| //===- README_P9.txt - Notes for improving Power9 code gen ----------------===// |
| |
| TODO: Instructions Need Implement Instrinstics or Map to LLVM IR |
| |
| Altivec: |
| - Vector Compare Not Equal (Zero): |
| vcmpneb(.) vcmpneh(.) vcmpnew(.) |
| vcmpnezb(.) vcmpnezh(.) vcmpnezw(.) |
| . Same as other VCMP*, use VCMP/VCMPo form (support intrinsic) |
| |
| - Vector Extract Unsigned: vextractub vextractuh vextractuw vextractd |
| . Don't use llvm extractelement because they have different semantics |
| . Use instrinstics: |
| (set v2i64:$vD, (int_ppc_altivec_vextractub v16i8:$vA, imm:$UIMM)) |
| (set v2i64:$vD, (int_ppc_altivec_vextractuh v8i16:$vA, imm:$UIMM)) |
| (set v2i64:$vD, (int_ppc_altivec_vextractuw v4i32:$vA, imm:$UIMM)) |
| (set v2i64:$vD, (int_ppc_altivec_vextractd v2i64:$vA, imm:$UIMM)) |
| |
| - Vector Extract Unsigned Byte Left/Right-Indexed: |
| vextublx vextubrx vextuhlx vextuhrx vextuwlx vextuwrx |
| . Use instrinstics: |
| // Left-Indexed |
| (set i64:$rD, (int_ppc_altivec_vextublx i64:$rA, v16i8:$vB)) |
| (set i64:$rD, (int_ppc_altivec_vextuhlx i64:$rA, v8i16:$vB)) |
| (set i64:$rD, (int_ppc_altivec_vextuwlx i64:$rA, v4i32:$vB)) |
| |
| // Right-Indexed |
| (set i64:$rD, (int_ppc_altivec_vextubrx i64:$rA, v16i8:$vB)) |
| (set i64:$rD, (int_ppc_altivec_vextuhrx i64:$rA, v8i16:$vB)) |
| (set i64:$rD, (int_ppc_altivec_vextuwrx i64:$rA, v4i32:$vB)) |
| |
| - Vector Insert Element Instructions: vinsertb vinsertd vinserth vinsertw |
| (set v16i8:$vD, (int_ppc_altivec_vinsertb v16i8:$vA, imm:$UIMM)) |
| (set v8i16:$vD, (int_ppc_altivec_vinsertd v8i16:$vA, imm:$UIMM)) |
| (set v4i32:$vD, (int_ppc_altivec_vinserth v4i32:$vA, imm:$UIMM)) |
| (set v2i64:$vD, (int_ppc_altivec_vinsertw v2i64:$vA, imm:$UIMM)) |
| |
| - Vector Count Leading/Trailing Zero LSB. Result is placed into GPR[rD]: |
| vclzlsbb vctzlsbb |
| . Use intrinsic: |
| (set i64:$rD, (int_ppc_altivec_vclzlsbb v16i8:$vB)) |
| (set i64:$rD, (int_ppc_altivec_vctzlsbb v16i8:$vB)) |
| |
| - Vector Count Trailing Zeros: vctzb vctzh vctzw vctzd |
| . Map to llvm cttz |
| (set v16i8:$vD, (cttz v16i8:$vB)) // vctzb |
| (set v8i16:$vD, (cttz v8i16:$vB)) // vctzh |
| (set v4i32:$vD, (cttz v4i32:$vB)) // vctzw |
| (set v2i64:$vD, (cttz v2i64:$vB)) // vctzd |
| |
| - Vector Extend Sign: vextsb2w vextsh2w vextsb2d vextsh2d vextsw2d |
| . vextsb2w: |
| (set v4i32:$vD, (sext v4i8:$vB)) |
| |
| // PowerISA_V3.0: |
| do i = 0 to 3 |
| VR[VRT].word[i] ← EXTS32(VR[VRB].word[i].byte[3]) |
| end |
| |
| . vextsh2w: |
| (set v4i32:$vD, (sext v4i16:$vB)) |
| |
| // PowerISA_V3.0: |
| do i = 0 to 3 |
| VR[VRT].word[i] ← EXTS32(VR[VRB].word[i].hword[1]) |
| end |
| |
| . vextsb2d |
| (set v2i64:$vD, (sext v2i8:$vB)) |
| |
| // PowerISA_V3.0: |
| do i = 0 to 1 |
| VR[VRT].dword[i] ← EXTS64(VR[VRB].dword[i].byte[7]) |
| end |
| |
| . vextsh2d |
