blob: b94ece514d8a945564f8ac4e726d48a29a58b194 [file] [log] [blame]
/*
* Copyright 2012 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkMatrixConvolutionImageFilter.h"
#include "SkBitmap.h"
#include "SkColorPriv.h"
#include "SkColorSpaceXformer.h"
#include "SkReadBuffer.h"
#include "SkSpecialImage.h"
#include "SkWriteBuffer.h"
#include "SkRect.h"
#include "SkUnPreMultiply.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "GrTextureProxy.h"
#include "effects/GrMatrixConvolutionEffect.h"
#endif
// We need to be able to read at most SK_MaxS32 bytes, so divide that
// by the size of a scalar to know how many scalars we can read.
static const int32_t gMaxKernelSize = SK_MaxS32 / sizeof(SkScalar);
SkMatrixConvolutionImageFilter::SkMatrixConvolutionImageFilter(const SkISize& kernelSize,
const SkScalar* kernel,
SkScalar gain,
SkScalar bias,
const SkIPoint& kernelOffset,
TileMode tileMode,
bool convolveAlpha,
sk_sp<SkImageFilter> input,
const CropRect* cropRect)
: INHERITED(&input, 1, cropRect)
, fKernelSize(kernelSize)
, fGain(gain)
, fBias(bias)
, fKernelOffset(kernelOffset)
, fTileMode(tileMode)
, fConvolveAlpha(convolveAlpha) {
size_t size = (size_t) sk_64_mul(fKernelSize.width(), fKernelSize.height());
fKernel = new SkScalar[size];
memcpy(fKernel, kernel, size * sizeof(SkScalar));
SkASSERT(kernelSize.fWidth >= 1 && kernelSize.fHeight >= 1);
SkASSERT(kernelOffset.fX >= 0 && kernelOffset.fX < kernelSize.fWidth);
SkASSERT(kernelOffset.fY >= 0 && kernelOffset.fY < kernelSize.fHeight);
}
sk_sp<SkImageFilter> SkMatrixConvolutionImageFilter::Make(const SkISize& kernelSize,
const SkScalar* kernel,
SkScalar gain,
SkScalar bias,
const SkIPoint& kernelOffset,
TileMode tileMode,
bool convolveAlpha,
sk_sp<SkImageFilter> input,
const CropRect* cropRect) {
if (kernelSize.width() < 1 || kernelSize.height() < 1) {
return nullptr;
}
if (gMaxKernelSize / kernelSize.fWidth < kernelSize.fHeight) {
return nullptr;
}
if (!kernel) {
return nullptr;
}
if ((kernelOffset.fX < 0) || (kernelOffset.fX >= kernelSize.fWidth) ||
(kernelOffset.fY < 0) || (kernelOffset.fY >= kernelSize.fHeight)) {
return nullptr;
}
return sk_sp<SkImageFilter>(new SkMatrixConvolutionImageFilter(kernelSize, kernel, gain,
bias, kernelOffset,
tileMode, convolveAlpha,
std::move(input), cropRect));
}
sk_sp<SkFlattenable> SkMatrixConvolutionImageFilter::CreateProc(SkReadBuffer& buffer) {
SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 1);
SkISize kernelSize;
kernelSize.fWidth = buffer.readInt();
kernelSize.fHeight = buffer.readInt();
const int count = buffer.getArrayCount();
const int64_t kernelArea = sk_64_mul(kernelSize.width(), kernelSize.height());
if (!buffer.validate(kernelArea == count)) {
return nullptr;
}
SkAutoSTArray<16, SkScalar> kernel(count);
if (!buffer.readScalarArray(kernel.get(), count)) {
return nullptr;
}
SkScalar gain = buffer.readScalar();
SkScalar bias = buffer.readScalar();
SkIPoint kernelOffset;
kernelOffset.fX = buffer.readInt();
kernelOffset.fY = buffer.readInt();
TileMode tileMode = (TileMode)buffer.readInt();
bool convolveAlpha = buffer.readBool();
