blob: 2f4fe6ffb8e0b52652286b14e75366543124fd0c [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkBlitMask_opts_DEFINED
#define SkBlitMask_opts_DEFINED
#include "Sk4px.h"
namespace SK_OPTS_NS {
#if defined(SK_ARM_HAS_NEON)
// The Sk4px versions below will work fine with NEON, but we have had many indications
// that it doesn't perform as well as this NEON-specific code. TODO(mtklein): why?
#include "SkColor_opts_neon.h"
template <bool isColor>
static void D32_A8_Opaque_Color_neon(void* SK_RESTRICT dst, size_t dstRB,
const void* SK_RESTRICT maskPtr, size_t maskRB,
SkColor color, int width, int height) {
SkPMColor pmc = SkPreMultiplyColor(color);
SkPMColor* SK_RESTRICT device = (SkPMColor*)dst;
const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr;
uint8x8x4_t vpmc;
maskRB -= width;
dstRB -= (width << 2);
if (width >= 8) {
vpmc.val[NEON_A] = vdup_n_u8(SkGetPackedA32(pmc));
vpmc.val[NEON_R] = vdup_n_u8(SkGetPackedR32(pmc));
vpmc.val[NEON_G] = vdup_n_u8(SkGetPackedG32(pmc));
vpmc.val[NEON_B] = vdup_n_u8(SkGetPackedB32(pmc));
}
do {
int w = width;
while (w >= 8) {
uint8x8_t vmask = vld1_u8(mask);
uint16x8_t vscale, vmask256 = SkAlpha255To256_neon8(vmask);
if (isColor) {
vscale = vsubw_u8(vdupq_n_u16(256),
SkAlphaMul_neon8(vpmc.val[NEON_A], vmask256));
} else {
vscale = vsubw_u8(vdupq_n_u16(256), vmask);
}
uint8x8x4_t vdev = vld4_u8((uint8_t*)device);
vdev.val[NEON_A] = SkAlphaMul_neon8(vpmc.val[NEON_A], vmask256)
+ SkAlphaMul_neon8(vdev.val[NEON_A], vscale);
vdev.val[NEON_R] = SkAlphaMul_neon8(vpmc.val[NEON_R], vmask256)
+ SkAlphaMul_neon8(vdev.val[NEON_R], vscale);
vdev.val[NEON_G] = SkAlphaMul_neon8(vpmc.val[NEON_G], vmask256)
+ SkAlphaMul_neon8(vdev.val[NEON_G], vscale);
vdev.val[NEON_B] = SkAlphaMul_neon8(vpmc.val[NEON_B], vmask256)
+ SkAlphaMul_neon8(vdev.val[NEON_B], vscale);
vst4_u8((uint8_t*)device, vdev);
mask += 8;
device += 8;
w -= 8;
}
while (w--) {
unsigned aa = *mask++;
if (isColor) {
*device = SkBlendARGB32(pmc, *device, aa);
} else {
*device = SkAlphaMulQ(pmc, SkAlpha255To256(aa))
+ SkAlphaMulQ(*device, SkAlpha255To256(255 - aa));
}
device += 1;
};
device = (uint32_t*)((char*)device + dstRB);
mask += maskRB;
} while (--height != 0);
}
static void blit_mask_d32_a8_general(SkPMColor* dst, size_t dstRB,
const SkAlpha* mask, size_t maskRB,
SkColor color, int w, int h) {
D32_A8_Opaque_Color_neon<true>(dst, dstRB, mask, maskRB, color, w, h);
}
// As above, but made slightly simpler by requiring that color is opaque.
static void blit_mask_d32_a8_opaque(SkPMColor* dst, size_t dstRB,
const SkAlpha* mask, size_t maskRB,
SkColor color, int w, int h) {
D32_A8_Opaque_Color_neon<false>(dst, dstRB, mask, maskRB, color, w, h);
}
// Same as _opaque, but assumes color == SK_ColorBLACK, a very common and even simpler case.