| (set v2i64:$vD, (sext v2i16:$vB)) |
| |
| // PowerISA_V3.0: |
| do i = 0 to 1 |
| VR[VRT].dword[i] ← EXTS64(VR[VRB].dword[i].hword[3]) |
| end |
| |
| . vextsw2d |
| (set v2i64:$vD, (sext v2i32:$vB)) |
| |
| // PowerISA_V3.0: |
| do i = 0 to 1 |
| VR[VRT].dword[i] ← EXTS64(VR[VRB].dword[i].word[1]) |
| end |
| |
| - Vector Integer Negate: vnegw vnegd |
| . Map to llvm ineg |
| (set v4i32:$rT, (ineg v4i32:$rA)) // vnegw |
| (set v2i64:$rT, (ineg v2i64:$rA)) // vnegd |
| |
| - Vector Parity Byte: vprtybw vprtybd vprtybq |
| . Use intrinsic: |
| (set v4i32:$rD, (int_ppc_altivec_vprtybw v4i32:$vB)) |
| (set v2i64:$rD, (int_ppc_altivec_vprtybd v2i64:$vB)) |
| (set v1i128:$rD, (int_ppc_altivec_vprtybq v1i128:$vB)) |
| |
| - Vector (Bit) Permute (Right-indexed): |
| . vbpermd: Same as "vbpermq", use VX1_Int_Ty2: |
| VX1_Int_Ty2<1484, "vbpermd", int_ppc_altivec_vbpermd, v2i64, v2i64>; |
| |
| . vpermr: use VA1a_Int_Ty3 |
| VA1a_Int_Ty3<59, "vpermr", int_ppc_altivec_vpermr, v16i8, v16i8, v16i8>; |
| |
| - Vector Rotate Left Mask/Mask-Insert: vrlwnm vrlwmi vrldnm vrldmi |
| . Use intrinsic: |
| VX1_Int_Ty<389, "vrlwnm", int_ppc_altivec_vrlwnm, v4i32>; |
| VX1_Int_Ty<133, "vrlwmi", int_ppc_altivec_vrlwmi, v4i32>; |
| VX1_Int_Ty<453, "vrldnm", int_ppc_altivec_vrldnm, v2i64>; |
| VX1_Int_Ty<197, "vrldmi", int_ppc_altivec_vrldmi, v2i64>; |
| |
| - Vector Shift Left/Right: vslv vsrv |
| . Use intrinsic, don't map to llvm shl and lshr, because they have different |
| semantics, e.g. vslv: |
| |
| do i = 0 to 15 |
| sh ← VR[VRB].byte[i].bit[5:7] |
| VR[VRT].byte[i] ← src.byte[i:i+1].bit[sh:sh+7] |
| end |
| |
| VR[VRT].byte[i] is composed of 2 bytes from src.byte[i:i+1] |
| |
| . VX1_Int_Ty<1860, "vslv", int_ppc_altivec_vslv, v16i8>; |
| VX1_Int_Ty<1796, "vsrv", int_ppc_altivec_vsrv, v16i8>; |
| |
| - Vector Multiply-by-10 (& Write Carry) Unsigned Quadword: |
| vmul10uq vmul10cuq |
| . Use intrinsic: |
| VX1_Int_Ty<513, "vmul10uq", int_ppc_altivec_vmul10uq, v1i128>; |
| VX1_Int_Ty< 1, "vmul10cuq", int_ppc_altivec_vmul10cuq, v1i128>; |
| |
| - Vector Multiply-by-10 Extended (& Write Carry) Unsigned Quadword: |
| vmul10euq vmul10ecuq |
| . Use intrinsic: |
| VX1_Int_Ty<577, "vmul10euq", int_ppc_altivec_vmul10euq, v1i128>; |
| VX1_Int_Ty< 65, "vmul10ecuq", int_ppc_altivec_vmul10ecuq, v1i128>; |
| |
| - Decimal Convert From/to National/Zoned/Signed-QWord: |
| bcdcfn. bcdcfz. bcdctn. bcdctz. bcdcfsq. bcdctsq. |
| . Use instrinstics: |
| (set v1i128:$vD, (int_ppc_altivec_bcdcfno v1i128:$vB, i1:$PS)) |
| (set v1i128:$vD, (int_ppc_altivec_bcdcfzo v1i128:$vB, i1:$PS)) |
| (set v1i128:$vD, (int_ppc_altivec_bcdctno v1i128:$vB)) |
| (set v1i128:$vD, (int_ppc_altivec_bcdctzo v1i128:$vB, i1:$PS)) |
| (set v1i128:$vD, (int_ppc_altivec_bcdcfsqo v1i128:$vB, i1:$PS)) |
| (set v1i128:$vD, (int_ppc_altivec_bcdctsqo v1i128:$vB)) |
| |
| - Decimal Copy-Sign/Set-Sign: bcdcpsgn. bcdsetsgn. |