return Make(kernelSize, kernel.get(), gain, bias, kernelOffset, tileMode,
convolveAlpha, common.getInput(0), &common.cropRect());
}
void SkMatrixConvolutionImageFilter::flatten(SkWriteBuffer& buffer) const {
this->INHERITED::flatten(buffer);
buffer.writeInt(fKernelSize.fWidth);
buffer.writeInt(fKernelSize.fHeight);
buffer.writeScalarArray(fKernel, fKernelSize.fWidth * fKernelSize.fHeight);
buffer.writeScalar(fGain);
buffer.writeScalar(fBias);
buffer.writeInt(fKernelOffset.fX);
buffer.writeInt(fKernelOffset.fY);
buffer.writeInt((int) fTileMode);
buffer.writeBool(fConvolveAlpha);
}
SkMatrixConvolutionImageFilter::~SkMatrixConvolutionImageFilter() {
delete[] fKernel;
}
class UncheckedPixelFetcher {
public:
static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) {
return *src.getAddr32(x, y);
}
};
class ClampPixelFetcher {
public:
static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) {
x = SkTPin(x, bounds.fLeft, bounds.fRight - 1);
y = SkTPin(y, bounds.fTop, bounds.fBottom - 1);
return *src.getAddr32(x, y);
}
};
class RepeatPixelFetcher {
public:
static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) {
x = (x - bounds.left()) % bounds.width() + bounds.left();
y = (y - bounds.top()) % bounds.height() + bounds.top();
if (x < bounds.left()) {
x += bounds.width();
}
if (y < bounds.top()) {
y += bounds.height();
}
return *src.getAddr32(x, y);
}
};
class ClampToBlackPixelFetcher {
public:
static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) {
if (x < bounds.fLeft || x >= bounds.fRight || y < bounds.fTop || y >= bounds.fBottom) {
return 0;
} else {
return *src.getAddr32(x, y);
}
}
};
template<class PixelFetcher, bool convolveAlpha>
void SkMatrixConvolutionImageFilter::filterPixels(const SkBitmap& src,
SkBitmap* result,
const SkIRect& r,
const SkIRect& bounds) const {
SkIRect rect(r);
if (!rect.intersect(bounds)) {
return;
}
for (int y = rect.fTop; y < rect.fBottom; ++y) {
SkPMColor* dptr = result->getAddr32(rect.fLeft - bounds.fLeft, y - bounds.fTop);
for (int x = rect.fLeft; x < rect.fRight; ++x) {
SkScalar sumA = 0, sumR = 0, sumG = 0, sumB = 0;
for (int cy = 0; cy < fKernelSize.fHeight; cy++) {
for (int cx = 0; cx < fKernelSize.fWidth; cx++) {
SkPMColor s = PixelFetcher::fetch(src,
x + cx - fKernelOffset.fX,
y + cy - fKernelOffset.fY,
bounds);
SkScalar k = fKernel[cy * fKernelSize.fWidth + cx];
if (convolveAlpha) {
sumA += SkGetPackedA32(s) * k;
}
sumR += SkGetPackedR32(s) * k;
sumG += SkGetPackedG32(s) * k;
sumB += SkGetPackedB32(s) * k;
}
}
int a = convolveAlpha
? SkClampMax(SkScalarFloorToInt(sumA * fGain + fBias), 255)
: 255;
int r = SkClampMax(SkScalarFloorToInt(sumR * fGain + fBias), a);
int g = SkClampMax(SkScalarFloorToInt(sumG * fGain + fBias), a);
int b = SkClampMax(SkScalarFloorToInt(sumB * fGain + fBias), a);
if (!convolveAlpha) {
a = SkGetPackedA32(PixelFetcher::fetch(src, x, y, bounds));
*dptr++ = SkPreMultiplyARGB(a, r, g, b);
} else {
*dptr++ = SkPackARGB32(a, r, g, b);
}
}
}
}
template<class PixelFetcher>
void SkMatrixConvolutionImageFilter::filterPixels(const SkBitmap& src,
