| //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. |
| // |
| // Software pipelining (SWP) is an instruction scheduling technique for loops |
| // that overlap loop iterations and exploits ILP via a compiler transformation. |
| // |
| // Swing Modulo Scheduling is an implementation of software pipelining |
| // that generates schedules that are near optimal in terms of initiation |
| // interval, register requirements, and stage count. See the papers: |
| // |
| // "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa, |
| // A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Proceedings of the 1996 |
| // Conference on Parallel Architectures and Compilation Techiniques. |
| // |
| // "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J. |
| // Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE |
| // Transactions on Computers, Vol. 50, No. 3, 2001. |
| // |
| // "An Implementation of Swing Modulo Scheduling With Extensions for |
| // Superblocks", by T. Lattner, Master's Thesis, University of Illinois at |
| // Urbana-Chambpain, 2005. |
| // |
| // |
| // The SMS algorithm consists of three main steps after computing the minimal |
| // initiation interval (MII). |
| // 1) Analyze the dependence graph and compute information about each |
| // instruction in the graph. |
| // 2) Order the nodes (instructions) by priority based upon the heuristics |
| // described in the algorithm. |
| // 3) Attempt to schedule the nodes in the specified order using the MII. |
| // |
| // This SMS implementation is a target-independent back-end pass. When enabled, |
| // the pass runs just prior to the register allocation pass, while the machine |
| // IR is in SSA form. If software pipelining is successful, then the original |
| // loop is replaced by the optimized loop. The optimized loop contains one or |
| // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If |
| // the instructions cannot be scheduled in a given MII, we increase the MII by |
| // one and try again. |
| // |
| // The SMS implementation is an extension of the ScheduleDAGInstrs class. We |
| // represent loop carried dependences in the DAG as order edges to the Phi |
| // nodes. We also perform several passes over the DAG to eliminate unnecessary |
| // edges that inhibit the ability to pipeline. The implementation uses the |
| // DFAPacketizer class to compute the minimum initiation interval and the check |
| // where an instruction may be inserted in the pipelined schedule. |
| // |
| // In order for the SMS pass to work, several target specific hooks need to be |
| // implemented to get information about the loop structure and to rewrite |
| // instructions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/PriorityQueue.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/CodeGen/DFAPacketizer.h" |
| #include "llvm/CodeGen/LiveIntervals.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/RegisterClassInfo.h" |
| #include "llvm/CodeGen/RegisterPressure.h" |
| #include "llvm/CodeGen/ScheduleDAG.h" |
| #include "llvm/CodeGen/ScheduleDAGInstrs.h" |
| #include "llvm/CodeGen/ScheduleDAGMutation.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/MC/LaneBitmask.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/MC/MCInstrItineraries.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <climits> |
| #include <cstdint> |
| #include <deque> |
| #include <functional> |
| #include <iterator> |
| #include <map> |
| #include <memory> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "pipeliner" |
| |
| STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); |
| STATISTIC(NumPipelined, "Number of loops software pipelined"); |
| STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); |
| |
| /// A command line option to turn software pipelining on or off. |
| static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), |
| cl::ZeroOrMore, |
| cl::desc("Enable Software Pipelining")); |
| |
| /// A command line option to enable SWP at -Os. |
| static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", |
| cl::desc("Enable SWP at Os."), cl::Hidden, |
| cl::init(false)); |
| |
| /// A command line argument to limit minimum initial interval for pipelining. |
| static cl::opt<int> SwpMaxMii("pipeliner-max-mii", |
| cl::desc("Size limit for the MII."), |
| cl::Hidden, cl::init(27)); |
| |
| /// A command line argument to limit the number of stages in the pipeline. |
| static cl::opt<int> |
| SwpMaxStages("pipeliner-max-stages", |
| cl::desc("Maximum stages allowed in the generated scheduled."), |
| cl::Hidden, cl::init(3)); |
| |
| /// A command line option to disable the pruning of chain dependences due to |
| /// an unrelated Phi. |
| static cl::opt<bool> |
| SwpPruneDeps("pipeliner-prune-deps", |
| cl::desc("Prune dependences between unrelated Phi nodes."), |
| cl::Hidden, cl::init(true)); |
| |
| /// A command line option to disable the pruning of loop carried order |
| /// dependences. |
| static cl::opt<bool> |
| SwpPruneLoopCarried("pipeliner-prune-loop-carried", |
| cl::desc("Prune loop carried order dependences."), |
| cl::Hidden, cl::init(true)); |
| |
| #ifndef NDEBUG |
| static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); |
| #endif |
| |
| static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", |
| cl::ReallyHidden, cl::init(false), |
| cl::ZeroOrMore, cl::desc("Ignore RecMII")); |
| |
| namespace { |
| |
| class NodeSet; |
| class SMSchedule; |
| |
| /// The main class in the implementation of the target independent |
| /// software pipeliner pass. |
| class MachinePipeliner : public MachineFunctionPass { |
| public: |
| MachineFunction *MF = nullptr; |
| const MachineLoopInfo *MLI = nullptr; |
| const MachineDominatorTree *MDT = nullptr; |
| const InstrItineraryData *InstrItins; |
| const TargetInstrInfo *TII = nullptr; |
| RegisterClassInfo RegClassInfo; |
| |
| #ifndef NDEBUG |
| static int NumTries; |
| #endif |
| |
| /// Cache the target analysis information about the loop. |
| struct LoopInfo { |
| MachineBasicBlock *TBB = nullptr; |
| MachineBasicBlock *FBB = nullptr; |
| SmallVector<MachineOperand, 4> BrCond; |
| MachineInstr *LoopInductionVar = nullptr; |
| MachineInstr *LoopCompare = nullptr; |
| }; |
| LoopInfo LI; |
| |
| static char ID; |
| |
| MachinePipeliner() : MachineFunctionPass(ID) { |
| initializeMachinePipelinerPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.addPreserved<AAResultsWrapperPass>(); |
| AU.addRequired<MachineLoopInfo>(); |
| AU.addRequired<MachineDominatorTree>(); |
| AU.addRequired<LiveIntervals>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| private: |
| void preprocessPhiNodes(MachineBasicBlock &B); |
| bool canPipelineLoop(MachineLoop &L); |
| bool scheduleLoop(MachineLoop &L); |
| bool swingModuloScheduler(MachineLoop &L); |
| }; |
| |
| /// This class builds the dependence graph for the instructions in a loop, |
| /// and attempts to schedule the instructions using the SMS algorithm. |
| class SwingSchedulerDAG : public ScheduleDAGInstrs { |
| MachinePipeliner &Pass; |
| /// The minimum initiation interval between iterations for this schedule. |
| unsigned MII = 0; |
| /// Set to true if a valid pipelined schedule is found for the loop. |
| bool Scheduled = false; |
| MachineLoop &Loop; |
| LiveIntervals &LIS; |
| const RegisterClassInfo &RegClassInfo; |
| |
| /// A toplogical ordering of the SUnits, which is needed for changing |
| /// dependences and iterating over the SUnits. |
| ScheduleDAGTopologicalSort Topo; |
| |
| struct NodeInfo { |
| int ASAP = 0; |
| int ALAP = 0; |
| int ZeroLatencyDepth = 0; |
| int ZeroLatencyHeight = 0; |
| |
| NodeInfo() = default; |
| }; |
| /// Computed properties for each node in the graph. |
| std::vector<NodeInfo> ScheduleInfo; |
| |
| enum OrderKind { BottomUp = 0, TopDown = 1 }; |
| /// Computed node ordering for scheduling. |
| SetVector<SUnit *> NodeOrder; |
| |
| using NodeSetType = SmallVector<NodeSet, 8>; |
| using ValueMapTy = DenseMap<unsigned, unsigned>; |
| using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>; |
| using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>; |
| |
| /// Instructions to change when emitting the final schedule. |
| DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges; |
| |
| /// We may create a new instruction, so remember it because it |
| /// must be deleted when the pass is finished. |
| SmallPtrSet<MachineInstr *, 4> NewMIs; |
| |
| /// Ordered list of DAG postprocessing steps. |
| std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; |
| |
| /// Helper class to implement Johnson's circuit finding algorithm. |
| class Circuits { |
| std::vector<SUnit> &SUnits; |
| SetVector<SUnit *> Stack; |
| BitVector Blocked; |
| SmallVector<SmallPtrSet<SUnit *, 4>, 10> B; |
| SmallVector<SmallVector<int, 4>, 16> AdjK; |
| unsigned NumPaths; |
| static unsigned MaxPaths; |
| |
| public: |
| Circuits(std::vector<SUnit> &SUs) |
| : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {} |
| |
| /// Reset the data structures used in the circuit algorithm. |
| void reset() { |
| Stack.clear(); |
| Blocked.reset(); |
| B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>()); |
| NumPaths = 0; |
| } |
| |
| void createAdjacencyStructure(SwingSchedulerDAG *DAG); |
| bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false); |
| void unblock(int U); |
| }; |
| |
| public: |
| SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis, |
| const RegisterClassInfo &rci) |
| : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis), |
| RegClassInfo(rci), Topo(SUnits, &ExitSU) { |
| P.MF->getSubtarget().getSMSMutations(Mutations); |
| } |
| |
| void schedule() override; |
| void finishBlock() override; |
| |
| /// Return true if the loop kernel has been scheduled. |
| bool hasNewSchedule() { return Scheduled; } |
| |
| /// Return the earliest time an instruction may be scheduled. |
| int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; } |
| |
| /// Return the latest time an instruction my be scheduled. |
| int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; } |
| |
| /// The mobility function, which the number of slots in which |
| /// an instruction may be scheduled. |
| int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); } |
| |
| /// The depth, in the dependence graph, for a node. |
| unsigned getDepth(SUnit *Node) { return Node->getDepth(); } |
| |
| /// The maximum unweighted length of a path from an arbitrary node to the |
| /// given node in which each edge has latency 0 |
| int getZeroLatencyDepth(SUnit *Node) { |
| return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth; |
| } |
| |
| /// The height, in the dependence graph, for a node. |
| unsigned getHeight(SUnit *Node) { return Node->getHeight(); } |
| |
| /// The maximum unweighted length of a path from the given node to an |
| /// arbitrary node in which each edge has latency 0 |
| int getZeroLatencyHeight(SUnit *Node) { |
| return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight; |
| } |
| |
| /// Return true if the dependence is a back-edge in the data dependence graph. |
