| //===- StackColoring.cpp --------------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass implements the stack-coloring optimization that looks for |
| // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END), |
| // which represent the possible lifetime of stack slots. It attempts to |
| // merge disjoint stack slots and reduce the used stack space. |
| // NOTE: This pass is not StackSlotColoring, which optimizes spill slots. |
| // |
| // TODO: In the future we plan to improve stack coloring in the following ways: |
| // 1. Allow merging multiple small slots into a single larger slot at different |
| // offsets. |
| // 2. Merge this pass with StackSlotColoring and allow merging of allocas with |
| // spill slots. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/CodeGen/LiveInterval.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/SlotIndexes.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/CodeGen/WinEHFuncInfo.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <limits> |
| #include <memory> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "stack-coloring" |
| |
| static cl::opt<bool> |
| DisableColoring("no-stack-coloring", |
| cl::init(false), cl::Hidden, |
| cl::desc("Disable stack coloring")); |
| |
| /// The user may write code that uses allocas outside of the declared lifetime |
| /// zone. This can happen when the user returns a reference to a local |
| /// data-structure. We can detect these cases and decide not to optimize the |
| /// code. If this flag is enabled, we try to save the user. This option |
| /// is treated as overriding LifetimeStartOnFirstUse below. |
| static cl::opt<bool> |
| ProtectFromEscapedAllocas("protect-from-escaped-allocas", |
| cl::init(false), cl::Hidden, |
| cl::desc("Do not optimize lifetime zones that " |
| "are broken")); |
| |
| /// Enable enhanced dataflow scheme for lifetime analysis (treat first |
| /// use of stack slot as start of slot lifetime, as opposed to looking |
| /// for LIFETIME_START marker). See "Implementation notes" below for |
| /// more info. |
| static cl::opt<bool> |
| LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use", |
| cl::init(true), cl::Hidden, |
| cl::desc("Treat stack lifetimes as starting on first use, not on START marker.")); |
| |
| |
| STATISTIC(NumMarkerSeen, "Number of lifetime markers found."); |
| STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots."); |
| STATISTIC(StackSlotMerged, "Number of stack slot merged."); |
| STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region"); |
| |
| //===----------------------------------------------------------------------===// |
| // StackColoring Pass |
| //===----------------------------------------------------------------------===// |
| // |
| // Stack Coloring reduces stack usage by merging stack slots when they |
| // can't be used together. For example, consider the following C program: |
| // |
| // void bar(char *, int); |
| // void foo(bool var) { |
| // A: { |
| // char z[4096]; |
| // bar(z, 0); |
| // } |
| // |
| // char *p; |
| // char x[4096]; |
| // char y[4096]; |
| // if (var) { |
| // p = x; |
| // } else { |
| // bar(y, 1); |
| // p = y + 1024; |
| // } |
| // B: |
| // bar(p, 2); |
| // } |
| // |
| // Naively-compiled, this program would use 12k of stack space. However, the |
| // stack slot corresponding to `z` is always destroyed before either of the |
| // stack slots for `x` or `y` are used, and then `x` is only used if `var` |
| // is true, while `y` is only used if `var` is false. So in no time are 2 |
| // of the stack slots used together, and therefore we can merge them, |
| // compiling the function using only a single 4k alloca: |
| // |
| // void foo(bool var) { // equivalent |
| // char x[4096]; |
| // char *p; |
| // bar(x, 0); |
| // if (var) { |
| // p = x; |
| // } else { |
| // bar(x, 1); |
| // p = x + 1024; |
| // } |
| // bar(p, 2); |
| // } |
| // |
| // This is an important optimization if we want stack space to be under |
| // control in large functions, both open-coded ones and ones created by |
| // inlining. |
| // |
| // Implementation Notes: |
| // --------------------- |
| // |
| // An important part of the above reasoning is that `z` can't be accessed |
| // while the latter 2 calls to `bar` are running. This is justified because |
| // `z`'s lifetime is over after we exit from block `A:`, so any further |
| // accesses to it would be UB. The way we represent this information |
| // in LLVM is by having frontends delimit blocks with `lifetime.start` |
| // and `lifetime.end` intrinsics. |
| // |
| // The effect of these intrinsics seems to be as follows (maybe I should |
| // specify this in the reference?): |
| // |
| // L1) at start, each stack-slot is marked as *out-of-scope*, unless no |
| // lifetime intrinsic refers to that stack slot, in which case |
| // it is marked as *in-scope*. |
| // L2) on a `lifetime.start`, a stack slot is marked as *in-scope* and |
| // the stack slot is overwritten with `undef`. |
| // L3) on a `lifetime.end`, a stack slot is marked as *out-of-scope*. |
| // L4) on function exit, all stack slots are marked as *out-of-scope*. |
| // L5) `lifetime.end` is a no-op when called on a slot that is already |
| // *out-of-scope*. |
| // L6) memory accesses to *out-of-scope* stack slots are UB. |
| // L7) when a stack-slot is marked as *out-of-scope*, all pointers to it |
| // are invalidated, unless the slot is "degenerate". This is used to |
| // justify not marking slots as in-use until the pointer to them is |
| // used, but feels a bit hacky in the presence of things like LICM. See |
| // the "Degenerate Slots" section for more details. |
| // |
| // Now, let's ground stack coloring on these rules. We'll define a slot |