SkBitmap* result,
const SkIRect& rect,
const SkIRect& bounds) const {
if (fConvolveAlpha) {
filterPixels<PixelFetcher, true>(src, result, rect, bounds);
} else {
filterPixels<PixelFetcher, false>(src, result, rect, bounds);
}
}
void SkMatrixConvolutionImageFilter::filterInteriorPixels(const SkBitmap& src,
SkBitmap* result,
const SkIRect& rect,
const SkIRect& bounds) const {
filterPixels<UncheckedPixelFetcher>(src, result, rect, bounds);
}
void SkMatrixConvolutionImageFilter::filterBorderPixels(const SkBitmap& src,
SkBitmap* result,
const SkIRect& rect,
const SkIRect& bounds) const {
switch (fTileMode) {
case kClamp_TileMode:
filterPixels<ClampPixelFetcher>(src, result, rect, bounds);
break;
case kRepeat_TileMode:
filterPixels<RepeatPixelFetcher>(src, result, rect, bounds);
break;
case kClampToBlack_TileMode:
filterPixels<ClampToBlackPixelFetcher>(src, result, rect, bounds);
break;
}
}
// FIXME: This should be refactored to SkImageFilterUtils for
// use by other filters. For now, we assume the input is always
// premultiplied and unpremultiply it
static SkBitmap unpremultiply_bitmap(const SkBitmap& src) {
if (!src.getPixels()) {
return SkBitmap();
}
const SkImageInfo info = SkImageInfo::MakeN32(src.width(), src.height(), src.alphaType());
SkBitmap result;
if (!result.tryAllocPixels(info)) {
return SkBitmap();
}
for (int y = 0; y < src.height(); ++y) {
const uint32_t* srcRow = src.getAddr32(0, y);
uint32_t* dstRow = result.getAddr32(0, y);
for (int x = 0; x < src.width(); ++x) {
dstRow[x] = SkUnPreMultiply::PMColorToColor(srcRow[x]);
}
}
return result;
}
#if SK_SUPPORT_GPU
static GrTextureDomain::Mode convert_tilemodes(SkMatrixConvolutionImageFilter::TileMode tileMode) {
switch (tileMode) {
case SkMatrixConvolutionImageFilter::kClamp_TileMode:
return GrTextureDomain::kClamp_Mode;
case SkMatrixConvolutionImageFilter::kRepeat_TileMode:
return GrTextureDomain::kRepeat_Mode;
case SkMatrixConvolutionImageFilter::kClampToBlack_TileMode:
return GrTextureDomain::kDecal_Mode;
default:
SkASSERT(false);
}
return GrTextureDomain::kIgnore_Mode;
}
#endif
sk_sp<SkSpecialImage> SkMatrixConvolutionImageFilter::onFilterImage(SkSpecialImage* source,
const Context& ctx,
SkIPoint* offset) const {
SkIPoint inputOffset = SkIPoint::Make(0, 0);
sk_sp<SkSpecialImage> input(this->filterInput(0, source, ctx, &inputOffset));
if (!input) {
return nullptr;
}
SkIRect bounds;
input = this->applyCropRect(this->mapContext(ctx), input.get(), &inputOffset, &bounds);
if (!input) {
return nullptr;
}
#if SK_SUPPORT_GPU
// Note: if the kernel is too big, the GPU path falls back to SW
if (source->isTextureBacked() &&
fKernelSize.width() * fKernelSize.height() <= MAX_KERNEL_SIZE) {
GrContext* context = source->getContext();
// Ensure the input is in the destination color space. Typically applyCropRect will have
// called pad_image to account for our dilation of bounds, so the result will already be
// moved to the destination color space. If a filter DAG avoids that, then we use this
// fall-back, which saves us from having to do the xform during the filter itself.