| . Use instrinstics: |
| (set v1i128:$vD, (int_ppc_altivec_bcdcpsgno v1i128:$vA, v1i128:$vB)) |
| (set v1i128:$vD, (int_ppc_altivec_bcdsetsgno v1i128:$vB, i1:$PS)) |
| |
| - Decimal Shift/Unsigned-Shift/Shift-and-Round: bcds. bcdus. bcdsr. |
| . Use instrinstics: |
| (set v1i128:$vD, (int_ppc_altivec_bcdso v1i128:$vA, v1i128:$vB, i1:$PS)) |
| (set v1i128:$vD, (int_ppc_altivec_bcduso v1i128:$vA, v1i128:$vB)) |
| (set v1i128:$vD, (int_ppc_altivec_bcdsro v1i128:$vA, v1i128:$vB, i1:$PS)) |
| |
| . Note! Their VA is accessed only 1 byte, i.e. VA.byte[7] |
| |
| - Decimal (Unsigned) Truncate: bcdtrunc. bcdutrunc. |
| . Use instrinstics: |
| (set v1i128:$vD, (int_ppc_altivec_bcdso v1i128:$vA, v1i128:$vB, i1:$PS)) |
| (set v1i128:$vD, (int_ppc_altivec_bcduso v1i128:$vA, v1i128:$vB)) |
| |
| . Note! Their VA is accessed only 2 byte, i.e. VA.hword[3] (VA.bit[48:63]) |
| |
| VSX: |
| - QP Copy Sign: xscpsgnqp |
| . Similar to xscpsgndp |
| . (set f128:$vT, (fcopysign f128:$vB, f128:$vA) |
| |
| - QP Absolute/Negative-Absolute/Negate: xsabsqp xsnabsqp xsnegqp |
| . Similar to xsabsdp/xsnabsdp/xsnegdp |
| . (set f128:$vT, (fabs f128:$vB)) // xsabsqp |
| (set f128:$vT, (fneg (fabs f128:$vB))) // xsnabsqp |
| (set f128:$vT, (fneg f128:$vB)) // xsnegqp |
| |
| - QP Add/Divide/Multiply/Subtract/Square-Root: |
| xsaddqp xsdivqp xsmulqp xssubqp xssqrtqp |
| . Similar to xsadddp |
| . isCommutable = 1 |
| (set f128:$vT, (fadd f128:$vA, f128:$vB)) // xsaddqp |
| (set f128:$vT, (fmul f128:$vA, f128:$vB)) // xsmulqp |
| |
| . isCommutable = 0 |
| (set f128:$vT, (fdiv f128:$vA, f128:$vB)) // xsdivqp |
| (set f128:$vT, (fsub f128:$vA, f128:$vB)) // xssubqp |
| (set f128:$vT, (fsqrt f128:$vB))) // xssqrtqp |
| |
| - Round to Odd of QP Add/Divide/Multiply/Subtract/Square-Root: |
| xsaddqpo xsdivqpo xsmulqpo xssubqpo xssqrtqpo |
| . Similar to xsrsqrtedp?? |
| def XSRSQRTEDP : XX2Form<60, 74, |
| (outs vsfrc:$XT), (ins vsfrc:$XB), |
| "xsrsqrtedp $XT, $XB", IIC_VecFP, |
| [(set f64:$XT, (PPCfrsqrte f64:$XB))]>; |
| |
| . Define DAG Node in PPCInstrInfo.td: |
| def PPCfaddrto: SDNode<"PPCISD::FADDRTO", SDTFPBinOp, []>; |
| def PPCfdivrto: SDNode<"PPCISD::FDIVRTO", SDTFPBinOp, []>; |
| def PPCfmulrto: SDNode<"PPCISD::FMULRTO", SDTFPBinOp, []>; |
| def PPCfsubrto: SDNode<"PPCISD::FSUBRTO", SDTFPBinOp, []>; |
| def PPCfsqrtrto: SDNode<"PPCISD::FSQRTRTO", SDTFPUnaryOp, []>; |
| |
| DAG patterns of each instruction (PPCInstrVSX.td): |
| . isCommutable = 1 |
| (set f128:$vT, (PPCfaddrto f128:$vA, f128:$vB)) // xsaddqpo |
| (set f128:$vT, (PPCfmulrto f128:$vA, f128:$vB)) // xsmulqpo |
| |
| . isCommutable = 0 |
| (set f128:$vT, (PPCfdivrto f128:$vA, f128:$vB)) // xsdivqpo |
| (set f128:$vT, (PPCfsubrto f128:$vA, f128:$vB)) // xssubqpo |
| (set f128:$vT, (PPCfsqrtrto f128:$vB)) // xssqrtqpo |
| |
