| //===- PPCInstrVSX.td - The PowerPC VSX Extension --*- tablegen -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file describes the VSX extension to the PowerPC instruction set. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| // *********************************** NOTE *********************************** |
| // ** For POWER8 Little Endian, the VSX swap optimization relies on knowing ** |
| // ** which VMX and VSX instructions are lane-sensitive and which are not. ** |
| // ** A lane-sensitive instruction relies, implicitly or explicitly, on ** |
| // ** whether lanes are numbered from left to right. An instruction like ** |
| // ** VADDFP is not lane-sensitive, because each lane of the result vector ** |
| // ** relies only on the corresponding lane of the source vectors. However, ** |
| // ** an instruction like VMULESB is lane-sensitive, because "even" and ** |
| // ** "odd" lanes are different for big-endian and little-endian numbering. ** |
| // ** ** |
| // ** When adding new VMX and VSX instructions, please consider whether they ** |
| // ** are lane-sensitive. If so, they must be added to a switch statement ** |
| // ** in PPCVSXSwapRemoval::gatherVectorInstructions(). ** |
| // **************************************************************************** |
| |
| def PPCRegVSRCAsmOperand : AsmOperandClass { |
| let Name = "RegVSRC"; let PredicateMethod = "isVSRegNumber"; |
| } |
| def vsrc : RegisterOperand<VSRC> { |
| let ParserMatchClass = PPCRegVSRCAsmOperand; |
| } |
| |
| def PPCRegVSFRCAsmOperand : AsmOperandClass { |
| let Name = "RegVSFRC"; let PredicateMethod = "isVSRegNumber"; |
| } |
| def vsfrc : RegisterOperand<VSFRC> { |
| let ParserMatchClass = PPCRegVSFRCAsmOperand; |
| } |
| |
| def PPCRegVSSRCAsmOperand : AsmOperandClass { |
| let Name = "RegVSSRC"; let PredicateMethod = "isVSRegNumber"; |
| } |
| def vssrc : RegisterOperand<VSSRC> { |
| let ParserMatchClass = PPCRegVSSRCAsmOperand; |
| } |
| |
| def PPCRegSPILLTOVSRRCAsmOperand : AsmOperandClass { |
| let Name = "RegSPILLTOVSRRC"; let PredicateMethod = "isVSRegNumber"; |
| } |
| |
| def spilltovsrrc : RegisterOperand<SPILLTOVSRRC> { |
| let ParserMatchClass = PPCRegSPILLTOVSRRCAsmOperand; |
| } |
| // Little-endian-specific nodes. |
| def SDT_PPClxvd2x : SDTypeProfile<1, 1, [ |
| SDTCisVT<0, v2f64>, SDTCisPtrTy<1> |
| ]>; |
| def SDT_PPCstxvd2x : SDTypeProfile<0, 2, [ |
| SDTCisVT<0, v2f64>, SDTCisPtrTy<1> |
| ]>; |
| def SDT_PPCxxswapd : SDTypeProfile<1, 1, [ |
| SDTCisSameAs<0, 1> |
| ]>; |
| def SDTVecConv : SDTypeProfile<1, 2, [ |
| SDTCisVec<0>, SDTCisVec<1>, SDTCisPtrTy<2> |
| ]>; |
| |
| def PPClxvd2x : SDNode<"PPCISD::LXVD2X", SDT_PPClxvd2x, |
| [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; |
| def PPCstxvd2x : SDNode<"PPCISD::STXVD2X", SDT_PPCstxvd2x, |
| [SDNPHasChain, SDNPMayStore]>; |
| def PPCxxswapd : SDNode<"PPCISD::XXSWAPD", SDT_PPCxxswapd, [SDNPHasChain]>; |
| def PPCmfvsr : SDNode<"PPCISD::MFVSR", SDTUnaryOp, []>; |
| def PPCmtvsra : SDNode<"PPCISD::MTVSRA", SDTUnaryOp, []>; |
| def PPCmtvsrz : SDNode<"PPCISD::MTVSRZ", SDTUnaryOp, []>; |
| def PPCsvec2fp : SDNode<"PPCISD::SINT_VEC_TO_FP", SDTVecConv, []>; |
| def PPCuvec2fp: SDNode<"PPCISD::UINT_VEC_TO_FP", SDTVecConv, []>; |
| def PPCswapNoChain : SDNode<"PPCISD::SWAP_NO_CHAIN", SDT_PPCxxswapd>; |
| |
| multiclass XX3Form_Rcr<bits<6> opcode, bits<7> xo, string asmbase, |
| string asmstr, InstrItinClass itin, Intrinsic Int, |
| ValueType OutTy, ValueType InTy> { |
| let BaseName = asmbase in { |
| def NAME : XX3Form_Rc<opcode, xo, (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB), |
| !strconcat(asmbase, !strconcat(" ", asmstr)), itin, |
| [(set OutTy:$XT, (Int InTy:$XA, InTy:$XB))]>; |
| let Defs = [CR6] in |
| def o : XX3Form_Rc<opcode, xo, (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB), |
| !strconcat(asmbase, !strconcat(". ", asmstr)), itin, |
| [(set InTy:$XT, |
| (InTy (PPCvcmp_o InTy:$XA, InTy:$XB, xo)))]>, |
| isDOT; |
| } |
| } |
| |
| // Instruction form with a single input register for instructions such as |
| // XXPERMDI. The reason for defining this is that specifying multiple chained |
| // operands (such as loads) to an instruction will perform both chained |
| // operations rather than coalescing them into a single register - even though |
| // the source memory location is the same. This simply forces the instruction |
| // to use the same register for both inputs. |
| // For example, an output DAG such as this: |
| // (XXPERMDI (LXSIBZX xoaddr:$src), (LXSIBZX xoaddr:$src ), 0)) |
| // would result in two load instructions emitted and used as separate inputs |
| // to the XXPERMDI instruction. |
| class XX3Form_2s<bits<6> opcode, bits<5> xo, dag OOL, dag IOL, string asmstr, |
| InstrItinClass itin, list<dag> pattern> |
| : XX3Form_2<opcode, xo, OOL, IOL, asmstr, itin, pattern> { |
| let XB = XA; |
| } |
| |
| def HasVSX : Predicate<"PPCSubTarget->hasVSX()">; |
| def IsLittleEndian : Predicate<"PPCSubTarget->isLittleEndian()">; |
| def IsBigEndian : Predicate<"!PPCSubTarget->isLittleEndian()">; |
| def HasOnlySwappingMemOps : Predicate<"!PPCSubTarget->hasP9Vector()">; |
| |
| let Predicates = [HasVSX] in { |
| let AddedComplexity = 400 in { // Prefer VSX patterns over non-VSX patterns. |
| let UseVSXReg = 1 in { |
| let hasSideEffects = 0 in { // VSX instructions don't have side effects. |
| let Uses = [RM] in { |
| |
| // Load indexed instructions |
| let mayLoad = 1, mayStore = 0 in { |
| let CodeSize = 3 in |
| def LXSDX : XX1Form_memOp<31, 588, |
| (outs vsfrc:$XT), (ins memrr:$src), |
| "lxsdx $XT, $src", IIC_LdStLFD, |
| []>; |
| |
| // Pseudo instruction XFLOADf64 will be expanded to LXSDX or LFDX later |
| let isPseudo = 1, CodeSize = 3 in |
| def XFLOADf64 : PseudoXFormMemOp<(outs vsfrc:$XT), (ins memrr:$src), |
| "#XFLOADf64", |
| [(set f64:$XT, (load xoaddr:$src))]>; |
| |
| let Predicates = [HasVSX, HasOnlySwappingMemOps] in |
| def LXVD2X : XX1Form_memOp<31, 844, |
| (outs vsrc:$XT), (ins memrr:$src), |
| "lxvd2x $XT, $src", IIC_LdStLFD, |
| [(set v2f64:$XT, (int_ppc_vsx_lxvd2x xoaddr:$src))]>; |
| |
| def LXVDSX : XX1Form_memOp<31, 332, |
| (outs vsrc:$XT), (ins memrr:$src), |
| "lxvdsx $XT, $src", IIC_LdStLFD, []>; |
| |
| let Predicates = [HasVSX, HasOnlySwappingMemOps] in |
| def LXVW4X : XX1Form_memOp<31, 780, |
| (outs vsrc:$XT), (ins memrr:$src), |
| "lxvw4x $XT, $src", IIC_LdStLFD, |
| []>; |
| } // mayLoad |
| |
| // Store indexed instructions |
| let mayStore = 1, mayLoad = 0 in { |
| let CodeSize = 3 in |
| def STXSDX : XX1Form_memOp<31, 716, |
| (outs), (ins vsfrc:$XT, memrr:$dst), |
| "stxsdx $XT, $dst", IIC_LdStSTFD, |
| []>; |
| |
| // Pseudo instruction XFSTOREf64 will be expanded to STXSDX or STFDX later |
| let isPseudo = 1, CodeSize = 3 in |
| def XFSTOREf64 : PseudoXFormMemOp<(outs), (ins vsfrc:$XT, memrr:$dst), |
| "#XFSTOREf64", |
| [(store f64:$XT, xoaddr:$dst)]>; |
| |
| let Predicates = [HasVSX, HasOnlySwappingMemOps] in { |
| // The behaviour of this instruction is endianness-specific so we provide no |
| // pattern to match it without considering endianness. |
| def STXVD2X : XX1Form_memOp<31, 972, |
| (outs), (ins vsrc:$XT, memrr:$dst), |
| "stxvd2x $XT, $dst", IIC_LdStSTFD, |
| []>; |
| |
| def STXVW4X : XX1Form_memOp<31, 908, |
| (outs), (ins vsrc:$XT, memrr:$dst), |
| "stxvw4x $XT, $dst", IIC_LdStSTFD, |
| []>; |
| } |
| } // mayStore |
| |
| // Add/Mul Instructions |
| let isCommutable = 1 in { |
| def XSADDDP : XX3Form<60, 32, |
| (outs vsfrc:$XT), (ins vsfrc:$XA, vsfrc:$XB), |
| "xsadddp $XT, $XA, $XB", IIC_VecFP, |
| [(set f64:$XT, (fadd f64:$XA, f64:$XB))]>; |
| def XSMULDP : XX3Form<60, 48, |
| (outs vsfrc:$XT), (ins vsfrc:$XA, vsfrc:$XB), |
| "xsmuldp $XT, $XA, $XB", IIC_VecFP, |
| [(set f64:$XT, (fmul f64:$XA, f64:$XB))]>; |
| |
| def XVADDDP : XX3Form<60, 96, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB), |
| "xvadddp $XT, $XA, $XB", IIC_VecFP, |
| [(set v2f64:$XT, (fadd v2f64:$XA, v2f64:$XB))]>; |
| |
| def XVADDSP : XX3Form<60, 64, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB), |
| "xvaddsp $XT, $XA, $XB", IIC_VecFP, |
| [(set v4f32:$XT, (fadd v4f32:$XA, v4f32:$XB))]>; |
| |
| def XVMULDP : XX3Form<60, 112, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB), |
| "xvmuldp $XT, $XA, $XB", IIC_VecFP, |
| [(set v2f64:$XT, (fmul v2f64:$XA, v2f64:$XB))]>; |
| |
| def XVMULSP : XX3Form<60, 80, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB), |
| "xvmulsp $XT, $XA, $XB", IIC_VecFP, |
| [(set v4f32:$XT, (fmul v4f32:$XA, v4f32:$XB))]>; |
| } |
| |
| // Subtract Instructions |
| def XSSUBDP : XX3Form<60, 40, |
| (outs vsfrc:$XT), (ins vsfrc:$XA, vsfrc:$XB), |
| "xssubdp $XT, $XA, $XB", IIC_VecFP, |
| [(set f64:$XT, (fsub f64:$XA, f64:$XB))]>; |
| |
| def XVSUBDP : XX3Form<60, 104, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB), |
| "xvsubdp $XT, $XA, $XB", IIC_VecFP, |
| [(set v2f64:$XT, (fsub v2f64:$XA, v2f64:$XB))]>; |
| def XVSUBSP : XX3Form<60, 72, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB), |
| "xvsubsp $XT, $XA, $XB", IIC_VecFP, |
| [(set v4f32:$XT, (fsub v4f32:$XA, v4f32:$XB))]>; |
| |
| // FMA Instructions |
| let BaseName = "XSMADDADP" in { |
| let isCommutable = 1 in |
| def XSMADDADP : XX3Form<60, 33, |
| (outs vsfrc:$XT), (ins vsfrc:$XTi, vsfrc:$XA, vsfrc:$XB), |
| "xsmaddadp $XT, $XA, $XB", IIC_VecFP, |
| [(set f64:$XT, (fma f64:$XA, f64:$XB, f64:$XTi))]>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| let IsVSXFMAAlt = 1 in |
| def XSMADDMDP : XX3Form<60, 41, |
| (outs vsfrc:$XT), (ins vsfrc:$XTi, vsfrc:$XA, vsfrc:$XB), |
| "xsmaddmdp $XT, $XA, $XB", IIC_VecFP, []>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| } |
| |
| let BaseName = "XSMSUBADP" in { |
| let isCommutable = 1 in |
| def XSMSUBADP : XX3Form<60, 49, |
| (outs vsfrc:$XT), (ins vsfrc:$XTi, vsfrc:$XA, vsfrc:$XB), |
| "xsmsubadp $XT, $XA, $XB", IIC_VecFP, |
| [(set f64:$XT, (fma f64:$XA, f64:$XB, (fneg f64:$XTi)))]>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| let IsVSXFMAAlt = 1 in |
| def XSMSUBMDP : XX3Form<60, 57, |
| (outs vsfrc:$XT), (ins vsfrc:$XTi, vsfrc:$XA, vsfrc:$XB), |
| "xsmsubmdp $XT, $XA, $XB", IIC_VecFP, []>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| } |
| |
| let BaseName = "XSNMADDADP" in { |
| let isCommutable = 1 in |
| def XSNMADDADP : XX3Form<60, 161, |
| (outs vsfrc:$XT), (ins vsfrc:$XTi, vsfrc:$XA, vsfrc:$XB), |
| "xsnmaddadp $XT, $XA, $XB", IIC_VecFP, |
| [(set f64:$XT, (fneg (fma f64:$XA, f64:$XB, f64:$XTi)))]>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| let IsVSXFMAAlt = 1 in |
| def XSNMADDMDP : XX3Form<60, 169, |
| (outs vsfrc:$XT), (ins vsfrc:$XTi, vsfrc:$XA, vsfrc:$XB), |
| "xsnmaddmdp $XT, $XA, $XB", IIC_VecFP, []>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| } |
| |
| let BaseName = "XSNMSUBADP" in { |
| let isCommutable = 1 in |
| def XSNMSUBADP : XX3Form<60, 177, |
| (outs vsfrc:$XT), (ins vsfrc:$XTi, vsfrc:$XA, vsfrc:$XB), |
| "xsnmsubadp $XT, $XA, $XB", IIC_VecFP, |
| [(set f64:$XT, (fneg (fma f64:$XA, f64:$XB, (fneg f64:$XTi))))]>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| let IsVSXFMAAlt = 1 in |
| def XSNMSUBMDP : XX3Form<60, 185, |
| (outs vsfrc:$XT), (ins vsfrc:$XTi, vsfrc:$XA, vsfrc:$XB), |
| "xsnmsubmdp $XT, $XA, $XB", IIC_VecFP, []>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| } |
| |
| let BaseName = "XVMADDADP" in { |
| let isCommutable = 1 in |
| def XVMADDADP : XX3Form<60, 97, |