static void blit_mask_d32_a8_black(SkPMColor* dst, size_t dstRB,
const SkAlpha* maskPtr, size_t maskRB,
int width, int height) {
SkPMColor* SK_RESTRICT device = (SkPMColor*)dst;
const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr;
maskRB -= width;
dstRB -= (width << 2);
do {
int w = width;
while (w >= 8) {
uint8x8_t vmask = vld1_u8(mask);
uint16x8_t vscale = vsubw_u8(vdupq_n_u16(256), vmask);
uint8x8x4_t vdevice = vld4_u8((uint8_t*)device);
vdevice = SkAlphaMulQ_neon8(vdevice, vscale);
vdevice.val[NEON_A] += vmask;
vst4_u8((uint8_t*)device, vdevice);
mask += 8;
device += 8;
w -= 8;
}
while (w-- > 0) {
unsigned aa = *mask++;
*device = (aa << SK_A32_SHIFT)
+ SkAlphaMulQ(*device, SkAlpha255To256(255 - aa));
device += 1;
};
device = (uint32_t*)((char*)device + dstRB);
mask += maskRB;
} while (--height != 0);
}
#else
static void blit_mask_d32_a8_general(SkPMColor* dst, size_t dstRB,
const SkAlpha* mask, size_t maskRB,
SkColor color, int w, int h) {
auto s = Sk4px::DupPMColor(SkPreMultiplyColor(color));
auto fn = [&](const Sk4px& d, const Sk4px& aa) {
// = (s + d(1-sa))aa + d(1-aa)
// = s*aa + d(1-sa*aa)
auto left = s.approxMulDiv255(aa),
right = d.approxMulDiv255(left.alphas().inv());
return left + right; // This does not overflow (exhaustively checked).
};
while (h --> 0) {
Sk4px::MapDstAlpha(w, dst, mask, fn);
dst += dstRB / sizeof(*dst);
mask += maskRB / sizeof(*mask);
}
}
// As above, but made slightly simpler by requiring that color is opaque.
static void blit_mask_d32_a8_opaque(SkPMColor* dst, size_t dstRB,
const SkAlpha* mask, size_t maskRB,
SkColor color, int w, int h) {
SkASSERT(SkColorGetA(color) == 0xFF);
auto s = Sk4px::DupPMColor(SkPreMultiplyColor(color));
auto fn = [&](const Sk4px& d, const Sk4px& aa) {
// = (s + d(1-sa))aa + d(1-aa)
// = s*aa + d(1-sa*aa)
// ~~~>
// = s*aa + d(1-aa)
return s.approxMulDiv255(aa) + d.approxMulDiv255(aa.inv());
};
while (h --> 0) {
Sk4px::MapDstAlpha(w, dst, mask, fn);
dst += dstRB / sizeof(*dst);
mask += maskRB / sizeof(*mask);
}
}
// Same as _opaque, but assumes color == SK_ColorBLACK, a very common and even simpler case.
static void blit_mask_d32_a8_black(SkPMColor* dst, size_t dstRB,
const SkAlpha* mask, size_t maskRB,
int w, int h) {
auto fn = [](const Sk4px& d, const Sk4px& aa) {
// = (s + d(1-sa))aa + d(1-aa)
// = s*aa + d(1-sa*aa)
// ~~~>
// a = 1*aa + d(1-1*aa) = aa + d(1-aa)
// c = 0*aa + d(1-1*aa) = d(1-aa)
return aa.zeroColors() + d.approxMulDiv255(aa.inv());
};
while (h --> 0) {
Sk4px::MapDstAlpha(w, dst, mask, fn);
dst += dstRB / sizeof(*dst);
mask += maskRB / sizeof(*mask);
}
}
#endif
static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB,
const SkAlpha* mask, size_t maskRB,
SkColor color, int w, int h) {
if (color == SK_ColorBLACK) {
blit_mask_d32_a8_black(dst, dstRB, mask, maskRB, w, h);
} else if (SkColorGetA(color) == 0xFF) {
blit_mask_d32_a8_opaque(dst, dstRB, mask, maskRB, color, w, h);
} else {
blit_mask_d32_a8_general(dst, dstRB, mask, maskRB, color, w, h);
}
}
} // SK_OPTS_NS
#endif//SkBlitMask_opts_DEFINED