.erase(Ops.begin()+Idx); |
| Ops.erase(Ops.begin()+AddOp-1); |
| } |
| Ops.push_back(OuterMul); |
| return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); |
| } |
| |
| // Check this multiply against other multiplies being added together. |
| for (unsigned OtherMulIdx = Idx+1; |
| OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); |
| ++OtherMulIdx) { |
| const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); |
| // If MulOp occurs in OtherMul, we can fold the two multiplies |
| // together. |
| for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); |
| OMulOp != e; ++OMulOp) |
| if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { |
| // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) |
| const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); |
| if (Mul->getNumOperands() != 2) { |
| SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), |
| Mul->op_begin()+MulOp); |
| MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); |
| InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); |
| |