| (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB), |
| "xvmaddadp $XT, $XA, $XB", IIC_VecFP, |
| [(set v2f64:$XT, (fma v2f64:$XA, v2f64:$XB, v2f64:$XTi))]>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| let IsVSXFMAAlt = 1 in |
| def XVMADDMDP : XX3Form<60, 105, |
| (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB), |
| "xvmaddmdp $XT, $XA, $XB", IIC_VecFP, []>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| } |
| |
| let BaseName = "XVMADDASP" in { |
| let isCommutable = 1 in |
| def XVMADDASP : XX3Form<60, 65, |
| (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB), |
| "xvmaddasp $XT, $XA, $XB", IIC_VecFP, |
| [(set v4f32:$XT, (fma v4f32:$XA, v4f32:$XB, v4f32:$XTi))]>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| let IsVSXFMAAlt = 1 in |
| def XVMADDMSP : XX3Form<60, 73, |
| (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB), |
| "xvmaddmsp $XT, $XA, $XB", IIC_VecFP, []>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| } |
| |
| let BaseName = "XVMSUBADP" in { |
| let isCommutable = 1 in |
| def XVMSUBADP : XX3Form<60, 113, |
| (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB), |
| "xvmsubadp $XT, $XA, $XB", IIC_VecFP, |
| [(set v2f64:$XT, (fma v2f64:$XA, v2f64:$XB, (fneg v2f64:$XTi)))]>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| let IsVSXFMAAlt = 1 in |
| def XVMSUBMDP : XX3Form<60, 121, |
| (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB), |
| "xvmsubmdp $XT, $XA, $XB", IIC_VecFP, []>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| } |
| |
| let BaseName = "XVMSUBASP" in { |
| let isCommutable = 1 in |
| def XVMSUBASP : XX3Form<60, 81, |
| (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB), |
| "xvmsubasp $XT, $XA, $XB", IIC_VecFP, |
| [(set v4f32:$XT, (fma v4f32:$XA, v4f32:$XB, (fneg v4f32:$XTi)))]>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| let IsVSXFMAAlt = 1 in |
| def XVMSUBMSP : XX3Form<60, 89, |
| (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB), |
| "xvmsubmsp $XT, $XA, $XB", IIC_VecFP, []>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| } |
| |
| let BaseName = "XVNMADDADP" in { |
| let isCommutable = 1 in |
| def XVNMADDADP : XX3Form<60, 225, |
| (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB), |
| "xvnmaddadp $XT, $XA, $XB", IIC_VecFP, |
| [(set v2f64:$XT, (fneg (fma v2f64:$XA, v2f64:$XB, v2f64:$XTi)))]>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| let IsVSXFMAAlt = 1 in |
| def XVNMADDMDP : XX3Form<60, 233, |
| (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB), |
| "xvnmaddmdp $XT, $XA, $XB", IIC_VecFP, []>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| } |
| |
| let BaseName = "XVNMADDASP" in { |
| let isCommutable = 1 in |
| def XVNMADDASP : XX3Form<60, 193, |
| (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB), |
| "xvnmaddasp $XT, $XA, $XB", IIC_VecFP, |
| [(set v4f32:$XT, (fneg (fma v4f32:$XA, v4f32:$XB, v4f32:$XTi)))]>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| let IsVSXFMAAlt = 1 in |
| def XVNMADDMSP : XX3Form<60, 201, |
| (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB), |
| "xvnmaddmsp $XT, $XA, $XB", IIC_VecFP, []>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| } |
| |
| let BaseName = "XVNMSUBADP" in { |
| let isCommutable = 1 in |
| def XVNMSUBADP : XX3Form<60, 241, |
| (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB), |
| "xvnmsubadp $XT, $XA, $XB", IIC_VecFP, |
| [(set v2f64:$XT, (fneg (fma v2f64:$XA, v2f64:$XB, (fneg v2f64:$XTi))))]>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| let IsVSXFMAAlt = 1 in |
| def XVNMSUBMDP : XX3Form<60, 249, |
| (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB), |
| "xvnmsubmdp $XT, $XA, $XB", IIC_VecFP, []>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| } |
| |
| let BaseName = "XVNMSUBASP" in { |
| let isCommutable = 1 in |
| def XVNMSUBASP : XX3Form<60, 209, |
| (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB), |
| "xvnmsubasp $XT, $XA, $XB", IIC_VecFP, |
| [(set v4f32:$XT, (fneg (fma v4f32:$XA, v4f32:$XB, (fneg v4f32:$XTi))))]>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| let IsVSXFMAAlt = 1 in |
| def XVNMSUBMSP : XX3Form<60, 217, |
| (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB), |
| "xvnmsubmsp $XT, $XA, $XB", IIC_VecFP, []>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| } |
| |
| // Division Instructions |
| def XSDIVDP : XX3Form<60, 56, |
| (outs vsfrc:$XT), (ins vsfrc:$XA, vsfrc:$XB), |
| "xsdivdp $XT, $XA, $XB", IIC_FPDivD, |
| [(set f64:$XT, (fdiv f64:$XA, f64:$XB))]>; |
| def XSSQRTDP : XX2Form<60, 75, |
| (outs vsfrc:$XT), (ins vsfrc:$XB), |
| "xssqrtdp $XT, $XB", IIC_FPSqrtD, |
| [(set f64:$XT, (fsqrt f64:$XB))]>; |
| |
| def XSREDP : XX2Form<60, 90, |
| (outs vsfrc:$XT), (ins vsfrc:$XB), |
| "xsredp $XT, $XB", IIC_VecFP, |
| [(set f64:$XT, (PPCfre f64:$XB))]>; |
| def XSRSQRTEDP : XX2Form<60, 74, |
| (outs vsfrc:$XT), (ins vsfrc:$XB), |
| "xsrsqrtedp $XT, $XB", IIC_VecFP, |
| [(set f64:$XT, (PPCfrsqrte f64:$XB))]>; |
| |
| def XSTDIVDP : XX3Form_1<60, 61, |
| (outs crrc:$crD), (ins vsfrc:$XA, vsfrc:$XB), |
| "xstdivdp $crD, $XA, $XB", IIC_FPCompare, []>; |
| def XSTSQRTDP : XX2Form_1<60, 106, |
| (outs crrc:$crD), (ins vsfrc:$XB), |
| "xstsqrtdp $crD, $XB", IIC_FPCompare, []>; |
| |
| def XVDIVDP : XX3Form<60, 120, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB), |
| "xvdivdp $XT, $XA, $XB", IIC_FPDivD, |
| [(set v2f64:$XT, (fdiv v2f64:$XA, v2f64:$XB))]>; |
| def XVDIVSP : XX3Form<60, 88, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB), |
| "xvdivsp $XT, $XA, $XB", IIC_FPDivS, |
| [(set v4f32:$XT, (fdiv v4f32:$XA, v4f32:$XB))]>; |
| |
| def XVSQRTDP : XX2Form<60, 203, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvsqrtdp $XT, $XB", IIC_FPSqrtD, |
| [(set v2f64:$XT, (fsqrt v2f64:$XB))]>; |
| def XVSQRTSP : XX2Form<60, 139, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvsqrtsp $XT, $XB", IIC_FPSqrtS, |
| [(set v4f32:$XT, (fsqrt v4f32:$XB))]>; |
| |
| def XVTDIVDP : XX3Form_1<60, 125, |
| (outs crrc:$crD), (ins vsrc:$XA, vsrc:$XB), |
| "xvtdivdp $crD, $XA, $XB", IIC_FPCompare, []>; |
| def XVTDIVSP : XX3Form_1<60, 93, |
| (outs crrc:$crD), (ins vsrc:$XA, vsrc:$XB), |
| "xvtdivsp $crD, $XA, $XB", IIC_FPCompare, []>; |
| |
| def XVTSQRTDP : XX2Form_1<60, 234, |
| (outs crrc:$crD), (ins vsrc:$XB), |
| "xvtsqrtdp $crD, $XB", IIC_FPCompare, []>; |
| def XVTSQRTSP : XX2Form_1<60, 170, |
| (outs crrc:$crD), (ins vsrc:$XB), |
| "xvtsqrtsp $crD, $XB", IIC_FPCompare, []>; |
| |
| def XVREDP : XX2Form<60, 218, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvredp $XT, $XB", IIC_VecFP, |
| [(set v2f64:$XT, (PPCfre v2f64:$XB))]>; |
| def XVRESP : XX2Form<60, 154, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvresp $XT, $XB", IIC_VecFP, |
| [(set v4f32:$XT, (PPCfre v4f32:$XB))]>; |
| |
| def XVRSQRTEDP : XX2Form<60, 202, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvrsqrtedp $XT, $XB", IIC_VecFP, |
| [(set v2f64:$XT, (PPCfrsqrte v2f64:$XB))]>; |
| def XVRSQRTESP : XX2Form<60, 138, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvrsqrtesp $XT, $XB", IIC_VecFP, |
| [(set v4f32:$XT, (PPCfrsqrte v4f32:$XB))]>; |
| |
| // Compare Instructions |
| def XSCMPODP : XX3Form_1<60, 43, |
| (outs crrc:$crD), (ins vsfrc:$XA, vsfrc:$XB), |
| "xscmpodp $crD, $XA, $XB", IIC_FPCompare, []>; |
| def XSCMPUDP : XX3Form_1<60, 35, |
| (outs crrc:$crD), (ins vsfrc:$XA, vsfrc:$XB), |
| "xscmpudp $crD, $XA, $XB", IIC_FPCompare, []>; |
| |
| defm XVCMPEQDP : XX3Form_Rcr<60, 99, |
| "xvcmpeqdp", "$XT, $XA, $XB", IIC_VecFPCompare, |
| int_ppc_vsx_xvcmpeqdp, v2i64, v2f64>; |
| defm XVCMPEQSP : XX3Form_Rcr<60, 67, |
| "xvcmpeqsp", "$XT, $XA, $XB", IIC_VecFPCompare, |
| int_ppc_vsx_xvcmpeqsp, v4i32, v4f32>; |
| defm XVCMPGEDP : XX3Form_Rcr<60, 115, |
| "xvcmpgedp", "$XT, $XA, $XB", IIC_VecFPCompare, |
| int_ppc_vsx_xvcmpgedp, v2i64, v2f64>; |
| defm XVCMPGESP : XX3Form_Rcr<60, 83, |
| "xvcmpgesp", "$XT, $XA, $XB", IIC_VecFPCompare, |
| int_ppc_vsx_xvcmpgesp, v4i32, v4f32>; |
| defm XVCMPGTDP : XX3Form_Rcr<60, 107, |
| "xvcmpgtdp", "$XT, $XA, $XB", IIC_VecFPCompare, |
| int_ppc_vsx_xvcmpgtdp, v2i64, v2f64>; |
| defm XVCMPGTSP : XX3Form_Rcr<60, 75, |
| "xvcmpgtsp", "$XT, $XA, $XB", IIC_VecFPCompare, |
| int_ppc_vsx_xvcmpgtsp, v4i32, v4f32>; |
| |
| // Move Instructions |
| def XSABSDP : XX2Form<60, 345, |
| (outs vsfrc:$XT), (ins vsfrc:$XB), |
| "xsabsdp $XT, $XB", IIC_VecFP, |
| [(set f64:$XT, (fabs f64:$XB))]>; |
| def XSNABSDP : XX2Form<60, 361, |
| (outs vsfrc:$XT), (ins vsfrc:$XB), |
| "xsnabsdp $XT, $XB", IIC_VecFP, |
| [(set f64:$XT, (fneg (fabs f64:$XB)))]>; |
| def XSNEGDP : XX2Form<60, 377, |
| (outs vsfrc:$XT), (ins vsfrc:$XB), |
| "xsnegdp $XT, $XB", IIC_VecFP, |
| [(set f64:$XT, (fneg f64:$XB))]>; |
| def XSCPSGNDP : XX3Form<60, 176, |
| (outs vsfrc:$XT), (ins vsfrc:$XA, vsfrc:$XB), |
| "xscpsgndp $XT, $XA, $XB", IIC_VecFP, |
| [(set f64:$XT, (fcopysign f64:$XB, f64:$XA))]>; |
| |
| def XVABSDP : XX2Form<60, 473, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvabsdp $XT, $XB", IIC_VecFP, |
| [(set v2f64:$XT, (fabs v2f64:$XB))]>; |
| |
| def XVABSSP : XX2Form<60, 409, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvabssp $XT, $XB", IIC_VecFP, |
| [(set v4f32:$XT, (fabs v4f32:$XB))]>; |
| |
| def XVCPSGNDP : XX3Form<60, 240, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB), |
| "xvcpsgndp $XT, $XA, $XB", IIC_VecFP, |
| [(set v2f64:$XT, (fcopysign v2f64:$XB, v2f64:$XA))]>; |
| def XVCPSGNSP : XX3Form<60, 208, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB), |
| "xvcpsgnsp $XT, $XA, $XB", IIC_VecFP, |
| [(set v4f32:$XT, (fcopysign v4f32:$XB, v4f32:$XA))]>; |
| |
| def XVNABSDP : XX2Form<60, 489, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvnabsdp $XT, $XB", IIC_VecFP, |
| [(set v2f64:$XT, (fneg (fabs v2f64:$XB)))]>; |
| def XVNABSSP : XX2Form<60, 425, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvnabssp $XT, $XB", IIC_VecFP, |
| [(set v4f32:$XT, (fneg (fabs v4f32:$XB)))]>; |
| |
| def XVNEGDP : XX2Form<60, 505, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvnegdp $XT, $XB", IIC_VecFP, |
| [(set v2f64:$XT, (fneg v2f64:$XB))]>; |
| def XVNEGSP : XX2Form<60, 441, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvnegsp $XT, $XB", IIC_VecFP, |
| [(set v4f32:$XT, (fneg v4f32:$XB))]>; |
| |
| // Conversion Instructions |
| def XSCVDPSP : XX2Form<60, 265, |
| (outs vsfrc:$XT), (ins vsfrc:$XB), |
| "xscvdpsp $XT, $XB", IIC_VecFP, []>; |
| def XSCVDPSXDS : XX2Form<60, 344, |
| (outs vsfrc:$XT), (ins vsfrc:$XB), |
| "xscvdpsxds $XT, $XB", IIC_VecFP, |
| [(set f64:$XT, (PPCfctidz f64:$XB))]>; |
| let isCodeGenOnly = 1 in |
| def XSCVDPSXDSs : XX2Form<60, 344, |
| (outs vssrc:$XT), (ins vssrc:$XB), |
| "xscvdpsxds $XT, $XB", IIC_VecFP, |
| [(set f32:$XT, (PPCfctidz f32:$XB))]>; |
| def XSCVDPSXWS : XX2Form<60, 88, |
| (outs vsfrc:$XT), (ins vsfrc:$XB), |
| "xscvdpsxws $XT, $XB", IIC_VecFP, |
| [(set f64:$XT, (PPCfctiwz f64:$XB))]>; |
| let isCodeGenOnly = 1 in |
| def XSCVDPSXWSs : XX2Form<60, 88, |
| (outs vssrc:$XT), (ins vssrc:$XB), |
| "xscvdpsxws $XT, $XB", IIC_VecFP, |
| [(set f32:$XT, (PPCfctiwz f32:$XB))]>; |
| def XSCVDPUXDS : XX2Form<60, 328, |
| (outs vsfrc:$XT), (ins vsfrc:$XB), |
| "xscvdpuxds $XT, $XB", IIC_VecFP, |
| [(set f64:$XT, (PPCfctiduz f64:$XB))]>; |
| let isCodeGenOnly = 1 in |
| def XSCVDPUXDSs : XX2Form<60, 328, |
| (outs vssrc:$XT), (ins vssrc:$XB), |
| "xscvdpuxds $XT, $XB", IIC_VecFP, |