| // as *in-use* at a (dynamic) point in execution if it either can be |
| // written to at that point, or if it has a live and non-undef content |
| // at that point. |
| // |
| // Obviously, slots that are never *in-use* together can be merged, and |
| // in our example `foo`, the slots for `x`, `y` and `z` are never |
| // in-use together (of course, sometimes slots that *are* in-use together |
| // might still be mergable, but we don't care about that here). |
| // |
| // In this implementation, we successively merge pairs of slots that are |
| // not *in-use* together. We could be smarter - for example, we could merge |
| // a single large slot with 2 small slots, or we could construct the |
| // interference graph and run a "smart" graph coloring algorithm, but with |
| // that aside, how do we find out whether a pair of slots might be *in-use* |
| // together? |
| // |
| // From our rules, we see that *out-of-scope* slots are never *in-use*, |
| // and from (L7) we see that "non-degenerate" slots remain non-*in-use* |
| // until their address is taken. Therefore, we can approximate slot activity |
| // using dataflow. |
| // |
| // A subtle point: naively, we might try to figure out which pairs of |
| // stack-slots interfere by propagating `S in-use` through the CFG for every |
| // stack-slot `S`, and having `S` and `T` interfere if there is a CFG point in |
| // which they are both *in-use*. |
| // |
| // That is sound, but overly conservative in some cases: in our (artificial) |
| // example `foo`, either `x` or `y` might be in use at the label `B:`, but |
| // as `x` is only in use if we came in from the `var` edge and `y` only |
| // if we came from the `!var` edge, they still can't be in use together. |
| // See PR32488 for an important real-life case. |
| // |
| // If we wanted to find all points of interference precisely, we could |
| // propagate `S in-use` and `S&T in-use` predicates through the CFG. That |
| // would be precise, but requires propagating `O(n^2)` dataflow facts. |
| // |
| // However, we aren't interested in the *set* of points of interference |
| // between 2 stack slots, only *whether* there *is* such a point. So we |
| // can rely on a little trick: for `S` and `T` to be in-use together, |
| // one of them needs to become in-use while the other is in-use (or |
| // they might both become in use simultaneously). We can check this |
| // by also keeping track of the points at which a stack slot might *start* |
| // being in-use. |
| // |
| // Exact first use: |
| // ---------------- |
| // |
| // Consider the following motivating example: |
| // |
| // int foo() { |
| // char b1[1024], b2[1024]; |
| // if (...) { |
| // char b3[1024]; |
| // <uses of b1, b3>; |
| // return x; |
| // } else { |
| // char b4[1024], b5[1024]; |
| // <uses of b2, b4, b5>; |
| // return y; |
| // } |
| // } |
| // |
| // In the code above, "b3" and "b4" are declared in distinct lexical |
| // scopes, meaning that it is easy to prove that they can share the |
| // same stack slot. Variables "b1" and "b2" are declared in the same |
| // scope, meaning that from a lexical point of view, their lifetimes |
| // overlap. From a control flow pointer of view, however, the two |
| // variables are accessed in disjoint regions of the CFG, thus it |
| // should be possible for them to share the same stack slot. An ideal |
| // stack allocation for the function above would look like: |
| // |
| // slot 0: b1, b2 |
| // slot 1: b3, b4 |
| // slot 2: b5 |
| // |
| // Achieving this allocation is tricky, however, due to the way |
| // lifetime markers are inserted. Here is a simplified view of the |
| // control flow graph for the code above: |
| // |
| // +------ block 0 -------+ |
| // 0| LIFETIME_START b1, b2 | |
| // 1| <test 'if' condition> | |
| // +-----------------------+ |
| // ./ \. |
| // +------ block 1 -------+ +------ block 2 -------+ |
| // 2| LIFETIME_START b3 | 5| LIFETIME_START b4, b5 | |
| // 3| <uses of b1, b3> | 6| <uses of b2, b4, b5> | |
| // 4| LIFETIME_END b3 | 7| LIFETIME_END b4, b5 | |
| // +-----------------------+ +-----------------------+ |
| // \. /. |
| // +------ block 3 -------+ |
| // 8| <cleanupcode> | |
| // 9| LIFETIME_END b1, b2 | |
| // 10| return | |
| // +-----------------------+ |
| // |
| // If we create live intervals for the variables above strictly based |
| // on the lifetime markers, we'll get the set of intervals on the |
| // left. If we ignore the lifetime start markers and instead treat a |
| // variable's lifetime as beginning with the first reference to the |
| // var, then we get the intervals on the right. |
| // |
| // LIFETIME_START First Use |
| // b1: [0,9] [3,4] [8,9] |
| // b2: [0,9] [6,9] |
| // b3: [2,4] [3,4] |
| // b4: [5,7] [6,7] |
| // b5: [5,7] [6,7] |
| // |
| // For the intervals on the left, the best we can do is overlap two |
| // variables (b3 and b4, for example); this gives us a stack size of |
| // 4*1024 bytes, not ideal. When treating first-use as the start of a |
| // lifetime, we can additionally overlap b1 and b5, giving us a 3*1024 |
| // byte stack (better). |
| // |
| // Degenerate Slots: |
| // ----------------- |
| // |
| // Relying entirely on first-use of stack slots is problematic, |
| // however, due to the fact that optimizations can sometimes migrate |
| // uses of a variable outside of its lifetime start/end region. Here |
| // is an example: |
| // |
| // int bar() { |
| // char b1[1024], b2[1024]; |
| // if (...) { |
| // <uses of b2> |
| // return y; |
| // } else { |
| // <uses of b1> |
| // while (...) { |
| // char b3[1024]; |
| // <uses of b3> |
| // } |
| // } |
| // } |
| // |
| // Before optimization, the control flow graph for the code above |
| // might look like the following: |