| /// Since the DAG doesn't contain cycles, we represent a cycle in the graph |
| /// using an anti dependence from a Phi to an instruction. |
| bool isBackedge(SUnit *Source, const SDep &Dep) { |
| if (Dep.getKind() != SDep::Anti) |
| return false; |
| return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI(); |
| } |
| |
| bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true); |
| |
| /// The distance function, which indicates that operation V of iteration I |
| /// depends on operations U of iteration I-distance. |
| unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) { |
| // Instructions that feed a Phi have a distance of 1. Computing larger |
| // values for arrays requires data dependence information. |
| if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti) |
| return 1; |
| return 0; |
| } |
| |
| /// Set the Minimum Initiation Interval for this schedule attempt. |
| void setMII(unsigned mii) { MII = mii; } |
| |
| void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule); |
| |
| void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs); |
| |
| /// Return the new base register that was stored away for the changed |
| /// instruction. |
| unsigned getInstrBaseReg(SUnit *SU) { |
| DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = |
| InstrChanges.find(SU); |
| if (It != InstrChanges.end()) |
| return It->second.first; |
| return 0; |
| } |
| |
| void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) { |
| Mutations.push_back(std::move(Mutation)); |
| } |
| |
| private: |
| void addLoopCarriedDependences(AliasAnalysis *AA); |
| void updatePhiDependences(); |
| void changeDependences(); |
| unsigned calculateResMII(); |
| unsigned calculateRecMII(NodeSetType &RecNodeSets); |
| void findCircuits(NodeSetType &NodeSets); |
| void fuseRecs(NodeSetType &NodeSets); |
| void removeDuplicateNodes(NodeSetType &NodeSets); |
| void computeNodeFunctions(NodeSetType &NodeSets); |
| void registerPressureFilter(NodeSetType &NodeSets); |
| void colocateNodeSets(NodeSetType &NodeSets); |
| void checkNodeSets(NodeSetType &NodeSets); |
| void groupRemainingNodes(NodeSetType &NodeSets); |
| void addConnectedNodes(SUnit *SU, NodeSet &NewSet, |
| SetVector<SUnit *> &NodesAdded); |
| void computeNodeOrder(NodeSetType &NodeSets); |
| void checkValidNodeOrder(const NodeSetType &Circuits) const; |
| bool schedulePipeline(SMSchedule &Schedule); |
| void generatePipelinedLoop(SMSchedule &Schedule); |
| void generateProlog(SMSchedule &Schedule, unsigned LastStage, |
| MachineBasicBlock *KernelBB, ValueMapTy *VRMap, |
| MBBVectorTy &PrologBBs); |
| void generateEpilog(SMSchedule &Schedule, unsigned LastStage, |
| MachineBasicBlock *KernelBB, ValueMapTy *VRMap, |
| MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs); |
| void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, |
| MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, |
| SMSchedule &Schedule, ValueMapTy *VRMap, |
| InstrMapTy &InstrMap, unsigned LastStageNum, |
| unsigned CurStageNum, bool IsLast); |
| void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, |
| MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, |
| SMSchedule &Schedule, ValueMapTy *VRMap, |
| InstrMapTy &InstrMap, unsigned LastStageNum, |
| unsigned CurStageNum, bool IsLast); |
| void removeDeadInstructions(MachineBasicBlock *KernelBB, |
| MBBVectorTy &EpilogBBs); |
| void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, |
| SMSchedule &Schedule); |
| void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB, |
| MBBVectorTy &EpilogBBs, SMSchedule &Schedule, |
| ValueMapTy *VRMap); |
| bool computeDelta(MachineInstr &MI, unsigned &Delta); |
| void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI, |
| unsigned Num); |
| MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum, |
| unsigned InstStageNum); |
| MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum, |
| unsigned InstStageNum, |
| SMSchedule &Schedule); |
| void updateInstruction(MachineInstr *NewMI, bool LastDef, |
| unsigned CurStageNum, unsigned InstrStageNum, |
| SMSchedule &Schedule, ValueMapTy *VRMap); |
| MachineInstr *findDefInLoop(unsigned Reg); |
| unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal, |
| unsigned LoopStage, ValueMapTy *VRMap, |
| MachineBasicBlock *BB); |
| void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum, |
| SMSchedule &Schedule, ValueMapTy *VRMap, |
| InstrMapTy &InstrMap); |
| void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule, |
| InstrMapTy &InstrMap, unsigned CurStageNum, |
| unsigned PhiNum, MachineInstr *Phi, |
| unsigned OldReg, unsigned NewReg, |
| unsigned PrevReg = 0); |
| bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos, |
| unsigned &OffsetPos, unsigned &NewBase, |
| int64_t &NewOffset); |
| void postprocessDAG(); |
| }; |
| |
| /// A NodeSet contains a set of SUnit DAG nodes with additional information |
| /// that assigns a priority to the set. |
| class NodeSet { |
| SetVector<SUnit *> Nodes; |
| bool HasRecurrence = false; |
| unsigned RecMII = 0; |
| int MaxMOV = 0; |
| unsigned MaxDepth = 0; |
| unsigned Colocate = 0; |
| SUnit *ExceedPressure = nullptr; |
| unsigned Latency = 0; |
| |
| public: |
| using iterator = SetVector<SUnit *>::const_iterator; |
| |
| NodeSet() = default; |
| NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) { |
| Latency = 0; |
| for (unsigned i = 0, e = Nodes.size(); i < e; ++i) |
| for (const SDep &Succ : Nodes[i]->Succs) |
| if (Nodes.count(Succ.getSUnit())) |
| Latency += Succ.getLatency(); |
| } |
| |
| bool insert(SUnit *SU) { return Nodes.insert(SU); } |
| |
| void insert(iterator S, iterator E) { Nodes.insert(S, E); } |
| |
| template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) { |
| return Nodes.remove_if(P); |
| } |
| |
| unsigned count(SUnit *SU) const { return Nodes.count(SU); } |
| |
| bool hasRecurrence() { return HasRecurrence; }; |
| |
| unsigned size() const { return Nodes.size(); } |
| |
| bool empty() const { return Nodes.empty(); } |
| |
| SUnit *getNode(unsigned i) const { return Nodes[i]; }; |
| |
| void setRecMII(unsigned mii) { RecMII = mii; }; |
| |
| void setColocate(unsigned c) { Colocate = c; }; |
| |
| void setExceedPressure(SUnit *SU) { ExceedPressure = SU; } |
| |
| bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; } |
| |
| int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; } |
| |
| int getRecMII() { return RecMII; } |
| |
| /// Summarize node functions for the entire node set. |
| void computeNodeSetInfo(SwingSchedulerDAG *SSD) { |
| for (SUnit *SU : *this) { |
| MaxMOV = std::max(MaxMOV, SSD->getMOV(SU)); |
| MaxDepth = std::max(MaxDepth, SSD->getDepth(SU)); |
| } |
| } |
| |
| unsigned getLatency() { return Latency; } |
| |
| unsigned getMaxDepth() { return MaxDepth; } |
| |
| void clear() { |
| Nodes.clear(); |
| RecMII = 0; |
| HasRecurrence = false; |
| MaxMOV = 0; |
| MaxDepth = 0; |
| Colocate = 0; |
| ExceedPressure = nullptr; |
| } |
| |
| operator SetVector<SUnit *> &() { return Nodes; } |
| |
| /// Sort the node sets by importance. First, rank them by recurrence MII, |
| /// then by mobility (least mobile done first), and finally by depth. |
| /// Each node set may contain a colocate value which is used as the first |
| /// tie breaker, if it's set. |
| bool operator>(const NodeSet &RHS) const { |
| if (RecMII == RHS.RecMII) { |
| if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate) |
| return Colocate < RHS.Colocate; |
| if (MaxMOV == RHS.MaxMOV) |
| return MaxDepth > RHS.MaxDepth; |
| return MaxMOV < RHS.MaxMOV; |
| } |
| return RecMII > RHS.RecMII; |
| } |
| |
| bool operator==(const NodeSet &RHS) const { |
| return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV && |
| MaxDepth == RHS.MaxDepth; |
| } |
| |
| bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); } |
| |
| iterator begin() { return Nodes.begin(); } |
| iterator end() { return Nodes.end(); } |
| |
| void print(raw_ostream &os) const { |
| os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV |
| << " depth " << MaxDepth << " col " << Colocate << "\n"; |
| for (const auto &I : Nodes) |
| os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); |
| os << "\n"; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void dump() const { print(dbgs()); } |
| #endif |
| }; |
| |
| /// This class represents the scheduled code. The main data structure is a |
| /// map from scheduled cycle to instructions. During scheduling, the |
| /// data structure explicitly represents all stages/iterations. When |
| /// the algorithm finshes, the schedule is collapsed into a single stage, |
| /// which represents instructions from different loop iterations. |
| /// |
| /// The SMS algorithm allows negative values for cycles, so the first cycle |
| /// in the schedule is the smallest cycle value. |
| class SMSchedule { |
| private: |
| /// Map from execution cycle to instructions. |
| DenseMap<int, std::deque<SUnit *>> ScheduledInstrs; |
| |
| /// Map from instruction to execution cycle. |
| std::map<SUnit *, int> InstrToCycle; |
| |
| /// Map for each register and the max difference between its uses and def. |
| /// The first element in the pair is the max difference in stages. The |
| /// second is true if the register defines a Phi value and loop value is |
| /// scheduled before the Phi. |
| std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff; |
| |
| /// Keep track of the first cycle value in the schedule. It starts |
| /// as zero, but the algorithm allows negative values. |
| int FirstCycle = 0; |
| |
| /// Keep track of the last cycle value in the schedule. |
| int LastCycle = 0; |
| |
| /// The initiation interval (II) for the schedule. |
| int InitiationInterval = 0; |
| |
| /// Target machine information. |
| const TargetSubtargetInfo &ST; |
| |
| /// Virtual register information. |
| MachineRegisterInfo &MRI; |
| |
| std::unique_ptr<DFAPacketizer> Resources; |
| |
| public: |
| SMSchedule(MachineFunction *mf) |
| : ST(mf->getSubtarget()), MRI(mf->getRegInfo()), |
| Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {} |
| |
| void reset() { |
| ScheduledInstrs.clear(); |
| InstrToCycle.clear(); |
| RegToStageDiff.clear(); |
| FirstCycle = 0; |
| LastCycle = 0; |
| InitiationInterval = 0; |
| } |
| |
| /// Set the initiation interval for this schedule. |
| void setInitiationInterval(int ii) { InitiationInterval = ii; } |
| |
| /// Return the first cycle in the completed schedule. This |
| /// can be a negative value. |
| int getFirstCycle() const { return FirstCycle; } |
| |
| /// Return the last cycle in the finalized schedule. |
| int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; } |
| |
| /// Return the cycle of the earliest scheduled instruction in the dependence |
| /// chain. |
| int earliestCycleInChain(const SDep &Dep); |
| |
| /// Return the cycle of the latest scheduled instruction in the dependence |
| /// chain. |
| int latestCycleInChain(const SDep &Dep); |
| |
| void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, |
| int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG); |
