| //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "PPCTargetTransformInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/CodeGen/BasicTTIImpl.h" |
| #include "llvm/CodeGen/CostTable.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "ppctti" |
| |
| static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting", |
| cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden); |
| |
| // This is currently only used for the data prefetch pass which is only enabled |
| // for BG/Q by default. |
| static cl::opt<unsigned> |
| CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64), |
| cl::desc("The loop prefetch cache line size")); |
| |
| static cl::opt<bool> |
| EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false), |
| cl::desc("Enable using coldcc calling conv for cold " |
| "internal functions")); |
| |
| //===----------------------------------------------------------------------===// |
| // |
| // PPC cost model. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| TargetTransformInfo::PopcntSupportKind |
| PPCTTIImpl::getPopcntSupport(unsigned TyWidth) { |
| assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); |
| if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64) |
| return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ? |
| TTI::PSK_SlowHardware : TTI::PSK_FastHardware; |
| return TTI::PSK_Software; |
| } |
| |
| int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { |
| if (DisablePPCConstHoist) |
| return BaseT::getIntImmCost(Imm, Ty); |
| |
| assert(Ty->isIntegerTy()); |
| |
| unsigned BitSize = Ty->getPrimitiveSizeInBits(); |
| if (BitSize == 0) |
| return ~0U; |
| |
| if (Imm == 0) |
| return TTI::TCC_Free; |
| |
| if (Imm.getBitWidth() <= 64) { |
| if (isInt<16>(Imm.getSExtValue())) |
| return TTI::TCC_Basic; |
| |
| if (isInt<32>(Imm.getSExtValue())) { |
| // A constant that can be materialized using lis. |
| if ((Imm.getZExtValue() & 0xFFFF) == 0) |
| return TTI::TCC_Basic; |
| |
| return 2 * TTI::TCC_Basic; |
| } |
| } |
| |
| return 4 * TTI::TCC_Basic; |
| } |
| |
| int PPCTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, |
| Type *Ty) { |
| if (DisablePPCConstHoist) |
| return BaseT::getIntImmCost(IID, Idx, Imm, Ty); |
| |
| assert(Ty->isIntegerTy()); |
| |
| unsigned BitSize = Ty->getPrimitiveSizeInBits(); |
| if (BitSize == 0) |
| return ~0U; |
| |
| switch (IID) { |
| default: |
| return TTI::TCC_Free; |
| case Intrinsic::sadd_with_overflow: |
| case Intrinsic::uadd_with_overflow: |
| case Intrinsic::ssub_with_overflow: |
| case Intrinsic::usub_with_overflow: |
| if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue())) |
| return TTI::TCC_Free; |
| break; |
| case Intrinsic::experimental_stackmap: |
| if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) |
| return TTI::TCC_Free; |
| break; |
| case Intrinsic::experimental_patchpoint_void: |
| case Intrinsic::experimental_patchpoint_i64: |
| if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) |
| return TTI::TCC_Free; |
| break; |
| } |
| return PPCTTIImpl::getIntImmCost(Imm, Ty); |
| } |
| |
| int PPCTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, |
| Type *Ty) { |
| if (DisablePPCConstHoist) |
| return BaseT::getIntImmCost(Opcode, Idx, Imm, Ty); |
| |
| assert(Ty->isIntegerTy()); |
| |
| unsigned BitSize = Ty->getPrimitiveSizeInBits(); |
| if (BitSize == 0) |
| return ~0U; |
| |
| unsigned ImmIdx = ~0U; |
| bool ShiftedFree = false, RunFree = false, UnsignedFree = false, |
| ZeroFree = false; |
| switch (Opcode) { |
| default: |
| return TTI::TCC_Free; |
| case Instruction::GetElementPtr: |
| // Always hoist the base address of a GetElementPtr. This prevents the |
| // creation of new constants for every base constant that gets constant |
| // folded with the offset. |
| if (Idx == 0) |
| return 2 * TTI::TCC_Basic; |
| return TTI::TCC_Free; |
| case Instruction::And: |
| RunFree = true; // (for the rotate-and-mask instructions) |
| LLVM_FALLTHROUGH; |
| case Instruction::Add: |
| case Instruction::Or: |
| case Instruction::Xor: |
| ShiftedFree = true; |
| LLVM_FALLTHROUGH; |
| case Instruction::Sub: |
| case Instruction::Mul: |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| ImmIdx = 1; |