| // |
| // +------ block 0 -------+ |
| // 0| LIFETIME_START b1, b2 | |
| // 1| <test 'if' condition> | |
| // +-----------------------+ |
| // ./ \. |
| // +------ block 1 -------+ +------- block 2 -------+ |
| // 2| <uses of b2> | 3| <uses of b1> | |
| // +-----------------------+ +-----------------------+ |
| // | | |
| // | +------- block 3 -------+ <-\. |
| // | 4| <while condition> | | |
| // | +-----------------------+ | |
| // | / | | |
| // | / +------- block 4 -------+ |
| // \ / 5| LIFETIME_START b3 | | |
| // \ / 6| <uses of b3> | | |
| // \ / 7| LIFETIME_END b3 | | |
| // \ | +------------------------+ | |
| // \ | \ / |
| // +------ block 5 -----+ \--------------- |
| // 8| <cleanupcode> | |
| // 9| LIFETIME_END b1, b2 | |
| // 10| return | |
| // +---------------------+ |
| // |
| // During optimization, however, it can happen that an instruction |
| // computing an address in "b3" (for example, a loop-invariant GEP) is |
| // hoisted up out of the loop from block 4 to block 2. [Note that |
| // this is not an actual load from the stack, only an instruction that |
| // computes the address to be loaded]. If this happens, there is now a |
| // path leading from the first use of b3 to the return instruction |
| // that does not encounter the b3 LIFETIME_END, hence b3's lifetime is |
| // now larger than if we were computing live intervals strictly based |
| // on lifetime markers. In the example above, this lengthened lifetime |
| // would mean that it would appear illegal to overlap b3 with b2. |
| // |
| // To deal with this such cases, the code in ::collectMarkers() below |
| // tries to identify "degenerate" slots -- those slots where on a single |
| // forward pass through the CFG we encounter a first reference to slot |
| // K before we hit the slot K lifetime start marker. For such slots, |
| // we fall back on using the lifetime start marker as the beginning of |
| // the variable's lifetime. NB: with this implementation, slots can |
| // appear degenerate in cases where there is unstructured control flow: |
| // |
| // if (q) goto mid; |
| // if (x > 9) { |
| // int b[100]; |
| // memcpy(&b[0], ...); |
| // mid: b[k] = ...; |
| // abc(&b); |
| // } |
| // |
| // If in RPO ordering chosen to walk the CFG we happen to visit the b[k] |
| // before visiting the memcpy block (which will contain the lifetime start |
| // for "b" then it will appear that 'b' has a degenerate lifetime. |
| // |
| |
| namespace { |
| |
| /// StackColoring - A machine pass for merging disjoint stack allocations, |
| /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions. |
| class StackColoring : public MachineFunctionPass { |
| MachineFrameInfo *MFI; |
| MachineFunction *MF; |
| |
| /// A class representing liveness information for a single basic block. |
| /// Each bit in the BitVector represents the liveness property |
| /// for a different stack slot. |
| struct BlockLifetimeInfo { |
| /// Which slots BEGINs in each basic block. |
| BitVector Begin; |
| |
| /// Which slots ENDs in each basic block. |
| BitVector End; |
| |
| /// Which slots are marked as LIVE_IN, coming into each basic block. |
| BitVector LiveIn; |
| |
| /// Which slots are marked as LIVE_OUT, coming out of each basic block. |
| BitVector LiveOut; |
| }; |
| |
| /// Maps active slots (per bit) for each basic block. |
| using LivenessMap = DenseMap<const MachineBasicBlock *, BlockLifetimeInfo>; |
| LivenessMap BlockLiveness; |
| |
| /// Maps serial numbers to basic blocks. |
| DenseMap<const MachineBasicBlock *, int> BasicBlocks; |
| |
| /// Maps basic blocks to a serial number. |
| SmallVector<const MachineBasicBlock *, 8> BasicBlockNumbering; |
| |
| /// Maps slots to their use interval. Outside of this interval, slots |
| /// values are either dead or `undef` and they will not be written to. |
| SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals; |
| |
| /// Maps slots to the points where they can become in-use. |
| SmallVector<SmallVector<SlotIndex, 4>, 16> LiveStarts; |
| |
| /// VNInfo is used for the construction of LiveIntervals. |
| VNInfo::Allocator VNInfoAllocator; |
| |
| /// SlotIndex analysis object. |
| SlotIndexes *Indexes; |
| |
| /// The list of lifetime markers found. These markers are to be removed |
| /// once the coloring is done. |
| SmallVector<MachineInstr*, 8> Markers; |
| |
| /// Record the FI slots for which we have seen some sort of |
| /// lifetime marker (either start or end). |
| BitVector InterestingSlots; |
| |
| /// FI slots that need to be handled conservatively (for these |
| /// slots lifetime-start-on-first-use is disabled). |
| BitVector ConservativeSlots; |
| |
| /// Number of iterations taken during data flow analysis. |
| unsigned NumIterations; |
| |
| public: |
| static char ID; |
| |
| StackColoring() : MachineFunctionPass(ID) { |
| initializeStackColoringPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override; |
| bool runOnMachineFunction(MachineFunction &Func) override; |
| |
| private: |
| /// Used in collectMarkers |
| using BlockBitVecMap = DenseMap<const MachineBasicBlock *, BitVector>; |
| |
| /// Debug. |
| void dump() const; |
| void dumpIntervals() const; |
| void dumpBB(MachineBasicBlock *MBB) const; |
| void dumpBV(const char *tag, const BitVector &BV) const; |
| |
| /// Removes all of the lifetime marker instructions from the function. |
| /// \returns true if any markers were removed. |
| bool removeAllMarkers(); |
| |
| /// Scan the machine function and find all of the lifetime markers. |
| /// Record the findings in the BEGIN and END vectors. |
| /// \returns the number of markers found. |
| unsigned collectMarkers(unsigned NumSlot); |
| |
| /// Perform the dataflow calculation and calculate the lifetime for each of |