input = ImageToColorSpace(input.get(), ctx.outputProperties());
sk_sp<GrTextureProxy> inputProxy(input->asTextureProxyRef(context));
SkASSERT(inputProxy);
offset->fX = bounds.left();
offset->fY = bounds.top();
bounds.offset(-inputOffset);
sk_sp<GrFragmentProcessor> fp(GrMatrixConvolutionEffect::Make(std::move(inputProxy),
bounds,
fKernelSize,
fKernel,
fGain,
fBias,
fKernelOffset,
convert_tilemodes(fTileMode),
fConvolveAlpha));
if (!fp) {
return nullptr;
}
return DrawWithFP(context, std::move(fp), bounds, ctx.outputProperties());
}
#endif
SkBitmap inputBM;
if (!input->getROPixels(&inputBM)) {
return nullptr;
}
if (inputBM.colorType() != kN32_SkColorType) {
return nullptr;
}
if (!fConvolveAlpha && !inputBM.isOpaque()) {
inputBM = unpremultiply_bitmap(inputBM);
}
if (!inputBM.getPixels()) {
return nullptr;
}
const SkImageInfo info = SkImageInfo::MakeN32(bounds.width(), bounds.height(),
inputBM.alphaType());
SkBitmap dst;
if (!dst.tryAllocPixels(info)) {
return nullptr;
}
offset->fX = bounds.fLeft;
offset->fY = bounds.fTop;
bounds.offset(-inputOffset);
SkIRect interior = SkIRect::MakeXYWH(bounds.left() + fKernelOffset.fX,
bounds.top() + fKernelOffset.fY,
bounds.width() - fKernelSize.fWidth + 1,
bounds.height() - fKernelSize.fHeight + 1);
SkIRect top = SkIRect::MakeLTRB(bounds.left(), bounds.top(), bounds.right(), interior.top());
SkIRect bottom = SkIRect::MakeLTRB(bounds.left(), interior.bottom(),
bounds.right(), bounds.bottom());
SkIRect left = SkIRect::MakeLTRB(bounds.left(), interior.top(),
interior.left(), interior.bottom());
SkIRect right = SkIRect::MakeLTRB(interior.right(), interior.top(),
bounds.right(), interior.bottom());
this->filterBorderPixels(inputBM, &dst, top, bounds);
this->filterBorderPixels(inputBM, &dst, left, bounds);
this->filterInteriorPixels(inputBM, &dst, interior, bounds);
this->filterBorderPixels(inputBM, &dst, right, bounds);
this->filterBorderPixels(inputBM, &dst, bottom, bounds);
return SkSpecialImage::MakeFromRaster(SkIRect::MakeWH(bounds.width(), bounds.height()),
dst);
}
sk_sp<SkImageFilter> SkMatrixConvolutionImageFilter::onMakeColorSpace(SkColorSpaceXformer* xformer)
const {
SkASSERT(1 == this->countInputs());
sk_sp<SkImageFilter> input = xformer->apply(this->getInput(0));
if (input.get() != this->getInput(0)) {
return SkMatrixConvolutionImageFilter::Make(fKernelSize, fKernel, fGain, fBias,
fKernelOffset, fTileMode, fConvolveAlpha,
std::move(input), this->getCropRectIfSet());
}
return this->refMe();
}
SkIRect SkMatrixConvolutionImageFilter::onFilterNodeBounds(const SkIRect& src, const SkMatrix& ctm,
MapDirection direction) const {
SkIRect dst = src;
int w = fKernelSize.width() - 1, h = fKernelSize.height() - 1;
dst.fRight += w;
dst.fBottom += h;
if (kReverse_MapDirection == direction) {
dst.offset(-fKernelOffset);
} else {
dst.offset(fKernelOffset - SkIPoint::Make(w, h));
}
return dst;
}
bool SkMatrixConvolutionImageFilter::affectsTransparentBlack() const {
// Because the kernel is applied in device-space, we have no idea what
// pixels it will affect in object-space.
return true;
}
#ifndef SK_IGNORE_TO_STRING
void SkMatrixConvolutionImageFilter::toString(SkString* str) const {
str->appendf("SkMatrixConvolutionImageFilter: (");
str->appendf("size: (%d,%d) kernel: (", fKernelSize.width(), fKernelSize.height());
for (int y = 0; y < fKernelSize.height(); y++) {
for (int x = 0; x < fKernelSize.width(); x++) {
str->appendf("%f ", fKernel[y * fKernelSize.width() + x]);
}
}
str->appendf(")");
str->appendf("gain: %f bias: %f ", fGain, fBias);
str->appendf("offset: (%d, %d) ", fKernelOffset.fX, fKernelOffset.fY);
str->appendf("convolveAlpha: %s", fConvolveAlpha ? "true" : "false");
str->append(")");
}
#endif