| break; |
| case Instruction::ICmp: |
| UnsignedFree = true; |
| ImmIdx = 1; |
| // Zero comparisons can use record-form instructions. |
| LLVM_FALLTHROUGH; |
| case Instruction::Select: |
| ZeroFree = true; |
| break; |
| case Instruction::PHI: |
| case Instruction::Call: |
| case Instruction::Ret: |
| case Instruction::Load: |
| case Instruction::Store: |
| break; |
| } |
| |
| if (ZeroFree && Imm == 0) |
| return TTI::TCC_Free; |
| |
| if (Idx == ImmIdx && Imm.getBitWidth() <= 64) { |
| if (isInt<16>(Imm.getSExtValue())) |
| return TTI::TCC_Free; |
| |
| if (RunFree) { |
| if (Imm.getBitWidth() <= 32 && |
| (isShiftedMask_32(Imm.getZExtValue()) || |
| isShiftedMask_32(~Imm.getZExtValue()))) |
| return TTI::TCC_Free; |
| |
| if (ST->isPPC64() && |
| (isShiftedMask_64(Imm.getZExtValue()) || |
| isShiftedMask_64(~Imm.getZExtValue()))) |
| return TTI::TCC_Free; |
| } |
| |
| if (UnsignedFree && isUInt<16>(Imm.getZExtValue())) |
| return TTI::TCC_Free; |
| |
| if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0) |
| return TTI::TCC_Free; |
| } |
| |
| return PPCTTIImpl::getIntImmCost(Imm, Ty); |
| } |
| |
| unsigned PPCTTIImpl::getUserCost(const User *U, |
| ArrayRef<const Value *> Operands) { |
| if (U->getType()->isVectorTy()) { |
| // Instructions that need to be split should cost more. |
| std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, U->getType()); |
| return LT.first * BaseT::getUserCost(U, Operands); |
| } |
| |
| return BaseT::getUserCost(U, Operands); |
| } |
| |
| void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, |
| TTI::UnrollingPreferences &UP) { |
| if (ST->getDarwinDirective() == PPC::DIR_A2) { |
| // The A2 is in-order with a deep pipeline, and concatenation unrolling |
| // helps expose latency-hiding opportunities to the instruction scheduler. |
| UP.Partial = UP.Runtime = true; |
| |
| // We unroll a lot on the A2 (hundreds of instructions), and the benefits |
| // often outweigh the cost of a division to compute the trip count. |
| UP.AllowExpensiveTripCount = true; |
| } |
| |
| BaseT::getUnrollingPreferences(L, SE, UP); |
| } |
| |
| // This function returns true to allow using coldcc calling convention. |
| // Returning true results in coldcc being used for functions which are cold at |
| // all call sites when the callers of the functions are not calling any other |
| // non coldcc functions. |
| bool PPCTTIImpl::useColdCCForColdCall(Function &F) { |
| return EnablePPCColdCC; |
| } |
| |
| bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) { |
| // On the A2, always unroll aggressively. For QPX unaligned loads, we depend |
| // on combining the loads generated for consecutive accesses, and failure to |
| // do so is particularly expensive. This makes it much more likely (compared |
| // to only using concatenation unrolling). |
| if (ST->getDarwinDirective() == PPC::DIR_A2) |
| return true; |
| |
| return LoopHasReductions; |
| } |
| |
| const PPCTTIImpl::TTI::MemCmpExpansionOptions * |
| PPCTTIImpl::enableMemCmpExpansion(bool IsZeroCmp) const { |
| static const auto Options = []() { |
| TTI::MemCmpExpansionOptions Options; |
| Options.LoadSizes.push_back(8); |
| Options.LoadSizes.push_back(4); |
| Options.LoadSizes.push_back(2); |
| Options.LoadSizes.push_back(1); |
| return Options; |
| }(); |
| return &Options; |
| } |
| |
| bool PPCTTIImpl::enableInterleavedAccessVectorization() { |
| return true; |
| } |
| |
| unsigned PPCTTIImpl::getNumberOfRegisters(bool Vector) { |
| if (Vector && !ST->hasAltivec() && !ST->hasQPX()) |
| return 0; |
| return ST->hasVSX() ? 64 : 32; |
| } |
| |
| unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) const { |
| if (Vector) { |
| if (ST->hasQPX()) return 256; |
| if (ST->hasAltivec()) return 128; |
| return 0; |
| } |
| |
| if (ST->isPPC64()) |
| return 64; |
| return 32; |
| |
| } |
| |
| unsigned PPCTTIImpl::getCacheLineSize() { |
| // Check first if the user specified a custom line size. |
| if (CacheLineSize.getNumOccurrences() > 0) |
| return CacheLineSize; |
| |
| // On P7, P8 or P9 we have a cache line size of 128. |
| unsigned Directive = ST->getDarwinDirective(); |
| if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || |
| Directive == PPC::DIR_PWR9) |
| return 128; |
| |
| // On other processors return a default of 64 bytes. |
| return 64; |
| } |
| |
| unsigned PPCTTIImpl::getPrefetchDistance() { |
| // This seems like a reasonable default for the BG/Q (this pass is enabled, by |
| // default, only on the BG/Q). |
| return 300; |
| } |
| |
| unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) { |
| unsigned Directive = ST->getDarwinDirective(); |
| // The 440 has no SIMD support, but floating-point instructions |
| // have a 5-cycle latency, so unroll by 5x for latency hiding. |
| if (Directive == PPC::DIR_440) |
| return 5; |
| |
| // The A2 has no SIMD support, but floating-point instructions |
| // have a 6-cycle latency, so unroll by 6x for latency hiding. |
| if (Directive == PPC::DIR_A2) |
| return 6; |
| |
| // FIXME: For lack of any better information, do no harm... |
| if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) |
| return 1; |
| |
| // For P7 and P8, floating-point instructions have a 6-cycle latency and |
| // there are two execution units, so unroll by 12x for latency hiding. |
| // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready |
| if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || |
| Directive == PPC::DIR_PWR9) |
| return 12; |
| |
| // For most things, modern systems have two execution units (and |
| // out-of-order execution). |
| return 2; |
| } |
| |
| int PPCTTIImpl::getArithmeticInstrCost( |
| unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info, |
| TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, |
| TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args) { |
| assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); |
| |
| // Fallback to the default implementation. |
| return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, |
| Opd1PropInfo, Opd2PropInfo); |
| } |
| |
| int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, |
| Type *SubTp) { |
| // Legalize the type. |
| std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); |
| |
| // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations |
| // (at least in the sense that there need only be one non-loop-invariant |
| // instruction). We need one such shuffle instruction for each actual |
| // register (this is not true for arbitrary shuffles, but is true for the |
| // structured types of shuffles covered by TTI::ShuffleKind). |
| return LT.first; |
| } |
| |
| int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, |
| const Instruction *I) { |
| assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); |
| |
| return BaseT::getCastInstrCost(Opcode, Dst, Src); |
| } |
| |
| int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, |
| const Instruction *I) { |
| return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I); |
| } |
| |
| int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { |
| assert(Val->isVectorTy() && "This must be a vector type"); |
| |
| int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| assert(ISD && "Invalid opcode"); |
| |
| if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) { |
| // Double-precision scalars are already located in index #0. |
| if (Index == 0) |
| return 0; |
| |
| return BaseT::getVectorInstrCost(Opcode, Val, Index); |
| } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) { |
| // Floating point scalars are already located in index #0. |
| if (Index == 0) |
| return 0; |
| |
| return BaseT::getVectorInstrCost(Opcode, Val, Index); |
| } |
| |
| // Estimated cost of a load-hit-store delay. This was obtained |
| // experimentally as a minimum needed to prevent unprofitable |
| // vectorization for the paq8p benchmark. It may need to be |
| // raised further if other unprofitable cases remain. |
| unsigned LHSPenalty = 2; |
| if (ISD == ISD::INSERT_VECTOR_ELT) |
| LHSPenalty += 7; |
| |
| // Vector element insert/extract with Altivec is very expensive, |
| // because they require store and reload with the attendant |
| // processor stall for load-hit-store. Until VSX is available, |
| // these need to be estimated as very costly. |
| if (ISD == ISD::EXTRACT_VECTOR_ELT || |
| ISD == ISD::INSERT_VECTOR_ELT) |
