blob: 25a154edf4ac8eead0149dd8ff6068ed02d055e1 [file] [log] [blame]
//===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the TypeBasedAliasAnalysis pass, which implements
// metadata-based TBAA.
//
// In LLVM IR, memory does not have types, so LLVM's own type system is not
// suitable for doing TBAA. Instead, metadata is added to the IR to describe
// a type system of a higher level language. This can be used to implement
// typical C/C++ TBAA, but it can also be used to implement custom alias
// analysis behavior for other languages.
//
// We now support two types of metadata format: scalar TBAA and struct-path
// aware TBAA. After all testing cases are upgraded to use struct-path aware
// TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
// can be dropped.
//
// The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
// three fields, e.g.:
// !0 = !{ !"an example type tree" }
// !1 = !{ !"int", !0 }
// !2 = !{ !"float", !0 }
// !3 = !{ !"const float", !2, i64 1 }
//
// The first field is an identity field. It can be any value, usually
// an MDString, which uniquely identifies the type. The most important
// name in the tree is the name of the root node. Two trees with
// different root node names are entirely disjoint, even if they
// have leaves with common names.
//
// The second field identifies the type's parent node in the tree, or
// is null or omitted for a root node. A type is considered to alias
// all of its descendants and all of its ancestors in the tree. Also,
// a type is considered to alias all types in other trees, so that
// bitcode produced from multiple front-ends is handled conservatively.
//
// If the third field is present, it's an integer which if equal to 1
// indicates that the type is "constant" (meaning pointsToConstantMemory
// should return true; see
// http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
//
// With struct-path aware TBAA, the MDNodes attached to an instruction using
// "!tbaa" are called path tag nodes.
//
// The path tag node has 4 fields with the last field being optional.
//
// The first field is the base type node, it can be a struct type node
// or a scalar type node. The second field is the access type node, it
// must be a scalar type node. The third field is the offset into the base type.
// The last field has the same meaning as the last field of our scalar TBAA:
// it's an integer which if equal to 1 indicates that the access is "constant".
//
// The struct type node has a name and a list of pairs, one pair for each member
// of the struct. The first element of each pair is a type node (a struct type
// node or a scalar type node), specifying the type of the member, the second
// element of each pair is the offset of the member.
//
// Given an example
// typedef struct {
// short s;
// } A;
// typedef struct {
// uint16_t s;
// A a;
// } B;
//
// For an access to B.a.s, we attach !5 (a path tag node) to the load/store
// instruction. The base type is !4 (struct B), the access type is !2 (scalar
// type short) and the offset is 4.
//
// !0 = !{!"Simple C/C++ TBAA"}
// !1 = !{!"omnipotent char", !0} // Scalar type node
// !2 = !{!"short", !1} // Scalar type node
// !3 = !{!"A", !2, i64 0} // Struct type node
// !4 = !{!"B", !2, i64 0, !3, i64 4}
// // Struct type node
// !5 = !{!4, !2, i64 4} // Path tag node
//
// The struct type nodes and the scalar type nodes form a type DAG.
// Root (!0)
// char (!1) -- edge to Root
// short (!2) -- edge to char
// A (!3) -- edge with offset 0 to short
// B (!4) -- edge with offset 0 to short and edge with offset 4 to A
//
// To check if two tags (tagX and tagY) can alias, we start from the base type
// of tagX, follow the edge with the correct offset in the type DAG and adjust
// the offset until we reach the base type of tagY or until we reach the Root
// node.
// If we reach the base type of tagY, compare the adjusted offset with
// offset of tagY, return Alias if the offsets are the same, return NoAlias
// otherwise.
// If we reach the Root node, perform the above starting from base type of tagY
// to see if we reach base type of tagX.
//
// If they have different roots, they're part of different potentially
// unrelated type systems, so we return Alias to be conservative.
