blob: d85160e65139665e831889303eacfe61e016758b [file] [log] [blame]
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBlurMaskFilter.h"
#include "SkBlurMask.h"
#include "SkGpuBlurUtils.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
#include "SkMaskFilter.h"
#include "SkRRect.h"
#include "SkStringUtils.h"
#include "SkStrokeRec.h"
#include "SkVertices.h"
#if SK_SUPPORT_GPU
#include "GrCircleBlurFragmentProcessor.h"
#include "GrClip.h"
#include "GrContext.h"
#include "GrFragmentProcessor.h"
#include "GrRenderTargetContext.h"
#include "GrResourceProvider.h"
#include "GrShaderCaps.h"
#include "GrStyle.h"
#include "GrTextureProxy.h"
#include "effects/GrSimpleTextureEffect.h"
#include "effects/GrTextureDomain.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
#endif
SkScalar SkBlurMaskFilter::ConvertRadiusToSigma(SkScalar radius) {
return SkBlurMask::ConvertRadiusToSigma(radius);
}
class SkBlurMaskFilterImpl : public SkMaskFilter {
public:
SkBlurMaskFilterImpl(SkScalar sigma, SkBlurStyle, const SkRect& occluder, uint32_t flags);
// overrides from SkMaskFilter
SkMask::Format getFormat() const override;
bool filterMask(SkMask* dst, const SkMask& src, const SkMatrix&,
SkIPoint* margin) const override;
#if SK_SUPPORT_GPU
bool canFilterMaskGPU(const SkRRect& devRRect,
const SkIRect& clipBounds,
const SkMatrix& ctm,
SkRect* maskRect) const override;
bool directFilterMaskGPU(GrContext*,
GrRenderTargetContext* renderTargetContext,
GrPaint&&,
const GrClip&,
const SkMatrix& viewMatrix,
const SkStrokeRec& strokeRec,
const SkPath& path) const override;
bool directFilterRRectMaskGPU(GrContext*,
GrRenderTargetContext* renderTargetContext,
GrPaint&&,
const GrClip&,
const SkMatrix& viewMatrix,
const SkStrokeRec& strokeRec,
const SkRRect& rrect,
const SkRRect& devRRect) const override;
sk_sp<GrTextureProxy> filterMaskGPU(GrContext*,
sk_sp<GrTextureProxy> srcProxy,
const SkMatrix& ctm,
const SkIRect& maskRect) const override;
#endif
void computeFastBounds(const SkRect&, SkRect*) const override;
bool asABlur(BlurRec*) const override;
SK_TO_STRING_OVERRIDE()
SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkBlurMaskFilterImpl)
protected:
FilterReturn filterRectsToNine(const SkRect[], int count, const SkMatrix&,
const SkIRect& clipBounds,
NinePatch*) const override;
FilterReturn filterRRectToNine(const SkRRect&, const SkMatrix&,
const SkIRect& clipBounds,
NinePatch*) const override;
bool filterRectMask(SkMask* dstM, const SkRect& r, const SkMatrix& matrix,
SkIPoint* margin, SkMask::CreateMode createMode) const;
bool filterRRectMask(SkMask* dstM, const SkRRect& r, const SkMatrix& matrix,
SkIPoint* margin, SkMask::CreateMode createMode) const;
bool ignoreXform() const {
return SkToBool(fBlurFlags & SkBlurMaskFilter::kIgnoreTransform_BlurFlag);
}
private:
// To avoid unseemly allocation requests (esp. for finite platforms like
// handset) we limit the radius so something manageable. (as opposed to
// a request like 10,000)
static const SkScalar kMAX_BLUR_SIGMA;
SkScalar fSigma;
SkBlurStyle fBlurStyle;
SkRect fOccluder;
uint32_t fBlurFlags;
SkBlurQuality getQuality() const {
return (fBlurFlags & SkBlurMaskFilter::kHighQuality_BlurFlag) ?
kHigh_SkBlurQuality : kLow_SkBlurQuality;
}
SkBlurMaskFilterImpl(SkReadBuffer&);
void flatten(SkWriteBuffer&) const override;
SkScalar computeXformedSigma(const SkMatrix& ctm) const {
SkScalar xformedSigma = this->ignoreXform() ? fSigma : ctm.mapRadius(fSigma);
return SkMinScalar(xformedSigma, kMAX_BLUR_SIGMA);
}
friend class SkBlurMaskFilter;
typedef SkMaskFilter INHERITED;
};
const SkScalar SkBlurMaskFilterImpl::kMAX_BLUR_SIGMA = SkIntToScalar(128);
sk_sp<SkMaskFilter> SkBlurMaskFilter::Make(SkBlurStyle style, SkScalar sigma,
const SkRect& occluder, uint32_t flags) {
SkASSERT(!(flags & ~SkBlurMaskFilter::kAll_BlurFlag));
SkASSERT(style <= kLastEnum_SkBlurStyle);
if (!SkScalarIsFinite(sigma) || sigma <= 0) {
return nullptr;
}
return sk_sp<SkMaskFilter>(new SkBlurMaskFilterImpl(sigma, style, occluder, flags));
}
// linearly interpolate between y1 & y3 to match x2's position between x1 & x3
static SkScalar interp(SkScalar x1, SkScalar x2, SkScalar x3, SkScalar y1, SkScalar y3) {
SkASSERT(x1 <= x2 && x2 <= x3);
SkASSERT(y1 <= y3);
SkScalar t = (x2 - x1) / (x3 - x1);
return y1 + t * (y3 - y1);
}
// Insert 'lower' and 'higher' into 'array1' and insert a new value at each matching insertion
// point in 'array2' that linearly interpolates between the existing values.
// Return a bit mask which contains a copy of 'inputMask' for all the cells between the two
// insertion points.