| bool insert(SUnit *SU, int StartCycle, int EndCycle, int II); |
| |
| /// Iterators for the cycle to instruction map. |
| using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator; |
| using const_sched_iterator = |
| DenseMap<int, std::deque<SUnit *>>::const_iterator; |
| |
| /// Return true if the instruction is scheduled at the specified stage. |
| bool isScheduledAtStage(SUnit *SU, unsigned StageNum) { |
| return (stageScheduled(SU) == (int)StageNum); |
| } |
| |
| /// Return the stage for a scheduled instruction. Return -1 if |
| /// the instruction has not been scheduled. |
| int stageScheduled(SUnit *SU) const { |
| std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); |
| if (it == InstrToCycle.end()) |
| return -1; |
| return (it->second - FirstCycle) / InitiationInterval; |
| } |
| |
| /// Return the cycle for a scheduled instruction. This function normalizes |
| /// the first cycle to be 0. |
| unsigned cycleScheduled(SUnit *SU) const { |
| std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); |
| assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled."); |
| return (it->second - FirstCycle) % InitiationInterval; |
| } |
| |
| /// Return the maximum stage count needed for this schedule. |
| unsigned getMaxStageCount() { |
| return (LastCycle - FirstCycle) / InitiationInterval; |
| } |
| |
| /// Return the max. number of stages/iterations that can occur between a |
| /// register definition and its uses. |
| unsigned getStagesForReg(int Reg, unsigned CurStage) { |
| std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; |
| if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second) |
| return 1; |
| return Stages.first; |
| } |
| |
| /// The number of stages for a Phi is a little different than other |
| /// instructions. The minimum value computed in RegToStageDiff is 1 |
| /// because we assume the Phi is needed for at least 1 iteration. |
| /// This is not the case if the loop value is scheduled prior to the |
| /// Phi in the same stage. This function returns the number of stages |
| /// or iterations needed between the Phi definition and any uses. |
| unsigned getStagesForPhi(int Reg) { |
| std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; |
| if (Stages.second) |
| return Stages.first; |
| return Stages.first - 1; |
| } |
| |
| /// Return the instructions that are scheduled at the specified cycle. |
| std::deque<SUnit *> &getInstructions(int cycle) { |
| return ScheduledInstrs[cycle]; |
| } |
| |
| bool isValidSchedule(SwingSchedulerDAG *SSD); |
| void finalizeSchedule(SwingSchedulerDAG *SSD); |
| void orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, |
| std::deque<SUnit *> &Insts); |
| bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi); |
| bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Def, |
| MachineOperand &MO); |
| void print(raw_ostream &os) const; |
| void dump() const; |
| }; |
| |
| } // end anonymous namespace |
| |
| unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; |
| char MachinePipeliner::ID = 0; |
| #ifndef NDEBUG |
| int MachinePipeliner::NumTries = 0; |
| #endif |
| char &llvm::MachinePipelinerID = MachinePipeliner::ID; |
| |
| INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, |
| "Modulo Software Pipelining", false, false) |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) |
| INITIALIZE_PASS_DEPENDENCY(LiveIntervals) |
| INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, |
| "Modulo Software Pipelining", false, false) |
| |
| /// The "main" function for implementing Swing Modulo Scheduling. |
| bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { |
| if (skipFunction(mf.getFunction())) |
| return false; |
| |
| if (!EnableSWP) |
| return false; |
| |
| if (mf.getFunction().getAttributes().hasAttribute( |
| AttributeList::FunctionIndex, Attribute::OptimizeForSize) && |
| !EnableSWPOptSize.getPosition()) |
| return false; |
| |
| MF = &mf; |
| MLI = &getAnalysis<MachineLoopInfo>(); |
| MDT = &getAnalysis<MachineDominatorTree>(); |
| TII = MF->getSubtarget().getInstrInfo(); |
| RegClassInfo.runOnMachineFunction(*MF); |
| |
| for (auto &L : *MLI) |
| scheduleLoop(*L); |
| |
| return false; |
| } |
| |
| /// Attempt to perform the SMS algorithm on the specified loop. This function is |
| /// the main entry point for the algorithm. The function identifies candidate |
| /// loops, calculates the minimum initiation interval, and attempts to schedule |
| /// the loop. |
| bool MachinePipeliner::scheduleLoop(MachineLoop &L) { |
| bool Changed = false; |
| for (auto &InnerLoop : L) |
| Changed |= scheduleLoop(*InnerLoop); |
| |
| #ifndef NDEBUG |
| // Stop trying after reaching the limit (if any). |
| int Limit = SwpLoopLimit; |
| if (Limit >= 0) { |
| if (NumTries >= SwpLoopLimit) |
| return Changed; |
| NumTries++; |
| } |
| #endif |
| |
| if (!canPipelineLoop(L)) |
| return Changed; |
| |
| ++NumTrytoPipeline; |
| |
| Changed = swingModuloScheduler(L); |
| |
| return Changed; |
| } |
| |
| /// Return true if the loop can be software pipelined. The algorithm is |
| /// restricted to loops with a single basic block. Make sure that the |
| /// branch in the loop can be analyzed. |
| bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { |
| if (L.getNumBlocks() != 1) |
| return false; |
| |
| // Check if the branch can't be understood because we can't do pipelining |
| // if that's the case. |
| LI.TBB = nullptr; |
| LI.FBB = nullptr; |
| LI.BrCond.clear(); |
| if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) |
| return false; |
| |
| LI.LoopInductionVar = nullptr; |
| LI.LoopCompare = nullptr; |
| if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) |
| return false; |
| |
| if (!L.getLoopPreheader()) |
| return false; |
| |
| // Remove any subregisters from inputs to phi nodes. |
| preprocessPhiNodes(*L.getHeader()); |
| return true; |
| } |
| |
| void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); |
| |
| for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { |
| MachineOperand &DefOp = PI.getOperand(0); |
| assert(DefOp.getSubReg() == 0); |
| auto *RC = MRI.getRegClass(DefOp.getReg()); |
| |
| for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { |
| MachineOperand &RegOp = PI.getOperand(i); |
| if (RegOp.getSubReg() == 0) |
| continue; |
| |
| // If the operand uses a subregister, replace it with a new register |
| // without subregisters, and generate a copy to the new register. |
| unsigned NewReg = MRI.createVirtualRegister(RC); |
| MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); |
| MachineBasicBlock::iterator At = PredB.getFirstTerminator(); |
| const DebugLoc &DL = PredB.findDebugLoc(At); |
| auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) |
| .addReg(RegOp.getReg(), getRegState(RegOp), |
| RegOp.getSubReg()); |
| Slots.insertMachineInstrInMaps(*Copy); |
| RegOp.setReg(NewReg); |
| RegOp.setSubReg(0); |
| } |
| } |
| } |
| |
| /// The SMS algorithm consists of the following main steps: |
| /// 1. Computation and analysis of the dependence graph. |
| /// 2. Ordering of the nodes (instructions). |
| /// 3. Attempt to Schedule the loop. |
| bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { |
| assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); |
| |
| SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo); |
| |
| MachineBasicBlock *MBB = L.getHeader(); |
| // The kernel should not include any terminator instructions. These |
| // will be added back later. |
| SMS.startBlock(MBB); |
| |
| // Compute the number of 'real' instructions in the basic block by |
| // ignoring terminators. |
| unsigned size = MBB->size(); |
| for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), |
| E = MBB->instr_end(); |
| I != E; ++I, --size) |
| ; |
| |
| SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); |
| SMS.schedule(); |
| SMS.exitRegion(); |
| |
| SMS.finishBlock(); |
| return SMS.hasNewSchedule(); |
| } |
| |
| /// We override the schedule function in ScheduleDAGInstrs to implement the |
| /// scheduling part of the Swing Modulo Scheduling algorithm. |
| void SwingSchedulerDAG::schedule() { |
| AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| buildSchedGraph(AA); |
| addLoopCarriedDependences(AA); |
| updatePhiDependences(); |
| Topo.InitDAGTopologicalSorting(); |
| postprocessDAG(); |
| changeDependences(); |
| LLVM_DEBUG({ |
| for (unsigned su = 0, e = SUnits.size(); su != e; ++su) |
| SUnits[su].dumpAll(this); |
| }); |
| |
| NodeSetType NodeSets; |
| findCircuits(NodeSets); |
| NodeSetType Circuits = NodeSets; |
| |
| // Calculate the MII. |
| unsigned ResMII = calculateResMII(); |
| unsigned RecMII = calculateRecMII(NodeSets); |
| |
| fuseRecs(NodeSets); |
| |
| // This flag is used for testing and can cause correctness problems. |
| if (SwpIgnoreRecMII) |
| RecMII = 0; |
| |
| MII = std::max(ResMII, RecMII); |
| LLVM_DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII |
| << ", res=" << ResMII << ")\n"); |
| |
| // Can't schedule a loop without a valid MII. |
| if (MII == 0) |
| return; |
| |
| // Don't pipeline large loops. |
| if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) |
| return; |
| |
| computeNodeFunctions(NodeSets); |
| |
| registerPressureFilter(NodeSets); |
| |
| colocateNodeSets(NodeSets); |
| |
| checkNodeSets(NodeSets); |
| |
| LLVM_DEBUG({ |
| for (auto &I : NodeSets) { |
| dbgs() << " Rec NodeSet "; |
| I.dump(); |
| } |
| }); |
| |
| std::stable_sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>()); |
| |
| groupRemainingNodes(NodeSets); |
| |
| removeDuplicateNodes(NodeSets); |
| |
| LLVM_DEBUG({ |
| for (auto &I : NodeSets) { |
| dbgs() << " NodeSet "; |
| I.dump(); |
| } |
| }); |
| |
| computeNodeOrder(NodeSets); |
| |
| // check for node order issues |
| checkValidNodeOrder(Circuits); |
| |
| SMSchedule Schedule(Pass.MF); |
| Scheduled = schedulePipeline(Schedule); |
| |
| if (!Scheduled) |
| return; |
| |
| unsigned numStages = Schedule.getMaxStageCount(); |
| // No need to generate pipeline if there are no overlapped iterations. |
| if (numStages == 0) |
| return; |
| |
| // Check that the maximum stage count is less than user-defined limit. |
| if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) |
| return; |
| |
| generatePipelinedLoop(Schedule); |
| ++NumPipelined; |
| } |
| |
| /// Clean up after the software pipeliner runs. |
| void SwingSchedulerDAG::finishBlock() { |
| for (MachineInstr *I : NewMIs) |
| MF.DeleteMachineInstr(I); |
| NewMIs.clear(); |
| |
| // Call the superclass. |
| ScheduleDAGInstrs::finishBlock(); |
| } |
| |
| /// Return the register values for the operands of a Phi instruction. |
| /// This function assume the instruction is a Phi. |
| static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, |
| unsigned &InitVal, unsigned &LoopVal) { |
| assert(Phi.isPHI() && "Expecting a Phi."); |
| |
| InitVal = 0; |
| LoopVal = 0; |
| for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) |
| if (Phi.getOperand(i + 1).getMBB() != Loop) |
| InitVal = Phi.getOperand(i).getReg(); |
| else |
| LoopVal = Phi.getOperand(i).getReg(); |