| /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and |
| /// LifetimeLIVE_OUT maps that represent which stack slots are live coming |
| /// in and out blocks. |
| void calculateLocalLiveness(); |
| |
| /// Returns TRUE if we're using the first-use-begins-lifetime method for |
| /// this slot (if FALSE, then the start marker is treated as start of lifetime). |
| bool applyFirstUse(int Slot) { |
| if (!LifetimeStartOnFirstUse || ProtectFromEscapedAllocas) |
| return false; |
| if (ConservativeSlots.test(Slot)) |
| return false; |
| return true; |
| } |
| |
| /// Examines the specified instruction and returns TRUE if the instruction |
| /// represents the start or end of an interesting lifetime. The slot or slots |
| /// starting or ending are added to the vector "slots" and "isStart" is set |
| /// accordingly. |
| /// \returns True if inst contains a lifetime start or end |
| bool isLifetimeStartOrEnd(const MachineInstr &MI, |
| SmallVector<int, 4> &slots, |
| bool &isStart); |
| |
| /// Construct the LiveIntervals for the slots. |
| void calculateLiveIntervals(unsigned NumSlots); |
| |
| /// Go over the machine function and change instructions which use stack |
| /// slots to use the joint slots. |
| void remapInstructions(DenseMap<int, int> &SlotRemap); |
| |
| /// The input program may contain instructions which are not inside lifetime |
| /// markers. This can happen due to a bug in the compiler or due to a bug in |
| /// user code (for example, returning a reference to a local variable). |
| /// This procedure checks all of the instructions in the function and |
| /// invalidates lifetime ranges which do not contain all of the instructions |
| /// which access that frame slot. |
| void removeInvalidSlotRanges(); |
| |
| /// Map entries which point to other entries to their destination. |
| /// A->B->C becomes A->C. |
| void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots); |
| }; |
| |
| } // end anonymous namespace |
| |
| char StackColoring::ID = 0; |
| |
| char &llvm::StackColoringID = StackColoring::ID; |
| |
| INITIALIZE_PASS_BEGIN(StackColoring, DEBUG_TYPE, |
| "Merge disjoint stack slots", false, false) |
| INITIALIZE_PASS_DEPENDENCY(SlotIndexes) |
| INITIALIZE_PASS_END(StackColoring, DEBUG_TYPE, |
| "Merge disjoint stack slots", false, false) |
| |
| void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<SlotIndexes>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag, |
| const BitVector &BV) const { |
| dbgs() << tag << " : { "; |
| for (unsigned I = 0, E = BV.size(); I != E; ++I) |
| dbgs() << BV.test(I) << " "; |
| dbgs() << "}\n"; |
| } |
| |
| LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const { |
| LivenessMap::const_iterator BI = BlockLiveness.find(MBB); |
| assert(BI != BlockLiveness.end() && "Block not found"); |
| const BlockLifetimeInfo &BlockInfo = BI->second; |
| |
| dumpBV("BEGIN", BlockInfo.Begin); |
| dumpBV("END", BlockInfo.End); |
| dumpBV("LIVE_IN", BlockInfo.LiveIn); |
| dumpBV("LIVE_OUT", BlockInfo.LiveOut); |
| } |
| |
| LLVM_DUMP_METHOD void StackColoring::dump() const { |
| for (MachineBasicBlock *MBB : depth_first(MF)) { |
| dbgs() << "Inspecting block #" << MBB->getNumber() << " [" |
| << MBB->getName() << "]\n"; |
| dumpBB(MBB); |
| } |
| } |
| |
| LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const { |
| for (unsigned I = 0, E = Intervals.size(); I != E; ++I) { |
| dbgs() << "Interval[" << I << "]:\n"; |
| Intervals[I]->dump(); |
| } |
| } |
| #endif |
| |
| static inline int getStartOrEndSlot(const MachineInstr &MI) |
| { |
| assert((MI.getOpcode() == TargetOpcode::LIFETIME_START || |
| MI.getOpcode() == TargetOpcode::LIFETIME_END) && |
| "Expected LIFETIME_START or LIFETIME_END op"); |
| const MachineOperand &MO = MI.getOperand(0); |
| int Slot = MO.getIndex(); |
| if (Slot >= 0) |
| return Slot; |
| return -1; |
| } |
| |
| // At the moment the only way to end a variable lifetime is with |
| // a VARIABLE_LIFETIME op (which can't contain a start). If things |
| // change and the IR allows for a single inst that both begins |
| // and ends lifetime(s), this interface will need to be reworked. |
| bool StackColoring::isLifetimeStartOrEnd(const MachineInstr &MI, |
| SmallVector<int, 4> &slots, |
| bool &isStart) { |
| if (MI.getOpcode() == TargetOpcode::LIFETIME_START || |
| MI.getOpcode() == TargetOpcode::LIFETIME_END) { |
| int Slot = getStartOrEndSlot(MI); |
| if (Slot < 0) |
| return false; |
| if (!InterestingSlots.test(Slot)) |
| return false; |
| slots.push_back(Slot); |
| if (MI.getOpcode() == TargetOpcode::LIFETIME_END) { |
| isStart = false; |
| return true; |
| } |
| if (!applyFirstUse(Slot)) { |
| isStart = true; |
| return true; |
| } |
| } else if (LifetimeStartOnFirstUse && !ProtectFromEscapedAllocas) { |
| if (!MI.isDebugInstr()) { |
| bool found = false; |
| for (const MachineOperand &MO : MI.operands()) { |
| if (!MO.isFI()) |
| continue; |
| int Slot = MO.getIndex(); |
| if (Slot<0) |
| continue; |
| if (InterestingSlots.test(Slot) && applyFirstUse(Slot)) { |
| slots.push_back(Slot); |
| found = true; |
| } |
| } |
| if (found) { |
| isStart = true; |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| unsigned StackColoring::collectMarkers(unsigned NumSlot) { |
| unsigned MarkersFound = 0; |
| BlockBitVecMap SeenStartMap; |
| InterestingSlots.clear(); |
| InterestingSlots.resize(NumSlot); |
| ConservativeSlots.clear(); |
| ConservativeSlots.resize(NumSlot); |
| |
| // number of start and end lifetime ops for each slot |
| SmallVector<int, 8> NumStartLifetimes(NumSlot, 0); |
| SmallVector<int, 8> NumEndLifetimes(NumSlot, 0); |
| |
| // Step 1: collect markers and populate the "InterestingSlots" |
| // and "ConservativeSlots" sets. |
| for (MachineBasicBlock *MBB : depth_first(MF)) { |