| return LHSPenalty + BaseT::getVectorInstrCost(Opcode, Val, Index); |
| |
| return BaseT::getVectorInstrCost(Opcode, Val, Index); |
| } |
| |
| int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, |
| unsigned AddressSpace, const Instruction *I) { |
| // Legalize the type. |
| std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); |
| assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && |
| "Invalid Opcode"); |
| |
| int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace); |
| |
| bool IsAltivecType = ST->hasAltivec() && |
| (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 || |
| LT.second == MVT::v4i32 || LT.second == MVT::v4f32); |
| bool IsVSXType = ST->hasVSX() && |
| (LT.second == MVT::v2f64 || LT.second == MVT::v2i64); |
| bool IsQPXType = ST->hasQPX() && |
| (LT.second == MVT::v4f64 || LT.second == MVT::v4f32); |
| |
| // VSX has 32b/64b load instructions. Legalization can handle loading of |
| // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and |
| // PPCTargetLowering can't compute the cost appropriately. So here we |
| // explicitly check this case. |
| unsigned MemBytes = Src->getPrimitiveSizeInBits(); |
| if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType && |
| (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32))) |
| return 1; |
| |
| // Aligned loads and stores are easy. |
| unsigned SrcBytes = LT.second.getStoreSize(); |
| if (!SrcBytes || !Alignment || Alignment >= SrcBytes) |
| return Cost; |
| |
| // If we can use the permutation-based load sequence, then this is also |
| // relatively cheap (not counting loop-invariant instructions): one load plus |
| // one permute (the last load in a series has extra cost, but we're |
| // neglecting that here). Note that on the P7, we could do unaligned loads |
| // for Altivec types using the VSX instructions, but that's more expensive |
| // than using the permutation-based load sequence. On the P8, that's no |
| // longer true. |
| if (Opcode == Instruction::Load && |
| ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) && |
| Alignment >= LT.second.getScalarType().getStoreSize()) |
| return Cost + LT.first; // Add the cost of the permutations. |
| |
| // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the |
| // P7, unaligned vector loads are more expensive than the permutation-based |
| // load sequence, so that might be used instead, but regardless, the net cost |
| // is about the same (not counting loop-invariant instructions). |
| if (IsVSXType || (ST->hasVSX() && IsAltivecType)) |
| return Cost; |
| |
| // Newer PPC supports unaligned memory access. |
| if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0)) |
| return Cost; |
| |
| // PPC in general does not support unaligned loads and stores. They'll need |
| // to be decomposed based on the alignment factor. |
| |
| // Add the cost of each scalar load or store. |
| Cost += LT.first*(SrcBytes/Alignment-1); |
| |
| // For a vector type, there is also scalarization overhead (only for |
| // stores, loads are expanded using the vector-load + permutation sequence, |
| // which is much less expensive). |
| if (Src->isVectorTy() && Opcode == Instruction::Store) |
| for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i) |
| Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i); |
| |
| return Cost; |
| } |
| |
| int PPCTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, |
| unsigned Factor, |
| ArrayRef<unsigned> Indices, |
| unsigned Alignment, |
| unsigned AddressSpace) { |
| assert(isa<VectorType>(VecTy) && |
| "Expect a vector type for interleaved memory op"); |
| |
| // Legalize the type. |
| std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy); |
| |
| // Firstly, the cost of load/store operation. |
| int Cost = getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace); |
| |
| // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations |
| // (at least in the sense that there need only be one non-loop-invariant |
| // instruction). For each result vector, we need one shuffle per incoming |
| // vector (except that the first shuffle can take two incoming vectors |
| // because it does not need to take itself). |
| Cost += Factor*(LT.first-1); |
| |
| return Cost; |
| } |
| |