| [(set f32:$XT, (PPCfctiduz f32:$XB))]>; |
| def XSCVDPUXWS : XX2Form<60, 72, |
| (outs vsfrc:$XT), (ins vsfrc:$XB), |
| "xscvdpuxws $XT, $XB", IIC_VecFP, |
| [(set f64:$XT, (PPCfctiwuz f64:$XB))]>; |
| let isCodeGenOnly = 1 in |
| def XSCVDPUXWSs : XX2Form<60, 72, |
| (outs vssrc:$XT), (ins vssrc:$XB), |
| "xscvdpuxws $XT, $XB", IIC_VecFP, |
| [(set f32:$XT, (PPCfctiwuz f32:$XB))]>; |
| def XSCVSPDP : XX2Form<60, 329, |
| (outs vsfrc:$XT), (ins vsfrc:$XB), |
| "xscvspdp $XT, $XB", IIC_VecFP, []>; |
| def XSCVSXDDP : XX2Form<60, 376, |
| (outs vsfrc:$XT), (ins vsfrc:$XB), |
| "xscvsxddp $XT, $XB", IIC_VecFP, |
| [(set f64:$XT, (PPCfcfid f64:$XB))]>; |
| def XSCVUXDDP : XX2Form<60, 360, |
| (outs vsfrc:$XT), (ins vsfrc:$XB), |
| "xscvuxddp $XT, $XB", IIC_VecFP, |
| [(set f64:$XT, (PPCfcfidu f64:$XB))]>; |
| |
| def XVCVDPSP : XX2Form<60, 393, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvcvdpsp $XT, $XB", IIC_VecFP, |
| [(set v4f32:$XT, (int_ppc_vsx_xvcvdpsp v2f64:$XB))]>; |
| def XVCVDPSXDS : XX2Form<60, 472, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvcvdpsxds $XT, $XB", IIC_VecFP, |
| [(set v2i64:$XT, (fp_to_sint v2f64:$XB))]>; |
| def XVCVDPSXWS : XX2Form<60, 216, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvcvdpsxws $XT, $XB", IIC_VecFP, |
| [(set v4i32:$XT, (int_ppc_vsx_xvcvdpsxws v2f64:$XB))]>; |
| def XVCVDPUXDS : XX2Form<60, 456, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvcvdpuxds $XT, $XB", IIC_VecFP, |
| [(set v2i64:$XT, (fp_to_uint v2f64:$XB))]>; |
| def XVCVDPUXWS : XX2Form<60, 200, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvcvdpuxws $XT, $XB", IIC_VecFP, |
| [(set v4i32:$XT, (int_ppc_vsx_xvcvdpuxws v2f64:$XB))]>; |
| |
| def XVCVSPDP : XX2Form<60, 457, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvcvspdp $XT, $XB", IIC_VecFP, |
| [(set v2f64:$XT, (int_ppc_vsx_xvcvspdp v4f32:$XB))]>; |
| def XVCVSPSXDS : XX2Form<60, 408, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvcvspsxds $XT, $XB", IIC_VecFP, []>; |
| def XVCVSPSXWS : XX2Form<60, 152, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvcvspsxws $XT, $XB", IIC_VecFP, |
| [(set v4i32:$XT, (fp_to_sint v4f32:$XB))]>; |
| def XVCVSPUXDS : XX2Form<60, 392, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvcvspuxds $XT, $XB", IIC_VecFP, []>; |
| def XVCVSPUXWS : XX2Form<60, 136, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvcvspuxws $XT, $XB", IIC_VecFP, |
| [(set v4i32:$XT, (fp_to_uint v4f32:$XB))]>; |
| def XVCVSXDDP : XX2Form<60, 504, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvcvsxddp $XT, $XB", IIC_VecFP, |
| [(set v2f64:$XT, (sint_to_fp v2i64:$XB))]>; |
| def XVCVSXDSP : XX2Form<60, 440, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvcvsxdsp $XT, $XB", IIC_VecFP, |
| [(set v4f32:$XT, (int_ppc_vsx_xvcvsxdsp v2i64:$XB))]>; |
| def XVCVSXWDP : XX2Form<60, 248, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvcvsxwdp $XT, $XB", IIC_VecFP, |
| [(set v2f64:$XT, (int_ppc_vsx_xvcvsxwdp v4i32:$XB))]>; |
| def XVCVSXWSP : XX2Form<60, 184, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvcvsxwsp $XT, $XB", IIC_VecFP, |
| [(set v4f32:$XT, (sint_to_fp v4i32:$XB))]>; |
| def XVCVUXDDP : XX2Form<60, 488, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvcvuxddp $XT, $XB", IIC_VecFP, |
| [(set v2f64:$XT, (uint_to_fp v2i64:$XB))]>; |
| def XVCVUXDSP : XX2Form<60, 424, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvcvuxdsp $XT, $XB", IIC_VecFP, |
| [(set v4f32:$XT, (int_ppc_vsx_xvcvuxdsp v2i64:$XB))]>; |
| def XVCVUXWDP : XX2Form<60, 232, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvcvuxwdp $XT, $XB", IIC_VecFP, |
| [(set v2f64:$XT, (int_ppc_vsx_xvcvuxwdp v4i32:$XB))]>; |
| def XVCVUXWSP : XX2Form<60, 168, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvcvuxwsp $XT, $XB", IIC_VecFP, |
| [(set v4f32:$XT, (uint_to_fp v4i32:$XB))]>; |
| |
| // Rounding Instructions |
| def XSRDPI : XX2Form<60, 73, |
| (outs vsfrc:$XT), (ins vsfrc:$XB), |
| "xsrdpi $XT, $XB", IIC_VecFP, |
| [(set f64:$XT, (fround f64:$XB))]>; |
| def XSRDPIC : XX2Form<60, 107, |
| (outs vsfrc:$XT), (ins vsfrc:$XB), |
| "xsrdpic $XT, $XB", IIC_VecFP, |
| [(set f64:$XT, (fnearbyint f64:$XB))]>; |
| def XSRDPIM : XX2Form<60, 121, |
| (outs vsfrc:$XT), (ins vsfrc:$XB), |
| "xsrdpim $XT, $XB", IIC_VecFP, |
| [(set f64:$XT, (ffloor f64:$XB))]>; |
| def XSRDPIP : XX2Form<60, 105, |
| (outs vsfrc:$XT), (ins vsfrc:$XB), |
| "xsrdpip $XT, $XB", IIC_VecFP, |
| [(set f64:$XT, (fceil f64:$XB))]>; |
| def XSRDPIZ : XX2Form<60, 89, |
| (outs vsfrc:$XT), (ins vsfrc:$XB), |
| "xsrdpiz $XT, $XB", IIC_VecFP, |
| [(set f64:$XT, (ftrunc f64:$XB))]>; |
| |
| def XVRDPI : XX2Form<60, 201, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvrdpi $XT, $XB", IIC_VecFP, |
| [(set v2f64:$XT, (fround v2f64:$XB))]>; |
| def XVRDPIC : XX2Form<60, 235, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvrdpic $XT, $XB", IIC_VecFP, |
| [(set v2f64:$XT, (fnearbyint v2f64:$XB))]>; |
| def XVRDPIM : XX2Form<60, 249, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvrdpim $XT, $XB", IIC_VecFP, |
| [(set v2f64:$XT, (ffloor v2f64:$XB))]>; |
| def XVRDPIP : XX2Form<60, 233, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvrdpip $XT, $XB", IIC_VecFP, |
| [(set v2f64:$XT, (fceil v2f64:$XB))]>; |
| def XVRDPIZ : XX2Form<60, 217, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvrdpiz $XT, $XB", IIC_VecFP, |
| [(set v2f64:$XT, (ftrunc v2f64:$XB))]>; |
| |
| def XVRSPI : XX2Form<60, 137, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvrspi $XT, $XB", IIC_VecFP, |
| [(set v4f32:$XT, (fround v4f32:$XB))]>; |
| def XVRSPIC : XX2Form<60, 171, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvrspic $XT, $XB", IIC_VecFP, |
| [(set v4f32:$XT, (fnearbyint v4f32:$XB))]>; |
| def XVRSPIM : XX2Form<60, 185, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvrspim $XT, $XB", IIC_VecFP, |
| [(set v4f32:$XT, (ffloor v4f32:$XB))]>; |
| def XVRSPIP : XX2Form<60, 169, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvrspip $XT, $XB", IIC_VecFP, |
| [(set v4f32:$XT, (fceil v4f32:$XB))]>; |
| def XVRSPIZ : XX2Form<60, 153, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvrspiz $XT, $XB", IIC_VecFP, |
| [(set v4f32:$XT, (ftrunc v4f32:$XB))]>; |
| |
| // Max/Min Instructions |
| let isCommutable = 1 in { |
| def XSMAXDP : XX3Form<60, 160, |
| (outs vsfrc:$XT), (ins vsfrc:$XA, vsfrc:$XB), |
| "xsmaxdp $XT, $XA, $XB", IIC_VecFP, |
| [(set vsfrc:$XT, |
| (int_ppc_vsx_xsmaxdp vsfrc:$XA, vsfrc:$XB))]>; |
| def XSMINDP : XX3Form<60, 168, |
| (outs vsfrc:$XT), (ins vsfrc:$XA, vsfrc:$XB), |
| "xsmindp $XT, $XA, $XB", IIC_VecFP, |
| [(set vsfrc:$XT, |
| (int_ppc_vsx_xsmindp vsfrc:$XA, vsfrc:$XB))]>; |
| |
| def XVMAXDP : XX3Form<60, 224, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB), |
| "xvmaxdp $XT, $XA, $XB", IIC_VecFP, |
| [(set vsrc:$XT, |
| (int_ppc_vsx_xvmaxdp vsrc:$XA, vsrc:$XB))]>; |
| def XVMINDP : XX3Form<60, 232, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB), |
| "xvmindp $XT, $XA, $XB", IIC_VecFP, |
| [(set vsrc:$XT, |
| (int_ppc_vsx_xvmindp vsrc:$XA, vsrc:$XB))]>; |
| |
| def XVMAXSP : XX3Form<60, 192, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB), |
| "xvmaxsp $XT, $XA, $XB", IIC_VecFP, |
| [(set vsrc:$XT, |
| (int_ppc_vsx_xvmaxsp vsrc:$XA, vsrc:$XB))]>; |
| def XVMINSP : XX3Form<60, 200, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB), |
| "xvminsp $XT, $XA, $XB", IIC_VecFP, |
| [(set vsrc:$XT, |
| (int_ppc_vsx_xvminsp vsrc:$XA, vsrc:$XB))]>; |
| } // isCommutable |
| } // Uses = [RM] |
| |
| // Logical Instructions |
| let isCommutable = 1 in |
| def XXLAND : XX3Form<60, 130, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB), |
| "xxland $XT, $XA, $XB", IIC_VecGeneral, |
| [(set v4i32:$XT, (and v4i32:$XA, v4i32:$XB))]>; |
| def XXLANDC : XX3Form<60, 138, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB), |
| "xxlandc $XT, $XA, $XB", IIC_VecGeneral, |
| [(set v4i32:$XT, (and v4i32:$XA, |
| (vnot_ppc v4i32:$XB)))]>; |
| let isCommutable = 1 in { |
| def XXLNOR : XX3Form<60, 162, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB), |
| "xxlnor $XT, $XA, $XB", IIC_VecGeneral, |
| [(set v4i32:$XT, (vnot_ppc (or v4i32:$XA, |
| v4i32:$XB)))]>; |
| def XXLOR : XX3Form<60, 146, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB), |
| "xxlor $XT, $XA, $XB", IIC_VecGeneral, |
| [(set v4i32:$XT, (or v4i32:$XA, v4i32:$XB))]>; |
| let isCodeGenOnly = 1 in |
| def XXLORf: XX3Form<60, 146, |
| (outs vsfrc:$XT), (ins vsfrc:$XA, vsfrc:$XB), |
| "xxlor $XT, $XA, $XB", IIC_VecGeneral, []>; |
| def XXLXOR : XX3Form<60, 154, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB), |
| "xxlxor $XT, $XA, $XB", IIC_VecGeneral, |
| [(set v4i32:$XT, (xor v4i32:$XA, v4i32:$XB))]>; |
| } // isCommutable |
| let isCodeGenOnly = 1 in |
| def XXLXORz : XX3Form_Zero<60, 154, (outs vsrc:$XT), (ins), |
| "xxlxor $XT, $XT, $XT", IIC_VecGeneral, |
| [(set v4i32:$XT, (v4i32 immAllZerosV))]>; |
| |
| let isCodeGenOnly = 1 in { |
| def XXLXORdpz : XX3Form_SetZero<60, 154, |
| (outs vsfrc:$XT), (ins), |
| "xxlxor $XT, $XT, $XT", IIC_VecGeneral, |
| [(set f64:$XT, (fpimm0))]>; |
| def XXLXORspz : XX3Form_SetZero<60, 154, |
| (outs vssrc:$XT), (ins), |
| "xxlxor $XT, $XT, $XT", IIC_VecGeneral, |
| [(set f32:$XT, (fpimm0))]>; |
| } |
| |
| // Permutation Instructions |
| def XXMRGHW : XX3Form<60, 18, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB), |
| "xxmrghw $XT, $XA, $XB", IIC_VecPerm, []>; |
| def XXMRGLW : XX3Form<60, 50, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB), |
| "xxmrglw $XT, $XA, $XB", IIC_VecPerm, []>; |
| |
| def XXPERMDI : XX3Form_2<60, 10, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB, u2imm:$DM), |
| "xxpermdi $XT, $XA, $XB, $DM", IIC_VecPerm, |
| [(set v2i64:$XT, (PPCxxpermdi v2i64:$XA, v2i64:$XB, |
| imm32SExt16:$DM))]>; |
| let isCodeGenOnly = 1 in |
| def XXPERMDIs : XX3Form_2s<60, 10, (outs vsrc:$XT), (ins vsfrc:$XA, u2imm:$DM), |
| "xxpermdi $XT, $XA, $XA, $DM", IIC_VecPerm, []>; |
| def XXSEL : XX4Form<60, 3, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB, vsrc:$XC), |
| "xxsel $XT, $XA, $XB, $XC", IIC_VecPerm, []>; |
| |
| def XXSLDWI : XX3Form_2<60, 2, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB, u2imm:$SHW), |
| "xxsldwi $XT, $XA, $XB, $SHW", IIC_VecPerm, |
| [(set v4i32:$XT, (PPCvecshl v4i32:$XA, v4i32:$XB, |
| imm32SExt16:$SHW))]>; |
| |
| let isCodeGenOnly = 1 in |
| def XXSLDWIs : XX3Form_2s<60, 2, |
| (outs vsrc:$XT), (ins vsfrc:$XA, u2imm:$SHW), |
| "xxsldwi $XT, $XA, $XA, $SHW", IIC_VecPerm, []>; |
| |
| def XXSPLTW : XX2Form_2<60, 164, |
| (outs vsrc:$XT), (ins vsrc:$XB, u2imm:$UIM), |
| "xxspltw $XT, $XB, $UIM", IIC_VecPerm, |
| [(set v4i32:$XT, |
| (PPCxxsplt v4i32:$XB, imm32SExt16:$UIM))]>; |
| let isCodeGenOnly = 1 in |
| def XXSPLTWs : XX2Form_2<60, 164, |
| (outs vsrc:$XT), (ins vfrc:$XB, u2imm:$UIM), |
| "xxspltw $XT, $XB, $UIM", IIC_VecPerm, []>; |
| |
| } // hasSideEffects |
| } // UseVSXReg = 1 |
| |
| // SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after |
| // instruction selection into a branch sequence. |
| let usesCustomInserter = 1, // Expanded after instruction selection. |
| PPC970_Single = 1 in { |
| |
| def SELECT_CC_VSRC: Pseudo<(outs vsrc:$dst), |
| (ins crrc:$cond, vsrc:$T, vsrc:$F, i32imm:$BROPC), |
| "#SELECT_CC_VSRC", |
| []>; |
| def SELECT_VSRC: Pseudo<(outs vsrc:$dst), |
| (ins crbitrc:$cond, vsrc:$T, vsrc:$F), |
| "#SELECT_VSRC", |