| // Compute the set of slots for which we've seen a START marker but have |
| // not yet seen an END marker at this point in the walk (e.g. on entry |
| // to this bb). |
| BitVector BetweenStartEnd; |
| BetweenStartEnd.resize(NumSlot); |
| for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), |
| PE = MBB->pred_end(); PI != PE; ++PI) { |
| BlockBitVecMap::const_iterator I = SeenStartMap.find(*PI); |
| if (I != SeenStartMap.end()) { |
| BetweenStartEnd |= I->second; |
| } |
| } |
| |
| // Walk the instructions in the block to look for start/end ops. |
| for (MachineInstr &MI : *MBB) { |
| if (MI.getOpcode() == TargetOpcode::LIFETIME_START || |
| MI.getOpcode() == TargetOpcode::LIFETIME_END) { |
| int Slot = getStartOrEndSlot(MI); |
| if (Slot < 0) |
| continue; |
| InterestingSlots.set(Slot); |
| if (MI.getOpcode() == TargetOpcode::LIFETIME_START) { |
| BetweenStartEnd.set(Slot); |
| NumStartLifetimes[Slot] += 1; |
| } else { |
| BetweenStartEnd.reset(Slot); |
| NumEndLifetimes[Slot] += 1; |
| } |
| const AllocaInst *Allocation = MFI->getObjectAllocation(Slot); |
| if (Allocation) { |
| LLVM_DEBUG(dbgs() << "Found a lifetime "); |
| LLVM_DEBUG(dbgs() << (MI.getOpcode() == TargetOpcode::LIFETIME_START |
| ? "start" |
| : "end")); |
| LLVM_DEBUG(dbgs() << " marker for slot #" << Slot); |
| LLVM_DEBUG(dbgs() |
| << " with allocation: " << Allocation->getName() << "\n"); |
| } |
| Markers.push_back(&MI); |
| MarkersFound += 1; |
| } else { |
| for (const MachineOperand &MO : MI.operands()) { |
| if (!MO.isFI()) |
| continue; |
| int Slot = MO.getIndex(); |
| if (Slot < 0) |
| continue; |
| if (! BetweenStartEnd.test(Slot)) { |
| ConservativeSlots.set(Slot); |
| } |
| } |
| } |
| } |
| BitVector &SeenStart = SeenStartMap[MBB]; |
| SeenStart |= BetweenStartEnd; |
| } |
| if (!MarkersFound) { |
| return 0; |
| } |
| |
| // PR27903: slots with multiple start or end lifetime ops are not |
| // safe to enable for "lifetime-start-on-first-use". |
| for (unsigned slot = 0; slot < NumSlot; ++slot) |
| if (NumStartLifetimes[slot] > 1 || NumEndLifetimes[slot] > 1) |
| ConservativeSlots.set(slot); |
| LLVM_DEBUG(dumpBV("Conservative slots", ConservativeSlots)); |
| |
| // Step 2: compute begin/end sets for each block |
| |
| // NOTE: We use a depth-first iteration to ensure that we obtain a |
| // deterministic numbering. |
| for (MachineBasicBlock *MBB : depth_first(MF)) { |
| // Assign a serial number to this basic block. |
| BasicBlocks[MBB] = BasicBlockNumbering.size(); |
| BasicBlockNumbering.push_back(MBB); |
| |
| // Keep a reference to avoid repeated lookups. |
| BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB]; |
| |
| BlockInfo.Begin.resize(NumSlot); |
| BlockInfo.End.resize(NumSlot); |
| |
| SmallVector<int, 4> slots; |
| for (MachineInstr &MI : *MBB) { |
| bool isStart = false; |
| slots.clear(); |
| if (isLifetimeStartOrEnd(MI, slots, isStart)) { |
| if (!isStart) { |
| assert(slots.size() == 1 && "unexpected: MI ends multiple slots"); |
| int Slot = slots[0]; |
| if (BlockInfo.Begin.test(Slot)) { |
| BlockInfo.Begin.reset(Slot); |
| } |
| BlockInfo.End.set(Slot); |
| } else { |
| for (auto Slot : slots) { |
| LLVM_DEBUG(dbgs() << "Found a use of slot #" << Slot); |
| LLVM_DEBUG(dbgs() |
| << " at " << printMBBReference(*MBB) << " index "); |
| LLVM_DEBUG(Indexes->getInstructionIndex(MI).print(dbgs())); |
| const AllocaInst *Allocation = MFI->getObjectAllocation(Slot); |
| if (Allocation) { |
| LLVM_DEBUG(dbgs() |
| << " with allocation: " << Allocation->getName()); |
| } |
| LLVM_DEBUG(dbgs() << "\n"); |
| if (BlockInfo.End.test(Slot)) { |
| BlockInfo.End.reset(Slot); |
| } |
| BlockInfo.Begin.set(Slot); |
| } |
| } |
| } |
| } |
| } |
| |
| // Update statistics. |
| NumMarkerSeen += MarkersFound; |
| return MarkersFound; |
| } |
| |
| void StackColoring::calculateLocalLiveness() { |
| unsigned NumIters = 0; |
| bool changed = true; |
| while (changed) { |
| changed = false; |
| ++NumIters; |
| |
| for (const MachineBasicBlock *BB : BasicBlockNumbering) { |
| // Use an iterator to avoid repeated lookups. |
| LivenessMap::iterator BI = BlockLiveness.find(BB); |
| assert(BI != BlockLiveness.end() && "Block not found"); |
| BlockLifetimeInfo &BlockInfo = BI->second; |
| |
| // Compute LiveIn by unioning together the LiveOut sets of all preds. |
| BitVector LocalLiveIn; |
| for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(), |
| PE = BB->pred_end(); PI != PE; ++PI) { |
| LivenessMap::const_iterator I = BlockLiveness.find(*PI); |
| // PR37130: transformations prior to stack coloring can |
| // sometimes leave behind statically unreachable blocks; these |
| // can be safely skipped here. |
| if (I != BlockLiveness.end()) |
| LocalLiveIn |= I->second.LiveOut; |
| } |
| |
| // Compute LiveOut by subtracting out lifetimes that end in this |
| // block, then adding in lifetimes that begin in this block. If |
| // we have both BEGIN and END markers in the same basic block |
| // then we know that the BEGIN marker comes after the END, |
| // because we already handle the case where the BEGIN comes |
| // before the END when collecting the markers (and building the |
| // BEGIN/END vectors). |
| BitVector LocalLiveOut = LocalLiveIn; |
| LocalLiveOut.reset(BlockInfo.End); |
| LocalLiveOut |= BlockInfo.Begin; |
| |
| // Update block LiveIn set, noting whether it has changed. |
| if (LocalLiveIn.test(BlockInfo.LiveIn)) { |
| changed = true; |
| BlockInfo.LiveIn |= LocalLiveIn; |
| } |
| |
| // Update block LiveOut set, noting whether it has changed. |
| if (LocalLiveOut.test(BlockInfo.LiveOut)) { |
| changed = true; |
| BlockInfo.LiveOut |= LocalLiveOut; |
| } |
| } |
| } // while changed. |
| |
| NumIterations = NumIters; |
| } |
| |
| void StackColoring::calculateLiveIntervals(unsigned NumSlots) { |