// If neither node is an ancestor of the other and they have the same root,
// then we say NoAlias.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstdint>
using namespace llvm;
// A handy option for disabling TBAA functionality. The same effect can also be
// achieved by stripping the !tbaa tags from IR, but this option is sometimes
// more convenient.
static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true), cl::Hidden);
namespace {
/// isNewFormatTypeNode - Return true iff the given type node is in the new
/// size-aware format.
static bool isNewFormatTypeNode(const MDNode *N) {
if (N->getNumOperands() < 3)
return false;
// In the old format the first operand is a string.
if (!isa<MDNode>(N->getOperand(0)))
return false;
return true;
}
/// This is a simple wrapper around an MDNode which provides a higher-level
/// interface by hiding the details of how alias analysis information is encoded
/// in its operands.
template<typename MDNodeTy>
class TBAANodeImpl {
MDNodeTy *Node = nullptr;
public:
TBAANodeImpl() = default;
explicit TBAANodeImpl(MDNodeTy *N) : Node(N) {}
/// getNode - Get the MDNode for this TBAANode.
MDNodeTy *getNode() const { return Node; }
/// isNewFormat - Return true iff the wrapped type node is in the new
/// size-aware format.
bool isNewFormat() const { return isNewFormatTypeNode(Node); }
/// getParent - Get this TBAANode's Alias tree parent.
TBAANodeImpl<MDNodeTy> getParent() const {
if (isNewFormat())
return TBAANodeImpl(cast<MDNodeTy>(Node->getOperand(0)));
if (Node->getNumOperands() < 2)
return TBAANodeImpl<MDNodeTy>();
MDNodeTy *P = dyn_cast_or_null<MDNodeTy>(Node->getOperand(1));
if (!P)
return TBAANodeImpl<MDNodeTy>();
// Ok, this node has a valid parent. Return it.
return TBAANodeImpl<MDNodeTy>(P);
}
/// Test if this TBAANode represents a type for objects which are
/// not modified (by any means) in the context where this
/// AliasAnalysis is relevant.
bool isTypeImmutable() const {
if (Node->getNumOperands() < 3)
return false;
ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2));
if (!CI)
return false;
return CI->getValue()[0];
}
};
/// \name Specializations of \c TBAANodeImpl for const and non const qualified
/// \c MDNode.
/// @{
using TBAANode = TBAANodeImpl<const MDNode>;
using MutableTBAANode = TBAANodeImpl<MDNode>;
/// @}
/// This is a simple wrapper around an MDNode which provides a
/// higher-level interface by hiding the details of how alias analysis
/// information is encoded in its operands.
template<typename MDNodeTy>
class TBAAStructTagNodeImpl {
/// This node should be created with createTBAAAccessTag().
MDNodeTy *Node;
public:
explicit TBAAStructTagNodeImpl(MDNodeTy *N) : Node(N) {}
/// Get the MDNode for this TBAAStructTagNode.
MDNodeTy *getNode() const { return Node; }
/// isNewFormat - Return true iff the wrapped access tag is in the new
/// size-aware format.
bool isNewFormat() const {
if (Node->getNumOperands() < 4)
return false;
if (MDNodeTy *AccessType = getAccessType())
if (!TBAANodeImpl<MDNodeTy>(AccessType).isNewFormat())
return false;
return true;
}
MDNodeTy *getBaseType() const {
return dyn_cast_or_null<MDNode>(Node->getOperand(0));
}
MDNodeTy *getAccessType() const {
return dyn_cast_or_null<MDNode>(Node->getOperand(1));
}
uint64_t getOffset() const {
return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue();
}
uint64_t getSize() const {
if (!isNewFormat())
return UINT64_MAX;
return mdconst::extract<ConstantInt>(Node->getOperand(3))->getZExtValue();
}
/// Test if this TBAAStructTagNode represents a type for objects
/// which are not modified (by any means) in the context where this
/// AliasAnalysis is relevant.
bool isTypeImmutable() const {
unsigned OpNo = isNewFormat() ? 4 : 3;
if (Node->getNumOperands() < OpNo + 1)
return false;
ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(OpNo));
if (!CI)
return false;
return CI->getValue()[0];
}
};
/// \name Specializations of \c TBAAStructTagNodeImpl for const and non const
/// qualified \c MDNods.