| |
| assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); |
| } |
| |
| /// Return the Phi register value that comes from the incoming block. |
| static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { |
| for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) |
| if (Phi.getOperand(i + 1).getMBB() != LoopBB) |
| return Phi.getOperand(i).getReg(); |
| return 0; |
| } |
| |
| /// Return the Phi register value that comes the loop block. |
| static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { |
| for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) |
| if (Phi.getOperand(i + 1).getMBB() == LoopBB) |
| return Phi.getOperand(i).getReg(); |
| return 0; |
| } |
| |
| /// Return true if SUb can be reached from SUa following the chain edges. |
| static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { |
| SmallPtrSet<SUnit *, 8> Visited; |
| SmallVector<SUnit *, 8> Worklist; |
| Worklist.push_back(SUa); |
| while (!Worklist.empty()) { |
| const SUnit *SU = Worklist.pop_back_val(); |
| for (auto &SI : SU->Succs) { |
| SUnit *SuccSU = SI.getSUnit(); |
| if (SI.getKind() == SDep::Order) { |
| if (Visited.count(SuccSU)) |
| continue; |
| if (SuccSU == SUb) |
| return true; |
| Worklist.push_back(SuccSU); |
| Visited.insert(SuccSU); |
| } |
| } |
| } |
| return false; |
| } |
| |
| /// Return true if the instruction causes a chain between memory |
| /// references before and after it. |
| static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { |
| return MI.isCall() || MI.hasUnmodeledSideEffects() || |
| (MI.hasOrderedMemoryRef() && |
| (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); |
| } |
| |
| /// Return the underlying objects for the memory references of an instruction. |
| /// This function calls the code in ValueTracking, but first checks that the |
| /// instruction has a memory operand. |
| static void getUnderlyingObjects(MachineInstr *MI, |
| SmallVectorImpl<Value *> &Objs, |
| const DataLayout &DL) { |
| if (!MI->hasOneMemOperand()) |
| return; |
| MachineMemOperand *MM = *MI->memoperands_begin(); |
| if (!MM->getValue()) |
| return; |
| GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL); |
| for (Value *V : Objs) { |
| if (!isIdentifiedObject(V)) { |
| Objs.clear(); |
| return; |
| } |
| Objs.push_back(V); |
| } |
| } |
| |
| /// Add a chain edge between a load and store if the store can be an |
| /// alias of the load on a subsequent iteration, i.e., a loop carried |
| /// dependence. This code is very similar to the code in ScheduleDAGInstrs |
| /// but that code doesn't create loop carried dependences. |
| void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { |
| MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads; |
| Value *UnknownValue = |
| UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); |
| for (auto &SU : SUnits) { |
| MachineInstr &MI = *SU.getInstr(); |
| if (isDependenceBarrier(MI, AA)) |
| PendingLoads.clear(); |
| else if (MI.mayLoad()) { |
| SmallVector<Value *, 4> Objs; |
| getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); |
| if (Objs.empty()) |
| Objs.push_back(UnknownValue); |
| for (auto V : Objs) { |
| SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; |
| SUs.push_back(&SU); |
| } |
| } else if (MI.mayStore()) { |
| SmallVector<Value *, 4> Objs; |
| getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); |
| if (Objs.empty()) |
| Objs.push_back(UnknownValue); |
| for (auto V : Objs) { |
| MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I = |
| PendingLoads.find(V); |
| if (I == PendingLoads.end()) |
| continue; |
| for (auto Load : I->second) { |
| if (isSuccOrder(Load, &SU)) |
| continue; |
| MachineInstr &LdMI = *Load->getInstr(); |
| // First, perform the cheaper check that compares the base register. |
| // If they are the same and the load offset is less than the store |
| // offset, then mark the dependence as loop carried potentially. |
| unsigned BaseReg1, BaseReg2; |
| int64_t Offset1, Offset2; |
| if (TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) && |
| TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) { |
| if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) { |
| assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && |
| "What happened to the chain edge?"); |
| SDep Dep(Load, SDep::Barrier); |
| Dep.setLatency(1); |
| SU.addPred(Dep); |
| continue; |
| } |
| } |
| // Second, the more expensive check that uses alias analysis on the |
| // base registers. If they alias, and the load offset is less than |
| // the store offset, the mark the dependence as loop carried. |
| if (!AA) { |
| SDep Dep(Load, SDep::Barrier); |
| Dep.setLatency(1); |
| SU.addPred(Dep); |
| continue; |
| } |
| MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); |
| MachineMemOperand *MMO2 = *MI.memoperands_begin(); |
| if (!MMO1->getValue() || !MMO2->getValue()) { |
| SDep Dep(Load, SDep::Barrier); |
| Dep.setLatency(1); |
| SU.addPred(Dep); |
| continue; |
| } |
| if (MMO1->getValue() == MMO2->getValue() && |
| MMO1->getOffset() <= MMO2->getOffset()) { |
| SDep Dep(Load, SDep::Barrier); |
| Dep.setLatency(1); |
| SU.addPred(Dep); |
| continue; |
| } |
| AliasResult AAResult = AA->alias( |
| MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize, |
| MMO1->getAAInfo()), |
| MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize, |
| MMO2->getAAInfo())); |
| |
| if (AAResult != NoAlias) { |
| SDep Dep(Load, SDep::Barrier); |
| Dep.setLatency(1); |
| SU.addPred(Dep); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer |
| /// processes dependences for PHIs. This function adds true dependences |
| /// from a PHI to a use, and a loop carried dependence from the use to the |
| /// PHI. The loop carried dependence is represented as an anti dependence |
| /// edge. This function also removes chain dependences between unrelated |
| /// PHIs. |
| void SwingSchedulerDAG::updatePhiDependences() { |
| SmallVector<SDep, 4> RemoveDeps; |
| const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); |
| |
| // Iterate over each DAG node. |
| for (SUnit &I : SUnits) { |
| RemoveDeps.clear(); |
| // Set to true if the instruction has an operand defined by a Phi. |
| unsigned HasPhiUse = 0; |
| unsigned HasPhiDef = 0; |
| MachineInstr *MI = I.getInstr(); |
| // Iterate over each operand, and we process the definitions. |
| for (MachineInstr::mop_iterator MOI = MI->operands_begin(), |
| MOE = MI->operands_end(); |
| MOI != MOE; ++MOI) { |
| if (!MOI->isReg()) |
| continue; |
| unsigned Reg = MOI->getReg(); |
| if (MOI->isDef()) { |
| // If the register is used by a Phi, then create an anti dependence. |
| for (MachineRegisterInfo::use_instr_iterator |
| UI = MRI.use_instr_begin(Reg), |
| UE = MRI.use_instr_end(); |
| UI != UE; ++UI) { |
| MachineInstr *UseMI = &*UI; |
| SUnit *SU = getSUnit(UseMI); |
| if (SU != nullptr && UseMI->isPHI()) { |
| if (!MI->isPHI()) { |
| SDep Dep(SU, SDep::Anti, Reg); |
| Dep.setLatency(1); |
| I.addPred(Dep); |
| } else { |
| HasPhiDef = Reg; |
| // Add a chain edge to a dependent Phi that isn't an existing |
| // predecessor. |
| if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) |
| I.addPred(SDep(SU, SDep::Barrier)); |
| } |
| } |
| } |
| } else if (MOI->isUse()) { |
| // If the register is defined by a Phi, then create a true dependence. |
| MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); |
| if (DefMI == nullptr) |
| continue; |
| SUnit *SU = getSUnit(DefMI); |
| if (SU != nullptr && DefMI->isPHI()) { |
| if (!MI->isPHI()) { |
| SDep Dep(SU, SDep::Data, Reg); |
| Dep.setLatency(0); |
| ST.adjustSchedDependency(SU, &I, Dep); |
| I.addPred(Dep); |
| } else { |
| HasPhiUse = Reg; |
| // Add a chain edge to a dependent Phi that isn't an existing |
| // predecessor. |
| if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) |
| I.addPred(SDep(SU, SDep::Barrier)); |
| } |
| } |
| } |
| } |
| // Remove order dependences from an unrelated Phi. |
| if (!SwpPruneDeps) |
| continue; |
| for (auto &PI : I.Preds) { |
| MachineInstr *PMI = PI.getSUnit()->getInstr(); |
| if (PMI->isPHI() && PI.getKind() == SDep::Order) { |
| if (I.getInstr()->isPHI()) { |
| if (PMI->getOperand(0).getReg() == HasPhiUse) |
| continue; |
| if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) |
| continue; |
| } |
| RemoveDeps.push_back(PI); |
| } |
| } |
| for (int i = 0, e = RemoveDeps.size(); i != e; ++i) |
| I.removePred(RemoveDeps[i]); |
| } |
| } |
| |
| /// Iterate over each DAG node and see if we can change any dependences |
| /// in order to reduce the recurrence MII. |
| void SwingSchedulerDAG::changeDependences() { |
| // See if an instruction can use a value from the previous iteration. |
| // If so, we update the base and offset of the instruction and change |
| // the dependences. |
| for (SUnit &I : SUnits) { |
| unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; |
| int64_t NewOffset = 0; |
| if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, |
| NewOffset)) |
| continue; |
| |
| // Get the MI and SUnit for the instruction that defines the original base. |
| unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); |
| MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); |
| if (!DefMI) |
| continue; |
| SUnit *DefSU = getSUnit(DefMI); |
| if (!DefSU) |
| continue; |
| // Get the MI and SUnit for the instruction that defins the new base. |
| MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); |
| if (!LastMI) |
| continue; |
| SUnit *LastSU = getSUnit(LastMI); |
| if (!LastSU) |
| continue; |
| |
| if (Topo.IsReachable(&I, LastSU)) |
| continue; |
| |
| // Remove the dependence. The value now depends on a prior iteration. |
| SmallVector<SDep, 4> Deps; |
| for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; |
| ++P) |
| if (P->getSUnit() == DefSU) |
| Deps.push_back(*P); |
| for (int i = 0, e = Deps.size(); i != e; i++) { |
| Topo.RemovePred(&I, Deps[i].getSUnit()); |
| I.removePred(Deps[i]); |
| } |
| // Remove the chain dependence between the instructions. |
| Deps.clear(); |
| for (auto &P : LastSU->Preds) |
| if (P.getSUnit() == &I && P.getKind() == SDep::Order) |
| Deps.push_back(P); |
| for (int i = 0, e = Deps.size(); i != e; i++) { |
| Topo.RemovePred(LastSU, Deps[i].getSUnit()); |
| LastSU->removePred(Deps[i]); |
| } |
| |
| // Add a dependence between the new instruction and the instruction |
| // that defines the new base. |
| SDep Dep(&I, SDep::Anti, NewBase); |
| LastSU->addPred(Dep); |
| |
| // Remember the base and offset information so that we can update the |
| // instruction during code generation. |
| InstrChanges[&I] = std::make_pair(NewBase, NewOffset); |
| } |
| } |
| |
| namespace { |
| |
| // FuncUnitSorter - Comparison operator used to sort instructions by |
| // the number of functional unit choices. |
| struct FuncUnitSorter { |
| const InstrItineraryData *InstrItins; |
| DenseMap<unsigned, unsigned> Resources; |
| |
| FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {} |
| |
| // Compute the number of functional unit alternatives needed |