| [(set v2f64:$dst, |
| (select i1:$cond, v2f64:$T, v2f64:$F))]>; |
| def SELECT_CC_VSFRC: Pseudo<(outs f8rc:$dst), |
| (ins crrc:$cond, f8rc:$T, f8rc:$F, |
| i32imm:$BROPC), "#SELECT_CC_VSFRC", |
| []>; |
| def SELECT_VSFRC: Pseudo<(outs f8rc:$dst), |
| (ins crbitrc:$cond, f8rc:$T, f8rc:$F), |
| "#SELECT_VSFRC", |
| [(set f64:$dst, |
| (select i1:$cond, f64:$T, f64:$F))]>; |
| def SELECT_CC_VSSRC: Pseudo<(outs f4rc:$dst), |
| (ins crrc:$cond, f4rc:$T, f4rc:$F, |
| i32imm:$BROPC), "#SELECT_CC_VSSRC", |
| []>; |
| def SELECT_VSSRC: Pseudo<(outs f4rc:$dst), |
| (ins crbitrc:$cond, f4rc:$T, f4rc:$F), |
| "#SELECT_VSSRC", |
| [(set f32:$dst, |
| (select i1:$cond, f32:$T, f32:$F))]>; |
| } // usesCustomInserter |
| } // AddedComplexity |
| |
| def : InstAlias<"xvmovdp $XT, $XB", |
| (XVCPSGNDP vsrc:$XT, vsrc:$XB, vsrc:$XB)>; |
| def : InstAlias<"xvmovsp $XT, $XB", |
| (XVCPSGNSP vsrc:$XT, vsrc:$XB, vsrc:$XB)>; |
| |
| def : InstAlias<"xxspltd $XT, $XB, 0", |
| (XXPERMDI vsrc:$XT, vsrc:$XB, vsrc:$XB, 0)>; |
| def : InstAlias<"xxspltd $XT, $XB, 1", |
| (XXPERMDI vsrc:$XT, vsrc:$XB, vsrc:$XB, 3)>; |
| def : InstAlias<"xxmrghd $XT, $XA, $XB", |
| (XXPERMDI vsrc:$XT, vsrc:$XA, vsrc:$XB, 0)>; |
| def : InstAlias<"xxmrgld $XT, $XA, $XB", |
| (XXPERMDI vsrc:$XT, vsrc:$XA, vsrc:$XB, 3)>; |
| def : InstAlias<"xxswapd $XT, $XB", |
| (XXPERMDI vsrc:$XT, vsrc:$XB, vsrc:$XB, 2)>; |
| def : InstAlias<"xxspltd $XT, $XB, 0", |
| (XXPERMDIs vsrc:$XT, vsfrc:$XB, 0)>; |
| def : InstAlias<"xxspltd $XT, $XB, 1", |
| (XXPERMDIs vsrc:$XT, vsfrc:$XB, 3)>; |
| def : InstAlias<"xxswapd $XT, $XB", |
| (XXPERMDIs vsrc:$XT, vsfrc:$XB, 2)>; |
| |
| let AddedComplexity = 400 in { // Prefer VSX patterns over non-VSX patterns. |
| |
| def : Pat<(v4i32 (vnot_ppc v4i32:$A)), |
| (v4i32 (XXLNOR $A, $A))>; |
| let Predicates = [IsBigEndian] in { |
| def : Pat<(v2f64 (scalar_to_vector f64:$A)), |
| (v2f64 (SUBREG_TO_REG (i64 1), $A, sub_64))>; |
| |
| def : Pat<(f64 (extractelt v2f64:$S, 0)), |
| (f64 (EXTRACT_SUBREG $S, sub_64))>; |
| def : Pat<(f64 (extractelt v2f64:$S, 1)), |
| (f64 (EXTRACT_SUBREG (XXPERMDI $S, $S, 2), sub_64))>; |
| } |
| |
| let Predicates = [IsLittleEndian] in { |
| def : Pat<(v2f64 (scalar_to_vector f64:$A)), |
| (v2f64 (XXPERMDI (SUBREG_TO_REG (i64 1), $A, sub_64), |
| (SUBREG_TO_REG (i64 1), $A, sub_64), 0))>; |
| |
| def : Pat<(f64 (extractelt v2f64:$S, 0)), |
| (f64 (EXTRACT_SUBREG (XXPERMDI $S, $S, 2), sub_64))>; |
| def : Pat<(f64 (extractelt v2f64:$S, 1)), |
| (f64 (EXTRACT_SUBREG $S, sub_64))>; |
| } |
| |
| // Additional fnmsub patterns: -a*c + b == -(a*c - b) |
| def : Pat<(fma (fneg f64:$A), f64:$C, f64:$B), |
| (XSNMSUBADP $B, $C, $A)>; |
| def : Pat<(fma f64:$A, (fneg f64:$C), f64:$B), |
| (XSNMSUBADP $B, $C, $A)>; |
| |
| def : Pat<(fma (fneg v2f64:$A), v2f64:$C, v2f64:$B), |
| (XVNMSUBADP $B, $C, $A)>; |
| def : Pat<(fma v2f64:$A, (fneg v2f64:$C), v2f64:$B), |
| (XVNMSUBADP $B, $C, $A)>; |
| |
| def : Pat<(fma (fneg v4f32:$A), v4f32:$C, v4f32:$B), |
| (XVNMSUBASP $B, $C, $A)>; |
| def : Pat<(fma v4f32:$A, (fneg v4f32:$C), v4f32:$B), |
| (XVNMSUBASP $B, $C, $A)>; |
| |
| def : Pat<(v2f64 (bitconvert v4f32:$A)), |
| (COPY_TO_REGCLASS $A, VSRC)>; |
| def : Pat<(v2f64 (bitconvert v4i32:$A)), |
| (COPY_TO_REGCLASS $A, VSRC)>; |
| def : Pat<(v2f64 (bitconvert v8i16:$A)), |
| (COPY_TO_REGCLASS $A, VSRC)>; |
| def : Pat<(v2f64 (bitconvert v16i8:$A)), |
| (COPY_TO_REGCLASS $A, VSRC)>; |
| |
| def : Pat<(v4f32 (bitconvert v2f64:$A)), |
| (COPY_TO_REGCLASS $A, VRRC)>; |
| def : Pat<(v4i32 (bitconvert v2f64:$A)), |
| (COPY_TO_REGCLASS $A, VRRC)>; |
| def : Pat<(v8i16 (bitconvert v2f64:$A)), |
| (COPY_TO_REGCLASS $A, VRRC)>; |
| def : Pat<(v16i8 (bitconvert v2f64:$A)), |
| (COPY_TO_REGCLASS $A, VRRC)>; |
| |
| def : Pat<(v2i64 (bitconvert v4f32:$A)), |
| (COPY_TO_REGCLASS $A, VSRC)>; |
| def : Pat<(v2i64 (bitconvert v4i32:$A)), |
| (COPY_TO_REGCLASS $A, VSRC)>; |
| def : Pat<(v2i64 (bitconvert v8i16:$A)), |
| (COPY_TO_REGCLASS $A, VSRC)>; |
| def : Pat<(v2i64 (bitconvert v16i8:$A)), |
| (COPY_TO_REGCLASS $A, VSRC)>; |
| |
| def : Pat<(v4f32 (bitconvert v2i64:$A)), |
| (COPY_TO_REGCLASS $A, VRRC)>; |
| def : Pat<(v4i32 (bitconvert v2i64:$A)), |
| (COPY_TO_REGCLASS $A, VRRC)>; |
| def : Pat<(v8i16 (bitconvert v2i64:$A)), |
| (COPY_TO_REGCLASS $A, VRRC)>; |
| def : Pat<(v16i8 (bitconvert v2i64:$A)), |
| (COPY_TO_REGCLASS $A, VRRC)>; |
| |
| def : Pat<(v2f64 (bitconvert v2i64:$A)), |
| (COPY_TO_REGCLASS $A, VRRC)>; |
| def : Pat<(v2i64 (bitconvert v2f64:$A)), |
| (COPY_TO_REGCLASS $A, VRRC)>; |
| |
| def : Pat<(v2f64 (bitconvert v1i128:$A)), |
| (COPY_TO_REGCLASS $A, VRRC)>; |
| def : Pat<(v1i128 (bitconvert v2f64:$A)), |
| (COPY_TO_REGCLASS $A, VRRC)>; |
| |
| // sign extension patterns |
| // To extend "in place" from v2i32 to v2i64, we have input data like: |
| // | undef | i32 | undef | i32 | |
| // but xvcvsxwdp expects the input in big-Endian format: |
| // | i32 | undef | i32 | undef | |
| // so we need to shift everything to the left by one i32 (word) before |
| // the conversion. |
| def : Pat<(sext_inreg v2i64:$C, v2i32), |
| (XVCVDPSXDS (XVCVSXWDP (XXSLDWI $C, $C, 1)))>; |
| def : Pat<(v2f64 (sint_to_fp (sext_inreg v2i64:$C, v2i32))), |
| (XVCVSXWDP (XXSLDWI $C, $C, 1))>; |
| |
| def : Pat<(v2f64 (PPCsvec2fp v4i32:$C, 0)), |
| (v2f64 (XVCVSXWDP (v2i64 (XXMRGHW $C, $C))))>; |
| def : Pat<(v2f64 (PPCsvec2fp v4i32:$C, 1)), |
| (v2f64 (XVCVSXWDP (v2i64 (XXMRGLW $C, $C))))>; |
| |
| def : Pat<(v2f64 (PPCuvec2fp v4i32:$C, 0)), |
| (v2f64 (XVCVUXWDP (v2i64 (XXMRGHW $C, $C))))>; |
| def : Pat<(v2f64 (PPCuvec2fp v4i32:$C, 1)), |
| (v2f64 (XVCVUXWDP (v2i64 (XXMRGLW $C, $C))))>; |
| |
| // Loads. |
| let Predicates = [HasVSX, HasOnlySwappingMemOps] in { |
| def : Pat<(v2f64 (PPClxvd2x xoaddr:$src)), (LXVD2X xoaddr:$src)>; |
| |
| // Stores. |
| def : Pat<(int_ppc_vsx_stxvd2x v2f64:$rS, xoaddr:$dst), |
| (STXVD2X $rS, xoaddr:$dst)>; |
| def : Pat<(int_ppc_vsx_stxvd2x_be v2f64:$rS, xoaddr:$dst), |
| (STXVD2X $rS, xoaddr:$dst)>; |
| def : Pat<(int_ppc_vsx_stxvw4x_be v4i32:$rS, xoaddr:$dst), |
| (STXVW4X $rS, xoaddr:$dst)>; |
| def : Pat<(PPCstxvd2x v2f64:$rS, xoaddr:$dst), (STXVD2X $rS, xoaddr:$dst)>; |
| } |
| let Predicates = [IsBigEndian, HasVSX, HasOnlySwappingMemOps] in { |
| def : Pat<(v2f64 (load xoaddr:$src)), (LXVD2X xoaddr:$src)>; |
| def : Pat<(v2i64 (load xoaddr:$src)), (LXVD2X xoaddr:$src)>; |
| def : Pat<(v4i32 (load xoaddr:$src)), (LXVW4X xoaddr:$src)>; |
| def : Pat<(v4i32 (int_ppc_vsx_lxvw4x xoaddr:$src)), (LXVW4X xoaddr:$src)>; |
| def : Pat<(store v2f64:$rS, xoaddr:$dst), (STXVD2X $rS, xoaddr:$dst)>; |
| def : Pat<(store v2i64:$rS, xoaddr:$dst), (STXVD2X $rS, xoaddr:$dst)>; |
| def : Pat<(store v4i32:$XT, xoaddr:$dst), (STXVW4X $XT, xoaddr:$dst)>; |
| def : Pat<(int_ppc_vsx_stxvw4x v4i32:$rS, xoaddr:$dst), |
| (STXVW4X $rS, xoaddr:$dst)>; |
| } |
| |
| // Permutes. |
| def : Pat<(v2f64 (PPCxxswapd v2f64:$src)), (XXPERMDI $src, $src, 2)>; |
| def : Pat<(v2i64 (PPCxxswapd v2i64:$src)), (XXPERMDI $src, $src, 2)>; |
| def : Pat<(v4f32 (PPCxxswapd v4f32:$src)), (XXPERMDI $src, $src, 2)>; |
| def : Pat<(v4i32 (PPCxxswapd v4i32:$src)), (XXPERMDI $src, $src, 2)>; |
| def : Pat<(v2f64 (PPCswapNoChain v2f64:$src)), (XXPERMDI $src, $src, 2)>; |
| |
| // PPCvecshl XT, XA, XA, 2 can be selected to both XXSLDWI XT,XA,XA,2 and |
| // XXSWAPD XT,XA (i.e. XXPERMDI XT,XA,XA,2), the later one is more profitable. |
| def : Pat<(v4i32 (PPCvecshl v4i32:$src, v4i32:$src, 2)), (XXPERMDI $src, $src, 2)>; |
| |
| // Selects. |
| def : Pat<(v2f64 (selectcc i1:$lhs, i1:$rhs, v2f64:$tval, v2f64:$fval, SETLT)), |
| (SELECT_VSRC (CRANDC $lhs, $rhs), $tval, $fval)>; |
| def : Pat<(v2f64 (selectcc i1:$lhs, i1:$rhs, v2f64:$tval, v2f64:$fval, SETULT)), |
| (SELECT_VSRC (CRANDC $rhs, $lhs), $tval, $fval)>; |
| def : Pat<(v2f64 (selectcc i1:$lhs, i1:$rhs, v2f64:$tval, v2f64:$fval, SETLE)), |
| (SELECT_VSRC (CRORC $lhs, $rhs), $tval, $fval)>; |
| def : Pat<(v2f64 (selectcc i1:$lhs, i1:$rhs, v2f64:$tval, v2f64:$fval, SETULE)), |
| (SELECT_VSRC (CRORC $rhs, $lhs), $tval, $fval)>; |
| def : Pat<(v2f64 (selectcc i1:$lhs, i1:$rhs, v2f64:$tval, v2f64:$fval, SETEQ)), |
| (SELECT_VSRC (CREQV $lhs, $rhs), $tval, $fval)>; |
| def : Pat<(v2f64 (selectcc i1:$lhs, i1:$rhs, v2f64:$tval, v2f64:$fval, SETGE)), |
| (SELECT_VSRC (CRORC $rhs, $lhs), $tval, $fval)>; |
| def : Pat<(v2f64 (selectcc i1:$lhs, i1:$rhs, v2f64:$tval, v2f64:$fval, SETUGE)), |
| (SELECT_VSRC (CRORC $lhs, $rhs), $tval, $fval)>; |
| def : Pat<(v2f64 (selectcc i1:$lhs, i1:$rhs, v2f64:$tval, v2f64:$fval, SETGT)), |
| (SELECT_VSRC (CRANDC $rhs, $lhs), $tval, $fval)>; |
| def : Pat<(v2f64 (selectcc i1:$lhs, i1:$rhs, v2f64:$tval, v2f64:$fval, SETUGT)), |
| (SELECT_VSRC (CRANDC $lhs, $rhs), $tval, $fval)>; |
| def : Pat<(v2f64 (selectcc i1:$lhs, i1:$rhs, v2f64:$tval, v2f64:$fval, SETNE)), |
| (SELECT_VSRC (CRXOR $lhs, $rhs), $tval, $fval)>; |
| |
| def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETLT)), |
| (SELECT_VSFRC (CRANDC $lhs, $rhs), $tval, $fval)>; |
| def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETULT)), |
| (SELECT_VSFRC (CRANDC $rhs, $lhs), $tval, $fval)>; |
| def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETLE)), |
| (SELECT_VSFRC (CRORC $lhs, $rhs), $tval, $fval)>; |
| def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETULE)), |
| (SELECT_VSFRC (CRORC $rhs, $lhs), $tval, $fval)>; |
| def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETEQ)), |
| (SELECT_VSFRC (CREQV $lhs, $rhs), $tval, $fval)>; |
| def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETGE)), |
| (SELECT_VSFRC (CRORC $rhs, $lhs), $tval, $fval)>; |
| def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETUGE)), |
| (SELECT_VSFRC (CRORC $lhs, $rhs), $tval, $fval)>; |
| def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETGT)), |
| (SELECT_VSFRC (CRANDC $rhs, $lhs), $tval, $fval)>; |
| def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETUGT)), |
| (SELECT_VSFRC (CRANDC $lhs, $rhs), $tval, $fval)>; |
| def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETNE)), |
| (SELECT_VSFRC (CRXOR $lhs, $rhs), $tval, $fval)>; |
| |
| // Divides. |
| def : Pat<(int_ppc_vsx_xvdivsp v4f32:$A, v4f32:$B), |
| (XVDIVSP $A, $B)>; |
| def : Pat<(int_ppc_vsx_xvdivdp v2f64:$A, v2f64:$B), |
| (XVDIVDP $A, $B)>; |
| |
| // Reciprocal estimate |
| def : Pat<(int_ppc_vsx_xvresp v4f32:$A), |
| (XVRESP $A)>; |
| def : Pat<(int_ppc_vsx_xvredp v2f64:$A), |
| (XVREDP $A)>; |
| |
| // Recip. square root estimate |
| def : Pat<(int_ppc_vsx_xvrsqrtesp v4f32:$A), |
| (XVRSQRTESP $A)>; |
| def : Pat<(int_ppc_vsx_xvrsqrtedp v2f64:$A), |
| (XVRSQRTEDP $A)>; |
| |
| let Predicates = [IsLittleEndian] in { |
| def : Pat<(f64 (PPCfcfid (PPCmtvsra (i64 (vector_extract v2i64:$S, 0))))), |
| (f64 (XSCVSXDDP (COPY_TO_REGCLASS (XXPERMDI $S, $S, 2), VSFRC)))>; |
| def : Pat<(f64 (PPCfcfid (PPCmtvsra (i64 (vector_extract v2i64:$S, 1))))), |
| (f64 (XSCVSXDDP (COPY_TO_REGCLASS (f64 (COPY_TO_REGCLASS $S, VSRC)), VSFRC)))>; |
| def : Pat<(f64 (PPCfcfidu (PPCmtvsra (i64 (vector_extract v2i64:$S, 0))))), |
| (f64 (XSCVUXDDP (COPY_TO_REGCLASS (XXPERMDI $S, $S, 2), VSFRC)))>; |
| def : Pat<(f64 (PPCfcfidu (PPCmtvsra (i64 (vector_extract v2i64:$S, 1))))), |
| (f64 (XSCVUXDDP (COPY_TO_REGCLASS (f64 (COPY_TO_REGCLASS $S, VSRC)), VSFRC)))>; |
| } // IsLittleEndian |
| |
| let Predicates = [IsBigEndian] in { |
| def : Pat<(f64 (PPCfcfid (PPCmtvsra (i64 (vector_extract v2i64:$S, 0))))), |