/// @{
using TBAAStructTagNode = TBAAStructTagNodeImpl<const MDNode>;
using MutableTBAAStructTagNode = TBAAStructTagNodeImpl<MDNode>;
/// @}
/// This is a simple wrapper around an MDNode which provides a
/// higher-level interface by hiding the details of how alias analysis
/// information is encoded in its operands.
class TBAAStructTypeNode {
/// This node should be created with createTBAATypeNode().
const MDNode *Node = nullptr;
public:
TBAAStructTypeNode() = default;
explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
/// Get the MDNode for this TBAAStructTypeNode.
const MDNode *getNode() const { return Node; }
/// isNewFormat - Return true iff the wrapped type node is in the new
/// size-aware format.
bool isNewFormat() const { return isNewFormatTypeNode(Node); }
bool operator==(const TBAAStructTypeNode &Other) const {
return getNode() == Other.getNode();
}
/// getId - Return type identifier.
Metadata *getId() const {
return Node->getOperand(isNewFormat() ? 2 : 0);
}
unsigned getNumFields() const {
unsigned FirstFieldOpNo = isNewFormat() ? 3 : 1;
unsigned NumOpsPerField = isNewFormat() ? 3 : 2;
return (getNode()->getNumOperands() - FirstFieldOpNo) / NumOpsPerField;
}
TBAAStructTypeNode getFieldType(unsigned FieldIndex) const {
unsigned FirstFieldOpNo = isNewFormat() ? 3 : 1;
unsigned NumOpsPerField = isNewFormat() ? 3 : 2;
unsigned OpIndex = FirstFieldOpNo + FieldIndex * NumOpsPerField;
auto *TypeNode = cast<MDNode>(getNode()->getOperand(OpIndex));
return TBAAStructTypeNode(TypeNode);
}
/// Get this TBAAStructTypeNode's field in the type DAG with
/// given offset. Update the offset to be relative to the field type.
TBAAStructTypeNode getField(uint64_t &Offset) const {
bool NewFormat = isNewFormat();
if (NewFormat) {
// New-format root and scalar type nodes have no fields.
if (Node->getNumOperands() < 6)
return TBAAStructTypeNode();
} else {
// Parent can be omitted for the root node.
if (Node->getNumOperands() < 2)
return TBAAStructTypeNode();
// Fast path for a scalar type node and a struct type node with a single
// field.
if (Node->getNumOperands() <= 3) {
uint64_t Cur = Node->getNumOperands() == 2
? 0
: mdconst::extract<ConstantInt>(Node->getOperand(2))
->getZExtValue();
Offset -= Cur;
MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
if (!P)
return TBAAStructTypeNode();
return TBAAStructTypeNode(P);
}
}
// Assume the offsets are in order. We return the previous field if
// the current offset is bigger than the given offset.
unsigned FirstFieldOpNo = NewFormat ? 3 : 1;
unsigned NumOpsPerField = NewFormat ? 3 : 2;
unsigned TheIdx = 0;
for (unsigned Idx = FirstFieldOpNo; Idx < Node->getNumOperands();
Idx += NumOpsPerField) {
uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1))
->getZExtValue();
if (Cur > Offset) {
assert(Idx >= FirstFieldOpNo + NumOpsPerField &&
"TBAAStructTypeNode::getField should have an offset match!");
TheIdx = Idx - NumOpsPerField;
break;
}
}
// Move along the last field.
if (TheIdx == 0)
TheIdx = Node->getNumOperands() - NumOpsPerField;
uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1))
->getZExtValue();
Offset -= Cur;
MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
if (!P)
return TBAAStructTypeNode();
return TBAAStructTypeNode(P);
}
};
} // end anonymous namespace
/// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
/// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
/// format.