| - QP (Negative) Multiply-{Add/Subtract}: xsmaddqp xsmsubqp xsnmaddqp xsnmsubqp |
| . Ref: xsmaddadp/xsmsubadp/xsnmaddadp/xsnmsubadp |
| |
| . isCommutable = 1 |
| // xsmaddqp |
| [(set f128:$vT, (fma f128:$vA, f128:$vB, f128:$vTi))]>, |
| RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">, |
| AltVSXFMARel; |
| |
| // xsmsubqp |
| [(set f128:$vT, (fma f128:$vA, f128:$vB, (fneg f128:$vTi)))]>, |
| RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">, |
| AltVSXFMARel; |
| |
| // xsnmaddqp |
| [(set f128:$vT, (fneg (fma f128:$vA, f128:$vB, f128:$vTi)))]>, |
| RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">, |
| AltVSXFMARel; |
| |
| // xsnmsubqp |
| [(set f128:$vT, (fneg (fma f128:$vA, f128:$vB, (fneg f128:$vTi))))]>, |
| RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">, |
| AltVSXFMARel; |
| |
| - Round to Odd of QP (Negative) Multiply-{Add/Subtract}: |
| xsmaddqpo xsmsubqpo xsnmaddqpo xsnmsubqpo |
| . Similar to xsrsqrtedp?? |
| |
| . Define DAG Node in PPCInstrInfo.td: |
| def PPCfmarto: SDNode<"PPCISD::FMARTO", SDTFPTernaryOp, []>; |
| |
| It looks like we only need to define "PPCfmarto" for these instructions, |
| because according to PowerISA_V3.0, these instructions perform RTO on |
| fma's result: |
| xsmaddqp(o) |
| v ← bfp_MULTIPLY_ADD(src1, src3, src2) |
| rnd ← bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v) |
| result ← bfp_CONVERT_TO_BFP128(rnd) |
| |
| xsmsubqp(o) |
| v ← bfp_MULTIPLY_ADD(src1, src3, bfp_NEGATE(src2)) |
| rnd ← bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v) |
| result ← bfp_CONVERT_TO_BFP128(rnd) |
| |
| xsnmaddqp(o) |
| v ← bfp_MULTIPLY_ADD(src1,src3,src2) |
| rnd ← bfp_NEGATE(bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v)) |
| result ← bfp_CONVERT_TO_BFP128(rnd) |
| |
| xsnmsubqp(o) |
| v ← bfp_MULTIPLY_ADD(src1, src3, bfp_NEGATE(src2)) |
| rnd ← bfp_NEGATE(bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v)) |
| result ← bfp_CONVERT_TO_BFP128(rnd) |
| |
| DAG patterns of each instruction (PPCInstrVSX.td): |
| . isCommutable = 1 |
| // xsmaddqpo |
| [(set f128:$vT, (PPCfmarto f128:$vA, f128:$vB, f128:$vTi))]>, |
| RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">, |
| AltVSXFMARel; |
| |
| // xsmsubqpo |
| [(set f128:$vT, (PPCfmarto f128:$vA, f128:$vB, (fneg f128:$vTi)))]>, |
| RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">, |
| AltVSXFMARel; |
| |
| // xsnmaddqpo |
| [(set f128:$vT, (fneg (PPCfmarto f128:$vA, f128:$vB, f128:$vTi)))]>, |
| RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">, |
| AltVSXFMARel; |
| |
| // xsnmsubqpo |
| [(set f128:$vT, (fneg (PPCfmarto f128:$vA, f128:$vB, (fneg f128:$vTi))))]>, |
| RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">, |
| AltVSXFMARel; |
| |
| - QP Compare Ordered/Unordered: xscmpoqp xscmpuqp |
| . ref: XSCMPUDP |
| def XSCMPUDP : XX3Form_1<60, 35, |