static uint32_t insert_into_arrays(SkScalar* array1, SkScalar* array2,
SkScalar lower, SkScalar higher,
int* num, uint32_t inputMask, int maskSize) {
SkASSERT(lower < higher);
SkASSERT(lower >= array1[0] && higher <= array1[*num-1]);
int32_t skipMask = 0x0;
int i;
for (i = 0; i < *num; ++i) {
if (lower >= array1[i] && lower < array1[i+1]) {
if (!SkScalarNearlyEqual(lower, array1[i])) {
memmove(&array1[i+2], &array1[i+1], (*num-i-1)*sizeof(SkScalar));
array1[i+1] = lower;
memmove(&array2[i+2], &array2[i+1], (*num-i-1)*sizeof(SkScalar));
array2[i+1] = interp(array1[i], lower, array1[i+2], array2[i], array2[i+2]);
i++;
(*num)++;
}
break;
}
}
for ( ; i < *num; ++i) {
skipMask |= inputMask << (i*maskSize);
if (higher > array1[i] && higher <= array1[i+1]) {
if (!SkScalarNearlyEqual(higher, array1[i+1])) {
memmove(&array1[i+2], &array1[i+1], (*num-i-1)*sizeof(SkScalar));
array1[i+1] = higher;
memmove(&array2[i+2], &array2[i+1], (*num-i-1)*sizeof(SkScalar));
array2[i+1] = interp(array1[i], higher, array1[i+2], array2[i], array2[i+2]);
(*num)++;
}
break;
}
}
return skipMask;
}
bool SkBlurMaskFilter::ComputeBlurredRRectParams(const SkRRect& srcRRect, const SkRRect& devRRect,
const SkRect& occluder,
SkScalar sigma, SkScalar xformedSigma,
SkRRect* rrectToDraw,
SkISize* widthHeight,
SkScalar rectXs[kMaxDivisions],
SkScalar rectYs[kMaxDivisions],
SkScalar texXs[kMaxDivisions],
SkScalar texYs[kMaxDivisions],
int* numXs, int* numYs, uint32_t* skipMask) {
unsigned int devBlurRadius = 3*SkScalarCeilToInt(xformedSigma-1/6.0f);
SkScalar srcBlurRadius = 3.0f * sigma;
const SkRect& devOrig = devRRect.getBounds();
const SkVector& devRadiiUL = devRRect.radii(SkRRect::kUpperLeft_Corner);
const SkVector& devRadiiUR = devRRect.radii(SkRRect::kUpperRight_Corner);
const SkVector& devRadiiLR = devRRect.radii(SkRRect::kLowerRight_Corner);
const SkVector& devRadiiLL = devRRect.radii(SkRRect::kLowerLeft_Corner);
const int devLeft = SkScalarCeilToInt(SkTMax<SkScalar>(devRadiiUL.fX, devRadiiLL.fX));
const int devTop = SkScalarCeilToInt(SkTMax<SkScalar>(devRadiiUL.fY, devRadiiUR.fY));
const int devRight = SkScalarCeilToInt(SkTMax<SkScalar>(devRadiiUR.fX, devRadiiLR.fX));
const int devBot = SkScalarCeilToInt(SkTMax<SkScalar>(devRadiiLL.fY, devRadiiLR.fY));
// This is a conservative check for nine-patchability
if (devOrig.fLeft + devLeft + devBlurRadius >= devOrig.fRight - devRight - devBlurRadius ||
devOrig.fTop + devTop + devBlurRadius >= devOrig.fBottom - devBot - devBlurRadius) {
return false;
}
const SkVector& srcRadiiUL = srcRRect.radii(SkRRect::kUpperLeft_Corner);
const SkVector& srcRadiiUR = srcRRect.radii(SkRRect::kUpperRight_Corner);
const SkVector& srcRadiiLR = srcRRect.radii(SkRRect::kLowerRight_Corner);
const SkVector& srcRadiiLL = srcRRect.radii(SkRRect::kLowerLeft_Corner);
const SkScalar srcLeft = SkTMax<SkScalar>(srcRadiiUL.fX, srcRadiiLL.fX);
const SkScalar srcTop = SkTMax<SkScalar>(srcRadiiUL.fY, srcRadiiUR.fY);
const SkScalar srcRight = SkTMax<SkScalar>(srcRadiiUR.fX, srcRadiiLR.fX);
const SkScalar srcBot = SkTMax<SkScalar>(srcRadiiLL.fY, srcRadiiLR.fY);
int newRRWidth = 2*devBlurRadius + devLeft + devRight + 1;
int newRRHeight = 2*devBlurRadius + devTop + devBot + 1;
widthHeight->fWidth = newRRWidth + 2 * devBlurRadius;
widthHeight->fHeight = newRRHeight + 2 * devBlurRadius;
const SkRect srcProxyRect = srcRRect.getBounds().makeOutset(srcBlurRadius, srcBlurRadius);
rectXs[0] = srcProxyRect.fLeft;
rectXs[1] = srcProxyRect.fLeft + 2*srcBlurRadius + srcLeft;
rectXs[2] = srcProxyRect.fRight - 2*srcBlurRadius - srcRight;
rectXs[3] = srcProxyRect.fRight;
rectYs[0] = srcProxyRect.fTop;
rectYs[1] = srcProxyRect.fTop + 2*srcBlurRadius + srcTop;
rectYs[2] = srcProxyRect.fBottom - 2*srcBlurRadius - srcBot;
rectYs[3] = srcProxyRect.fBottom;
texXs[0] = 0.0f;
texXs[1] = 2.0f*devBlurRadius + devLeft;
texXs[2] = 2.0f*devBlurRadius + devLeft + 1;
texXs[3] = SkIntToScalar(widthHeight->fWidth);
texYs[0] = 0.0f;
texYs[1] = 2.0f*devBlurRadius + devTop;
texYs[2] = 2.0f*devBlurRadius + devTop + 1;
texYs[3] = SkIntToScalar(widthHeight->fHeight);
SkRect temp = occluder;
*numXs = 4;
*numYs = 4;
*skipMask = 0;
if (!temp.isEmpty() && (srcProxyRect.contains(temp) || temp.intersect(srcProxyRect))) {
*skipMask = insert_into_arrays(rectXs, texXs, temp.fLeft, temp.fRight, numXs, 0x1, 1);
*skipMask = insert_into_arrays(rectYs, texYs, temp.fTop, temp.fBottom,
numYs, *skipMask, *numXs-1);
}
const SkRect newRect = SkRect::MakeXYWH(SkIntToScalar(devBlurRadius),
SkIntToScalar(devBlurRadius),
SkIntToScalar(newRRWidth),
SkIntToScalar(newRRHeight));
SkVector newRadii[4];
newRadii[0] = { SkScalarCeilToScalar(devRadiiUL.fX), SkScalarCeilToScalar(devRadiiUL.fY) };
newRadii[1] = { SkScalarCeilToScalar(devRadiiUR.fX), SkScalarCeilToScalar(devRadiiUR.fY) };
newRadii[2] = { SkScalarCeilToScalar(devRadiiLR.fX), SkScalarCeilToScalar(devRadiiLR.fY) };
newRadii[3] = { SkScalarCeilToScalar(devRadiiLL.fX), SkScalarCeilToScalar(devRadiiLL.fY) };
rrectToDraw->setRectRadii(newRect, newRadii);
return true;
}
///////////////////////////////////////////////////////////////////////////////
SkBlurMaskFilterImpl::SkBlurMaskFilterImpl(SkScalar sigma, SkBlurStyle style,
const SkRect& occluder, uint32_t flags)
: fSigma(sigma)
, fBlurStyle(style)
, fOccluder(occluder)
, fBlurFlags(flags) {
SkASSERT(fSigma > 0);
SkASSERT((unsigned)style <= kLastEnum_SkBlurStyle);
SkASSERT(flags <= SkBlurMaskFilter::kAll_BlurFlag);
}
SkMask::Format SkBlurMaskFilterImpl::getFormat() const {
return SkMask::kA8_Format;
}
bool SkBlurMaskFilterImpl::asABlur(BlurRec* rec) const {
if (this->ignoreXform()) {
return false;
}
if (rec) {
rec->fSigma = fSigma;
rec->fStyle = fBlurStyle;
rec->fQuality = this->getQuality();
}
return true;
}
bool SkBlurMaskFilterImpl::filterMask(SkMask* dst, const SkMask& src,
const SkMatrix& matrix,
SkIPoint* margin) const {
SkScalar sigma = this->computeXformedSigma(matrix);
return SkBlurMask::BoxBlur(dst, src, sigma, fBlurStyle, this->getQuality(), margin);
}
bool SkBlurMaskFilterImpl::filterRectMask(SkMask* dst, const SkRect& r,
const SkMatrix& matrix,
SkIPoint* margin, SkMask::CreateMode createMode) const {
SkScalar sigma = computeXformedSigma(matrix);
return SkBlurMask::BlurRect(sigma, dst, r, fBlurStyle, margin, createMode);
}
bool SkBlurMaskFilterImpl::filterRRectMask(SkMask* dst, const SkRRect& r,
const SkMatrix& matrix,
SkIPoint* margin, SkMask::CreateMode createMode) const {
SkScalar sigma = computeXformedSigma(matrix);
return SkBlurMask::BlurRRect(sigma, dst, r, fBlurStyle, margin, createMode);
}
#include "SkCanvas.h"
static bool prepare_to_draw_into_mask(const SkRect& bounds, SkMask* mask) {
SkASSERT(mask != nullptr);
mask->fBounds = bounds.roundOut();
mask->fRowBytes = SkAlign4(mask->fBounds.width());
mask->fFormat = SkMask::kA8_Format;
const size_t size = mask->computeImageSize();
mask->fImage = SkMask::AllocImage(size);
if (nullptr == mask->fImage) {
return false;
}
// FIXME: use sk_calloc in AllocImage?
sk_bzero(mask->fImage, size);
return true;
}
static bool draw_rrect_into_mask(const SkRRect rrect, SkMask* mask) {
if (!prepare_to_draw_into_mask(rrect.rect(), mask)) {
return false;
}
// FIXME: This code duplicates code in draw_rects_into_mask, below. Is there a
// clean way to share more code?