| (f64 (XSCVSXDDP (COPY_TO_REGCLASS $S, VSFRC)))>; |
| def : Pat<(f64 (PPCfcfid (PPCmtvsra (i64 (vector_extract v2i64:$S, 1))))), |
| (f64 (XSCVSXDDP (COPY_TO_REGCLASS (XXPERMDI $S, $S, 2), VSFRC)))>; |
| def : Pat<(f64 (PPCfcfidu (PPCmtvsra (i64 (vector_extract v2i64:$S, 0))))), |
| (f64 (XSCVUXDDP (COPY_TO_REGCLASS $S, VSFRC)))>; |
| def : Pat<(f64 (PPCfcfidu (PPCmtvsra (i64 (vector_extract v2i64:$S, 1))))), |
| (f64 (XSCVUXDDP (COPY_TO_REGCLASS (XXPERMDI $S, $S, 2), VSFRC)))>; |
| } // IsBigEndian |
| |
| } // AddedComplexity |
| } // HasVSX |
| |
| def ScalarLoads { |
| dag Li8 = (i32 (extloadi8 xoaddr:$src)); |
| dag ZELi8 = (i32 (zextloadi8 xoaddr:$src)); |
| dag ZELi8i64 = (i64 (zextloadi8 xoaddr:$src)); |
| dag SELi8 = (i32 (sext_inreg (extloadi8 xoaddr:$src), i8)); |
| dag SELi8i64 = (i64 (sext_inreg (extloadi8 xoaddr:$src), i8)); |
| |
| dag Li16 = (i32 (extloadi16 xoaddr:$src)); |
| dag ZELi16 = (i32 (zextloadi16 xoaddr:$src)); |
| dag ZELi16i64 = (i64 (zextloadi16 xoaddr:$src)); |
| dag SELi16 = (i32 (sextloadi16 xoaddr:$src)); |
| dag SELi16i64 = (i64 (sextloadi16 xoaddr:$src)); |
| |
| dag Li32 = (i32 (load xoaddr:$src)); |
| } |
| |
| // The following VSX instructions were introduced in Power ISA 2.07 |
| /* FIXME: if the operands are v2i64, these patterns will not match. |
| we should define new patterns or otherwise match the same patterns |
| when the elements are larger than i32. |
| */ |
| def HasP8Vector : Predicate<"PPCSubTarget->hasP8Vector()">; |
| def HasDirectMove : Predicate<"PPCSubTarget->hasDirectMove()">; |
| def NoP9Vector : Predicate<"!PPCSubTarget->hasP9Vector()">; |
| let Predicates = [HasP8Vector] in { |
| let AddedComplexity = 400 in { // Prefer VSX patterns over non-VSX patterns. |
| let isCommutable = 1, UseVSXReg = 1 in { |
| def XXLEQV : XX3Form<60, 186, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB), |
| "xxleqv $XT, $XA, $XB", IIC_VecGeneral, |
| [(set v4i32:$XT, (vnot_ppc (xor v4i32:$XA, v4i32:$XB)))]>; |
| def XXLNAND : XX3Form<60, 178, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB), |
| "xxlnand $XT, $XA, $XB", IIC_VecGeneral, |
| [(set v4i32:$XT, (vnot_ppc (and v4i32:$XA, |
| v4i32:$XB)))]>; |
| } // isCommutable, UseVSXReg |
| |
| def : Pat<(int_ppc_vsx_xxleqv v4i32:$A, v4i32:$B), |
| (XXLEQV $A, $B)>; |
| |
| let UseVSXReg = 1 in { |
| def XXLORC : XX3Form<60, 170, |
| (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB), |
| "xxlorc $XT, $XA, $XB", IIC_VecGeneral, |
| [(set v4i32:$XT, (or v4i32:$XA, (vnot_ppc v4i32:$XB)))]>; |
| |
| // VSX scalar loads introduced in ISA 2.07 |
| let mayLoad = 1, mayStore = 0 in { |
| let CodeSize = 3 in |
| def LXSSPX : XX1Form_memOp<31, 524, (outs vssrc:$XT), (ins memrr:$src), |
| "lxsspx $XT, $src", IIC_LdStLFD, []>; |
| def LXSIWAX : XX1Form_memOp<31, 76, (outs vsfrc:$XT), (ins memrr:$src), |
| "lxsiwax $XT, $src", IIC_LdStLFD, []>; |
| def LXSIWZX : XX1Form_memOp<31, 12, (outs vsfrc:$XT), (ins memrr:$src), |
| "lxsiwzx $XT, $src", IIC_LdStLFD, []>; |
| |
| // Please note let isPseudo = 1 is not part of class Pseudo<>. Missing it |
| // would cause these Pseudos are not expanded in expandPostRAPseudos() |
| let isPseudo = 1 in { |
| // Pseudo instruction XFLOADf32 will be expanded to LXSSPX or LFSX later |
| let CodeSize = 3 in |
| def XFLOADf32 : PseudoXFormMemOp<(outs vssrc:$XT), (ins memrr:$src), |
| "#XFLOADf32", |
| [(set f32:$XT, (load xoaddr:$src))]>; |
| // Pseudo instruction LIWAX will be expanded to LXSIWAX or LFIWAX later |
| def LIWAX : PseudoXFormMemOp<(outs vsfrc:$XT), (ins memrr:$src), |
| "#LIWAX", |
| [(set f64:$XT, (PPClfiwax xoaddr:$src))]>; |
| // Pseudo instruction LIWZX will be expanded to LXSIWZX or LFIWZX later |
| def LIWZX : PseudoXFormMemOp<(outs vsfrc:$XT), (ins memrr:$src), |
| "#LIWZX", |
| [(set f64:$XT, (PPClfiwzx xoaddr:$src))]>; |
| } |
| } // mayLoad |
| |
| // VSX scalar stores introduced in ISA 2.07 |
| let mayStore = 1, mayLoad = 0 in { |
| let CodeSize = 3 in |
| def STXSSPX : XX1Form_memOp<31, 652, (outs), (ins vssrc:$XT, memrr:$dst), |
| "stxsspx $XT, $dst", IIC_LdStSTFD, []>; |
| def STXSIWX : XX1Form_memOp<31, 140, (outs), (ins vsfrc:$XT, memrr:$dst), |
| "stxsiwx $XT, $dst", IIC_LdStSTFD, []>; |
| |
| // Please note let isPseudo = 1 is not part of class Pseudo<>. Missing it |
| // would cause these Pseudos are not expanded in expandPostRAPseudos() |
| let isPseudo = 1 in { |
| // Pseudo instruction XFSTOREf32 will be expanded to STXSSPX or STFSX later |
| let CodeSize = 3 in |
| def XFSTOREf32 : PseudoXFormMemOp<(outs), (ins vssrc:$XT, memrr:$dst), |
| "#XFSTOREf32", |
| [(store f32:$XT, xoaddr:$dst)]>; |
| // Pseudo instruction STIWX will be expanded to STXSIWX or STFIWX later |
| def STIWX : PseudoXFormMemOp<(outs), (ins vsfrc:$XT, memrr:$dst), |
| "#STIWX", |
| [(PPCstfiwx f64:$XT, xoaddr:$dst)]>; |
| } |
| } // mayStore |
| } // UseVSXReg = 1 |
| |
| def : Pat<(f64 (extloadf32 xoaddr:$src)), |
| (COPY_TO_REGCLASS (XFLOADf32 xoaddr:$src), VSFRC)>; |
| def : Pat<(f32 (fpround (f64 (extloadf32 xoaddr:$src)))), |
| (f32 (XFLOADf32 xoaddr:$src))>; |
| def : Pat<(f64 (fpextend f32:$src)), |
| (COPY_TO_REGCLASS $src, VSFRC)>; |
| |
| def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETLT)), |
| (SELECT_VSSRC (CRANDC $lhs, $rhs), $tval, $fval)>; |
| def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETULT)), |
| (SELECT_VSSRC (CRANDC $rhs, $lhs), $tval, $fval)>; |
| def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETLE)), |
| (SELECT_VSSRC (CRORC $lhs, $rhs), $tval, $fval)>; |
| def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETULE)), |
| (SELECT_VSSRC (CRORC $rhs, $lhs), $tval, $fval)>; |
| def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETEQ)), |
| (SELECT_VSSRC (CREQV $lhs, $rhs), $tval, $fval)>; |
| def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETGE)), |
| (SELECT_VSSRC (CRORC $rhs, $lhs), $tval, $fval)>; |
| def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETUGE)), |
| (SELECT_VSSRC (CRORC $lhs, $rhs), $tval, $fval)>; |
| def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETGT)), |
| (SELECT_VSSRC (CRANDC $rhs, $lhs), $tval, $fval)>; |
| def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETUGT)), |
| (SELECT_VSSRC (CRANDC $lhs, $rhs), $tval, $fval)>; |
| def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETNE)), |
| (SELECT_VSSRC (CRXOR $lhs, $rhs), $tval, $fval)>; |
| |
| let UseVSXReg = 1 in { |
| // VSX Elementary Scalar FP arithmetic (SP) |
| let isCommutable = 1 in { |
| def XSADDSP : XX3Form<60, 0, |
| (outs vssrc:$XT), (ins vssrc:$XA, vssrc:$XB), |
| "xsaddsp $XT, $XA, $XB", IIC_VecFP, |
| [(set f32:$XT, (fadd f32:$XA, f32:$XB))]>; |
| def XSMULSP : XX3Form<60, 16, |
| (outs vssrc:$XT), (ins vssrc:$XA, vssrc:$XB), |
| "xsmulsp $XT, $XA, $XB", IIC_VecFP, |
| [(set f32:$XT, (fmul f32:$XA, f32:$XB))]>; |
| } // isCommutable |
| |
| def XSDIVSP : XX3Form<60, 24, |
| (outs vssrc:$XT), (ins vssrc:$XA, vssrc:$XB), |
| "xsdivsp $XT, $XA, $XB", IIC_FPDivS, |
| [(set f32:$XT, (fdiv f32:$XA, f32:$XB))]>; |
| def XSRESP : XX2Form<60, 26, |
| (outs vssrc:$XT), (ins vssrc:$XB), |
| "xsresp $XT, $XB", IIC_VecFP, |
| [(set f32:$XT, (PPCfre f32:$XB))]>; |
| def XSRSP : XX2Form<60, 281, |
| (outs vssrc:$XT), (ins vsfrc:$XB), |
| "xsrsp $XT, $XB", IIC_VecFP, []>; |
| def XSSQRTSP : XX2Form<60, 11, |
| (outs vssrc:$XT), (ins vssrc:$XB), |
| "xssqrtsp $XT, $XB", IIC_FPSqrtS, |
| [(set f32:$XT, (fsqrt f32:$XB))]>; |
| def XSRSQRTESP : XX2Form<60, 10, |
| (outs vssrc:$XT), (ins vssrc:$XB), |
| "xsrsqrtesp $XT, $XB", IIC_VecFP, |
| [(set f32:$XT, (PPCfrsqrte f32:$XB))]>; |
| def XSSUBSP : XX3Form<60, 8, |
| (outs vssrc:$XT), (ins vssrc:$XA, vssrc:$XB), |
| "xssubsp $XT, $XA, $XB", IIC_VecFP, |
| [(set f32:$XT, (fsub f32:$XA, f32:$XB))]>; |
| |
| // FMA Instructions |
| let BaseName = "XSMADDASP" in { |
| let isCommutable = 1 in |
| def XSMADDASP : XX3Form<60, 1, |
| (outs vssrc:$XT), |
| (ins vssrc:$XTi, vssrc:$XA, vssrc:$XB), |
| "xsmaddasp $XT, $XA, $XB", IIC_VecFP, |
| [(set f32:$XT, (fma f32:$XA, f32:$XB, f32:$XTi))]>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| let IsVSXFMAAlt = 1 in |
| def XSMADDMSP : XX3Form<60, 9, |
| (outs vssrc:$XT), |
| (ins vssrc:$XTi, vssrc:$XA, vssrc:$XB), |
| "xsmaddmsp $XT, $XA, $XB", IIC_VecFP, []>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| } |
| |
| let BaseName = "XSMSUBASP" in { |
| let isCommutable = 1 in |
| def XSMSUBASP : XX3Form<60, 17, |
| (outs vssrc:$XT), |
| (ins vssrc:$XTi, vssrc:$XA, vssrc:$XB), |
| "xsmsubasp $XT, $XA, $XB", IIC_VecFP, |
| [(set f32:$XT, (fma f32:$XA, f32:$XB, |
| (fneg f32:$XTi)))]>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| let IsVSXFMAAlt = 1 in |
| def XSMSUBMSP : XX3Form<60, 25, |
| (outs vssrc:$XT), |
| (ins vssrc:$XTi, vssrc:$XA, vssrc:$XB), |
| "xsmsubmsp $XT, $XA, $XB", IIC_VecFP, []>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| } |
| |
| let BaseName = "XSNMADDASP" in { |
| let isCommutable = 1 in |
| def XSNMADDASP : XX3Form<60, 129, |
| (outs vssrc:$XT), |
| (ins vssrc:$XTi, vssrc:$XA, vssrc:$XB), |
| "xsnmaddasp $XT, $XA, $XB", IIC_VecFP, |
| [(set f32:$XT, (fneg (fma f32:$XA, f32:$XB, |
| f32:$XTi)))]>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| let IsVSXFMAAlt = 1 in |
| def XSNMADDMSP : XX3Form<60, 137, |
| (outs vssrc:$XT), |
| (ins vssrc:$XTi, vssrc:$XA, vssrc:$XB), |
| "xsnmaddmsp $XT, $XA, $XB", IIC_VecFP, []>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| } |
| |
| let BaseName = "XSNMSUBASP" in { |
| let isCommutable = 1 in |
| def XSNMSUBASP : XX3Form<60, 145, |
| (outs vssrc:$XT), |
| (ins vssrc:$XTi, vssrc:$XA, vssrc:$XB), |
| "xsnmsubasp $XT, $XA, $XB", IIC_VecFP, |
| [(set f32:$XT, (fneg (fma f32:$XA, f32:$XB, |
| (fneg f32:$XTi))))]>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| let IsVSXFMAAlt = 1 in |
| def XSNMSUBMSP : XX3Form<60, 153, |
| (outs vssrc:$XT), |
| (ins vssrc:$XTi, vssrc:$XA, vssrc:$XB), |
| "xsnmsubmsp $XT, $XA, $XB", IIC_VecFP, []>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| AltVSXFMARel; |
| } |
| |
| // Single Precision Conversions (FP <-> INT) |
| def XSCVSXDSP : XX2Form<60, 312, |
| (outs vssrc:$XT), (ins vsfrc:$XB), |
| "xscvsxdsp $XT, $XB", IIC_VecFP, |
| [(set f32:$XT, (PPCfcfids f64:$XB))]>; |
| def XSCVUXDSP : XX2Form<60, 296, |
| (outs vssrc:$XT), (ins vsfrc:$XB), |
| "xscvuxdsp $XT, $XB", IIC_VecFP, |
| [(set f32:$XT, (PPCfcfidus f64:$XB))]>; |
| |
| // Conversions between vector and scalar single precision |
| def XSCVDPSPN : XX2Form<60, 267, (outs vsrc:$XT), (ins vssrc:$XB), |
| "xscvdpspn $XT, $XB", IIC_VecFP, []>; |
| def XSCVSPDPN : XX2Form<60, 331, (outs vssrc:$XT), (ins vsrc:$XB), |
| "xscvspdpn $XT, $XB", IIC_VecFP, []>; |
| } // UseVSXReg = 1 |
| |
| let Predicates = [IsLittleEndian] in { |
| def : Pat<(f32 (PPCfcfids |
| (f64 (PPCmtvsra (i64 (vector_extract v2i64:$S, 0)))))), |
| (f32 (XSCVSXDSP (COPY_TO_REGCLASS (XXPERMDI $S, $S, 2), VSFRC)))>; |
| def : Pat<(f32 (PPCfcfids |
| (f64 (PPCmtvsra (i64 (vector_extract v2i64:$S, 1)))))), |
| (f32 (XSCVSXDSP (COPY_TO_REGCLASS |
| (f64 (COPY_TO_REGCLASS $S, VSRC)), VSFRC)))>; |
| def : Pat<(f32 (PPCfcfidus |
| (f64 (PPCmtvsra (i64 (vector_extract v2i64:$S, 0)))))), |
| (f32 (XSCVUXDSP (COPY_TO_REGCLASS (XXPERMDI $S, $S, 2), VSFRC)))>; |
| def : Pat<(f32 (PPCfcfidus |
| (f64 (PPCmtvsra (i64 (vector_extract v2i64:$S, 1)))))), |
| (f32 (XSCVUXDSP (COPY_TO_REGCLASS |
| (f64 (COPY_TO_REGCLASS $S, VSRC)), VSFRC)))>; |
| } |