| // at each stage, and take the minimum value. We prioritize the |
| // instructions by the least number of choices first. |
| unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { |
| unsigned schedClass = Inst->getDesc().getSchedClass(); |
| unsigned min = UINT_MAX; |
| for (const InstrStage *IS = InstrItins->beginStage(schedClass), |
| *IE = InstrItins->endStage(schedClass); |
| IS != IE; ++IS) { |
| unsigned funcUnits = IS->getUnits(); |
| unsigned numAlternatives = countPopulation(funcUnits); |
| if (numAlternatives < min) { |
| min = numAlternatives; |
| F = funcUnits; |
| } |
| } |
| return min; |
| } |
| |
| // Compute the critical resources needed by the instruction. This |
| // function records the functional units needed by instructions that |
| // must use only one functional unit. We use this as a tie breaker |
| // for computing the resource MII. The instrutions that require |
| // the same, highly used, functional unit have high priority. |
| void calcCriticalResources(MachineInstr &MI) { |
| unsigned SchedClass = MI.getDesc().getSchedClass(); |
| for (const InstrStage *IS = InstrItins->beginStage(SchedClass), |
| *IE = InstrItins->endStage(SchedClass); |
| IS != IE; ++IS) { |
| unsigned FuncUnits = IS->getUnits(); |
| if (countPopulation(FuncUnits) == 1) |
| Resources[FuncUnits]++; |
| } |
| } |
| |
| /// Return true if IS1 has less priority than IS2. |
| bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { |
| unsigned F1 = 0, F2 = 0; |
| unsigned MFUs1 = minFuncUnits(IS1, F1); |
| unsigned MFUs2 = minFuncUnits(IS2, F2); |
| if (MFUs1 == 1 && MFUs2 == 1) |
| return Resources.lookup(F1) < Resources.lookup(F2); |
| return MFUs1 > MFUs2; |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Calculate the resource constrained minimum initiation interval for the |
| /// specified loop. We use the DFA to model the resources needed for |
| /// each instruction, and we ignore dependences. A different DFA is created |
| /// for each cycle that is required. When adding a new instruction, we attempt |
| /// to add it to each existing DFA, until a legal space is found. If the |
| /// instruction cannot be reserved in an existing DFA, we create a new one. |
| unsigned SwingSchedulerDAG::calculateResMII() { |
| SmallVector<DFAPacketizer *, 8> Resources; |
| MachineBasicBlock *MBB = Loop.getHeader(); |
| Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget())); |
| |
| // Sort the instructions by the number of available choices for scheduling, |
| // least to most. Use the number of critical resources as the tie breaker. |
| FuncUnitSorter FUS = |
| FuncUnitSorter(MF.getSubtarget().getInstrItineraryData()); |
| for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), |
| E = MBB->getFirstTerminator(); |
| I != E; ++I) |
| FUS.calcCriticalResources(*I); |
| PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> |
| FuncUnitOrder(FUS); |
| |
| for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), |
| E = MBB->getFirstTerminator(); |
| I != E; ++I) |
| FuncUnitOrder.push(&*I); |
| |
| while (!FuncUnitOrder.empty()) { |
| MachineInstr *MI = FuncUnitOrder.top(); |
| FuncUnitOrder.pop(); |
| if (TII->isZeroCost(MI->getOpcode())) |
| continue; |
| // Attempt to reserve the instruction in an existing DFA. At least one |
| // DFA is needed for each cycle. |
| unsigned NumCycles = getSUnit(MI)->Latency; |
| unsigned ReservedCycles = 0; |
| SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin(); |
| SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end(); |
| for (unsigned C = 0; C < NumCycles; ++C) |
| while (RI != RE) { |
| if ((*RI++)->canReserveResources(*MI)) { |
| ++ReservedCycles; |
| break; |
| } |
| } |
| // Start reserving resources using existing DFAs. |
| for (unsigned C = 0; C < ReservedCycles; ++C) { |
| --RI; |
| (*RI)->reserveResources(*MI); |
| } |
| // Add new DFAs, if needed, to reserve resources. |
| for (unsigned C = ReservedCycles; C < NumCycles; ++C) { |
| DFAPacketizer *NewResource = |
| TII->CreateTargetScheduleState(MF.getSubtarget()); |
| assert(NewResource->canReserveResources(*MI) && "Reserve error."); |
| NewResource->reserveResources(*MI); |
| Resources.push_back(NewResource); |
| } |
| } |
| int Resmii = Resources.size(); |
| // Delete the memory for each of the DFAs that were created earlier. |
| for (DFAPacketizer *RI : Resources) { |
| DFAPacketizer *D = RI; |
| delete D; |
| } |
| Resources.clear(); |
| return Resmii; |
| } |
| |
| /// Calculate the recurrence-constrainted minimum initiation interval. |
| /// Iterate over each circuit. Compute the delay(c) and distance(c) |
| /// for each circuit. The II needs to satisfy the inequality |
| /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest |
| /// II that satisfies the inequality, and the RecMII is the maximum |
| /// of those values. |
| unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { |
| unsigned RecMII = 0; |
| |
| for (NodeSet &Nodes : NodeSets) { |
| if (Nodes.empty()) |
| continue; |
| |
| unsigned Delay = Nodes.getLatency(); |
| unsigned Distance = 1; |
| |
| // ii = ceil(delay / distance) |
| unsigned CurMII = (Delay + Distance - 1) / Distance; |
| Nodes.setRecMII(CurMII); |
| if (CurMII > RecMII) |
| RecMII = CurMII; |
| } |
| |
| return RecMII; |
| } |
| |
| /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, |
| /// but we do this to find the circuits, and then change them back. |
| static void swapAntiDependences(std::vector<SUnit> &SUnits) { |
| SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; |
| for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { |
| SUnit *SU = &SUnits[i]; |
| for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); |
| IP != EP; ++IP) { |
| if (IP->getKind() != SDep::Anti) |
| continue; |
| DepsAdded.push_back(std::make_pair(SU, *IP)); |
| } |
| } |
| for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), |
| E = DepsAdded.end(); |
| I != E; ++I) { |
| // Remove this anti dependency and add one in the reverse direction. |
| SUnit *SU = I->first; |
| SDep &D = I->second; |
| SUnit *TargetSU = D.getSUnit(); |
| unsigned Reg = D.getReg(); |
| unsigned Lat = D.getLatency(); |
| SU->removePred(D); |
| SDep Dep(SU, SDep::Anti, Reg); |
| Dep.setLatency(Lat); |
| TargetSU->addPred(Dep); |
| } |
| } |
| |
| /// Create the adjacency structure of the nodes in the graph. |
| void SwingSchedulerDAG::Circuits::createAdjacencyStructure( |
| SwingSchedulerDAG *DAG) { |
| BitVector Added(SUnits.size()); |
| DenseMap<int, int> OutputDeps; |
| for (int i = 0, e = SUnits.size(); i != e; ++i) { |
| Added.reset(); |
| // Add any successor to the adjacency matrix and exclude duplicates. |
| for (auto &SI : SUnits[i].Succs) { |
| // Only create a back-edge on the first and last nodes of a dependence |
| // chain. This records any chains and adds them later. |
| if (SI.getKind() == SDep::Output) { |
| int N = SI.getSUnit()->NodeNum; |
| int BackEdge = i; |
| auto Dep = OutputDeps.find(BackEdge); |
| if (Dep != OutputDeps.end()) { |
| BackEdge = Dep->second; |
| OutputDeps.erase(Dep); |
| } |
| OutputDeps[N] = BackEdge; |
| } |
| // Do not process a boundary node and a back-edge is processed only |
| // if it goes to a Phi. |
| if (SI.getSUnit()->isBoundaryNode() || |
| (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) |
| continue; |
| int N = SI.getSUnit()->NodeNum; |
| if (!Added.test(N)) { |
| AdjK[i].push_back(N); |
| Added.set(N); |
| } |
| } |
| // A chain edge between a store and a load is treated as a back-edge in the |
| // adjacency matrix. |
| for (auto &PI : SUnits[i].Preds) { |
| if (!SUnits[i].getInstr()->mayStore() || |
| !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) |
| continue; |
| if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { |
| int N = PI.getSUnit()->NodeNum; |
| if (!Added.test(N)) { |
| AdjK[i].push_back(N); |
| Added.set(N); |
| } |
| } |
| } |
| } |
| // Add back-eges in the adjacency matrix for the output dependences. |
| for (auto &OD : OutputDeps) |
| if (!Added.test(OD.second)) { |
| AdjK[OD.first].push_back(OD.second); |
| Added.set(OD.second); |
| } |
| } |
| |
| /// Identify an elementary circuit in the dependence graph starting at the |
| /// specified node. |
| bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, |
| bool HasBackedge) { |
| SUnit *SV = &SUnits[V]; |
| bool F = false; |
| Stack.insert(SV); |
| Blocked.set(V); |
| |
| for (auto W : AdjK[V]) { |
| if (NumPaths > MaxPaths) |
| break; |
| if (W < S) |
| continue; |
| if (W == S) { |
| if (!HasBackedge) |
| NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); |
| F = true; |
| ++NumPaths; |
| break; |
| } else if (!Blocked.test(W)) { |
| if (circuit(W, S, NodeSets, W < V ? true : HasBackedge)) |
| F = true; |
| } |
| } |
| |
| if (F) |
| unblock(V); |
| else { |
| for (auto W : AdjK[V]) { |
| if (W < S) |
| continue; |
| if (B[W].count(SV) == 0) |
| B[W].insert(SV); |
| } |
| } |
| Stack.pop_back(); |
| return F; |
| } |
| |
| /// Unblock a node in the circuit finding algorithm. |
| void SwingSchedulerDAG::Circuits::unblock(int U) { |
| Blocked.reset(U); |
| SmallPtrSet<SUnit *, 4> &BU = B[U]; |
| while (!BU.empty()) { |
| SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); |
| assert(SI != BU.end() && "Invalid B set."); |
| SUnit *W = *SI; |
| BU.erase(W); |
| if (Blocked.test(W->NodeNum)) |
| unblock(W->NodeNum); |
| } |
| } |
| |
| /// Identify all the elementary circuits in the dependence graph using |
| /// Johnson's circuit algorithm. |
| void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { |
| // Swap all the anti dependences in the DAG. That means it is no longer a DAG, |
| // but we do this to find the circuits, and then change them back. |
| swapAntiDependences(SUnits); |
| |
| Circuits Cir(SUnits); |
| // Create the adjacency structure. |
| Cir.createAdjacencyStructure(this); |
| for (int i = 0, e = SUnits.size(); i != e; ++i) { |
| Cir.reset(); |
| Cir.circuit(i, i, NodeSets); |
| } |
| |
| // Change the dependences back so that we've created a DAG again. |
| swapAntiDependences(SUnits); |
| } |
| |
| /// Return true for DAG nodes that we ignore when computing the cost functions. |
| /// We ignore the back-edge recurrence in order to avoid unbounded recursion |
| /// in the calculation of the ASAP, ALAP, etc functions. |
| static bool ignoreDependence(const SDep &D, bool isPred) { |
| if (D.isArtificial()) |
| return true; |
| return D.getKind() == SDep::Anti && isPred; |
| } |
| |
| /// Compute several functions need to order the nodes for scheduling. |
| /// ASAP - Earliest time to schedule a node. |
| /// ALAP - Latest time to schedule a node. |
| /// MOV - Mobility function, difference between ALAP and ASAP. |
| /// D - Depth of each node. |
| /// H - Height of each node. |
| void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { |
| ScheduleInfo.resize(SUnits.size()); |
| |
| LLVM_DEBUG({ |
| for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), |
| E = Topo.end(); |
| I != E; ++I) { |
| SUnit *SU = &SUnits[*I]; |
| SU->dump(this); |
| } |
| }); |
| |
| int maxASAP = 0; |
| // Compute ASAP and ZeroLatencyDepth. |