SkBitmap bitmap;
bitmap.installMaskPixels(*mask);
SkCanvas canvas(bitmap);
canvas.translate(-SkIntToScalar(mask->fBounds.left()),
-SkIntToScalar(mask->fBounds.top()));
SkPaint paint;
paint.setAntiAlias(true);
canvas.drawRRect(rrect, paint);
return true;
}
static bool draw_rects_into_mask(const SkRect rects[], int count, SkMask* mask) {
if (!prepare_to_draw_into_mask(rects[0], mask)) {
return false;
}
SkBitmap bitmap;
bitmap.installPixels(SkImageInfo::Make(mask->fBounds.width(),
mask->fBounds.height(),
kAlpha_8_SkColorType,
kPremul_SkAlphaType),
mask->fImage, mask->fRowBytes);
SkCanvas canvas(bitmap);
canvas.translate(-SkIntToScalar(mask->fBounds.left()),
-SkIntToScalar(mask->fBounds.top()));
SkPaint paint;
paint.setAntiAlias(true);
if (1 == count) {
canvas.drawRect(rects[0], paint);
} else {
// todo: do I need a fast way to do this?
SkPath path;
path.addRect(rects[0]);
path.addRect(rects[1]);
path.setFillType(SkPath::kEvenOdd_FillType);
canvas.drawPath(path, paint);
}
return true;
}
static bool rect_exceeds(const SkRect& r, SkScalar v) {
return r.fLeft < -v || r.fTop < -v || r.fRight > v || r.fBottom > v ||
r.width() > v || r.height() > v;
}
#include "SkMaskCache.h"
static SkCachedData* copy_mask_to_cacheddata(SkMask* mask) {
const size_t size = mask->computeTotalImageSize();
SkCachedData* data = SkResourceCache::NewCachedData(size);
if (data) {
memcpy(data->writable_data(), mask->fImage, size);
SkMask::FreeImage(mask->fImage);
mask->fImage = (uint8_t*)data->data();
}
return data;
}
static SkCachedData* find_cached_rrect(SkMask* mask, SkScalar sigma, SkBlurStyle style,
SkBlurQuality quality, const SkRRect& rrect) {
return SkMaskCache::FindAndRef(sigma, style, quality, rrect, mask);
}
static SkCachedData* add_cached_rrect(SkMask* mask, SkScalar sigma, SkBlurStyle style,
SkBlurQuality quality, const SkRRect& rrect) {
SkCachedData* cache = copy_mask_to_cacheddata(mask);
if (cache) {
SkMaskCache::Add(sigma, style, quality, rrect, *mask, cache);
}
return cache;
}
static SkCachedData* find_cached_rects(SkMask* mask, SkScalar sigma, SkBlurStyle style,
SkBlurQuality quality, const SkRect rects[], int count) {
return SkMaskCache::FindAndRef(sigma, style, quality, rects, count, mask);
}
static SkCachedData* add_cached_rects(SkMask* mask, SkScalar sigma, SkBlurStyle style,
SkBlurQuality quality, const SkRect rects[], int count) {
SkCachedData* cache = copy_mask_to_cacheddata(mask);
if (cache) {
SkMaskCache::Add(sigma, style, quality, rects, count, *mask, cache);
}
return cache;
}
#ifdef SK_IGNORE_FAST_RRECT_BLUR
// Use the faster analytic blur approach for ninepatch round rects
static const bool c_analyticBlurRRect{false};
#else
static const bool c_analyticBlurRRect{true};
#endif
SkMaskFilter::FilterReturn
SkBlurMaskFilterImpl::filterRRectToNine(const SkRRect& rrect, const SkMatrix& matrix,
const SkIRect& clipBounds,
NinePatch* patch) const {
SkASSERT(patch != nullptr);
switch (rrect.getType()) {
case SkRRect::kEmpty_Type:
// Nothing to draw.
return kFalse_FilterReturn;
case SkRRect::kRect_Type:
// We should have caught this earlier.
SkASSERT(false);
// Fall through.
case SkRRect::kOval_Type:
// The nine patch special case does not handle ovals, and we
// already have code for rectangles.
return kUnimplemented_FilterReturn;
// These three can take advantage of this fast path.
case SkRRect::kSimple_Type:
case SkRRect::kNinePatch_Type:
case SkRRect::kComplex_Type:
break;
}
// TODO: report correct metrics for innerstyle, where we do not grow the
// total bounds, but we do need an inset the size of our blur-radius
if (kInner_SkBlurStyle == fBlurStyle) {
return kUnimplemented_FilterReturn;
}
// TODO: take clipBounds into account to limit our coordinates up front
// for now, just skip too-large src rects (to take the old code path).
if (rect_exceeds(rrect.rect(), SkIntToScalar(32767))) {
return kUnimplemented_FilterReturn;
}
SkIPoint margin;
SkMask srcM, dstM;
srcM.fBounds = rrect.rect().roundOut();
srcM.fFormat = SkMask::kA8_Format;
srcM.fRowBytes = 0;
bool filterResult = false;
if (c_analyticBlurRRect) {
// special case for fast round rect blur
// don't actually do the blur the first time, just compute the correct size
filterResult = this->filterRRectMask(&dstM, rrect, matrix, &margin,
SkMask::kJustComputeBounds_CreateMode);
}
if (!filterResult) {
filterResult = this->filterMask(&dstM, srcM, matrix, &margin);
}
if (!filterResult) {
return kFalse_FilterReturn;
}
// Now figure out the appropriate width and height of the smaller round rectangle
// to stretch. It will take into account the larger radius per side as well as double
// the margin, to account for inner and outer blur.
const SkVector& UL = rrect.radii(SkRRect::kUpperLeft_Corner);
const SkVector& UR = rrect.radii(SkRRect::kUpperRight_Corner);
const SkVector& LR = rrect.radii(SkRRect::kLowerRight_Corner);
const SkVector& LL = rrect.radii(SkRRect::kLowerLeft_Corner);
const SkScalar leftUnstretched = SkTMax(UL.fX, LL.fX) + SkIntToScalar(2 * margin.fX);
const SkScalar rightUnstretched = SkTMax(UR.fX, LR.fX) + SkIntToScalar(2 * margin.fX);
// Extra space in the middle to ensure an unchanging piece for stretching. Use 3 to cover
// any fractional space on either side plus 1 for the part to stretch.
const SkScalar stretchSize = SkIntToScalar(3);
const SkScalar totalSmallWidth = leftUnstretched + rightUnstretched + stretchSize;
if (totalSmallWidth >= rrect.rect().width()) {
// There is no valid piece to stretch.
return kUnimplemented_FilterReturn;
}
const SkScalar topUnstretched = SkTMax(UL.fY, UR.fY) + SkIntToScalar(2 * margin.fY);
const SkScalar bottomUnstretched = SkTMax(LL.fY, LR.fY) + SkIntToScalar(2 * margin.fY);
const SkScalar totalSmallHeight = topUnstretched + bottomUnstretched + stretchSize;
if (totalSmallHeight >= rrect.rect().height()) {
// There is no valid piece to stretch.