| |
| let Predicates = [IsBigEndian] in { |
| def : Pat<(f32 (PPCfcfids |
| (f64 (PPCmtvsra (i64 (vector_extract v2i64:$S, 0)))))), |
| (f32 (XSCVSXDSP (COPY_TO_REGCLASS $S, VSFRC)))>; |
| def : Pat<(f32 (PPCfcfids |
| (f64 (PPCmtvsra (i64 (vector_extract v2i64:$S, 1)))))), |
| (f32 (XSCVSXDSP (COPY_TO_REGCLASS (XXPERMDI $S, $S, 2), VSFRC)))>; |
| def : Pat<(f32 (PPCfcfidus |
| (f64 (PPCmtvsra (i64 (vector_extract v2i64:$S, 0)))))), |
| (f32 (XSCVUXDSP (COPY_TO_REGCLASS $S, VSFRC)))>; |
| def : Pat<(f32 (PPCfcfidus |
| (f64 (PPCmtvsra (i64 (vector_extract v2i64:$S, 1)))))), |
| (f32 (XSCVUXDSP (COPY_TO_REGCLASS (XXPERMDI $S, $S, 2), VSFRC)))>; |
| } |
| |
| // Instructions for converting float to i64 feeding a store. |
| let Predicates = [NoP9Vector] in { |
| def : Pat<(PPCstore_scal_int_from_vsr |
| (f64 (PPCcv_fp_to_sint_in_vsr f64:$src)), xoaddr:$dst, 8), |
| (STXSDX (XSCVDPSXDS f64:$src), xoaddr:$dst)>; |
| def : Pat<(PPCstore_scal_int_from_vsr |
| (f64 (PPCcv_fp_to_uint_in_vsr f64:$src)), xoaddr:$dst, 8), |
| (STXSDX (XSCVDPUXDS f64:$src), xoaddr:$dst)>; |
| } |
| |
| // Instructions for converting float to i32 feeding a store. |
| def : Pat<(PPCstore_scal_int_from_vsr |
| (f64 (PPCcv_fp_to_sint_in_vsr f64:$src)), xoaddr:$dst, 4), |
| (STIWX (XSCVDPSXWS f64:$src), xoaddr:$dst)>; |
| def : Pat<(PPCstore_scal_int_from_vsr |
| (f64 (PPCcv_fp_to_uint_in_vsr f64:$src)), xoaddr:$dst, 4), |
| (STIWX (XSCVDPUXWS f64:$src), xoaddr:$dst)>; |
| |
| } // AddedComplexity = 400 |
| } // HasP8Vector |
| |
| let UseVSXReg = 1, AddedComplexity = 400 in { |
| let Predicates = [HasDirectMove] in { |
| // VSX direct move instructions |
| def MFVSRD : XX1_RS6_RD5_XO<31, 51, (outs g8rc:$rA), (ins vsfrc:$XT), |
| "mfvsrd $rA, $XT", IIC_VecGeneral, |
| [(set i64:$rA, (PPCmfvsr f64:$XT))]>, |
| Requires<[In64BitMode]>; |
| let isCodeGenOnly = 1 in |
| def MFVRD : XX1_RS6_RD5_XO<31, 51, (outs g8rc:$rA), (ins vrrc:$XT), |
| "mfvsrd $rA, $XT", IIC_VecGeneral, |
| []>, |
| Requires<[In64BitMode]>; |
| def MFVSRWZ : XX1_RS6_RD5_XO<31, 115, (outs gprc:$rA), (ins vsfrc:$XT), |
| "mfvsrwz $rA, $XT", IIC_VecGeneral, |
| [(set i32:$rA, (PPCmfvsr f64:$XT))]>; |
| def MTVSRD : XX1_RS6_RD5_XO<31, 179, (outs vsfrc:$XT), (ins g8rc:$rA), |
| "mtvsrd $XT, $rA", IIC_VecGeneral, |
| [(set f64:$XT, (PPCmtvsra i64:$rA))]>, |
| Requires<[In64BitMode]>; |
| def MTVSRWA : XX1_RS6_RD5_XO<31, 211, (outs vsfrc:$XT), (ins gprc:$rA), |
| "mtvsrwa $XT, $rA", IIC_VecGeneral, |
| [(set f64:$XT, (PPCmtvsra i32:$rA))]>; |
| def MTVSRWZ : XX1_RS6_RD5_XO<31, 243, (outs vsfrc:$XT), (ins gprc:$rA), |
| "mtvsrwz $XT, $rA", IIC_VecGeneral, |
| [(set f64:$XT, (PPCmtvsrz i32:$rA))]>; |
| } // HasDirectMove |
| |
| let Predicates = [IsISA3_0, HasDirectMove] in { |
| def MTVSRWS: XX1_RS6_RD5_XO<31, 403, (outs vsrc:$XT), (ins gprc:$rA), |
| "mtvsrws $XT, $rA", IIC_VecGeneral, []>; |
| |
| def MTVSRDD: XX1Form<31, 435, (outs vsrc:$XT), (ins g8rc_nox0:$rA, g8rc:$rB), |
| "mtvsrdd $XT, $rA, $rB", IIC_VecGeneral, |
| []>, Requires<[In64BitMode]>; |
| |
| def MFVSRLD: XX1_RS6_RD5_XO<31, 307, (outs g8rc:$rA), (ins vsrc:$XT), |
| "mfvsrld $rA, $XT", IIC_VecGeneral, |
| []>, Requires<[In64BitMode]>; |
| |
| } // IsISA3_0, HasDirectMove |
| } // UseVSXReg = 1 |
| |
| // We want to parse this from asm, but we don't want to emit this as it would |
| // be emitted with a VSX reg. So leave Emit = 0 here. |
| def : InstAlias<"mfvrd $rA, $XT", |
| (MFVRD g8rc:$rA, vrrc:$XT), 0>; |
| def : InstAlias<"mffprd $rA, $src", |
| (MFVSRD g8rc:$rA, f8rc:$src)>; |
| |
| /* Direct moves of various widths from GPR's into VSR's. Each move lines |
| the value up into element 0 (both BE and LE). Namely, entities smaller than |
| a doubleword are shifted left and moved for BE. For LE, they're moved, then |
| swapped to go into the least significant element of the VSR. |
| */ |
| def MovesToVSR { |
| dag BE_BYTE_0 = |
| (MTVSRD |
| (RLDICR |
| (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $A, sub_32), 56, 7)); |
| dag BE_HALF_0 = |
| (MTVSRD |
| (RLDICR |
| (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $A, sub_32), 48, 15)); |
| dag BE_WORD_0 = |
| (MTVSRD |
| (RLDICR |
| (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $A, sub_32), 32, 31)); |
| dag BE_DWORD_0 = (MTVSRD $A); |
| |
| dag LE_MTVSRW = (MTVSRD (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $A, sub_32)); |
| dag LE_WORD_1 = (v2i64 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), |
| LE_MTVSRW, sub_64)); |
| dag LE_WORD_0 = (XXPERMDI LE_WORD_1, LE_WORD_1, 2); |
| dag LE_DWORD_1 = (v2i64 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), |
| BE_DWORD_0, sub_64)); |
| dag LE_DWORD_0 = (XXPERMDI LE_DWORD_1, LE_DWORD_1, 2); |
| } |
| |
| /* Patterns for extracting elements out of vectors. Integer elements are |
| extracted using direct move operations. Patterns for extracting elements |
| whose indices are not available at compile time are also provided with |
| various _VARIABLE_ patterns. |
| The numbering for the DAG's is for LE, but when used on BE, the correct |
| LE element can just be used (i.e. LE_BYTE_2 == BE_BYTE_13). |
| */ |
| def VectorExtractions { |
| // Doubleword extraction |
| dag LE_DWORD_0 = |
| (MFVSRD |
| (EXTRACT_SUBREG |
| (XXPERMDI (COPY_TO_REGCLASS $S, VSRC), |
| (COPY_TO_REGCLASS $S, VSRC), 2), sub_64)); |
| dag LE_DWORD_1 = (MFVSRD |
| (EXTRACT_SUBREG |
| (v2i64 (COPY_TO_REGCLASS $S, VSRC)), sub_64)); |
| |
| // Word extraction |
| dag LE_WORD_0 = (MFVSRWZ (EXTRACT_SUBREG (XXPERMDI $S, $S, 2), sub_64)); |
| dag LE_WORD_1 = (MFVSRWZ (EXTRACT_SUBREG (XXSLDWI $S, $S, 1), sub_64)); |
| dag LE_WORD_2 = (MFVSRWZ (EXTRACT_SUBREG |
| (v2i64 (COPY_TO_REGCLASS $S, VSRC)), sub_64)); |
| dag LE_WORD_3 = (MFVSRWZ (EXTRACT_SUBREG (XXSLDWI $S, $S, 3), sub_64)); |
| |
| // Halfword extraction |
| dag LE_HALF_0 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_0, 0, 48), sub_32)); |
| dag LE_HALF_1 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_0, 48, 48), sub_32)); |
| dag LE_HALF_2 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_0, 32, 48), sub_32)); |
| dag LE_HALF_3 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_0, 16, 48), sub_32)); |
| dag LE_HALF_4 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_1, 0, 48), sub_32)); |
| dag LE_HALF_5 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_1, 48, 48), sub_32)); |
| dag LE_HALF_6 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_1, 32, 48), sub_32)); |
| dag LE_HALF_7 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_1, 16, 48), sub_32)); |
| |
| // Byte extraction |
| dag LE_BYTE_0 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_0, 0, 56), sub_32)); |
| dag LE_BYTE_1 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_0, 56, 56), sub_32)); |
| dag LE_BYTE_2 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_0, 48, 56), sub_32)); |
| dag LE_BYTE_3 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_0, 40, 56), sub_32)); |
| dag LE_BYTE_4 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_0, 32, 56), sub_32)); |
| dag LE_BYTE_5 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_0, 24, 56), sub_32)); |
| dag LE_BYTE_6 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_0, 16, 56), sub_32)); |
| dag LE_BYTE_7 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_0, 8, 56), sub_32)); |
| dag LE_BYTE_8 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_1, 0, 56), sub_32)); |
| dag LE_BYTE_9 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_1, 56, 56), sub_32)); |
| dag LE_BYTE_10 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_1, 48, 56), sub_32)); |
| dag LE_BYTE_11 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_1, 40, 56), sub_32)); |
| dag LE_BYTE_12 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_1, 32, 56), sub_32)); |
| dag LE_BYTE_13 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_1, 24, 56), sub_32)); |
| dag LE_BYTE_14 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_1, 16, 56), sub_32)); |
| dag LE_BYTE_15 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_1, 8, 56), sub_32)); |
| |
| /* Variable element number (BE and LE patterns must be specified separately) |
| This is a rather involved process. |
| |
| Conceptually, this is how the move is accomplished: |
| 1. Identify which doubleword contains the element |
| 2. Shift in the VMX register so that the correct doubleword is correctly |
| lined up for the MFVSRD |
| 3. Perform the move so that the element (along with some extra stuff) |
| is in the GPR |
| 4. Right shift within the GPR so that the element is right-justified |
| |
| Of course, the index is an element number which has a different meaning |
| on LE/BE so the patterns have to be specified separately. |
| |
| Note: The final result will be the element right-justified with high |
| order bits being arbitrarily defined (namely, whatever was in the |
| vector register to the left of the value originally). |
| */ |
| |
| /* LE variable byte |
| Number 1. above: |
| - For elements 0-7, we shift left by 8 bytes since they're on the right |
| - For elements 8-15, we need not shift (shift left by zero bytes) |
| This is accomplished by inverting the bits of the index and AND-ing |
| with 0x8 (i.e. clearing all bits of the index and inverting bit 60). |
| */ |
| dag LE_VBYTE_PERM_VEC = (v16i8 (LVSL ZERO8, (ANDC8 (LI8 8), $Idx))); |
| |
| // Number 2. above: |
| // - Now that we set up the shift amount, we shift in the VMX register |
| dag LE_VBYTE_PERMUTE = (v16i8 (VPERM $S, $S, LE_VBYTE_PERM_VEC)); |
| |
| // Number 3. above: |
| // - The doubleword containing our element is moved to a GPR |
| dag LE_MV_VBYTE = (MFVSRD |
| (EXTRACT_SUBREG |
| (v2i64 (COPY_TO_REGCLASS LE_VBYTE_PERMUTE, VSRC)), |
| sub_64)); |
| |
| /* Number 4. above: |
| - Truncate the element number to the range 0-7 (8-15 are symmetrical |
| and out of range values are truncated accordingly) |
| - Multiply by 8 as we need to shift right by the number of bits, not bytes |
| - Shift right in the GPR by the calculated value |
| */ |
| dag LE_VBYTE_SHIFT = (EXTRACT_SUBREG (RLDICR (AND8 (LI8 7), $Idx), 3, 60), |
| sub_32); |
| dag LE_VARIABLE_BYTE = (EXTRACT_SUBREG (SRD LE_MV_VBYTE, LE_VBYTE_SHIFT), |
| sub_32); |
| |
| /* LE variable halfword |
| Number 1. above: |
| - For elements 0-3, we shift left by 8 since they're on the right |
| - For elements 4-7, we need not shift (shift left by zero bytes) |
| Similarly to the byte pattern, we invert the bits of the index, but we |
| AND with 0x4 (i.e. clear all bits of the index and invert bit 61). |
| Of course, the shift is still by 8 bytes, so we must multiply by 2. |
| */ |
| dag LE_VHALF_PERM_VEC = |
| (v16i8 (LVSL ZERO8, (RLDICR (ANDC8 (LI8 4), $Idx), 1, 62))); |
| |
| // Number 2. above: |
| // - Now that we set up the shift amount, we shift in the VMX register |
| dag LE_VHALF_PERMUTE = (v16i8 (VPERM $S, $S, LE_VHALF_PERM_VEC)); |
| |
| // Number 3. above: |
| // - The doubleword containing our element is moved to a GPR |
| dag LE_MV_VHALF = (MFVSRD |
| (EXTRACT_SUBREG |
| (v2i64 (COPY_TO_REGCLASS LE_VHALF_PERMUTE, VSRC)), |
| sub_64)); |
| |
| /* Number 4. above: |
| - Truncate the element number to the range 0-3 (4-7 are symmetrical |
| and out of range values are truncated accordingly) |
| - Multiply by 16 as we need to shift right by the number of bits |
| - Shift right in the GPR by the calculated value |
| */ |
| dag LE_VHALF_SHIFT = (EXTRACT_SUBREG (RLDICR (AND8 (LI8 3), $Idx), 4, 59), |