static bool isStructPathTBAA(const MDNode *MD) {
// Anonymous TBAA root starts with a MDNode and dragonegg uses it as
// a TBAA tag.
return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
}
AliasResult TypeBasedAAResult::alias(const MemoryLocation &LocA,
const MemoryLocation &LocB) {
if (!EnableTBAA)
return AAResultBase::alias(LocA, LocB);
// If accesses may alias, chain to the next AliasAnalysis.
if (Aliases(LocA.AATags.TBAA, LocB.AATags.TBAA))
return AAResultBase::alias(LocA, LocB);
// Otherwise return a definitive result.
return NoAlias;
}
bool TypeBasedAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
bool OrLocal) {
if (!EnableTBAA)
return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
const MDNode *M = Loc.AATags.TBAA;
if (!M)
return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
// If this is an "immutable" type, we can assume the pointer is pointing
// to constant memory.
if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
(isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
return true;
return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
}
FunctionModRefBehavior
TypeBasedAAResult::getModRefBehavior(ImmutableCallSite CS) {
if (!EnableTBAA)
return AAResultBase::getModRefBehavior(CS);
FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
// If this is an "immutable" type, we can assume the call doesn't write
// to memory.
if (const MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
(isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
Min = FMRB_OnlyReadsMemory;
return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min);
}
FunctionModRefBehavior TypeBasedAAResult::getModRefBehavior(const Function *F) {
// Functions don't have metadata. Just chain to the next implementation.
return AAResultBase::getModRefBehavior(F);
}
ModRefInfo TypeBasedAAResult::getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) {
if (!EnableTBAA)
return AAResultBase::getModRefInfo(CS, Loc);
if (const MDNode *L = Loc.AATags.TBAA)
if (const MDNode *M =
CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
if (!Aliases(L, M))
return ModRefInfo::NoModRef;
return AAResultBase::getModRefInfo(CS, Loc);
}
ModRefInfo TypeBasedAAResult::getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) {
if (!EnableTBAA)
return AAResultBase::getModRefInfo(CS1, CS2);
if (const MDNode *M1 =
CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
if (const MDNode *M2 =
CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
if (!Aliases(M1, M2))
return ModRefInfo::NoModRef;
return AAResultBase::getModRefInfo(CS1, CS2);
}
bool MDNode::isTBAAVtableAccess() const {
if (!isStructPathTBAA(this)) {
if (getNumOperands() < 1)
return false;
if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
if (Tag1->getString() == "vtable pointer")
return true;
}
return false;
}
// For struct-path aware TBAA, we use the access type of the tag.
TBAAStructTagNode Tag(this);
TBAAStructTypeNode AccessType(Tag.getAccessType());
if(auto *Id = dyn_cast<MDString>(AccessType.getId()))
if (Id->getString() == "vtable pointer")
return true;
return false;
}
static bool matchAccessTags(const MDNode *A, const MDNode *B,
const MDNode **GenericTag = nullptr);
MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
const MDNode *GenericTag;
matchAccessTags(A, B, &GenericTag);
return const_cast<MDNode*>(GenericTag);
}
static const MDNode *getLeastCommonType(const MDNode *A, const MDNode *B) {
if (!A || !B)
return nullptr;
if (A == B)
return A;
SmallSetVector<const MDNode *, 4> PathA;
TBAANode TA(A);
while (TA.getNode()) {
if (PathA.count(TA.getNode()))
report_fatal_error("Cycle found in TBAA metadata.");
PathA.insert(TA.getNode());
TA = TA.getParent();
}
SmallSetVector<const MDNode *, 4> PathB;
TBAANode TB(B);
while (TB.getNode()) {
if (PathB.count(TB.getNode()))
report_fatal_error("Cycle found in TBAA metadata.");
PathB.insert(TB.getNode());
TB = TB.getParent();
}
int IA = PathA.size() - 1;
int IB = PathB.size() - 1;
const MDNode *Ret = nullptr;
while (IA >= 0 && IB >= 0) {
if (PathA[IA] == PathB[IB])
Ret = PathA[IA];
else
break;
--IA;
--IB;
}
return Ret;
}
void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const {
if (Merge)
N.TBAA =
MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa));
else
N.TBAA = getMetadata(LLVMContext::MD_tbaa);
if (Merge)
N.Scope = MDNode::getMostGenericAliasScope(
N.Scope, getMetadata(LLVMContext::MD_alias_scope));
else
N.Scope = getMetadata(LLVMContext::MD_alias_scope);
if (Merge)
N.NoAlias =
MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias));
else
N.NoAlias = getMetadata(LLVMContext::MD_noalias);
}
static const MDNode *createAccessTag(const MDNode *AccessType) {
// If there is no access type or the access type is the root node, then
// we don't have any useful access tag to return.