return kUnimplemented_FilterReturn;
}
SkRect smallR = SkRect::MakeWH(totalSmallWidth, totalSmallHeight);
SkRRect smallRR;
SkVector radii[4];
radii[SkRRect::kUpperLeft_Corner] = UL;
radii[SkRRect::kUpperRight_Corner] = UR;
radii[SkRRect::kLowerRight_Corner] = LR;
radii[SkRRect::kLowerLeft_Corner] = LL;
smallRR.setRectRadii(smallR, radii);
const SkScalar sigma = this->computeXformedSigma(matrix);
SkCachedData* cache = find_cached_rrect(&patch->fMask, sigma, fBlurStyle,
this->getQuality(), smallRR);
if (!cache) {
bool analyticBlurWorked = false;
if (c_analyticBlurRRect) {
analyticBlurWorked =
this->filterRRectMask(&patch->fMask, smallRR, matrix, &margin,
SkMask::kComputeBoundsAndRenderImage_CreateMode);
}
if (!analyticBlurWorked) {
if (!draw_rrect_into_mask(smallRR, &srcM)) {
return kFalse_FilterReturn;
}
SkAutoMaskFreeImage amf(srcM.fImage);
if (!this->filterMask(&patch->fMask, srcM, matrix, &margin)) {
return kFalse_FilterReturn;
}
}
cache = add_cached_rrect(&patch->fMask, sigma, fBlurStyle, this->getQuality(), smallRR);
}
patch->fMask.fBounds.offsetTo(0, 0);
patch->fOuterRect = dstM.fBounds;
patch->fCenter.fX = SkScalarCeilToInt(leftUnstretched) + 1;
patch->fCenter.fY = SkScalarCeilToInt(topUnstretched) + 1;
SkASSERT(nullptr == patch->fCache);
patch->fCache = cache; // transfer ownership to patch
return kTrue_FilterReturn;
}
// Use the faster analytic blur approach for ninepatch rects
static const bool c_analyticBlurNinepatch{true};
SkMaskFilter::FilterReturn
SkBlurMaskFilterImpl::filterRectsToNine(const SkRect rects[], int count,
const SkMatrix& matrix,
const SkIRect& clipBounds,
NinePatch* patch) const {
if (count < 1 || count > 2) {
return kUnimplemented_FilterReturn;
}
// TODO: report correct metrics for innerstyle, where we do not grow the
// total bounds, but we do need an inset the size of our blur-radius
if (kInner_SkBlurStyle == fBlurStyle || kOuter_SkBlurStyle == fBlurStyle) {
return kUnimplemented_FilterReturn;
}
// TODO: take clipBounds into account to limit our coordinates up front
// for now, just skip too-large src rects (to take the old code path).
if (rect_exceeds(rects[0], SkIntToScalar(32767))) {
return kUnimplemented_FilterReturn;
}
SkIPoint margin;
SkMask srcM, dstM;
srcM.fBounds = rects[0].roundOut();
srcM.fFormat = SkMask::kA8_Format;
srcM.fRowBytes = 0;
bool filterResult = false;
if (count == 1 && c_analyticBlurNinepatch) {
// special case for fast rect blur
// don't actually do the blur the first time, just compute the correct size
filterResult = this->filterRectMask(&dstM, rects[0], matrix, &margin,
SkMask::kJustComputeBounds_CreateMode);
} else {
filterResult = this->filterMask(&dstM, srcM, matrix, &margin);
}
if (!filterResult) {
return kFalse_FilterReturn;
}
/*
* smallR is the smallest version of 'rect' that will still guarantee that
* we get the same blur results on all edges, plus 1 center row/col that is
* representative of the extendible/stretchable edges of the ninepatch.
* Since our actual edge may be fractional we inset 1 more to be sure we
* don't miss any interior blur.
* x is an added pixel of blur, and { and } are the (fractional) edge
* pixels from the original rect.
*
* x x { x x .... x x } x x
*
* Thus, in this case, we inset by a total of 5 (on each side) beginning
* with our outer-rect (dstM.fBounds)
*/
SkRect smallR[2];
SkIPoint center;
// +2 is from +1 for each edge (to account for possible fractional edges
int smallW = dstM.fBounds.width() - srcM.fBounds.width() + 2;
int smallH = dstM.fBounds.height() - srcM.fBounds.height() + 2;
SkIRect innerIR;
if (1 == count) {
innerIR = srcM.fBounds;
center.set(smallW, smallH);
} else {
SkASSERT(2 == count);
rects[1].roundIn(&innerIR);
center.set(smallW + (innerIR.left() - srcM.fBounds.left()),
smallH + (innerIR.top() - srcM.fBounds.top()));
}
// +1 so we get a clean, stretchable, center row/col
smallW += 1;
smallH += 1;
// we want the inset amounts to be integral, so we don't change any
// fractional phase on the fRight or fBottom of our smallR.
const SkScalar dx = SkIntToScalar(innerIR.width() - smallW);
const SkScalar dy = SkIntToScalar(innerIR.height() - smallH);
if (dx < 0 || dy < 0) {
// we're too small, relative to our blur, to break into nine-patch,
// so we ask to have our normal filterMask() be called.
return kUnimplemented_FilterReturn;
}
smallR[0].set(rects[0].left(), rects[0].top(), rects[0].right() - dx, rects[0].bottom() - dy);
if (smallR[0].width() < 2 || smallR[0].height() < 2) {
return kUnimplemented_FilterReturn;
}
if (2 == count) {
smallR[1].set(rects[1].left(), rects[1].top(),
rects[1].right() - dx, rects[1].bottom() - dy);
SkASSERT(!smallR[1].isEmpty());
}
const SkScalar sigma = this->computeXformedSigma(matrix);
SkCachedData* cache = find_cached_rects(&patch->fMask, sigma, fBlurStyle,
this->getQuality(), smallR, count);
if (!cache) {
if (count > 1 || !c_analyticBlurNinepatch) {
if (!draw_rects_into_mask(smallR, count, &srcM)) {
return kFalse_FilterReturn;
}
SkAutoMaskFreeImage amf(srcM.fImage);
if (!this->filterMask(&patch->fMask, srcM, matrix, &margin)) {
return kFalse_FilterReturn;
}
} else {
if (!this->filterRectMask(&patch->fMask, smallR[0], matrix, &margin,
SkMask::kComputeBoundsAndRenderImage_CreateMode)) {
return kFalse_FilterReturn;
}
}
cache = add_cached_rects(&patch->fMask, sigma, fBlurStyle, this->getQuality(), smallR, count);
}
patch->fMask.fBounds.offsetTo(0, 0);
patch->fOuterRect = dstM.fBounds;
patch->fCenter = center;
SkASSERT(nullptr == patch->fCache);
patch->fCache = cache; // transfer ownership to patch
return kTrue_FilterReturn;
}
void SkBlurMaskFilterImpl::computeFastBounds(const SkRect& src,
SkRect* dst) const {
SkScalar pad = 3.0f * fSigma;
dst->set(src.fLeft - pad, src.fTop - pad,
src.fRight + pad, src.fBottom + pad);
}
sk_sp<SkFlattenable> SkBlurMaskFilterImpl::CreateProc(SkReadBuffer& buffer) {
const SkScalar sigma = buffer.readScalar();
const unsigned style = buffer.readUInt();
unsigned flags = buffer.readUInt();
buffer.validate(style <= kLastEnum_SkBlurStyle);
buffer.validate(!(flags & ~SkBlurMaskFilter::kAll_BlurFlag));
flags &= SkBlurMaskFilter::kAll_BlurFlag;
SkRect occluder;
buffer.readRect(&occluder);
if (style <= kLastEnum_SkBlurStyle) {
return SkBlurMaskFilter::Make((SkBlurStyle)style, sigma, occluder, flags);
}
return nullptr;
}
void SkBlurMaskFilterImpl::flatten(SkWriteBuffer& buffer) const {
buffer.writeScalar(fSigma);
buffer.writeUInt(fBlurStyle);
buffer.writeUInt(fBlurFlags);
buffer.writeRect(fOccluder);
}
#if SK_SUPPORT_GPU
class GrGLRectBlurEffect;
class GrRectBlurEffect : public GrFragmentProcessor {
public:
~GrRectBlurEffect() override { }
const char* name() const override { return "RectBlur"; }
static sk_sp<GrFragmentProcessor> Make(GrResourceProvider* resourceProvider,
const SkRect& rect, float sigma) {
int doubleProfileSize = SkScalarCeilToInt(12*sigma);
if (doubleProfileSize >= rect.width() || doubleProfileSize >= rect.height()) {
// if the blur sigma is too large so the gaussian overlaps the whole
// rect in either direction, fall back to CPU path for now.
return nullptr;
}
sk_sp<GrTextureProxy> blurProfile(CreateBlurProfileTexture(resourceProvider, sigma));
if (!blurProfile) {
return nullptr;
}
// in OpenGL ES, mediump floats have a minimum range of 2^14. If we have coordinates bigger
// than that, the shader math will end up with infinities and result in the blur effect not
// working correctly. To avoid this, we switch into highp when the coordinates are too big.