| for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), |
| E = Topo.end(); |
| I != E; ++I) { |
| int asap = 0; |
| int zeroLatencyDepth = 0; |
| SUnit *SU = &SUnits[*I]; |
| for (SUnit::const_pred_iterator IP = SU->Preds.begin(), |
| EP = SU->Preds.end(); |
| IP != EP; ++IP) { |
| SUnit *pred = IP->getSUnit(); |
| if (IP->getLatency() == 0) |
| zeroLatencyDepth = |
| std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); |
| if (ignoreDependence(*IP, true)) |
| continue; |
| asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - |
| getDistance(pred, SU, *IP) * MII)); |
| } |
| maxASAP = std::max(maxASAP, asap); |
| ScheduleInfo[*I].ASAP = asap; |
| ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; |
| } |
| |
| // Compute ALAP, ZeroLatencyHeight, and MOV. |
| for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), |
| E = Topo.rend(); |
| I != E; ++I) { |
| int alap = maxASAP; |
| int zeroLatencyHeight = 0; |
| SUnit *SU = &SUnits[*I]; |
| for (SUnit::const_succ_iterator IS = SU->Succs.begin(), |
| ES = SU->Succs.end(); |
| IS != ES; ++IS) { |
| SUnit *succ = IS->getSUnit(); |
| if (IS->getLatency() == 0) |
| zeroLatencyHeight = |
| std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); |
| if (ignoreDependence(*IS, true)) |
| continue; |
| alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + |
| getDistance(SU, succ, *IS) * MII)); |
| } |
| |
| ScheduleInfo[*I].ALAP = alap; |
| ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; |
| } |
| |
| // After computing the node functions, compute the summary for each node set. |
| for (NodeSet &I : NodeSets) |
| I.computeNodeSetInfo(this); |
| |
| LLVM_DEBUG({ |
| for (unsigned i = 0; i < SUnits.size(); i++) { |
| dbgs() << "\tNode " << i << ":\n"; |
| dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; |
| dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; |
| dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; |
| dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; |
| dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; |
| dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; |
| dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; |
| } |
| }); |
| } |
| |
| /// Compute the Pred_L(O) set, as defined in the paper. The set is defined |
| /// as the predecessors of the elements of NodeOrder that are not also in |
| /// NodeOrder. |
| static bool pred_L(SetVector<SUnit *> &NodeOrder, |
| SmallSetVector<SUnit *, 8> &Preds, |
| const NodeSet *S = nullptr) { |
| Preds.clear(); |
| for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); |
| I != E; ++I) { |
| for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); |
| PI != PE; ++PI) { |
| if (S && S->count(PI->getSUnit()) == 0) |
| continue; |
| if (ignoreDependence(*PI, true)) |
| continue; |
| if (NodeOrder.count(PI->getSUnit()) == 0) |
| Preds.insert(PI->getSUnit()); |
| } |
| // Back-edges are predecessors with an anti-dependence. |
| for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), |
| ES = (*I)->Succs.end(); |
| IS != ES; ++IS) { |
| if (IS->getKind() != SDep::Anti) |
| continue; |
| if (S && S->count(IS->getSUnit()) == 0) |
| continue; |
| if (NodeOrder.count(IS->getSUnit()) == 0) |
| Preds.insert(IS->getSUnit()); |
| } |
| } |
| return !Preds.empty(); |
| } |
| |
| /// Compute the Succ_L(O) set, as defined in the paper. The set is defined |
| /// as the successors of the elements of NodeOrder that are not also in |
| /// NodeOrder. |
| static bool succ_L(SetVector<SUnit *> &NodeOrder, |
| SmallSetVector<SUnit *, 8> &Succs, |
| const NodeSet *S = nullptr) { |
| Succs.clear(); |
| for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); |
| I != E; ++I) { |
| for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); |
| SI != SE; ++SI) { |
| if (S && S->count(SI->getSUnit()) == 0) |
| continue; |
| if (ignoreDependence(*SI, false)) |
| continue; |
| if (NodeOrder.count(SI->getSUnit()) == 0) |
| Succs.insert(SI->getSUnit()); |
| } |
| for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), |
| PE = (*I)->Preds.end(); |
| PI != PE; ++PI) { |
| if (PI->getKind() != SDep::Anti) |
| continue; |
| if (S && S->count(PI->getSUnit()) == 0) |
| continue; |
| if (NodeOrder.count(PI->getSUnit()) == 0) |
| Succs.insert(PI->getSUnit()); |
| } |
| } |
| return !Succs.empty(); |
| } |
| |
| /// Return true if there is a path from the specified node to any of the nodes |
| /// in DestNodes. Keep track and return the nodes in any path. |
| static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, |
| SetVector<SUnit *> &DestNodes, |
| SetVector<SUnit *> &Exclude, |
| SmallPtrSet<SUnit *, 8> &Visited) { |
| if (Cur->isBoundaryNode()) |
| return false; |
| if (Exclude.count(Cur) != 0) |
| return false; |
| if (DestNodes.count(Cur) != 0) |
| return true; |
| if (!Visited.insert(Cur).second) |
| return Path.count(Cur) != 0; |
| bool FoundPath = false; |
| for (auto &SI : Cur->Succs) |
| FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); |
| for (auto &PI : Cur->Preds) |
| if (PI.getKind() == SDep::Anti) |
| FoundPath |= |
| computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); |
| if (FoundPath) |
| Path.insert(Cur); |
| return FoundPath; |
| } |
| |
| /// Return true if Set1 is a subset of Set2. |
| template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { |
| for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) |
| if (Set2.count(*I) == 0) |
| return false; |
| return true; |
| } |
| |
| /// Compute the live-out registers for the instructions in a node-set. |
| /// The live-out registers are those that are defined in the node-set, |
| /// but not used. Except for use operands of Phis. |
| static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, |
| NodeSet &NS) { |
| const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| SmallVector<RegisterMaskPair, 8> LiveOutRegs; |
| SmallSet<unsigned, 4> Uses; |
| for (SUnit *SU : NS) { |
| const MachineInstr *MI = SU->getInstr(); |
| if (MI->isPHI()) |
| continue; |
| for (const MachineOperand &MO : MI->operands()) |
| if (MO.isReg() && MO.isUse()) { |
| unsigned Reg = MO.getReg(); |
| if (TargetRegisterInfo::isVirtualRegister(Reg)) |
| Uses.insert(Reg); |
| else if (MRI.isAllocatable(Reg)) |
| for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) |
| Uses.insert(*Units); |
| } |
| } |
| for (SUnit *SU : NS) |
| for (const MachineOperand &MO : SU->getInstr()->operands()) |
| if (MO.isReg() && MO.isDef() && !MO.isDead()) { |
| unsigned Reg = MO.getReg(); |
| if (TargetRegisterInfo::isVirtualRegister(Reg)) { |
| if (!Uses.count(Reg)) |
| LiveOutRegs.push_back(RegisterMaskPair(Reg, |
| LaneBitmask::getNone())); |
| } else if (MRI.isAllocatable(Reg)) { |
| for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) |
| if (!Uses.count(*Units)) |
| LiveOutRegs.push_back(RegisterMaskPair(*Units, |
| LaneBitmask::getNone())); |
| } |
| } |
| RPTracker.addLiveRegs(LiveOutRegs); |
| } |
| |
| /// A heuristic to filter nodes in recurrent node-sets if the register |
| /// pressure of a set is too high. |
| void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { |
| for (auto &NS : NodeSets) { |
| // Skip small node-sets since they won't cause register pressure problems. |
| if (NS.size() <= 2) |
| continue; |
| IntervalPressure RecRegPressure; |
| RegPressureTracker RecRPTracker(RecRegPressure); |
| RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); |
| computeLiveOuts(MF, RecRPTracker, NS); |
| RecRPTracker.closeBottom(); |
| |
| std::vector<SUnit *> SUnits(NS.begin(), NS.end()); |
| llvm::sort(SUnits.begin(), SUnits.end(), |
| [](const SUnit *A, const SUnit *B) { |
| return A->NodeNum > B->NodeNum; |
| }); |
| |
| for (auto &SU : SUnits) { |
| // Since we're computing the register pressure for a subset of the |
| // instructions in a block, we need to set the tracker for each |
| // instruction in the node-set. The tracker is set to the instruction |
| // just after the one we're interested in. |
| MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); |
| RecRPTracker.setPos(std::next(CurInstI)); |
| |
| RegPressureDelta RPDelta; |
| ArrayRef<PressureChange> CriticalPSets; |
| RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, |
| CriticalPSets, |
| RecRegPressure.MaxSetPressure); |
| if (RPDelta.Excess.isValid()) { |
| LLVM_DEBUG( |
| dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " |
| << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) |
| << ":" << RPDelta.Excess.getUnitInc()); |
| NS.setExceedPressure(SU); |
| break; |
| } |
| RecRPTracker.recede(); |
| } |
| } |
| } |
| |
| /// A heuristic to colocate node sets that have the same set of |
| /// successors. |
| void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { |
| unsigned Colocate = 0; |
| for (int i = 0, e = NodeSets.size(); i < e; ++i) { |
| NodeSet &N1 = NodeSets[i]; |
| SmallSetVector<SUnit *, 8> S1; |
| if (N1.empty() || !succ_L(N1, S1)) |
| continue; |
| for (int j = i + 1; j < e; ++j) { |
| NodeSet &N2 = NodeSets[j]; |
| if (N1.compareRecMII(N2) != 0) |
| continue; |
| SmallSetVector<SUnit *, 8> S2; |
| if (N2.empty() || !succ_L(N2, S2)) |
| continue; |
| if (isSubset(S1, S2) && S1.size() == S2.size()) { |
| N1.setColocate(++Colocate); |
| N2.setColocate(Colocate); |
| break; |
| } |
| } |
| } |
| } |
| |
| /// Check if the existing node-sets are profitable. If not, then ignore the |
| /// recurrent node-sets, and attempt to schedule all nodes together. This is |
| /// a heuristic. If the MII is large and all the recurrent node-sets are small, |
| /// then it's best to try to schedule all instructions together instead of |
| /// starting with the recurrent node-sets. |
| void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { |
| // Look for loops with a large MII. |
| if (MII < 17) |
| return; |
| // Check if the node-set contains only a simple add recurrence. |
| for (auto &NS : NodeSets) { |
| if (NS.getRecMII() > 2) |
| return; |
| if (NS.getMaxDepth() > MII) |
| return; |
| } |
| NodeSets.clear(); |
| LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); |
| return; |
| } |
| |
| /// Add the nodes that do not belong to a recurrence set into groups |
| /// based upon connected componenets. |
| void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { |
| SetVector<SUnit *> NodesAdded; |
| SmallPtrSet<SUnit *, 8> Visited; |
| // Add the nodes that are on a path between the previous node sets and |
| // the current node set. |
| for (NodeSet &I : NodeSets) { |
| SmallSetVector<SUnit *, 8> N; |
| // Add the nodes from the current node set to the previous node set. |
| if (succ_L(I, N)) { |
| SetVector<SUnit *> Path; |
| for (SUnit *NI : N) { |
| Visited.clear(); |
| computePath(NI, Path, NodesAdded, I, Visited); |
| } |
| if (!Path.empty()) |
| I.insert(Path.begin(), Path.end()); |
| } |
| // Add the nodes from the previous node set to the current node set. |
| N.clear(); |
| if (succ_L(NodesAdded, N)) { |
| SetVector<SUnit *> Path; |
| for (SUnit *NI : N) { |
| Visited.clear(); |
| computePath(NI, Path, I, NodesAdded, Visited); |
| } |
| if (!Path.empty()) |