| sub_32); |
| dag LE_VARIABLE_HALF = (EXTRACT_SUBREG (SRD LE_MV_VHALF, LE_VHALF_SHIFT), |
| sub_32); |
| |
| /* LE variable word |
| Number 1. above: |
| - For elements 0-1, we shift left by 8 since they're on the right |
| - For elements 2-3, we need not shift |
| */ |
| dag LE_VWORD_PERM_VEC = (v16i8 (LVSL ZERO8, |
| (RLDICR (ANDC8 (LI8 2), $Idx), 2, 61))); |
| |
| // Number 2. above: |
| // - Now that we set up the shift amount, we shift in the VMX register |
| dag LE_VWORD_PERMUTE = (v16i8 (VPERM $S, $S, LE_VWORD_PERM_VEC)); |
| |
| // Number 3. above: |
| // - The doubleword containing our element is moved to a GPR |
| dag LE_MV_VWORD = (MFVSRD |
| (EXTRACT_SUBREG |
| (v2i64 (COPY_TO_REGCLASS LE_VWORD_PERMUTE, VSRC)), |
| sub_64)); |
| |
| /* Number 4. above: |
| - Truncate the element number to the range 0-1 (2-3 are symmetrical |
| and out of range values are truncated accordingly) |
| - Multiply by 32 as we need to shift right by the number of bits |
| - Shift right in the GPR by the calculated value |
| */ |
| dag LE_VWORD_SHIFT = (EXTRACT_SUBREG (RLDICR (AND8 (LI8 1), $Idx), 5, 58), |
| sub_32); |
| dag LE_VARIABLE_WORD = (EXTRACT_SUBREG (SRD LE_MV_VWORD, LE_VWORD_SHIFT), |
| sub_32); |
| |
| /* LE variable doubleword |
| Number 1. above: |
| - For element 0, we shift left by 8 since it's on the right |
| - For element 1, we need not shift |
| */ |
| dag LE_VDWORD_PERM_VEC = (v16i8 (LVSL ZERO8, |
| (RLDICR (ANDC8 (LI8 1), $Idx), 3, 60))); |
| |
| // Number 2. above: |
| // - Now that we set up the shift amount, we shift in the VMX register |
| dag LE_VDWORD_PERMUTE = (v16i8 (VPERM $S, $S, LE_VDWORD_PERM_VEC)); |
| |
| // Number 3. above: |
| // - The doubleword containing our element is moved to a GPR |
| // - Number 4. is not needed for the doubleword as the value is 64-bits |
| dag LE_VARIABLE_DWORD = |
| (MFVSRD (EXTRACT_SUBREG |
| (v2i64 (COPY_TO_REGCLASS LE_VDWORD_PERMUTE, VSRC)), |
| sub_64)); |
| |
| /* LE variable float |
| - Shift the vector to line up the desired element to BE Word 0 |
| - Convert 32-bit float to a 64-bit single precision float |
| */ |
| dag LE_VFLOAT_PERM_VEC = (v16i8 (LVSL ZERO8, |
| (RLDICR (XOR8 (LI8 3), $Idx), 2, 61))); |
| dag LE_VFLOAT_PERMUTE = (VPERM $S, $S, LE_VFLOAT_PERM_VEC); |
| dag LE_VARIABLE_FLOAT = (XSCVSPDPN LE_VFLOAT_PERMUTE); |
| |
| /* LE variable double |
| Same as the LE doubleword except there is no move. |
| */ |
| dag LE_VDOUBLE_PERMUTE = (v16i8 (VPERM (v16i8 (COPY_TO_REGCLASS $S, VRRC)), |
| (v16i8 (COPY_TO_REGCLASS $S, VRRC)), |
| LE_VDWORD_PERM_VEC)); |
| dag LE_VARIABLE_DOUBLE = (COPY_TO_REGCLASS LE_VDOUBLE_PERMUTE, VSRC); |
| |
| /* BE variable byte |
| The algorithm here is the same as the LE variable byte except: |
| - The shift in the VMX register is by 0/8 for opposite element numbers so |
| we simply AND the element number with 0x8 |
| - The order of elements after the move to GPR is reversed, so we invert |
| the bits of the index prior to truncating to the range 0-7 |
| */ |
| dag BE_VBYTE_PERM_VEC = (v16i8 (LVSL ZERO8, (ANDIo8 $Idx, 8))); |
| dag BE_VBYTE_PERMUTE = (v16i8 (VPERM $S, $S, BE_VBYTE_PERM_VEC)); |
| dag BE_MV_VBYTE = (MFVSRD |
| (EXTRACT_SUBREG |
| (v2i64 (COPY_TO_REGCLASS BE_VBYTE_PERMUTE, VSRC)), |
| sub_64)); |
| dag BE_VBYTE_SHIFT = (EXTRACT_SUBREG (RLDICR (ANDC8 (LI8 7), $Idx), 3, 60), |
| sub_32); |
| dag BE_VARIABLE_BYTE = (EXTRACT_SUBREG (SRD BE_MV_VBYTE, BE_VBYTE_SHIFT), |
| sub_32); |
| |
| /* BE variable halfword |
| The algorithm here is the same as the LE variable halfword except: |
| - The shift in the VMX register is by 0/8 for opposite element numbers so |
| we simply AND the element number with 0x4 and multiply by 2 |
| - The order of elements after the move to GPR is reversed, so we invert |
| the bits of the index prior to truncating to the range 0-3 |
| */ |
| dag BE_VHALF_PERM_VEC = (v16i8 (LVSL ZERO8, |
| (RLDICR (ANDIo8 $Idx, 4), 1, 62))); |
| dag BE_VHALF_PERMUTE = (v16i8 (VPERM $S, $S, BE_VHALF_PERM_VEC)); |
| dag BE_MV_VHALF = (MFVSRD |
| (EXTRACT_SUBREG |
| (v2i64 (COPY_TO_REGCLASS BE_VHALF_PERMUTE, VSRC)), |
| sub_64)); |
| dag BE_VHALF_SHIFT = (EXTRACT_SUBREG (RLDICR (ANDC8 (LI8 3), $Idx), 4, 59), |
| sub_32); |
| dag BE_VARIABLE_HALF = (EXTRACT_SUBREG (SRD BE_MV_VHALF, BE_VHALF_SHIFT), |
| sub_32); |
| |
| /* BE variable word |
| The algorithm is the same as the LE variable word except: |
| - The shift in the VMX register happens for opposite element numbers |
| - The order of elements after the move to GPR is reversed, so we invert |
| the bits of the index prior to truncating to the range 0-1 |
| */ |
| dag BE_VWORD_PERM_VEC = (v16i8 (LVSL ZERO8, |
| (RLDICR (ANDIo8 $Idx, 2), 2, 61))); |
| dag BE_VWORD_PERMUTE = (v16i8 (VPERM $S, $S, BE_VWORD_PERM_VEC)); |
| dag BE_MV_VWORD = (MFVSRD |
| (EXTRACT_SUBREG |
| (v2i64 (COPY_TO_REGCLASS BE_VWORD_PERMUTE, VSRC)), |
| sub_64)); |
| dag BE_VWORD_SHIFT = (EXTRACT_SUBREG (RLDICR (ANDC8 (LI8 1), $Idx), 5, 58), |
| sub_32); |
| dag BE_VARIABLE_WORD = (EXTRACT_SUBREG (SRD BE_MV_VWORD, BE_VWORD_SHIFT), |
| sub_32); |
| |
| /* BE variable doubleword |
| Same as the LE doubleword except we shift in the VMX register for opposite |
| element indices. |
| */ |
| dag BE_VDWORD_PERM_VEC = (v16i8 (LVSL ZERO8, |
| (RLDICR (ANDIo8 $Idx, 1), 3, 60))); |
| dag BE_VDWORD_PERMUTE = (v16i8 (VPERM $S, $S, BE_VDWORD_PERM_VEC)); |
| dag BE_VARIABLE_DWORD = |
| (MFVSRD (EXTRACT_SUBREG |
| (v2i64 (COPY_TO_REGCLASS BE_VDWORD_PERMUTE, VSRC)), |
| sub_64)); |
| |
| /* BE variable float |
| - Shift the vector to line up the desired element to BE Word 0 |
| - Convert 32-bit float to a 64-bit single precision float |
| */ |
| dag BE_VFLOAT_PERM_VEC = (v16i8 (LVSL ZERO8, (RLDICR $Idx, 2, 61))); |
| dag BE_VFLOAT_PERMUTE = (VPERM $S, $S, BE_VFLOAT_PERM_VEC); |
| dag BE_VARIABLE_FLOAT = (XSCVSPDPN BE_VFLOAT_PERMUTE); |
| |
| /* BE variable double |
| Same as the BE doubleword except there is no move. |
| */ |
| dag BE_VDOUBLE_PERMUTE = (v16i8 (VPERM (v16i8 (COPY_TO_REGCLASS $S, VRRC)), |
| (v16i8 (COPY_TO_REGCLASS $S, VRRC)), |
| BE_VDWORD_PERM_VEC)); |
| dag BE_VARIABLE_DOUBLE = (COPY_TO_REGCLASS BE_VDOUBLE_PERMUTE, VSRC); |
| } |
| |
| def NoP9Altivec : Predicate<"!PPCSubTarget->hasP9Altivec()">; |
| let AddedComplexity = 400 in { |
| // v4f32 scalar <-> vector conversions (BE) |
| let Predicates = [IsBigEndian, HasP8Vector] in { |
| def : Pat<(v4f32 (scalar_to_vector f32:$A)), |
| (v4f32 (XSCVDPSPN $A))>; |
| def : Pat<(f32 (vector_extract v4f32:$S, 0)), |
| (f32 (XSCVSPDPN $S))>; |
| def : Pat<(f32 (vector_extract v4f32:$S, 1)), |
| (f32 (XSCVSPDPN (XXSLDWI $S, $S, 1)))>; |
| def : Pat<(f32 (vector_extract v4f32:$S, 2)), |
| (f32 (XSCVSPDPN (XXPERMDI $S, $S, 2)))>; |
| def : Pat<(f32 (vector_extract v4f32:$S, 3)), |
| (f32 (XSCVSPDPN (XXSLDWI $S, $S, 3)))>; |
| def : Pat<(f32 (vector_extract v4f32:$S, i64:$Idx)), |
| (f32 VectorExtractions.BE_VARIABLE_FLOAT)>; |
| } // IsBigEndian, HasP8Vector |
| |
| // Variable index vector_extract for v2f64 does not require P8Vector |
| let Predicates = [IsBigEndian, HasVSX] in |
| def : Pat<(f64 (vector_extract v2f64:$S, i64:$Idx)), |
| (f64 VectorExtractions.BE_VARIABLE_DOUBLE)>; |
| |
| let Predicates = [IsBigEndian, HasDirectMove] in { |
| // v16i8 scalar <-> vector conversions (BE) |
| def : Pat<(v16i8 (scalar_to_vector i32:$A)), |
| (v16i8 (SUBREG_TO_REG (i64 1), MovesToVSR.BE_BYTE_0, sub_64))>; |
| def : Pat<(v8i16 (scalar_to_vector i32:$A)), |
| (v8i16 (SUBREG_TO_REG (i64 1), MovesToVSR.BE_HALF_0, sub_64))>; |
| def : Pat<(v4i32 (scalar_to_vector i32:$A)), |
| (v4i32 (SUBREG_TO_REG (i64 1), MovesToVSR.BE_WORD_0, sub_64))>; |
| def : Pat<(v2i64 (scalar_to_vector i64:$A)), |
| (v2i64 (SUBREG_TO_REG (i64 1), MovesToVSR.BE_DWORD_0, sub_64))>; |
| |
| // v2i64 scalar <-> vector conversions (BE) |
| def : Pat<(i64 (vector_extract v2i64:$S, 0)), |
| (i64 VectorExtractions.LE_DWORD_1)>; |
| def : Pat<(i64 (vector_extract v2i64:$S, 1)), |
| (i64 VectorExtractions.LE_DWORD_0)>; |
| def : Pat<(i64 (vector_extract v2i64:$S, i64:$Idx)), |
| (i64 VectorExtractions.BE_VARIABLE_DWORD)>; |
| } // IsBigEndian, HasDirectMove |
| |
| let Predicates = [IsBigEndian, HasDirectMove, NoP9Altivec] in { |
| def : Pat<(i32 (vector_extract v16i8:$S, 0)), |
| (i32 VectorExtractions.LE_BYTE_15)>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 1)), |
| (i32 VectorExtractions.LE_BYTE_14)>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 2)), |
| (i32 VectorExtractions.LE_BYTE_13)>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 3)), |
| (i32 VectorExtractions.LE_BYTE_12)>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 4)), |
| (i32 VectorExtractions.LE_BYTE_11)>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 5)), |
| (i32 VectorExtractions.LE_BYTE_10)>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 6)), |
| (i32 VectorExtractions.LE_BYTE_9)>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 7)), |
| (i32 VectorExtractions.LE_BYTE_8)>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 8)), |
| (i32 VectorExtractions.LE_BYTE_7)>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 9)), |
| (i32 VectorExtractions.LE_BYTE_6)>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 10)), |
| (i32 VectorExtractions.LE_BYTE_5)>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 11)), |
| (i32 VectorExtractions.LE_BYTE_4)>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 12)), |
| (i32 VectorExtractions.LE_BYTE_3)>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 13)), |
| (i32 VectorExtractions.LE_BYTE_2)>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 14)), |
| (i32 VectorExtractions.LE_BYTE_1)>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 15)), |
| (i32 VectorExtractions.LE_BYTE_0)>; |
| def : Pat<(i32 (vector_extract v16i8:$S, i64:$Idx)), |
| (i32 VectorExtractions.BE_VARIABLE_BYTE)>; |
| |
| // v8i16 scalar <-> vector conversions (BE) |
| def : Pat<(i32 (vector_extract v8i16:$S, 0)), |
| (i32 VectorExtractions.LE_HALF_7)>; |
| def : Pat<(i32 (vector_extract v8i16:$S, 1)), |
| (i32 VectorExtractions.LE_HALF_6)>; |
| def : Pat<(i32 (vector_extract v8i16:$S, 2)), |
| (i32 VectorExtractions.LE_HALF_5)>; |
| def : Pat<(i32 (vector_extract v8i16:$S, 3)), |
| (i32 VectorExtractions.LE_HALF_4)>; |
| def : Pat<(i32 (vector_extract v8i16:$S, 4)), |
| (i32 VectorExtractions.LE_HALF_3)>; |
| def : Pat<(i32 (vector_extract v8i16:$S, 5)), |
| (i32 VectorExtractions.LE_HALF_2)>; |
| def : Pat<(i32 (vector_extract v8i16:$S, 6)), |
| (i32 VectorExtractions.LE_HALF_1)>; |
| def : Pat<(i32 (vector_extract v8i16:$S, 7)), |
| (i32 VectorExtractions.LE_HALF_0)>; |
| def : Pat<(i32 (vector_extract v8i16:$S, i64:$Idx)), |
| (i32 VectorExtractions.BE_VARIABLE_HALF)>; |
| |
| // v4i32 scalar <-> vector conversions (BE) |
| def : Pat<(i32 (vector_extract v4i32:$S, 0)), |
| (i32 VectorExtractions.LE_WORD_3)>; |
| def : Pat<(i32 (vector_extract v4i32:$S, 1)), |
| (i32 VectorExtractions.LE_WORD_2)>; |
| def : Pat<(i32 (vector_extract v4i32:$S, 2)), |
| (i32 VectorExtractions.LE_WORD_1)>; |
| def : Pat<(i32 (vector_extract v4i32:$S, 3)), |
| (i32 VectorExtractions.LE_WORD_0)>; |
| def : Pat<(i32 (vector_extract v4i32:$S, i64:$Idx)), |
| (i32 VectorExtractions.BE_VARIABLE_WORD)>; |
| } // IsBigEndian, HasDirectMove, NoP9Altivec |
| |
| // v4f32 scalar <-> vector conversions (LE) |
| let Predicates = [IsLittleEndian, HasP8Vector] in { |
| def : Pat<(v4f32 (scalar_to_vector f32:$A)), |