// As 2^14 is the minimum range but the actual range can be bigger, we might end up
// switching to highp sooner than strictly necessary, but most devices that have a bigger
// range for mediump also have mediump being exactly the same as highp (e.g. all non-OpenGL
// ES devices), and thus incur no additional penalty for the switch.
static const SkScalar kMAX_BLUR_COORD = SkIntToScalar(16000);
GrSLPrecision precision;
if (SkScalarAbs(rect.top()) > kMAX_BLUR_COORD ||
SkScalarAbs(rect.left()) > kMAX_BLUR_COORD ||
SkScalarAbs(rect.bottom()) > kMAX_BLUR_COORD ||
SkScalarAbs(rect.right()) > kMAX_BLUR_COORD ||
SkScalarAbs(rect.width()) > kMAX_BLUR_COORD ||
SkScalarAbs(rect.height()) > kMAX_BLUR_COORD) {
precision = kHigh_GrSLPrecision;
} else {
precision = kDefault_GrSLPrecision;
}
return sk_sp<GrFragmentProcessor>(new GrRectBlurEffect(rect, sigma,
std::move(blurProfile), precision));
}
const SkRect& getRect() const { return fRect; }
float getSigma() const { return fSigma; }
GrSLPrecision precision() const { return fPrecision; }
private:
GrRectBlurEffect(const SkRect& rect, float sigma,
sk_sp<GrTextureProxy> blurProfile, GrSLPrecision fPrecision);
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override;
bool onIsEqual(const GrFragmentProcessor&) const override;
static sk_sp<GrTextureProxy> CreateBlurProfileTexture(GrResourceProvider*, float sigma);
SkRect fRect;
float fSigma;
TextureSampler fBlurProfileSampler;
GrSLPrecision fPrecision;
GR_DECLARE_FRAGMENT_PROCESSOR_TEST
typedef GrFragmentProcessor INHERITED;
};
class GrGLRectBlurEffect : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs&) override;
static void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder* b);
protected:
void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override;
private:
typedef GrGLSLProgramDataManager::UniformHandle UniformHandle;
UniformHandle fProxyRectUniform;
UniformHandle fProfileSizeUniform;
typedef GrGLSLFragmentProcessor INHERITED;
};
void OutputRectBlurProfileLookup(GrGLSLFPFragmentBuilder* fragBuilder,
GrGLSLFragmentProcessor::SamplerHandle sampler,
const char *output,
const char *profileSize, const char *loc,
const char *blurred_width,
const char *sharp_width) {
fragBuilder->codeAppendf("float %s;", output);
fragBuilder->codeAppendf("{");
fragBuilder->codeAppendf("float coord = ((abs(%s - 0.5 * %s) - 0.5 * %s)) / %s;",
loc, blurred_width, sharp_width, profileSize);
fragBuilder->codeAppendf("%s = ", output);
fragBuilder->appendTextureLookup(sampler, "vec2(coord,0.5)");
fragBuilder->codeAppend(".a;");
fragBuilder->codeAppendf("}");
}
void GrGLRectBlurEffect::GenKey(const GrProcessor& proc, const GrShaderCaps&,
GrProcessorKeyBuilder* b) {
const GrRectBlurEffect& rbe = proc.cast<GrRectBlurEffect>();
b->add32(rbe.precision());
}
void GrGLRectBlurEffect::emitCode(EmitArgs& args) {
const GrRectBlurEffect& rbe = args.fFp.cast<GrRectBlurEffect>();
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
const char *rectName;
const char *profileSizeName;
SkString precisionString;
if (args.fShaderCaps->usesPrecisionModifiers()) {
precisionString.printf("%s ", GrGLSLPrecisionString(rbe.precision()));
}
fProxyRectUniform = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec4f_GrSLType,
rbe.precision(),
"proxyRect",
&rectName);
fProfileSizeUniform = uniformHandler->addUniform(kFragment_GrShaderFlag,
kFloat_GrSLType,
kDefault_GrSLPrecision,
"profileSize",
&profileSizeName);
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
if (args.fInputColor) {
fragBuilder->codeAppendf("vec4 src=%s;", args.fInputColor);
} else {
fragBuilder->codeAppendf("vec4 src=vec4(1);");
}
fragBuilder->codeAppendf("%s vec2 translatedPos = sk_FragCoord.xy - %s.xy;",
precisionString.c_str(), rectName);
fragBuilder->codeAppendf("%s float width = %s.z - %s.x;", precisionString.c_str(), rectName,
rectName);
fragBuilder->codeAppendf("%s float height = %s.w - %s.y;", precisionString.c_str(), rectName,
rectName);
fragBuilder->codeAppendf("%s vec2 smallDims = vec2(width - %s, height - %s);",
precisionString.c_str(), profileSizeName, profileSizeName);
fragBuilder->codeAppendf("%s float center = 2.0 * floor(%s/2.0 + .25) - 1.0;",
precisionString.c_str(), profileSizeName);
fragBuilder->codeAppendf("%s vec2 wh = smallDims - vec2(center,center);",
precisionString.c_str());
OutputRectBlurProfileLookup(fragBuilder, args.fTexSamplers[0], "horiz_lookup", profileSizeName,
"translatedPos.x", "width", "wh.x");
OutputRectBlurProfileLookup(fragBuilder, args.fTexSamplers[0], "vert_lookup", profileSizeName,
"translatedPos.y", "height", "wh.y");
fragBuilder->codeAppendf("float final = horiz_lookup * vert_lookup;");
fragBuilder->codeAppendf("%s = src * final;", args.fOutputColor);
}
void GrGLRectBlurEffect::onSetData(const GrGLSLProgramDataManager& pdman,
const GrFragmentProcessor& proc) {
const GrRectBlurEffect& rbe = proc.cast<GrRectBlurEffect>();
SkRect rect = rbe.getRect();
pdman.set4f(fProxyRectUniform, rect.fLeft, rect.fTop, rect.fRight, rect.fBottom);
pdman.set1f(fProfileSizeUniform, SkScalarCeilToScalar(6*rbe.getSigma()));
}
sk_sp<GrTextureProxy> GrRectBlurEffect::CreateBlurProfileTexture(
GrResourceProvider* resourceProvider,
float sigma) {
GrSurfaceDesc texDesc;
unsigned int profileSize = SkScalarCeilToInt(6*sigma);
texDesc.fWidth = profileSize;
texDesc.fHeight = 1;
texDesc.fConfig = kAlpha_8_GrPixelConfig;
texDesc.fIsMipMapped = false;
static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey key;
GrUniqueKey::Builder builder(&key, kDomain, 1);
builder[0] = profileSize;
builder.finish();
sk_sp<GrTextureProxy> blurProfile(resourceProvider->findProxyByUniqueKey(key));
if (!blurProfile) {
std::unique_ptr<uint8_t[]> profile(SkBlurMask::ComputeBlurProfile(sigma));
blurProfile = GrSurfaceProxy::MakeDeferred(resourceProvider,
texDesc, SkBudgeted::kYes, profile.get(), 0);
if (!blurProfile) {
return nullptr;
}