if (!AccessType || AccessType->getNumOperands() < 2)
return nullptr;
Type *Int64 = IntegerType::get(AccessType->getContext(), 64);
auto *OffsetNode = ConstantAsMetadata::get(ConstantInt::get(Int64, 0));
if (TBAAStructTypeNode(AccessType).isNewFormat()) {
// TODO: Take access ranges into account when matching access tags and
// fix this code to generate actual access sizes for generic tags.
uint64_t AccessSize = UINT64_MAX;
auto *SizeNode =
ConstantAsMetadata::get(ConstantInt::get(Int64, AccessSize));
Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
const_cast<MDNode*>(AccessType),
OffsetNode, SizeNode};
return MDNode::get(AccessType->getContext(), Ops);
}
Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
const_cast<MDNode*>(AccessType),
OffsetNode};
return MDNode::get(AccessType->getContext(), Ops);
}
static bool hasField(TBAAStructTypeNode BaseType,
TBAAStructTypeNode FieldType) {
for (unsigned I = 0, E = BaseType.getNumFields(); I != E; ++I) {
TBAAStructTypeNode T = BaseType.getFieldType(I);
if (T == FieldType || hasField(T, FieldType))
return true;
}
return false;
}
/// Return true if for two given accesses, one of the accessed objects may be a
/// subobject of the other. The \p BaseTag and \p SubobjectTag parameters
/// describe the accesses to the base object and the subobject respectively.
/// \p CommonType must be the metadata node describing the common type of the
/// accessed objects. On return, \p MayAlias is set to true iff these accesses
/// may alias and \p Generic, if not null, points to the most generic access
/// tag for the given two.
static bool mayBeAccessToSubobjectOf(TBAAStructTagNode BaseTag,
TBAAStructTagNode SubobjectTag,
const MDNode *CommonType,
const MDNode **GenericTag,
bool &MayAlias) {
// If the base object is of the least common type, then this may be an access
// to its subobject.
if (BaseTag.getAccessType() == BaseTag.getBaseType() &&
BaseTag.getAccessType() == CommonType) {
if (GenericTag)
*GenericTag = createAccessTag(CommonType);
MayAlias = true;
return true;
}
// If the access to the base object is through a field of the subobject's
// type, then this may be an access to that field. To check for that we start
// from the base type, follow the edge with the correct offset in the type DAG
// and adjust the offset until we reach the field type or until we reach the
// access type.
bool NewFormat = BaseTag.isNewFormat();
TBAAStructTypeNode BaseType(BaseTag.getBaseType());
uint64_t OffsetInBase = BaseTag.getOffset();
for (;;) {
// In the old format there is no distinction between fields and parent
// types, so in this case we consider all nodes up to the root.
if (!BaseType.getNode()) {
assert(!NewFormat && "Did not see access type in access path!");
break;
}
if (BaseType.getNode() == SubobjectTag.getBaseType()) {
bool SameMemberAccess = OffsetInBase == SubobjectTag.getOffset();
if (GenericTag) {
*GenericTag = SameMemberAccess ? SubobjectTag.getNode() :
createAccessTag(CommonType);
}
MayAlias = SameMemberAccess;
return true;
}
// With new-format nodes we stop at the access type.
if (NewFormat && BaseType.getNode() == BaseTag.getAccessType())
break;
// Follow the edge with the correct offset. Offset will be adjusted to
// be relative to the field type.