| SmallVector<SlotIndex, 16> Starts; |
| SmallVector<bool, 16> DefinitelyInUse; |
| |
| // For each block, find which slots are active within this block |
| // and update the live intervals. |
| for (const MachineBasicBlock &MBB : *MF) { |
| Starts.clear(); |
| Starts.resize(NumSlots); |
| DefinitelyInUse.clear(); |
| DefinitelyInUse.resize(NumSlots); |
| |
| // Start the interval of the slots that we previously found to be 'in-use'. |
| BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB]; |
| for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1; |
| pos = MBBLiveness.LiveIn.find_next(pos)) { |
| Starts[pos] = Indexes->getMBBStartIdx(&MBB); |
| } |
| |
| // Create the interval for the basic blocks containing lifetime begin/end. |
| for (const MachineInstr &MI : MBB) { |
| SmallVector<int, 4> slots; |
| bool IsStart = false; |
| if (!isLifetimeStartOrEnd(MI, slots, IsStart)) |
| continue; |
| SlotIndex ThisIndex = Indexes->getInstructionIndex(MI); |
| for (auto Slot : slots) { |
| if (IsStart) { |
| // If a slot is already definitely in use, we don't have to emit |
| // a new start marker because there is already a pre-existing |
| // one. |
| if (!DefinitelyInUse[Slot]) { |
| LiveStarts[Slot].push_back(ThisIndex); |
| DefinitelyInUse[Slot] = true; |
| } |
| if (!Starts[Slot].isValid()) |
| Starts[Slot] = ThisIndex; |
| } else { |
| if (Starts[Slot].isValid()) { |
| VNInfo *VNI = Intervals[Slot]->getValNumInfo(0); |
| Intervals[Slot]->addSegment( |
| LiveInterval::Segment(Starts[Slot], ThisIndex, VNI)); |
| Starts[Slot] = SlotIndex(); // Invalidate the start index |
| DefinitelyInUse[Slot] = false; |
| } |
| } |
| } |
| } |
| |
| // Finish up started segments |
| for (unsigned i = 0; i < NumSlots; ++i) { |
| if (!Starts[i].isValid()) |
| continue; |
| |
| SlotIndex EndIdx = Indexes->getMBBEndIdx(&MBB); |
| VNInfo *VNI = Intervals[i]->getValNumInfo(0); |
| Intervals[i]->addSegment(LiveInterval::Segment(Starts[i], EndIdx, VNI)); |
| } |
| } |
| } |
| |
| bool StackColoring::removeAllMarkers() { |
| unsigned Count = 0; |
| for (MachineInstr *MI : Markers) { |
| MI->eraseFromParent(); |
| Count++; |
| } |
| Markers.clear(); |
| |
| LLVM_DEBUG(dbgs() << "Removed " << Count << " markers.\n"); |
| return Count; |
| } |
| |
| void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) { |
| unsigned FixedInstr = 0; |
| unsigned FixedMemOp = 0; |
| unsigned FixedDbg = 0; |
| |
| // Remap debug information that refers to stack slots. |
| for (auto &VI : MF->getVariableDbgInfo()) { |
| if (!VI.Var) |
| continue; |
| if (SlotRemap.count(VI.Slot)) { |
| LLVM_DEBUG(dbgs() << "Remapping debug info for [" |
| << cast<DILocalVariable>(VI.Var)->getName() << "].\n"); |
| VI.Slot = SlotRemap[VI.Slot]; |
| FixedDbg++; |
| } |
| } |
| |
| // Keep a list of *allocas* which need to be remapped. |
| DenseMap<const AllocaInst*, const AllocaInst*> Allocas; |
| |
| // Keep a list of allocas which has been affected by the remap. |
| SmallPtrSet<const AllocaInst*, 32> MergedAllocas; |
| |
| for (const std::pair<int, int> &SI : SlotRemap) { |
| const AllocaInst *From = MFI->getObjectAllocation(SI.first); |
| const AllocaInst *To = MFI->getObjectAllocation(SI.second); |
| assert(To && From && "Invalid allocation object"); |
| Allocas[From] = To; |
| |
| // AA might be used later for instruction scheduling, and we need it to be |
| // able to deduce the correct aliasing releationships between pointers |
| // derived from the alloca being remapped and the target of that remapping. |
| // The only safe way, without directly informing AA about the remapping |
| // somehow, is to directly update the IR to reflect the change being made |
| // here. |
| Instruction *Inst = const_cast<AllocaInst *>(To); |
| if (From->getType() != To->getType()) { |
| BitCastInst *Cast = new BitCastInst(Inst, From->getType()); |
| Cast->insertAfter(Inst); |
| Inst = Cast; |
| } |
| |
| // We keep both slots to maintain AliasAnalysis metadata later. |
| MergedAllocas.insert(From); |
| MergedAllocas.insert(To); |
| |
| // Transfer the stack protector layout tag, but make sure that SSPLK_AddrOf |
| // does not overwrite SSPLK_SmallArray or SSPLK_LargeArray, and make sure |
| // that SSPLK_SmallArray does not overwrite SSPLK_LargeArray. |
| MachineFrameInfo::SSPLayoutKind FromKind |
| = MFI->getObjectSSPLayout(SI.first); |
| MachineFrameInfo::SSPLayoutKind ToKind = MFI->getObjectSSPLayout(SI.second); |
| if (FromKind != MachineFrameInfo::SSPLK_None && |
| (ToKind == MachineFrameInfo::SSPLK_None || |
| (ToKind != MachineFrameInfo::SSPLK_LargeArray && |
| FromKind != MachineFrameInfo::SSPLK_AddrOf))) |
| MFI->setObjectSSPLayout(SI.second, FromKind); |
| |
| // The new alloca might not be valid in a llvm.dbg.declare for this |
| // variable, so undef out the use to make the verifier happy. |
| AllocaInst *FromAI = const_cast<AllocaInst *>(From); |
| if (FromAI->isUsedByMetadata()) |
| ValueAsMetadata::handleRAUW(FromAI, UndefValue::get(FromAI->getType())); |
| for (auto &Use : FromAI->uses()) { |
| if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get())) |
| if (BCI->isUsedByMetadata()) |
| ValueAsMetadata::handleRAUW(BCI, UndefValue::get(BCI->getType())); |
| } |
| |
| // Note that this will not replace uses in MMOs (which we'll update below), |
| // or anywhere else (which is why we won't delete the original |
| // instruction). |
| FromAI->replaceAllUsesWith(Inst); |
| } |
| |
| // Remap all instructions to the new stack slots. |
| for (MachineBasicBlock &BB : *MF) |
| for (MachineInstr &I : BB) { |
| // Skip lifetime markers. We'll remove them soon. |
| if (I.getOpcode() == TargetOpcode::LIFETIME_START || |
| I.getOpcode() == TargetOpcode::LIFETIME_END) |
| continue; |
| |