resourceProvider->assignUniqueKeyToProxy(key, blurProfile.get());
}
return blurProfile;
}
GrRectBlurEffect::GrRectBlurEffect(const SkRect& rect, float sigma,
sk_sp<GrTextureProxy> blurProfile,
GrSLPrecision precision)
: INHERITED(kCompatibleWithCoverageAsAlpha_OptimizationFlag)
, fRect(rect)
, fSigma(sigma)
, fBlurProfileSampler(std::move(blurProfile))
, fPrecision(precision) {
this->initClassID<GrRectBlurEffect>();
this->addTextureSampler(&fBlurProfileSampler);
}
void GrRectBlurEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps,
GrProcessorKeyBuilder* b) const {
GrGLRectBlurEffect::GenKey(*this, caps, b);
}
GrGLSLFragmentProcessor* GrRectBlurEffect::onCreateGLSLInstance() const {
return new GrGLRectBlurEffect;
}
bool GrRectBlurEffect::onIsEqual(const GrFragmentProcessor& sBase) const {
const GrRectBlurEffect& s = sBase.cast<GrRectBlurEffect>();
return this->getSigma() == s.getSigma() && this->getRect() == s.getRect();
}
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrRectBlurEffect);
#if GR_TEST_UTILS
sk_sp<GrFragmentProcessor> GrRectBlurEffect::TestCreate(GrProcessorTestData* d) {
float sigma = d->fRandom->nextRangeF(3,8);
float width = d->fRandom->nextRangeF(200,300);
float height = d->fRandom->nextRangeF(200,300);
return GrRectBlurEffect::Make(d->resourceProvider(),
SkRect::MakeWH(width, height), sigma);
}
#endif
bool SkBlurMaskFilterImpl::directFilterMaskGPU(GrContext* context,
GrRenderTargetContext* renderTargetContext,
GrPaint&& paint,
const GrClip& clip,
const SkMatrix& viewMatrix,
const SkStrokeRec& strokeRec,
const SkPath& path) const {
SkASSERT(renderTargetContext);
if (fBlurStyle != kNormal_SkBlurStyle) {
return false;
}
// TODO: we could handle blurred stroked circles
if (!strokeRec.isFillStyle()) {
return false;
}
SkScalar xformedSigma = this->computeXformedSigma(viewMatrix);
GrResourceProvider* resourceProvider = context->resourceProvider();
sk_sp<GrFragmentProcessor> fp;
SkRect rect;
if (path.isRect(&rect)) {
SkScalar pad = 3.0f * xformedSigma;
rect.outset(pad, pad);
fp = GrRectBlurEffect::Make(resourceProvider, rect, xformedSigma);
} else if (path.isOval(&rect) && SkScalarNearlyEqual(rect.width(), rect.height())) {
fp = GrCircleBlurFragmentProcessor::Make(resourceProvider, rect, xformedSigma);
// expand the rect for the coverage geometry
int pad = SkScalarCeilToInt(6*xformedSigma)/2;
rect.outset(SkIntToScalar(pad), SkIntToScalar(pad));
} else {
return false;
}
if (!fp) {
return false;
}
SkMatrix inverse;
if (!viewMatrix.invert(&inverse)) {
return false;
}
paint.addCoverageFragmentProcessor(std::move(fp));
renderTargetContext->fillRectWithLocalMatrix(clip, std::move(paint), GrAA::kNo, SkMatrix::I(),
rect, inverse);
return true;
}
//////////////////////////////////////////////////////////////////////////////
class GrRRectBlurEffect : public GrFragmentProcessor {
public:
static sk_sp<GrFragmentProcessor> Make(GrContext*,
float sigma, float xformedSigma,
const SkRRect& srcRRect, const SkRRect& devRRect);
~GrRRectBlurEffect() override {}
const char* name() const override { return "GrRRectBlur"; }
const SkRRect& getRRect() const { return fRRect; }
float getSigma() const { return fSigma; }
private:
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
GrRRectBlurEffect(float sigma, const SkRRect&,
sk_sp<GrTextureProxy> profileProxy);
virtual void onGetGLSLProcessorKey(const GrShaderCaps& caps,
GrProcessorKeyBuilder* b) const override;
bool onIsEqual(const GrFragmentProcessor& other) const override;
SkRRect fRRect;
float fSigma;
TextureSampler fNinePatchSampler;
GR_DECLARE_FRAGMENT_PROCESSOR_TEST
typedef GrFragmentProcessor INHERITED;
};
static sk_sp<GrTextureProxy> find_or_create_rrect_blur_mask(GrContext* context,
const SkRRect& rrectToDraw,
const SkISize& size,
float xformedSigma) {
static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey key;
GrUniqueKey::Builder builder(&key, kDomain, 9);
builder[0] = SkScalarCeilToInt(xformedSigma-1/6.0f);
int index = 1;
for (auto c : { SkRRect::kUpperLeft_Corner, SkRRect::kUpperRight_Corner,
SkRRect::kLowerRight_Corner, SkRRect::kLowerLeft_Corner }) {
SkASSERT(SkScalarIsInt(rrectToDraw.radii(c).fX) && SkScalarIsInt(rrectToDraw.radii(c).fY));
builder[index++] = SkScalarCeilToInt(rrectToDraw.radii(c).fX);
builder[index++] = SkScalarCeilToInt(rrectToDraw.radii(c).fY);
}
builder.finish();
sk_sp<GrTextureProxy> mask(context->resourceProvider()->findProxyByUniqueKey(key));
if (!mask) {
// TODO: this could be approx but the texture coords will need to be updated
sk_sp<GrRenderTargetContext> rtc(context->makeDeferredRenderTargetContextWithFallback(
SkBackingFit::kExact, size.fWidth, size.fHeight, kAlpha_8_GrPixelConfig, nullptr));
if (!rtc) {
return nullptr;
}
GrPaint paint;
rtc->clear(nullptr, 0x0, true);
rtc->drawRRect(GrNoClip(), std::move(paint), GrAA::kYes, SkMatrix::I(), rrectToDraw,
GrStyle::SimpleFill());
sk_sp<GrTextureProxy> srcProxy(rtc->asTextureProxyRef());
if (!srcProxy) {
return nullptr;
}
sk_sp<GrRenderTargetContext> rtc2(
SkGpuBlurUtils::GaussianBlur(context,
std::move(srcProxy),
nullptr,
SkIRect::MakeWH(size.fWidth, size.fHeight),
SkIRect::EmptyIRect(),
xformedSigma,
xformedSigma,
GrTextureDomain::kIgnore_Mode,
SkBackingFit::kExact));
if (!rtc2) {
return nullptr;
}
mask = rtc2->asTextureProxyRef();
if (!mask) {
return nullptr;
}
context->resourceProvider()->assignUniqueKeyToProxy(key, mask.get());
}
return mask;
}
sk_sp<GrFragmentProcessor> GrRRectBlurEffect::Make(GrContext* context,
float sigma, float xformedSigma,
const SkRRect& srcRRect, const SkRRect& devRRect) {
SkASSERT(!devRRect.isCircle() && !devRRect.isRect()); // Should've been caught up-stream
// TODO: loosen this up
if (!devRRect.isSimpleCircular()) {
return nullptr;
}
// Make sure we can successfully ninepatch this rrect -- the blur sigma has to be
// sufficiently small relative to both the size of the corner radius and the
// width (and height) of the rrect.