BaseType = BaseType.getField(OffsetInBase);
}
// If the base object has a direct or indirect field of the subobject's type,
// then this may be an access to that field. We need this to check now that
// we support aggregates as access types.
if (NewFormat) {
// TBAAStructTypeNode BaseAccessType(BaseTag.getAccessType());
TBAAStructTypeNode FieldType(SubobjectTag.getBaseType());
if (hasField(BaseType, FieldType)) {
if (GenericTag)
*GenericTag = createAccessTag(CommonType);
MayAlias = true;
return true;
}
}
return false;
}
/// matchTags - Return true if the given couple of accesses are allowed to
/// overlap. If \arg GenericTag is not null, then on return it points to the
/// most generic access descriptor for the given two.
static bool matchAccessTags(const MDNode *A, const MDNode *B,
const MDNode **GenericTag) {
if (A == B) {
if (GenericTag)
*GenericTag = A;
return true;
}
// Accesses with no TBAA information may alias with any other accesses.
if (!A || !B) {
if (GenericTag)
*GenericTag = nullptr;
return true;
}
// Verify that both input nodes are struct-path aware. Auto-upgrade should
// have taken care of this.
assert(isStructPathTBAA(A) && "Access A is not struct-path aware!");
assert(isStructPathTBAA(B) && "Access B is not struct-path aware!");
TBAAStructTagNode TagA(A), TagB(B);
const MDNode *CommonType = getLeastCommonType(TagA.getAccessType(),
TagB.getAccessType());
// If the final access types have different roots, they're part of different
// potentially unrelated type systems, so we must be conservative.
if (!CommonType) {
if (GenericTag)
*GenericTag = nullptr;
return true;
}
// If one of the accessed objects may be a subobject of the other, then such
// accesses may alias.
bool MayAlias;
if (mayBeAccessToSubobjectOf(/* BaseTag= */ TagA, /* SubobjectTag= */ TagB,
CommonType, GenericTag, MayAlias) ||
mayBeAccessToSubobjectOf(/* BaseTag= */ TagB, /* SubobjectTag= */ TagA,
CommonType, GenericTag, MayAlias))
return MayAlias;
// Otherwise, we've proved there's no alias.
if (GenericTag)
*GenericTag = createAccessTag(CommonType);
return false;
}
/// Aliases - Test whether the access represented by tag A may alias the
/// access represented by tag B.
bool TypeBasedAAResult::Aliases(const MDNode *A, const MDNode *B) const {
return matchAccessTags(A, B);
}
AnalysisKey TypeBasedAA::Key;
TypeBasedAAResult TypeBasedAA::run(Function &F, FunctionAnalysisManager &AM) {
return TypeBasedAAResult();
}
char TypeBasedAAWrapperPass::ID = 0;
INITIALIZE_PASS(TypeBasedAAWrapperPass, "tbaa", "Type-Based Alias Analysis",
false, true)
ImmutablePass *llvm::createTypeBasedAAWrapperPass() {
return new TypeBasedAAWrapperPass();
}
TypeBasedAAWrapperPass::TypeBasedAAWrapperPass() : ImmutablePass(ID) {
initializeTypeBasedAAWrapperPassPass(*PassRegistry::getPassRegistry());
}
bool TypeBasedAAWrapperPass::doInitialization(Module &M) {
Result.reset(new TypeBasedAAResult());
return false;
}
bool TypeBasedAAWrapperPass::doFinalization(Module &M) {
Result.reset();
return false;
}
void TypeBasedAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}