| I.insert(Path.begin(), Path.end()); |
| } |
| NodesAdded.insert(I.begin(), I.end()); |
| } |
| |
| // Create a new node set with the connected nodes of any successor of a node |
| // in a recurrent set. |
| NodeSet NewSet; |
| SmallSetVector<SUnit *, 8> N; |
| if (succ_L(NodesAdded, N)) |
| for (SUnit *I : N) |
| addConnectedNodes(I, NewSet, NodesAdded); |
| if (!NewSet.empty()) |
| NodeSets.push_back(NewSet); |
| |
| // Create a new node set with the connected nodes of any predecessor of a node |
| // in a recurrent set. |
| NewSet.clear(); |
| if (pred_L(NodesAdded, N)) |
| for (SUnit *I : N) |
| addConnectedNodes(I, NewSet, NodesAdded); |
| if (!NewSet.empty()) |
| NodeSets.push_back(NewSet); |
| |
| // Create new nodes sets with the connected nodes any remaining node that |
| // has no predecessor. |
| for (unsigned i = 0; i < SUnits.size(); ++i) { |
| SUnit *SU = &SUnits[i]; |
| if (NodesAdded.count(SU) == 0) { |
| NewSet.clear(); |
| addConnectedNodes(SU, NewSet, NodesAdded); |
| if (!NewSet.empty()) |
| NodeSets.push_back(NewSet); |
| } |
| } |
| } |
| |
| /// Add the node to the set, and add all is its connected nodes to the set. |
| void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, |
| SetVector<SUnit *> &NodesAdded) { |
| NewSet.insert(SU); |
| NodesAdded.insert(SU); |
| for (auto &SI : SU->Succs) { |
| SUnit *Successor = SI.getSUnit(); |
| if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) |
| addConnectedNodes(Successor, NewSet, NodesAdded); |
| } |
| for (auto &PI : SU->Preds) { |
| SUnit *Predecessor = PI.getSUnit(); |
| if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) |
| addConnectedNodes(Predecessor, NewSet, NodesAdded); |
| } |
| } |
| |
| /// Return true if Set1 contains elements in Set2. The elements in common |
| /// are returned in a different container. |
| static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, |
| SmallSetVector<SUnit *, 8> &Result) { |
| Result.clear(); |
| for (unsigned i = 0, e = Set1.size(); i != e; ++i) { |
| SUnit *SU = Set1[i]; |
| if (Set2.count(SU) != 0) |
| Result.insert(SU); |
| } |
| return !Result.empty(); |
| } |
| |
| /// Merge the recurrence node sets that have the same initial node. |
| void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { |
| for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; |
| ++I) { |
| NodeSet &NI = *I; |
| for (NodeSetType::iterator J = I + 1; J != E;) { |
| NodeSet &NJ = *J; |
| if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { |
| if (NJ.compareRecMII(NI) > 0) |
| NI.setRecMII(NJ.getRecMII()); |
| for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; |
| ++NII) |
| I->insert(*NII); |
| NodeSets.erase(J); |
| E = NodeSets.end(); |
| } else { |
| ++J; |
| } |
| } |
| } |
| } |
| |
| /// Remove nodes that have been scheduled in previous NodeSets. |
| void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { |
| for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; |
| ++I) |
| for (NodeSetType::iterator J = I + 1; J != E;) { |
| J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); |
| |
| if (J->empty()) { |
| NodeSets.erase(J); |
| E = NodeSets.end(); |
| } else { |
| ++J; |
| } |
| } |
| } |
| |
| /// Compute an ordered list of the dependence graph nodes, which |
| /// indicates the order that the nodes will be scheduled. This is a |
| /// two-level algorithm. First, a partial order is created, which |
| /// consists of a list of sets ordered from highest to lowest priority. |
| void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { |
| SmallSetVector<SUnit *, 8> R; |
| NodeOrder.clear(); |
| |
| for (auto &Nodes : NodeSets) { |
| LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); |
| OrderKind Order; |
| SmallSetVector<SUnit *, 8> N; |
| if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { |
| R.insert(N.begin(), N.end()); |
| Order = BottomUp; |
| LLVM_DEBUG(dbgs() << " Bottom up (preds) "); |
| } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { |
| R.insert(N.begin(), N.end()); |
| Order = TopDown; |
| LLVM_DEBUG(dbgs() << " Top down (succs) "); |
| } else if (isIntersect(N, Nodes, R)) { |
| // If some of the successors are in the existing node-set, then use the |
| // top-down ordering. |
| Order = TopDown; |
| LLVM_DEBUG(dbgs() << " Top down (intersect) "); |
| } else if (NodeSets.size() == 1) { |
| for (auto &N : Nodes) |
| if (N->Succs.size() == 0) |
| R.insert(N); |
| Order = BottomUp; |
| LLVM_DEBUG(dbgs() << " Bottom up (all) "); |
| } else { |
| // Find the node with the highest ASAP. |
| SUnit *maxASAP = nullptr; |
| for (SUnit *SU : Nodes) { |
| if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || |
| (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) |
| maxASAP = SU; |
| } |
| R.insert(maxASAP); |
| Order = BottomUp; |
| LLVM_DEBUG(dbgs() << " Bottom up (default) "); |
| } |
| |
| while (!R.empty()) { |
| if (Order == TopDown) { |
| // Choose the node with the maximum height. If more than one, choose |
| // the node wiTH the maximum ZeroLatencyHeight. If still more than one, |
| // choose the node with the lowest MOV. |
| while (!R.empty()) { |
| SUnit *maxHeight = nullptr; |
| for (SUnit *I : R) { |
| if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) |
| maxHeight = I; |
| else if (getHeight(I) == getHeight(maxHeight) && |
| getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) |
| maxHeight = I; |
| else if (getHeight(I) == getHeight(maxHeight) && |
| getZeroLatencyHeight(I) == |
| getZeroLatencyHeight(maxHeight) && |
| getMOV(I) < getMOV(maxHeight)) |
| maxHeight = I; |
| } |
| NodeOrder.insert(maxHeight); |
| LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); |
| R.remove(maxHeight); |
| for (const auto &I : maxHeight->Succs) { |
| if (Nodes.count(I.getSUnit()) == 0) |
| continue; |
| if (NodeOrder.count(I.getSUnit()) != 0) |
| continue; |
| if (ignoreDependence(I, false)) |
| continue; |
| R.insert(I.getSUnit()); |
| } |
| // Back-edges are predecessors with an anti-dependence. |
| for (const auto &I : maxHeight->Preds) { |
| if (I.getKind() != SDep::Anti) |
| continue; |
| if (Nodes.count(I.getSUnit()) == 0) |
| continue; |
| if (NodeOrder.count(I.getSUnit()) != 0) |
| continue; |
| R.insert(I.getSUnit()); |
| } |
| } |
| Order = BottomUp; |
| LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); |
| SmallSetVector<SUnit *, 8> N; |
| if (pred_L(NodeOrder, N, &Nodes)) |
| R.insert(N.begin(), N.end()); |
| } else { |
| // Choose the node with the maximum depth. If more than one, choose |
| // the node with the maximum ZeroLatencyDepth. If still more than one, |
| // choose the node with the lowest MOV. |
| while (!R.empty()) { |
| SUnit *maxDepth = nullptr; |
| for (SUnit *I : R) { |
| if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) |
| maxDepth = I; |
| else if (getDepth(I) == getDepth(maxDepth) && |
| getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) |
| maxDepth = I; |
| else if (getDepth(I) == getDepth(maxDepth) && |
| getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && |
| getMOV(I) < getMOV(maxDepth)) |
| maxDepth = I; |
| } |
| NodeOrder.insert(maxDepth); |
| LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); |
| R.remove(maxDepth); |
| if (Nodes.isExceedSU(maxDepth)) { |
| Order = TopDown; |
| R.clear(); |
| R.insert(Nodes.getNode(0)); |
| break; |
| } |
| for (const auto &I : maxDepth->Preds) { |
| if (Nodes.count(I.getSUnit()) == 0) |
| continue; |
| if (NodeOrder.count(I.getSUnit()) != 0) |
| continue; |
| R.insert(I.getSUnit()); |
| } |
| // Back-edges are predecessors with an anti-dependence. |
| for (const auto &I : maxDepth->Succs) { |
| if (I.getKind() != SDep::Anti) |
| continue; |
| if (Nodes.count(I.getSUnit()) == 0) |
| continue; |
| if (NodeOrder.count(I.getSUnit()) != 0) |
| continue; |
| R.insert(I.getSUnit()); |
| } |
| } |
| Order = TopDown; |
| LLVM_DEBUG(dbgs() << "\n Switching order to top down "); |
| SmallSetVector<SUnit *, 8> N; |
| if (succ_L(NodeOrder, N, &Nodes)) |
| R.insert(N.begin(), N.end()); |
| } |
| } |
| LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); |
| } |
| |
| LLVM_DEBUG({ |
| dbgs() << "Node order: "; |
| for (SUnit *I : NodeOrder) |
| dbgs() << " " << I->NodeNum << " "; |
| dbgs() << "\n"; |
| }); |
| } |
| |
| /// Process the nodes in the computed order and create the pipelined schedule |
| /// of the instructions, if possible. Return true if a schedule is found. |
| bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { |
| if (NodeOrder.empty()) |
| return false; |
| |
| bool scheduleFound = false; |
| // Keep increasing II until a valid schedule is found. |
| for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) { |
| Schedule.reset(); |
| Schedule.setInitiationInterval(II); |
| LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); |
| |
| SetVector<SUnit *>::iterator NI = NodeOrder.begin(); |
| SetVector<SUnit *>::iterator NE = NodeOrder.end(); |
| do { |
| SUnit *SU = *NI; |
| |
| // Compute the schedule time for the instruction, which is based |
| // upon the scheduled time for any predecessors/successors. |
| int EarlyStart = INT_MIN; |
| int LateStart = INT_MAX; |
| // These values are set when the size of the schedule window is limited |
| // due to chain dependences. |
| int SchedEnd = INT_MAX; |
| int SchedStart = INT_MIN; |
| Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, |
| II, this); |
| LLVM_DEBUG({ |
| dbgs() << "Inst (" << SU->NodeNum << ") "; |
| SU->getInstr()->dump(); |
| dbgs() << "\n"; |
| }); |
| LLVM_DEBUG({ |
| dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart |
| << " me: " << SchedEnd << " ms: " << SchedStart << "\n"; |
| }); |
| |
| if (EarlyStart > LateStart || SchedEnd < EarlyStart || |
| SchedStart > LateStart) |
| scheduleFound = false; |
| else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { |
| SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); |
| scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); |
| } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { |
| SchedStart = std::max(SchedStart, LateStart - (int)II + 1); |
| scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); |
| } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { |
| SchedEnd = |
| std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); |
| // When scheduling a Phi it is better to start at the late cycle and go |
| // backwards. The default order may insert the Phi too far away from |
| // its first dependence. |
| if (SU->getInstr()->isPHI()) |
| scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); |
| else |
| scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); |
| } else { |
| int FirstCycle = Schedule.getFirstCycle(); |
| scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), |
| FirstCycle + getASAP(SU) + II - 1, II); |
| } |
| // Even if we find a schedule, make sure the schedule doesn't exceed the |
| // allowable number of stages. We keep trying if this happens. |
| if (scheduleFound) |
| if (SwpMaxStages > -1 && |
| Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) |
| scheduleFound = false; |
| |
| LLVM_DEBUG({ |
| if (!scheduleFound) |