SkRRect rrectToDraw;
SkISize size;
SkScalar ignored[SkBlurMaskFilter::kMaxDivisions];
int ignoredSize;
uint32_t ignored32;
bool ninePatchable = SkBlurMaskFilter::ComputeBlurredRRectParams(srcRRect, devRRect,
SkRect::MakeEmpty(),
sigma, xformedSigma,
&rrectToDraw, &size,
ignored, ignored,
ignored, ignored,
&ignoredSize, &ignoredSize,
&ignored32);
if (!ninePatchable) {
return nullptr;
}
sk_sp<GrTextureProxy> mask(find_or_create_rrect_blur_mask(context, rrectToDraw,
size, xformedSigma));
if (!mask) {
return nullptr;
}
return sk_sp<GrFragmentProcessor>(new GrRRectBlurEffect(xformedSigma,
devRRect,
std::move(mask)));
}
GrRRectBlurEffect::GrRRectBlurEffect(float sigma, const SkRRect& rrect,
sk_sp<GrTextureProxy> ninePatchProxy)
: INHERITED(kCompatibleWithCoverageAsAlpha_OptimizationFlag)
, fRRect(rrect)
, fSigma(sigma)
, fNinePatchSampler(std::move(ninePatchProxy)) {
this->initClassID<GrRRectBlurEffect>();
this->addTextureSampler(&fNinePatchSampler);
}
bool GrRRectBlurEffect::onIsEqual(const GrFragmentProcessor& other) const {
const GrRRectBlurEffect& rrbe = other.cast<GrRRectBlurEffect>();
return fRRect.getSimpleRadii().fX == rrbe.fRRect.getSimpleRadii().fX &&
fSigma == rrbe.fSigma &&
fRRect.rect() == rrbe.fRRect.rect();
}
//////////////////////////////////////////////////////////////////////////////
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrRRectBlurEffect);
#if GR_TEST_UTILS
sk_sp<GrFragmentProcessor> GrRRectBlurEffect::TestCreate(GrProcessorTestData* d) {
SkScalar w = d->fRandom->nextRangeScalar(100.f, 1000.f);
SkScalar h = d->fRandom->nextRangeScalar(100.f, 1000.f);
SkScalar r = d->fRandom->nextRangeF(1.f, 9.f);
SkScalar sigma = d->fRandom->nextRangeF(1.f,10.f);
SkRRect rrect;
rrect.setRectXY(SkRect::MakeWH(w, h), r, r);
return GrRRectBlurEffect::Make(d->context(), sigma, sigma, rrect, rrect);
}
#endif
//////////////////////////////////////////////////////////////////////////////
class GrGLRRectBlurEffect : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs&) override;
protected:
void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override;
private:
GrGLSLProgramDataManager::UniformHandle fProxyRectUniform;
GrGLSLProgramDataManager::UniformHandle fCornerRadiusUniform;
GrGLSLProgramDataManager::UniformHandle fBlurRadiusUniform;
typedef GrGLSLFragmentProcessor INHERITED;
};
void GrGLRRectBlurEffect::emitCode(EmitArgs& args) {
const char *rectName;
const char *cornerRadiusName;
const char *blurRadiusName;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
// The proxy rect has left, top, right, and bottom edges correspond to
// components x, y, z, and w, respectively.
fProxyRectUniform = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec4f_GrSLType,
kDefault_GrSLPrecision,
"proxyRect",
&rectName);
fCornerRadiusUniform = uniformHandler->addUniform(kFragment_GrShaderFlag,
kFloat_GrSLType,
kDefault_GrSLPrecision,
"cornerRadius",
&cornerRadiusName);
fBlurRadiusUniform = uniformHandler->addUniform(kFragment_GrShaderFlag,
kFloat_GrSLType,
kDefault_GrSLPrecision,
"blurRadius",
&blurRadiusName);
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
// warp the fragment position to the appropriate part of the 9patch blur texture
fragBuilder->codeAppendf("vec2 rectCenter = (%s.xy + %s.zw)/2.0;", rectName, rectName);
fragBuilder->codeAppendf("vec2 translatedFragPos = sk_FragCoord.xy - %s.xy;", rectName);
fragBuilder->codeAppendf("float threshold = %s + 2.0*%s;", cornerRadiusName, blurRadiusName);
fragBuilder->codeAppendf("vec2 middle = %s.zw - %s.xy - 2.0*threshold;", rectName, rectName);
fragBuilder->codeAppendf(
"if (translatedFragPos.x >= threshold && translatedFragPos.x < (middle.x+threshold)) {");
fragBuilder->codeAppendf("translatedFragPos.x = threshold;\n");
fragBuilder->codeAppendf("} else if (translatedFragPos.x >= (middle.x + threshold)) {");
fragBuilder->codeAppendf("translatedFragPos.x -= middle.x - 1.0;");
fragBuilder->codeAppendf("}");
fragBuilder->codeAppendf(
"if (translatedFragPos.y > threshold && translatedFragPos.y < (middle.y+threshold)) {");
fragBuilder->codeAppendf("translatedFragPos.y = threshold;");
fragBuilder->codeAppendf("} else if (translatedFragPos.y >= (middle.y + threshold)) {");
fragBuilder->codeAppendf("translatedFragPos.y -= middle.y - 1.0;");
fragBuilder->codeAppendf("}");
fragBuilder->codeAppendf("vec2 proxyDims = vec2(2.0*threshold+1.0);");
fragBuilder->codeAppendf("vec2 texCoord = translatedFragPos / proxyDims;");
fragBuilder->codeAppendf("%s = ", args.fOutputColor);
fragBuilder->appendTextureLookupAndModulate(args.fInputColor, args.fTexSamplers[0], "texCoord");
fragBuilder->codeAppend(";");
}
void GrGLRRectBlurEffect::onSetData(const GrGLSLProgramDataManager& pdman,
const GrFragmentProcessor& proc) {
const GrRRectBlurEffect& brre = proc.cast<GrRRectBlurEffect>();
const SkRRect& rrect = brre.getRRect();
float blurRadius = 3.f*SkScalarCeilToScalar(brre.getSigma()-1/6.0f);
pdman.set1f(fBlurRadiusUniform, blurRadius);
SkRect rect = rrect.getBounds();
rect.outset(blurRadius, blurRadius);
pdman.set4f(fProxyRectUniform, rect.fLeft, rect.fTop, rect.fRight, rect.fBottom);
SkScalar radius = 0;
SkASSERT(rrect.isSimpleCircular() || rrect.isRect());
radius = rrect.getSimpleRadii().fX;
pdman.set1f(fCornerRadiusUniform, radius);
}
void GrRRectBlurEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps,
GrProcessorKeyBuilder* b) const {
GrGLRRectBlurEffect::GenKey(*this, caps, b);
}
GrGLSLFragmentProcessor* GrRRectBlurEffect::onCreateGLSLInstance() const {
return new GrGLRRectBlurEffect;
}
bool SkBlurMaskFilterImpl::directFilterRRectMaskGPU(GrContext* context,
GrRenderTargetContext* renderTargetContext,
GrPaint&& paint,
const GrClip& clip,
const SkMatrix& viewMatrix,
const SkStrokeRec& strokeRec,
const SkRRect& srcRRect,
const SkRRect& devRRect) const {
SkASSERT(renderTargetContext);
if (fBlurStyle != kNormal_SkBlurStyle) {
return false;
}
if (!strokeRec.isFillStyle()) {
return false;
}
GrResourceProvider* resourceProvider = context->resourceProvider();
SkScalar xformedSigma = this->computeXformedSigma(viewMatrix);
if (devRRect.isRect() || devRRect.isCircle()) {
sk_sp<GrFragmentProcessor> fp;
if (devRRect.isRect()) {
SkScalar pad = 3.0f * xformedSigma;
const SkRect dstCoverageRect = devRRect.rect().makeOutset(pad, pad);
fp = GrRectBlurEffect::Make(resourceProvider, dstCoverageRect, xformedSigma);
} else {
fp = GrCircleBlurFragmentProcessor::Make(resourceProvider,
devRRect.rect(), xformedSigma);
}
if (!fp) {
return false;
}
paint.addCoverageFragmentProcessor(std::move(fp));
SkRect srcProxyRect = srcRRect.rect();
SkScalar outsetX = 3.0f*fSigma;
SkScalar outsetY = 3.0f*fSigma;
if (this->ignoreXform()) {
// When we're ignoring the CTM the padding added to the source rect also needs to ignore
// the CTM. The matrix passed in here is guaranteed to be just scale and translate so we
// can just grab the X and Y scales off the matrix and pre-undo the scale.