| (outs crrc:$crD), (ins vsfrc:$XA, vsfrc:$XB), |
| "xscmpudp $crD, $XA, $XB", IIC_FPCompare, []>; |
| |
| . No SDAG, intrinsic, builtin are required?? |
| Or llvm fcmp order/unorder compare?? |
| |
| - DP/QP Compare Exponents: xscmpexpdp xscmpexpqp |
| . No SDAG, intrinsic, builtin are required? |
| |
| - DP Compare ==, >=, >, !=: xscmpeqdp xscmpgedp xscmpgtdp xscmpnedp |
| . I checked existing instruction "XSCMPUDP". They are different in target |
| register. "XSCMPUDP" write to CR field, xscmp*dp write to VSX register |
| |
| . Use instrinsic: |
| (set i128:$XT, (int_ppc_vsx_xscmpeqdp f64:$XA, f64:$XB)) |
| (set i128:$XT, (int_ppc_vsx_xscmpgedp f64:$XA, f64:$XB)) |
| (set i128:$XT, (int_ppc_vsx_xscmpgtdp f64:$XA, f64:$XB)) |
| (set i128:$XT, (int_ppc_vsx_xscmpnedp f64:$XA, f64:$XB)) |
| |
| - Vector Compare Not Equal: xvcmpnedp xvcmpnedp. xvcmpnesp xvcmpnesp. |
| . Similar to xvcmpeqdp: |
| defm XVCMPEQDP : XX3Form_Rcr<60, 99, |
| "xvcmpeqdp", "$XT, $XA, $XB", IIC_VecFPCompare, |
| int_ppc_vsx_xvcmpeqdp, v2i64, v2f64>; |
| |
| . So we should use "XX3Form_Rcr" to implement instrinsic |
| |
| - Convert DP -> QP: xscvdpqp |
| . Similar to XSCVDPSP: |
| def XSCVDPSP : XX2Form<60, 265, |
| (outs vsfrc:$XT), (ins vsfrc:$XB), |
| "xscvdpsp $XT, $XB", IIC_VecFP, []>; |
| . So, No SDAG, intrinsic, builtin are required?? |
| |
| - Round & Convert QP -> DP (dword[1] is set to zero): xscvqpdp xscvqpdpo |
| . Similar to XSCVDPSP |
| . No SDAG, intrinsic, builtin are required?? |
| |
| - Truncate & Convert QP -> (Un)Signed (D)Word (dword[1] is set to zero): |
| xscvqpsdz xscvqpswz xscvqpudz xscvqpuwz |
| . According to PowerISA_V3.0, these are similar to "XSCVDPSXDS", "XSCVDPSXWS", |
| "XSCVDPUXDS", "XSCVDPUXWS" |
| |
| . DAG patterns: |
| (set f128:$XT, (PPCfctidz f128:$XB)) // xscvqpsdz |
| (set f128:$XT, (PPCfctiwz f128:$XB)) // xscvqpswz |
| (set f128:$XT, (PPCfctiduz f128:$XB)) // xscvqpudz |
| (set f128:$XT, (PPCfctiwuz f128:$XB)) // xscvqpuwz |
| |
| - Convert (Un)Signed DWord -> QP: xscvsdqp xscvudqp |
| . Similar to XSCVSXDSP |
| . (set f128:$XT, (PPCfcfids f64:$XB)) // xscvsdqp |
| (set f128:$XT, (PPCfcfidus f64:$XB)) // xscvudqp |
| |
| - (Round &) Convert DP <-> HP: xscvdphp xscvhpdp |
| . Similar to XSCVDPSP |
| . No SDAG, intrinsic, builtin are required?? |
| |
| - Vector HP -> SP: xvcvhpsp xvcvsphp |
| . Similar to XVCVDPSP: |
| def XVCVDPSP : XX2Form<60, 393, |
| (outs vsrc:$XT), (ins vsrc:$XB), |
| "xvcvdpsp $XT, $XB", IIC_VecFP, []>; |
| . No SDAG, intrinsic, builtin are required?? |
| |
| - Round to Quad-Precision Integer: xsrqpi xsrqpix |
| . These are combination of "XSRDPI", "XSRDPIC", "XSRDPIM", .., because you |
| need to assign rounding mode in instruction |
| . Provide builtin? |
| (set f128:$vT, (int_ppc_vsx_xsrqpi f128:$vB)) |
| (set f128:$vT, (int_ppc_vsx_xsrqpix f128:$vB)) |
| |