| // Update the MachineMemOperand to use the new alloca. |
| for (MachineMemOperand *MMO : I.memoperands()) { |
| // We've replaced IR-level uses of the remapped allocas, so we only |
| // need to replace direct uses here. |
| const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue()); |
| if (!AI) |
| continue; |
| |
| if (!Allocas.count(AI)) |
| continue; |
| |
| MMO->setValue(Allocas[AI]); |
| FixedMemOp++; |
| } |
| |
| // Update all of the machine instruction operands. |
| for (MachineOperand &MO : I.operands()) { |
| if (!MO.isFI()) |
| continue; |
| int FromSlot = MO.getIndex(); |
| |
| // Don't touch arguments. |
| if (FromSlot<0) |
| continue; |
| |
| // Only look at mapped slots. |
| if (!SlotRemap.count(FromSlot)) |
| continue; |
| |
| // In a debug build, check that the instruction that we are modifying is |
| // inside the expected live range. If the instruction is not inside |
| // the calculated range then it means that the alloca usage moved |
| // outside of the lifetime markers, or that the user has a bug. |
| // NOTE: Alloca address calculations which happen outside the lifetime |
| // zone are okay, despite the fact that we don't have a good way |
| // for validating all of the usages of the calculation. |
| #ifndef NDEBUG |
| bool TouchesMemory = I.mayLoad() || I.mayStore(); |
| // If we *don't* protect the user from escaped allocas, don't bother |
| // validating the instructions. |
| if (!I.isDebugInstr() && TouchesMemory && ProtectFromEscapedAllocas) { |
| SlotIndex Index = Indexes->getInstructionIndex(I); |
| const LiveInterval *Interval = &*Intervals[FromSlot]; |
| assert(Interval->find(Index) != Interval->end() && |
| "Found instruction usage outside of live range."); |
| } |
| #endif |
| |
| // Fix the machine instructions. |
| int ToSlot = SlotRemap[FromSlot]; |
| MO.setIndex(ToSlot); |
| FixedInstr++; |
| } |
| |
| // We adjust AliasAnalysis information for merged stack slots. |
| MachineSDNode::mmo_iterator NewMemOps = |
| MF->allocateMemRefsArray(I.getNumMemOperands()); |
| unsigned MemOpIdx = 0; |
| bool ReplaceMemOps = false; |
| for (MachineMemOperand *MMO : I.memoperands()) { |
| // If this memory location can be a slot remapped here, |
| // we remove AA information. |
| bool MayHaveConflictingAAMD = false; |
| if (MMO->getAAInfo()) { |
| if (const Value *MMOV = MMO->getValue()) { |
| SmallVector<Value *, 4> Objs; |
| getUnderlyingObjectsForCodeGen(MMOV, Objs, MF->getDataLayout()); |
| |
| if (Objs.empty()) |
| MayHaveConflictingAAMD = true; |
| else |
| for (Value *V : Objs) { |
| // If this memory location comes from a known stack slot |
| // that is not remapped, we continue checking. |
| // Otherwise, we need to invalidate AA infomation. |
| const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V); |
| if (AI && MergedAllocas.count(AI)) { |
| MayHaveConflictingAAMD = true; |
| break; |
| } |
| } |
| } |
| } |
| if (MayHaveConflictingAAMD) { |
| NewMemOps[MemOpIdx++] = MF->getMachineMemOperand(MMO, AAMDNodes()); |
| ReplaceMemOps = true; |
| } |
| else |
| NewMemOps[MemOpIdx++] = MMO; |
| } |
| |
| // If any memory operand is updated, set memory references of |
| // this instruction. |
| if (ReplaceMemOps) |
| I.setMemRefs(std::make_pair(NewMemOps, I.getNumMemOperands())); |
| } |
| |
| // Update the location of C++ catch objects for the MSVC personality routine. |
| if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo()) |
| for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap) |
| for (WinEHHandlerType &H : TBME.HandlerArray) |
| if (H.CatchObj.FrameIndex != std::numeric_limits<int>::max() && |
| SlotRemap.count(H.CatchObj.FrameIndex)) |
| H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex]; |
| |
| LLVM_DEBUG(dbgs() << "Fixed " << FixedMemOp << " machine memory operands.\n"); |
| LLVM_DEBUG(dbgs() << "Fixed " << FixedDbg << " debug locations.\n"); |
| LLVM_DEBUG(dbgs() << "Fixed " << FixedInstr << " machine instructions.\n"); |
| } |
| |
| void StackColoring::removeInvalidSlotRanges() { |
| for (MachineBasicBlock &BB : *MF) |
| for (MachineInstr &I : BB) { |
| if (I.getOpcode() == TargetOpcode::LIFETIME_START || |
| I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugInstr()) |
| continue; |
| |
| // Some intervals are suspicious! In some cases we find address |
| // calculations outside of the lifetime zone, but not actual memory |
| // read or write. Memory accesses outside of the lifetime zone are a clear |
| // violation, but address calculations are okay. This can happen when |
| // GEPs are hoisted outside of the lifetime zone. |
| // So, in here we only check instructions which can read or write memory. |
| if (!I.mayLoad() && !I.mayStore()) |
| continue; |
| |
| // Check all of the machine operands. |
| for (const MachineOperand &MO : I.operands()) { |
| if (!MO.isFI()) |
| continue; |
| |
| int Slot = MO.getIndex(); |
| |
| if (Slot<0) |
| continue; |
| |
| if (Intervals[Slot]->empty()) |
| continue; |
| |
| // Check that the used slot is inside the calculated lifetime range. |
| // If it is not, warn about it and invalidate the range. |
| LiveInterval *Interval = &*Intervals[Slot]; |
| SlotIndex Index = Indexes->getInstructionIndex(I); |
| if (Interval->find(Index) == Interval->end()) { |
| Interval->clear(); |
| LLVM_DEBUG(dbgs() << "Invalidating range #" << Slot << "\n"); |
| EscapedAllocas++; |
| } |
| } |
| } |
| } |
| |
| void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap, |
| unsigned NumSlots) { |
| // Expunge slot remap map. |
| for (unsigned i=0; i < NumSlots; ++i) { |
| // If we are remapping i |
| if (SlotRemap.count(i)) { |
| int Target = SlotRemap[i]; |
| // As long as our target is mapped to something else, follow it. |
| while (SlotRemap.count(Target)) { |
| Target = SlotRemap[Target]; |