| (v4f32 (XXSLDWI (XSCVDPSPN $A), (XSCVDPSPN $A), 1))>; |
| def : Pat<(f32 (vector_extract v4f32:$S, 0)), |
| (f32 (XSCVSPDPN (XXSLDWI $S, $S, 3)))>; |
| def : Pat<(f32 (vector_extract v4f32:$S, 1)), |
| (f32 (XSCVSPDPN (XXPERMDI $S, $S, 2)))>; |
| def : Pat<(f32 (vector_extract v4f32:$S, 2)), |
| (f32 (XSCVSPDPN (XXSLDWI $S, $S, 1)))>; |
| def : Pat<(f32 (vector_extract v4f32:$S, 3)), |
| (f32 (XSCVSPDPN $S))>; |
| def : Pat<(f32 (vector_extract v4f32:$S, i64:$Idx)), |
| (f32 VectorExtractions.LE_VARIABLE_FLOAT)>; |
| } // IsLittleEndian, HasP8Vector |
| |
| // Variable index vector_extract for v2f64 does not require P8Vector |
| let Predicates = [IsLittleEndian, HasVSX] in |
| def : Pat<(f64 (vector_extract v2f64:$S, i64:$Idx)), |
| (f64 VectorExtractions.LE_VARIABLE_DOUBLE)>; |
| |
| def : Pat<(v4i32 (int_ppc_vsx_lxvw4x_be xoaddr:$src)), (LXVW4X xoaddr:$src)>; |
| def : Pat<(v2f64 (int_ppc_vsx_lxvd2x_be xoaddr:$src)), (LXVD2X xoaddr:$src)>; |
| |
| // Variable index unsigned vector_extract on Power9 |
| let Predicates = [HasP9Altivec, IsLittleEndian] in { |
| def : Pat<(i64 (anyext (i32 (vector_extract v16i8:$S, i64:$Idx)))), |
| (VEXTUBRX $Idx, $S)>; |
| |
| def : Pat<(i64 (anyext (i32 (vector_extract v8i16:$S, i64:$Idx)))), |
| (VEXTUHRX (RLWINM8 $Idx, 1, 28, 30), $S)>; |
| def : Pat<(i64 (anyext (i32 (vector_extract v8i16:$S, 0)))), |
| (VEXTUHRX (LI8 0), $S)>; |
| def : Pat<(i64 (anyext (i32 (vector_extract v8i16:$S, 1)))), |
| (VEXTUHRX (LI8 2), $S)>; |
| def : Pat<(i64 (anyext (i32 (vector_extract v8i16:$S, 2)))), |
| (VEXTUHRX (LI8 4), $S)>; |
| def : Pat<(i64 (anyext (i32 (vector_extract v8i16:$S, 3)))), |
| (VEXTUHRX (LI8 6), $S)>; |
| def : Pat<(i64 (anyext (i32 (vector_extract v8i16:$S, 4)))), |
| (VEXTUHRX (LI8 8), $S)>; |
| def : Pat<(i64 (anyext (i32 (vector_extract v8i16:$S, 5)))), |
| (VEXTUHRX (LI8 10), $S)>; |
| def : Pat<(i64 (anyext (i32 (vector_extract v8i16:$S, 6)))), |
| (VEXTUHRX (LI8 12), $S)>; |
| def : Pat<(i64 (anyext (i32 (vector_extract v8i16:$S, 7)))), |
| (VEXTUHRX (LI8 14), $S)>; |
| |
| def : Pat<(i64 (zext (i32 (vector_extract v4i32:$S, i64:$Idx)))), |
| (VEXTUWRX (RLWINM8 $Idx, 2, 28, 29), $S)>; |
| def : Pat<(i64 (zext (i32 (vector_extract v4i32:$S, 0)))), |
| (VEXTUWRX (LI8 0), $S)>; |
| def : Pat<(i64 (zext (i32 (vector_extract v4i32:$S, 1)))), |
| (VEXTUWRX (LI8 4), $S)>; |
| // For extracting LE word 2, MFVSRWZ is better than VEXTUWRX |
| def : Pat<(i64 (zext (i32 (vector_extract v4i32:$S, 2)))), |
| (INSERT_SUBREG (i64 (IMPLICIT_DEF)), |
| (i32 VectorExtractions.LE_WORD_2), sub_32)>; |
| def : Pat<(i64 (zext (i32 (vector_extract v4i32:$S, 3)))), |
| (VEXTUWRX (LI8 12), $S)>; |
| |
| def : Pat<(i64 (sext (i32 (vector_extract v4i32:$S, i64:$Idx)))), |
| (EXTSW (VEXTUWRX (RLWINM8 $Idx, 2, 28, 29), $S))>; |
| def : Pat<(i64 (sext (i32 (vector_extract v4i32:$S, 0)))), |
| (EXTSW (VEXTUWRX (LI8 0), $S))>; |
| def : Pat<(i64 (sext (i32 (vector_extract v4i32:$S, 1)))), |
| (EXTSW (VEXTUWRX (LI8 4), $S))>; |
| // For extracting LE word 2, MFVSRWZ is better than VEXTUWRX |
| def : Pat<(i64 (sext (i32 (vector_extract v4i32:$S, 2)))), |
| (EXTSW (INSERT_SUBREG (i64 (IMPLICIT_DEF)), |
| (i32 VectorExtractions.LE_WORD_2), sub_32))>; |
| def : Pat<(i64 (sext (i32 (vector_extract v4i32:$S, 3)))), |
| (EXTSW (VEXTUWRX (LI8 12), $S))>; |
| |
| def : Pat<(i32 (vector_extract v16i8:$S, i64:$Idx)), |
| (i32 (EXTRACT_SUBREG (VEXTUBRX $Idx, $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 0)), |
| (i32 (EXTRACT_SUBREG (VEXTUBRX (LI8 0), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 1)), |
| (i32 (EXTRACT_SUBREG (VEXTUBRX (LI8 1), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 2)), |
| (i32 (EXTRACT_SUBREG (VEXTUBRX (LI8 2), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 3)), |
| (i32 (EXTRACT_SUBREG (VEXTUBRX (LI8 3), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 4)), |
| (i32 (EXTRACT_SUBREG (VEXTUBRX (LI8 4), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 5)), |
| (i32 (EXTRACT_SUBREG (VEXTUBRX (LI8 5), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 6)), |
| (i32 (EXTRACT_SUBREG (VEXTUBRX (LI8 6), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 7)), |
| (i32 (EXTRACT_SUBREG (VEXTUBRX (LI8 7), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 8)), |
| (i32 (EXTRACT_SUBREG (VEXTUBRX (LI8 8), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 9)), |
| (i32 (EXTRACT_SUBREG (VEXTUBRX (LI8 9), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 10)), |
| (i32 (EXTRACT_SUBREG (VEXTUBRX (LI8 10), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 11)), |
| (i32 (EXTRACT_SUBREG (VEXTUBRX (LI8 11), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 12)), |
| (i32 (EXTRACT_SUBREG (VEXTUBRX (LI8 12), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 13)), |
| (i32 (EXTRACT_SUBREG (VEXTUBRX (LI8 13), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 14)), |
| (i32 (EXTRACT_SUBREG (VEXTUBRX (LI8 14), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 15)), |
| (i32 (EXTRACT_SUBREG (VEXTUBRX (LI8 15), $S), sub_32))>; |
| |
| def : Pat<(i32 (vector_extract v8i16:$S, i64:$Idx)), |
| (i32 (EXTRACT_SUBREG (VEXTUHRX |
| (RLWINM8 $Idx, 1, 28, 30), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v8i16:$S, 0)), |
| (i32 (EXTRACT_SUBREG (VEXTUHRX (LI8 0), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v8i16:$S, 1)), |
| (i32 (EXTRACT_SUBREG (VEXTUHRX (LI8 2), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v8i16:$S, 2)), |
| (i32 (EXTRACT_SUBREG (VEXTUHRX (LI8 4), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v8i16:$S, 3)), |
| (i32 (EXTRACT_SUBREG (VEXTUHRX (LI8 6), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v8i16:$S, 4)), |
| (i32 (EXTRACT_SUBREG (VEXTUHRX (LI8 8), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v8i16:$S, 5)), |
| (i32 (EXTRACT_SUBREG (VEXTUHRX (LI8 10), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v8i16:$S, 6)), |
| (i32 (EXTRACT_SUBREG (VEXTUHRX (LI8 12), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v8i16:$S, 6)), |
| (i32 (EXTRACT_SUBREG (VEXTUHRX (LI8 14), $S), sub_32))>; |
| |
| def : Pat<(i32 (vector_extract v4i32:$S, i64:$Idx)), |
| (i32 (EXTRACT_SUBREG (VEXTUWRX |
| (RLWINM8 $Idx, 2, 28, 29), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v4i32:$S, 0)), |
| (i32 (EXTRACT_SUBREG (VEXTUWRX (LI8 0), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v4i32:$S, 1)), |
| (i32 (EXTRACT_SUBREG (VEXTUWRX (LI8 4), $S), sub_32))>; |
| // For extracting LE word 2, MFVSRWZ is better than VEXTUWRX |
| def : Pat<(i32 (vector_extract v4i32:$S, 2)), |
| (i32 VectorExtractions.LE_WORD_2)>; |
| def : Pat<(i32 (vector_extract v4i32:$S, 3)), |
| (i32 (EXTRACT_SUBREG (VEXTUWRX (LI8 12), $S), sub_32))>; |
| } |
| |
| let Predicates = [HasP9Altivec, IsBigEndian] in { |
| def : Pat<(i64 (anyext (i32 (vector_extract v16i8:$S, i64:$Idx)))), |
| (VEXTUBLX $Idx, $S)>; |
| |
| def : Pat<(i64 (anyext (i32 (vector_extract v8i16:$S, i64:$Idx)))), |
| (VEXTUHLX (RLWINM8 $Idx, 1, 28, 30), $S)>; |
| def : Pat<(i64 (anyext (i32 (vector_extract v8i16:$S, 0)))), |
| (VEXTUHLX (LI8 0), $S)>; |
| def : Pat<(i64 (anyext (i32 (vector_extract v8i16:$S, 1)))), |
| (VEXTUHLX (LI8 2), $S)>; |
| def : Pat<(i64 (anyext (i32 (vector_extract v8i16:$S, 2)))), |
| (VEXTUHLX (LI8 4), $S)>; |
| def : Pat<(i64 (anyext (i32 (vector_extract v8i16:$S, 3)))), |
| (VEXTUHLX (LI8 6), $S)>; |
| def : Pat<(i64 (anyext (i32 (vector_extract v8i16:$S, 4)))), |
| (VEXTUHLX (LI8 8), $S)>; |
| def : Pat<(i64 (anyext (i32 (vector_extract v8i16:$S, 5)))), |
| (VEXTUHLX (LI8 10), $S)>; |
| def : Pat<(i64 (anyext (i32 (vector_extract v8i16:$S, 6)))), |
| (VEXTUHLX (LI8 12), $S)>; |
| def : Pat<(i64 (anyext (i32 (vector_extract v8i16:$S, 7)))), |
| (VEXTUHLX (LI8 14), $S)>; |
| |
| def : Pat<(i64 (zext (i32 (vector_extract v4i32:$S, i64:$Idx)))), |
| (VEXTUWLX (RLWINM8 $Idx, 2, 28, 29), $S)>; |
| def : Pat<(i64 (zext (i32 (vector_extract v4i32:$S, 0)))), |
| (VEXTUWLX (LI8 0), $S)>; |
| |
| // For extracting BE word 1, MFVSRWZ is better than VEXTUWLX |
| def : Pat<(i64 (zext (i32 (vector_extract v4i32:$S, 1)))), |
| (INSERT_SUBREG (i64 (IMPLICIT_DEF)), |
| (i32 VectorExtractions.LE_WORD_2), sub_32)>; |
| def : Pat<(i64 (zext (i32 (vector_extract v4i32:$S, 2)))), |
| (VEXTUWLX (LI8 8), $S)>; |
| def : Pat<(i64 (zext (i32 (vector_extract v4i32:$S, 3)))), |
| (VEXTUWLX (LI8 12), $S)>; |
| |
| def : Pat<(i64 (sext (i32 (vector_extract v4i32:$S, i64:$Idx)))), |
| (EXTSW (VEXTUWLX (RLWINM8 $Idx, 2, 28, 29), $S))>; |
| def : Pat<(i64 (sext (i32 (vector_extract v4i32:$S, 0)))), |
| (EXTSW (VEXTUWLX (LI8 0), $S))>; |
| // For extracting BE word 1, MFVSRWZ is better than VEXTUWLX |
| def : Pat<(i64 (sext (i32 (vector_extract v4i32:$S, 1)))), |
| (EXTSW (INSERT_SUBREG (i64 (IMPLICIT_DEF)), |
| (i32 VectorExtractions.LE_WORD_2), sub_32))>; |
| def : Pat<(i64 (sext (i32 (vector_extract v4i32:$S, 2)))), |
| (EXTSW (VEXTUWLX (LI8 8), $S))>; |
| def : Pat<(i64 (sext (i32 (vector_extract v4i32:$S, 3)))), |
| (EXTSW (VEXTUWLX (LI8 12), $S))>; |
| |
| def : Pat<(i32 (vector_extract v16i8:$S, i64:$Idx)), |
| (i32 (EXTRACT_SUBREG (VEXTUBLX $Idx, $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 0)), |
| (i32 (EXTRACT_SUBREG (VEXTUBLX (LI8 0), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 1)), |
| (i32 (EXTRACT_SUBREG (VEXTUBLX (LI8 1), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 2)), |
| (i32 (EXTRACT_SUBREG (VEXTUBLX (LI8 2), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 3)), |
| (i32 (EXTRACT_SUBREG (VEXTUBLX (LI8 3), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 4)), |
| (i32 (EXTRACT_SUBREG (VEXTUBLX (LI8 4), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 5)), |
| (i32 (EXTRACT_SUBREG (VEXTUBLX (LI8 5), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 6)), |
| (i32 (EXTRACT_SUBREG (VEXTUBLX (LI8 6), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 7)), |
| (i32 (EXTRACT_SUBREG (VEXTUBLX (LI8 7), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 8)), |
| (i32 (EXTRACT_SUBREG (VEXTUBLX (LI8 8), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 9)), |
| (i32 (EXTRACT_SUBREG (VEXTUBLX (LI8 9), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 10)), |
| (i32 (EXTRACT_SUBREG (VEXTUBLX (LI8 10), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 11)), |
| (i32 (EXTRACT_SUBREG (VEXTUBLX (LI8 11), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 12)), |
| (i32 (EXTRACT_SUBREG (VEXTUBLX (LI8 12), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 13)), |
| (i32 (EXTRACT_SUBREG (VEXTUBLX (LI8 13), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 14)), |
| (i32 (EXTRACT_SUBREG (VEXTUBLX (LI8 14), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v16i8:$S, 15)), |
| (i32 (EXTRACT_SUBREG (VEXTUBLX (LI8 15), $S), sub_32))>; |
| |
| def : Pat<(i32 (vector_extract v8i16:$S, i64:$Idx)), |
| (i32 (EXTRACT_SUBREG (VEXTUHLX |
| (RLWINM8 $Idx, 1, 28, 30), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v8i16:$S, 0)), |
| (i32 (EXTRACT_SUBREG (VEXTUHLX (LI8 0), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v8i16:$S, 1)), |
| (i32 (EXTRACT_SUBREG (VEXTUHLX (LI8 2), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v8i16:$S, 2)), |
| (i32 (EXTRACT_SUBREG (VEXTUHLX (LI8 4), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v8i16:$S, 3)), |
| (i32 (EXTRACT_SUBREG (VEXTUHLX (LI8 6), $S), sub_32))>; |
| def : Pat<(i32 (vector_extract v8i16:$S, 4)), |