| - Round Quad-Precision to Double-Extended Precision (fp80): xsrqpxp |
| . Provide builtin? |
| (set f128:$vT, (int_ppc_vsx_xsrqpxp f128:$vB)) |
| |
| Fixed Point Facility: |
| |
| - Exploit cmprb and cmpeqb (perhaps for something like |
| isalpha/isdigit/isupper/islower and isspace respectivelly). This can |
| perhaps be done through a builtin. |
| |
| - Provide testing for cnttz[dw] |
| - Insert Exponent DP/QP: xsiexpdp xsiexpqp |
| . Use intrinsic? |
| . xsiexpdp: |
| // Note: rA and rB are the unsigned integer value. |
| (set f128:$XT, (int_ppc_vsx_xsiexpdp i64:$rA, i64:$rB)) |
| |
| . xsiexpqp: |
| (set f128:$vT, (int_ppc_vsx_xsiexpqp f128:$vA, f64:$vB)) |
| |
| - Extract Exponent/Significand DP/QP: xsxexpdp xsxsigdp xsxexpqp xsxsigqp |
| . Use intrinsic? |
| . (set i64:$rT, (int_ppc_vsx_xsxexpdp f64$XB)) // xsxexpdp |
| (set i64:$rT, (int_ppc_vsx_xsxsigdp f64$XB)) // xsxsigdp |
| (set f128:$vT, (int_ppc_vsx_xsxexpqp f128$vB)) // xsxexpqp |
| (set f128:$vT, (int_ppc_vsx_xsxsigqp f128$vB)) // xsxsigqp |
| |
| - Vector Insert Word: xxinsertw |
| - Useful for inserting f32/i32 elements into vectors (the element to be |
| inserted needs to be prepared) |
| . Note: llvm has insertelem in "Vector Operations" |
| ; yields <n x <ty>> |
| <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> |
| |
| But how to map to it?? |
| [(set v1f128:$XT, (insertelement v1f128:$XTi, f128:$XB, i4:$UIMM))]>, |
| RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">, |
| |
| . Or use intrinsic? |
| (set v1f128:$XT, (int_ppc_vsx_xxinsertw v1f128:$XTi, f128:$XB, i4:$UIMM)) |
| |
| - Vector Extract Unsigned Word: xxextractuw |
| - Not useful for extraction of f32 from v4f32 (the current pattern is better - |
| shift->convert) |
| - It is useful for (uint_to_fp (vector_extract v4i32, N)) |
| - Unfortunately, it can't be used for (sint_to_fp (vector_extract v4i32, N)) |
| . Note: llvm has extractelement in "Vector Operations" |
| ; yields <ty> |
| <result> = extractelement <n x <ty>> <val>, <ty2> <idx> |
| |
| How to map to it?? |
| [(set f128:$XT, (extractelement v1f128:$XB, i4:$UIMM))] |
| |
| . Or use intrinsic? |
| (set f128:$XT, (int_ppc_vsx_xxextractuw v1f128:$XB, i4:$UIMM)) |
| |
| - Vector Insert Exponent DP/SP: xviexpdp xviexpsp |
| . Use intrinsic |
| (set v2f64:$XT, (int_ppc_vsx_xviexpdp v2f64:$XA, v2f64:$XB)) |
| (set v4f32:$XT, (int_ppc_vsx_xviexpsp v4f32:$XA, v4f32:$XB)) |
| |
| - Vector Extract Exponent/Significand DP/SP: xvxexpdp xvxexpsp xvxsigdp xvxsigsp |
| . Use intrinsic |
| (set v2f64:$XT, (int_ppc_vsx_xvxexpdp v2f64:$XB)) |
| (set v4f32:$XT, (int_ppc_vsx_xvxexpsp v4f32:$XB)) |
| (set v2f64:$XT, (int_ppc_vsx_xvxsigdp v2f64:$XB)) |
| (set v4f32:$XT, (int_ppc_vsx_xvxsigsp v4f32:$XB)) |
| |
| - Test Data Class SP/DP/QP: xststdcsp xststdcdp xststdcqp |
| . No SDAG, intrinsic, builtin are required? |
| Because it seems that we have no way to map BF field? |