outsetX /= viewMatrix.getScaleX();
outsetY /= viewMatrix.getScaleY();
}
srcProxyRect.outset(outsetX, outsetY);
renderTargetContext->drawRect(clip, std::move(paint), GrAA::kNo, viewMatrix, srcProxyRect);
return true;
}
sk_sp<GrFragmentProcessor> fp(GrRRectBlurEffect::Make(context, fSigma, xformedSigma,
srcRRect, devRRect));
if (!fp) {
return false;
}
if (!this->ignoreXform()) {
SkRect srcProxyRect = srcRRect.rect();
srcProxyRect.outset(3.0f*fSigma, 3.0f*fSigma);
sk_sp<SkVertices> vertices = nullptr;
SkRect temp = fOccluder;
if (!temp.isEmpty() && (srcProxyRect.contains(temp) || temp.intersect(srcProxyRect))) {
SkVertices::Builder builder(SkVertices::kTriangles_VertexMode, 8, 24, 0);
srcProxyRect.toQuad(builder.positions());
temp.toQuad(builder.positions() + 4);
static const uint16_t ringI[24] = { 0, 1, 5, 5, 4, 0,
1, 2, 6, 6, 5, 1,
2, 3, 7, 7, 6, 2,
3, 0, 4, 4, 7, 3 };
memcpy(builder.indices(), ringI, sizeof(ringI));
vertices = builder.detach();
} else {
// full rect case
SkVertices::Builder builder(SkVertices::kTriangles_VertexMode, 4, 6, 0);
srcProxyRect.toQuad(builder.positions());
static const uint16_t fullI[6] = { 0, 1, 2, 0, 2, 3 };
memcpy(builder.indices(), fullI, sizeof(fullI));
vertices = builder.detach();
}
paint.addCoverageFragmentProcessor(std::move(fp));
renderTargetContext->drawVertices(clip, std::move(paint), viewMatrix, std::move(vertices));
} else {
SkMatrix inverse;
if (!viewMatrix.invert(&inverse)) {
return false;
}
float extra=3.f*SkScalarCeilToScalar(xformedSigma-1/6.0f);
SkRect proxyRect = devRRect.rect();
proxyRect.outset(extra, extra);
paint.addCoverageFragmentProcessor(std::move(fp));
renderTargetContext->fillRectWithLocalMatrix(clip, std::move(paint), GrAA::kNo,
SkMatrix::I(), proxyRect, inverse);
}
return true;
}
bool SkBlurMaskFilterImpl::canFilterMaskGPU(const SkRRect& devRRect,
const SkIRect& clipBounds,
const SkMatrix& ctm,
SkRect* maskRect) const {
SkScalar xformedSigma = this->computeXformedSigma(ctm);
if (xformedSigma <= 0) {
return false;
}
// We always do circles and simple circular rrects on the GPU
if (!devRRect.isCircle() && !devRRect.isSimpleCircular()) {
static const SkScalar kMIN_GPU_BLUR_SIZE = SkIntToScalar(64);
static const SkScalar kMIN_GPU_BLUR_SIGMA = SkIntToScalar(32);
if (devRRect.width() <= kMIN_GPU_BLUR_SIZE &&
devRRect.height() <= kMIN_GPU_BLUR_SIZE &&
xformedSigma <= kMIN_GPU_BLUR_SIGMA) {
// We prefer to blur small rects with small radii on the CPU.
return false;
}
}
if (nullptr == maskRect) {
// don't need to compute maskRect
return true;
}
float sigma3 = 3 * SkScalarToFloat(xformedSigma);
SkRect clipRect = SkRect::Make(clipBounds);
SkRect srcRect(devRRect.rect());
// Outset srcRect and clipRect by 3 * sigma, to compute affected blur area.
srcRect.outset(sigma3, sigma3);
clipRect.outset(sigma3, sigma3);
if (!srcRect.intersect(clipRect)) {
srcRect.setEmpty();
}
*maskRect = srcRect;
return true;
}
sk_sp<GrTextureProxy> SkBlurMaskFilterImpl::filterMaskGPU(GrContext* context,
sk_sp<GrTextureProxy> srcProxy,
const SkMatrix& ctm,
const SkIRect& maskRect) const {
// 'maskRect' isn't snapped to the UL corner but the mask in 'src' is.
const SkIRect clipRect = SkIRect::MakeWH(maskRect.width(), maskRect.height());
SkScalar xformedSigma = this->computeXformedSigma(ctm);
SkASSERT(xformedSigma > 0);
// If we're doing a normal blur, we can clobber the pathTexture in the
// gaussianBlur. Otherwise, we need to save it for later compositing.
bool isNormalBlur = (kNormal_SkBlurStyle == fBlurStyle);
sk_sp<GrRenderTargetContext> renderTargetContext(
SkGpuBlurUtils::GaussianBlur(context,
srcProxy,
nullptr,
clipRect,
SkIRect::EmptyIRect(),
xformedSigma,
xformedSigma,
GrTextureDomain::kIgnore_Mode));
if (!renderTargetContext) {
return nullptr;
}
if (!isNormalBlur) {
GrPaint paint;
// Blend pathTexture over blurTexture.
paint.addCoverageFragmentProcessor(GrSimpleTextureEffect::Make(std::move(srcProxy),
nullptr, SkMatrix::I()));
if (kInner_SkBlurStyle == fBlurStyle) {
// inner: dst = dst * src
paint.setCoverageSetOpXPFactory(SkRegion::kIntersect_Op);
} else if (kSolid_SkBlurStyle == fBlurStyle) {
// solid: dst = src + dst - src * dst
// = src + (1 - src) * dst
paint.setCoverageSetOpXPFactory(SkRegion::kUnion_Op);
} else if (kOuter_SkBlurStyle == fBlurStyle) {
// outer: dst = dst * (1 - src)
// = 0 * src + (1 - src) * dst
paint.setCoverageSetOpXPFactory(SkRegion::kDifference_Op);
} else {
paint.setCoverageSetOpXPFactory(SkRegion::kReplace_Op);
}
renderTargetContext->drawRect(GrNoClip(), std::move(paint), GrAA::kNo, SkMatrix::I(),
SkRect::Make(clipRect));
}
return renderTargetContext->asTextureProxyRef();
}
#endif // SK_SUPPORT_GPU
#ifndef SK_IGNORE_TO_STRING
void SkBlurMaskFilterImpl::toString(SkString* str) const {
str->append("SkBlurMaskFilterImpl: (");
str->append("sigma: ");
str->appendScalar(fSigma);
str->append(" ");
static const char* gStyleName[kLastEnum_SkBlurStyle + 1] = {
"normal", "solid", "outer", "inner"
};
str->appendf("style: %s ", gStyleName[fBlurStyle]);
str->append("flags: (");
if (fBlurFlags) {
bool needSeparator = false;
SkAddFlagToString(str, this->ignoreXform(), "IgnoreXform", &needSeparator);
SkAddFlagToString(str,
SkToBool(fBlurFlags & SkBlurMaskFilter::kHighQuality_BlurFlag),
"HighQuality", &needSeparator);
} else {
str->append("None");
}
str->append("))");
}
#endif
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkBlurMaskFilter)
SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkBlurMaskFilterImpl)
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END