| dbgs() << "\tCan't schedule\n"; |
| }); |
| } while (++NI != NE && scheduleFound); |
| |
| // If a schedule is found, check if it is a valid schedule too. |
| if (scheduleFound) |
| scheduleFound = Schedule.isValidSchedule(this); |
| } |
| |
| LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n"); |
| |
| if (scheduleFound) |
| Schedule.finalizeSchedule(this); |
| else |
| Schedule.reset(); |
| |
| return scheduleFound && Schedule.getMaxStageCount() > 0; |
| } |
| |
| /// Given a schedule for the loop, generate a new version of the loop, |
| /// and replace the old version. This function generates a prolog |
| /// that contains the initial iterations in the pipeline, and kernel |
| /// loop, and the epilogue that contains the code for the final |
| /// iterations. |
| void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { |
| // Create a new basic block for the kernel and add it to the CFG. |
| MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); |
| |
| unsigned MaxStageCount = Schedule.getMaxStageCount(); |
| |
| // Remember the registers that are used in different stages. The index is |
| // the iteration, or stage, that the instruction is scheduled in. This is |
| // a map between register names in the original block and the names created |
| // in each stage of the pipelined loop. |
| ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; |
| InstrMapTy InstrMap; |
| |
| SmallVector<MachineBasicBlock *, 4> PrologBBs; |
| // Generate the prolog instructions that set up the pipeline. |
| generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); |
| MF.insert(BB->getIterator(), KernelBB); |
| |
| // Rearrange the instructions to generate the new, pipelined loop, |
| // and update register names as needed. |
| for (int Cycle = Schedule.getFirstCycle(), |
| LastCycle = Schedule.getFinalCycle(); |
| Cycle <= LastCycle; ++Cycle) { |
| std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle); |
| // This inner loop schedules each instruction in the cycle. |
| for (SUnit *CI : CycleInstrs) { |
| if (CI->getInstr()->isPHI()) |
| continue; |
| unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); |
| MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); |
| updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); |
| KernelBB->push_back(NewMI); |
| InstrMap[NewMI] = CI->getInstr(); |
| } |
| } |
| |
| // Copy any terminator instructions to the new kernel, and update |
| // names as needed. |
| for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), |
| E = BB->instr_end(); |
| I != E; ++I) { |
| MachineInstr *NewMI = MF.CloneMachineInstr(&*I); |
| updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); |
| KernelBB->push_back(NewMI); |
| InstrMap[NewMI] = &*I; |
| } |
| |
| KernelBB->transferSuccessors(BB); |
| KernelBB->replaceSuccessor(BB, KernelBB); |
| |
| generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, |
| VRMap, InstrMap, MaxStageCount, MaxStageCount, false); |
| generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, |
| InstrMap, MaxStageCount, MaxStageCount, false); |
| |
| LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); |
| |
| SmallVector<MachineBasicBlock *, 4> EpilogBBs; |
| // Generate the epilog instructions to complete the pipeline. |
| generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, |
| PrologBBs); |
| |
| // We need this step because the register allocation doesn't handle some |
| // situations well, so we insert copies to help out. |
| splitLifetimes(KernelBB, EpilogBBs, Schedule); |
| |
| // Remove dead instructions due to loop induction variables. |
| removeDeadInstructions(KernelBB, EpilogBBs); |
| |
| // Add branches between prolog and epilog blocks. |
| addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); |
| |
| // Remove the original loop since it's no longer referenced. |
| for (auto &I : *BB) |
| LIS.RemoveMachineInstrFromMaps(I); |
| BB->clear(); |
| BB->eraseFromParent(); |
| |
| delete[] VRMap; |
| } |
| |
| /// Generate the pipeline prolog code. |
| void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, |
| MachineBasicBlock *KernelBB, |
| ValueMapTy *VRMap, |
| MBBVectorTy &PrologBBs) { |
| MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); |
| assert(PreheaderBB != nullptr && |
| "Need to add code to handle loops w/o preheader"); |
| MachineBasicBlock *PredBB = PreheaderBB; |
| InstrMapTy InstrMap; |
| |
| // Generate a basic block for each stage, not including the last stage, |
| // which will be generated in the kernel. Each basic block may contain |
| // instructions from multiple stages/iterations. |
| for (unsigned i = 0; i < LastStage; ++i) { |
| // Create and insert the prolog basic block prior to the original loop |
| // basic block. The original loop is removed later. |
| MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); |
| PrologBBs.push_back(NewBB); |
| MF.insert(BB->getIterator(), NewBB); |
| NewBB->transferSuccessors(PredBB); |
| PredBB->addSuccessor(NewBB); |
| PredBB = NewBB; |
| |
| // Generate instructions for each appropriate stage. Process instructions |
| // in original program order. |
| for (int StageNum = i; StageNum >= 0; --StageNum) { |
| for (MachineBasicBlock::iterator BBI = BB->instr_begin(), |
| BBE = BB->getFirstTerminator(); |
| BBI != BBE; ++BBI) { |
| if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { |
| if (BBI->isPHI()) |
| continue; |
| MachineInstr *NewMI = |
| cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); |
| updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, |
| VRMap); |
| NewBB->push_back(NewMI); |
| InstrMap[NewMI] = &*BBI; |
| } |
| } |
| } |
| rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); |
| LLVM_DEBUG({ |
| dbgs() << "prolog:\n"; |
| NewBB->dump(); |
| }); |
| } |
| |
| PredBB->replaceSuccessor(BB, KernelBB); |
| |
| // Check if we need to remove the branch from the preheader to the original |
| // loop, and replace it with a branch to the new loop. |
| unsigned numBranches = TII->removeBranch(*PreheaderBB); |
| if (numBranches) { |
| SmallVector<MachineOperand, 0> Cond; |
| TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc()); |
| } |
| } |
| |
| /// Generate the pipeline epilog code. The epilog code finishes the iterations |
| /// that were started in either the prolog or the kernel. We create a basic |
| /// block for each stage that needs to complete. |
| void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, |
| MachineBasicBlock *KernelBB, |
| ValueMapTy *VRMap, |
| MBBVectorTy &EpilogBBs, |
| MBBVectorTy &PrologBBs) { |
| // We need to change the branch from the kernel to the first epilog block, so |
| // this call to analyze branch uses the kernel rather than the original BB. |
| MachineBasicBlock *TBB = nullptr, *FBB = nullptr; |
| SmallVector<MachineOperand, 4> Cond; |
| bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); |
| assert(!checkBranch && "generateEpilog must be able to analyze the branch"); |
| if (checkBranch) |
| return; |
| |
| MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); |
| if (*LoopExitI == KernelBB) |
| ++LoopExitI; |
| assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); |
| MachineBasicBlock *LoopExitBB = *LoopExitI; |
| |
| MachineBasicBlock *PredBB = KernelBB; |
| MachineBasicBlock *EpilogStart = LoopExitBB; |
| InstrMapTy InstrMap; |
| |
| // Generate a basic block for each stage, not including the last stage, |
| // which was generated for the kernel. Each basic block may contain |
| // instructions from multiple stages/iterations. |
| int EpilogStage = LastStage + 1; |
| for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { |
| MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); |
| EpilogBBs.push_back(NewBB); |
| MF.insert(BB->getIterator(), NewBB); |
| |
| PredBB->replaceSuccessor(LoopExitBB, NewBB); |
| NewBB->addSuccessor(LoopExitBB); |
| |
| if (EpilogStart == LoopExitBB) |
| EpilogStart = NewBB; |
| |
| // Add instructions to the epilog depending on the current block. |
| // Process instructions in original program order. |
| for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { |
| for (auto &BBI : *BB) { |
| if (BBI.isPHI()) |
| continue; |
| MachineInstr *In = &BBI; |
| if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { |
| // Instructions with memoperands in the epilog are updated with |
| // conservative values. |
| MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); |
| updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); |
| NewBB->push_back(NewMI); |
| InstrMap[NewMI] = In; |
| } |
| } |
| } |
| generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, |
| VRMap, InstrMap, LastStage, EpilogStage, i == 1); |
| generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, |
| InstrMap, LastStage, EpilogStage, i == 1); |
| PredBB = NewBB; |
| |
| LLVM_DEBUG({ |
| dbgs() << "epilog:\n"; |
| NewBB->dump(); |
| }); |
| } |
| |
| // Fix any Phi nodes in the loop exit block. |
| for (MachineInstr &MI : *LoopExitBB) { |
| if (!MI.isPHI()) |
| break; |
| for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { |
| MachineOperand &MO = MI.getOperand(i); |
| if (MO.getMBB() == BB) |
| MO.setMBB(PredBB); |
| } |
| } |
| |
| // Create a branch to the new epilog from the kernel. |
| // Remove the original branch and add a new branch to the epilog. |
| TII->removeBranch(*KernelBB); |
| TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); |
| // Add a branch to the loop exit. |
| if (EpilogBBs.size() > 0) { |
| MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); |
| SmallVector<MachineOperand, 4> Cond1; |
| TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); |
| } |
| } |
| |
| /// Replace all uses of FromReg that appear outside the specified |
| /// basic block with ToReg. |
| static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, |
| MachineBasicBlock *MBB, |
| MachineRegisterInfo &MRI, |
| LiveIntervals &LIS) { |
| for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), |
| E = MRI.use_end(); |
| I != E;) { |
| MachineOperand &O = *I; |
| ++I; |
| if (O.getParent()->getParent() != MBB) |
| O.setReg(ToReg); |
| } |
| if (!LIS.hasInterval(ToReg)) |
| LIS.createEmptyInterval(ToReg); |
| } |
| |
| /// Return true if the register has a use that occurs outside the |
| /// specified loop. |
| static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, |
| MachineRegisterInfo &MRI) { |
| for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), |
| E = MRI.use_end(); |
| I != E; ++I) |
| if (I->getParent()->getParent() != BB) |
| return true; |
| return false; |
| } |
| |
| /// Generate Phis for the specific block in the generated pipelined code. |
| /// This function looks at the Phis from the original code to guide the |
| /// creation of new Phis. |
| void SwingSchedulerDAG::generateExistingPhis( |
| MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, |
| MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, |
| InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, |
| bool IsLast) { |
| // Compute the stage number for the initial value of the Phi, which |
|