| |
| Instruction Form: [PO T XO B XO BX TX] |
| Asm: xststd* BF,XB,DCMX |
| |
| BF is an index to CR register field. |
| |
| - Vector Test Data Class SP/DP: xvtstdcsp xvtstdcdp |
| . Use intrinsic |
| (set v4f32:$XT, (int_ppc_vsx_xvtstdcsp v4f32:$XB, i7:$DCMX)) |
| (set v2f64:$XT, (int_ppc_vsx_xvtstdcdp v2f64:$XB, i7:$DCMX)) |
| |
| - Maximum/Minimum Type-C/Type-J DP: xsmaxcdp xsmaxjdp xsmincdp xsminjdp |
| . PowerISA_V3.0: |
| "xsmaxcdp can be used to implement the C/C++/Java conditional operation |
| (x>y)?x:y for single-precision and double-precision arguments." |
| |
| Note! c type and j type have different behavior when: |
| 1. Either input is NaN |
| 2. Both input are +-Infinity, +-Zero |
| |
| . dtype map to llvm fmaxnum/fminnum |
| jtype use intrinsic |
| |
| . xsmaxcdp xsmincdp |
| (set f64:$XT, (fmaxnum f64:$XA, f64:$XB)) |
| (set f64:$XT, (fminnum f64:$XA, f64:$XB)) |
| |
| . xsmaxjdp xsminjdp |
| (set f64:$XT, (int_ppc_vsx_xsmaxjdp f64:$XA, f64:$XB)) |
| (set f64:$XT, (int_ppc_vsx_xsminjdp f64:$XA, f64:$XB)) |
| |
| - Vector Byte-Reverse H/W/D/Q Word: xxbrh xxbrw xxbrd xxbrq |
| . Use intrinsic |
| (set v8i16:$XT, (int_ppc_vsx_xxbrh v8i16:$XB)) |
| (set v4i32:$XT, (int_ppc_vsx_xxbrw v4i32:$XB)) |
| (set v2i64:$XT, (int_ppc_vsx_xxbrd v2i64:$XB)) |
| (set v1i128:$XT, (int_ppc_vsx_xxbrq v1i128:$XB)) |
| |
| - Vector Permute: xxperm xxpermr |
| . I have checked "PPCxxswapd" in PPCInstrVSX.td, but they are different |
| . Use intrinsic |
| (set v16i8:$XT, (int_ppc_vsx_xxperm v16i8:$XA, v16i8:$XB)) |
| (set v16i8:$XT, (int_ppc_vsx_xxpermr v16i8:$XA, v16i8:$XB)) |
| |
| - Vector Splat Immediate Byte: xxspltib |
| . Similar to XXSPLTW: |
| def XXSPLTW : XX2Form_2<60, 164, |
| (outs vsrc:$XT), (ins vsrc:$XB, u2imm:$UIM), |
| "xxspltw $XT, $XB, $UIM", IIC_VecPerm, []>; |
| |
| . No SDAG, intrinsic, builtin are required? |
| |
| - Load/Store Vector: lxv stxv |
| . Has likely SDAG match: |
| (set v?:$XT, (load ix16addr:$src)) |
| (set v?:$XT, (store ix16addr:$dst)) |
| |
| . Need define ix16addr in PPCInstrInfo.td |
| ix16addr: 16-byte aligned, see "def memrix16" in PPCInstrInfo.td |
| |
| - Load/Store Vector Indexed: lxvx stxvx |
| . Has likely SDAG match: |
| (set v?:$XT, (load xoaddr:$src)) |
| (set v?:$XT, (store xoaddr:$dst)) |
| |
| - Load/Store DWord: lxsd stxsd |
| . Similar to lxsdx/stxsdx: |
| def LXSDX : XX1Form<31, 588, |
| (outs vsfrc:$XT), (ins memrr:$src), |
| "lxsdx $XT, $src", IIC_LdStLFD, |
| [(set f64:$XT, (load xoaddr:$src))]>; |
| |
| . (set f64:$XT, (load ixaddr:$src)) |
| (set f64:$XT, (store ixaddr:$dst)) |
| |
| - Load/Store SP, with conversion from/to DP: lxssp stxssp |
| . Similar to lxsspx/stxsspx: |
| def LXSSPX : XX1Form<31, 524, (outs vssrc:$XT), (ins memrr:$src), |
| "lxsspx $XT, $src", IIC_LdStLFD, |
| [(set f32:$XT, (load xoaddr:$src))]>; |
| |