| SlotRemap[i] = Target; |
| } |
| } |
| } |
| } |
| |
| bool StackColoring::runOnMachineFunction(MachineFunction &Func) { |
| LLVM_DEBUG(dbgs() << "********** Stack Coloring **********\n" |
| << "********** Function: " << Func.getName() << '\n'); |
| MF = &Func; |
| MFI = &MF->getFrameInfo(); |
| Indexes = &getAnalysis<SlotIndexes>(); |
| BlockLiveness.clear(); |
| BasicBlocks.clear(); |
| BasicBlockNumbering.clear(); |
| Markers.clear(); |
| Intervals.clear(); |
| LiveStarts.clear(); |
| VNInfoAllocator.Reset(); |
| |
| unsigned NumSlots = MFI->getObjectIndexEnd(); |
| |
| // If there are no stack slots then there are no markers to remove. |
| if (!NumSlots) |
| return false; |
| |
| SmallVector<int, 8> SortedSlots; |
| SortedSlots.reserve(NumSlots); |
| Intervals.reserve(NumSlots); |
| LiveStarts.resize(NumSlots); |
| |
| unsigned NumMarkers = collectMarkers(NumSlots); |
| |
| unsigned TotalSize = 0; |
| LLVM_DEBUG(dbgs() << "Found " << NumMarkers << " markers and " << NumSlots |
| << " slots\n"); |
| LLVM_DEBUG(dbgs() << "Slot structure:\n"); |
| |
| for (int i=0; i < MFI->getObjectIndexEnd(); ++i) { |
| LLVM_DEBUG(dbgs() << "Slot #" << i << " - " << MFI->getObjectSize(i) |
| << " bytes.\n"); |
| TotalSize += MFI->getObjectSize(i); |
| } |
| |
| LLVM_DEBUG(dbgs() << "Total Stack size: " << TotalSize << " bytes\n\n"); |
| |
| // Don't continue because there are not enough lifetime markers, or the |
| // stack is too small, or we are told not to optimize the slots. |
| if (NumMarkers < 2 || TotalSize < 16 || DisableColoring || |
| skipFunction(Func.getFunction())) { |
| LLVM_DEBUG(dbgs() << "Will not try to merge slots.\n"); |
| return removeAllMarkers(); |
| } |
| |
| for (unsigned i=0; i < NumSlots; ++i) { |
| std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0)); |
| LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator); |
| Intervals.push_back(std::move(LI)); |
| SortedSlots.push_back(i); |
| } |
| |
| // Calculate the liveness of each block. |
| calculateLocalLiveness(); |
| LLVM_DEBUG(dbgs() << "Dataflow iterations: " << NumIterations << "\n"); |
| LLVM_DEBUG(dump()); |
| |
| // Propagate the liveness information. |
| calculateLiveIntervals(NumSlots); |
| LLVM_DEBUG(dumpIntervals()); |
| |
| // Search for allocas which are used outside of the declared lifetime |
| // markers. |
| if (ProtectFromEscapedAllocas) |
| removeInvalidSlotRanges(); |
| |
| // Maps old slots to new slots. |
| DenseMap<int, int> SlotRemap; |
| unsigned RemovedSlots = 0; |
| unsigned ReducedSize = 0; |
| |
| // Do not bother looking at empty intervals. |
| for (unsigned I = 0; I < NumSlots; ++I) { |
| if (Intervals[SortedSlots[I]]->empty()) |
| SortedSlots[I] = -1; |
| } |
| |
| // This is a simple greedy algorithm for merging allocas. First, sort the |
| // slots, placing the largest slots first. Next, perform an n^2 scan and look |
| // for disjoint slots. When you find disjoint slots, merge the samller one |
| // into the bigger one and update the live interval. Remove the small alloca |
| // and continue. |
| |
| // Sort the slots according to their size. Place unused slots at the end. |
| // Use stable sort to guarantee deterministic code generation. |
| std::stable_sort(SortedSlots.begin(), SortedSlots.end(), |
| [this](int LHS, int RHS) { |
| // We use -1 to denote a uninteresting slot. Place these slots at the end. |
| if (LHS == -1) return false; |
| if (RHS == -1) return true; |
| // Sort according to size. |
| return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS); |
| }); |
| |
| for (auto &s : LiveStarts) |
| llvm::sort(s.begin(), s.end()); |
| |
| bool Changed = true; |
| while (Changed) { |
| Changed = false; |
| for (unsigned I = 0; I < NumSlots; ++I) { |
| if (SortedSlots[I] == -1) |
| continue; |
| |
| for (unsigned J=I+1; J < NumSlots; ++J) { |
| if (SortedSlots[J] == -1) |
| continue; |
| |
| int FirstSlot = SortedSlots[I]; |
| int SecondSlot = SortedSlots[J]; |
| LiveInterval *First = &*Intervals[FirstSlot]; |
| LiveInterval *Second = &*Intervals[SecondSlot]; |
| auto &FirstS = LiveStarts[FirstSlot]; |
| auto &SecondS = LiveStarts[SecondSlot]; |
| assert(!First->empty() && !Second->empty() && "Found an empty range"); |
| |
| // Merge disjoint slots. This is a little bit tricky - see the |
| // Implementation Notes section for an explanation. |
| if (!First->isLiveAtIndexes(SecondS) && |
| !Second->isLiveAtIndexes(FirstS)) { |
| Changed = true; |
| First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0)); |
| |
| int OldSize = FirstS.size(); |
| FirstS.append(SecondS.begin(), SecondS.end()); |
| auto Mid = FirstS.begin() + OldSize; |
| std::inplace_merge(FirstS.begin(), Mid, FirstS.end()); |
| |
| SlotRemap[SecondSlot] = FirstSlot; |
| SortedSlots[J] = -1; |
| LLVM_DEBUG(dbgs() << "Merging #" << FirstSlot << " and slots #" |
| << SecondSlot << " together.\n"); |
| unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot), |
| MFI->getObjectAlignment(SecondSlot)); |
| |
| assert(MFI->getObjectSize(FirstSlot) >= |
| MFI->getObjectSize(SecondSlot) && |
| "Merging a small object into a larger one"); |
| |
| RemovedSlots+=1; |
| ReducedSize += MFI->getObjectSize(SecondSlot); |
| MFI->setObjectAlignment(FirstSlot, MaxAlignment); |
| MFI->RemoveStackObject(SecondSlot); |
| } |
| } |
| } |
| }// While changed. |
| |
| // Record statistics. |
| StackSpaceSaved += ReducedSize; |
| StackSlotMerged += RemovedSlots; |
| LLVM_DEBUG(dbgs() << "Merge " << RemovedSlots << " slots. Saved " |
| << ReducedSize << " bytes\n"); |
| |
| // Scan the entire function and update all machine operands that use frame |
| // indices to use the remapped frame index. |
| expungeSlotMap(SlotRemap, NumSlots); |
| remapInstructions(SlotRemap); |
| |
| return removeAllMarkers(); |
| } |