| . (set f32:$XT, (load ixaddr:$src)) |
| (set f32:$XT, (store ixaddr:$dst)) |
| |
| - Load as Integer Byte/Halfword & Zero Indexed: lxsibzx lxsihzx |
| . Similar to lxsiwzx: |
| def LXSIWZX : XX1Form<31, 12, (outs vsfrc:$XT), (ins memrr:$src), |
| "lxsiwzx $XT, $src", IIC_LdStLFD, |
| [(set f64:$XT, (PPClfiwzx xoaddr:$src))]>; |
| |
| . (set f64:$XT, (PPClfiwzx xoaddr:$src)) |
| |
| - Store as Integer Byte/Halfword Indexed: stxsibx stxsihx |
| . Similar to stxsiwx: |
| def STXSIWX : XX1Form<31, 140, (outs), (ins vsfrc:$XT, memrr:$dst), |
| "stxsiwx $XT, $dst", IIC_LdStSTFD, |
| [(PPCstfiwx f64:$XT, xoaddr:$dst)]>; |
| |
| . (PPCstfiwx f64:$XT, xoaddr:$dst) |
| |
| - Load Vector Halfword*8/Byte*16 Indexed: lxvh8x lxvb16x |
| . Similar to lxvd2x/lxvw4x: |
| def LXVD2X : XX1Form<31, 844, |
| (outs vsrc:$XT), (ins memrr:$src), |
| "lxvd2x $XT, $src", IIC_LdStLFD, |
| [(set v2f64:$XT, (int_ppc_vsx_lxvd2x xoaddr:$src))]>; |
| |
| . (set v8i16:$XT, (int_ppc_vsx_lxvh8x xoaddr:$src)) |
| (set v16i8:$XT, (int_ppc_vsx_lxvb16x xoaddr:$src)) |
| |
| - Store Vector Halfword*8/Byte*16 Indexed: stxvh8x stxvb16x |
| . Similar to stxvd2x/stxvw4x: |
| def STXVD2X : XX1Form<31, 972, |
| (outs), (ins vsrc:$XT, memrr:$dst), |
| "stxvd2x $XT, $dst", IIC_LdStSTFD, |
| [(store v2f64:$XT, xoaddr:$dst)]>; |
| |
| . (store v8i16:$XT, xoaddr:$dst) |
| (store v16i8:$XT, xoaddr:$dst) |
| |
| - Load/Store Vector (Left-justified) with Length: lxvl lxvll stxvl stxvll |
| . Likely needs an intrinsic |
| . (set v?:$XT, (int_ppc_vsx_lxvl xoaddr:$src)) |
| (set v?:$XT, (int_ppc_vsx_lxvll xoaddr:$src)) |
| |
| . (int_ppc_vsx_stxvl xoaddr:$dst)) |
| (int_ppc_vsx_stxvll xoaddr:$dst)) |
| |
| - Load Vector Word & Splat Indexed: lxvwsx |
| . Likely needs an intrinsic |
| . (set v?:$XT, (int_ppc_vsx_lxvwsx xoaddr:$src)) |
| |
| Atomic operations (l[dw]at, st[dw]at): |
| - Provide custom lowering for common atomic operations to use these |
| instructions with the correct Function Code |
| - Ensure the operands are in the correct register (i.e. RT+1, RT+2) |
| - Provide builtins since not all FC's necessarily have an existing LLVM |
| atomic operation |
| |
| Load Doubleword Monitored (ldmx): |
| - Investigate whether there are any uses for this. It seems to be related to |
| Garbage Collection so it isn't likely to be all that useful for most |
| languages we deal with. |
| |
| Move to CR from XER Extended (mcrxrx): |
| - Is there a use for this in LLVM? |
| |
| Fixed Point Facility: |
| |
| - Copy-Paste Facility: copy copy_first cp_abort paste paste. paste_last |
| . Use instrinstics: |
| (int_ppc_copy_first i32:$rA, i32:$rB) |
| (int_ppc_copy i32:$rA, i32:$rB) |
| |
| (int_ppc_paste i32:$rA, i32:$rB) |
| (int_ppc_paste_last i32:$rA, i32:$rB) |
| |
| (int_cp_abort) |
| |
| - Message Synchronize: msgsync |
| - SLB*: slbieg slbsync |
| - stop |
| . No instrinstics |