| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include <algorithm> |
| #include "Sk4fLinearGradient.h" |
| #include "SkColorSpace_XYZ.h" |
| #include "SkGradientShaderPriv.h" |
| #include "SkHalf.h" |
| #include "SkLinearGradient.h" |
| #include "SkMallocPixelRef.h" |
| #include "SkRadialGradient.h" |
| #include "SkSweepGradient.h" |
| #include "SkTwoPointConicalGradient.h" |
| #include "../../jumper/SkJumper.h" |
| |
| |
| enum GradientSerializationFlags { |
| // Bits 29:31 used for various boolean flags |
| kHasPosition_GSF = 0x80000000, |
| kHasLocalMatrix_GSF = 0x40000000, |
| kHasColorSpace_GSF = 0x20000000, |
| |
| // Bits 12:28 unused |
| |
| // Bits 8:11 for fTileMode |
| kTileModeShift_GSF = 8, |
| kTileModeMask_GSF = 0xF, |
| |
| // Bits 0:7 for fGradFlags (note that kForce4fContext_PrivateFlag is 0x80) |
| kGradFlagsShift_GSF = 0, |
| kGradFlagsMask_GSF = 0xFF, |
| }; |
| |
| void SkGradientShaderBase::Descriptor::flatten(SkWriteBuffer& buffer) const { |
| uint32_t flags = 0; |
| if (fPos) { |
| flags |= kHasPosition_GSF; |
| } |
| if (fLocalMatrix) { |
| flags |= kHasLocalMatrix_GSF; |
| } |
| sk_sp<SkData> colorSpaceData = fColorSpace ? fColorSpace->serialize() : nullptr; |
| if (colorSpaceData) { |
| flags |= kHasColorSpace_GSF; |
| } |
| SkASSERT(static_cast<uint32_t>(fTileMode) <= kTileModeMask_GSF); |
| flags |= (fTileMode << kTileModeShift_GSF); |
| SkASSERT(fGradFlags <= kGradFlagsMask_GSF); |
| flags |= (fGradFlags << kGradFlagsShift_GSF); |
| |
| buffer.writeUInt(flags); |
| |
| buffer.writeColor4fArray(fColors, fCount); |
| if (colorSpaceData) { |
| buffer.writeDataAsByteArray(colorSpaceData.get()); |
| } |
| if (fPos) { |
| buffer.writeScalarArray(fPos, fCount); |
| } |
| if (fLocalMatrix) { |
| buffer.writeMatrix(*fLocalMatrix); |
| } |
| } |
| |
| bool SkGradientShaderBase::DescriptorScope::unflatten(SkReadBuffer& buffer) { |
| // New gradient format. Includes floating point color, color space, densely packed flags |
| uint32_t flags = buffer.readUInt(); |
| |
| fTileMode = (SkShader::TileMode)((flags >> kTileModeShift_GSF) & kTileModeMask_GSF); |
| fGradFlags = (flags >> kGradFlagsShift_GSF) & kGradFlagsMask_GSF; |
| |
| fCount = buffer.getArrayCount(); |
| if (fCount > kStorageCount) { |
| size_t allocSize = (sizeof(SkColor4f) + sizeof(SkScalar)) * fCount; |
| fDynamicStorage.reset(allocSize); |
| fColors = (SkColor4f*)fDynamicStorage.get(); |
| fPos = (SkScalar*)(fColors + fCount); |
| } else { |
| fColors = fColorStorage; |
| fPos = fPosStorage; |
| } |
| if (!buffer.readColor4fArray(mutableColors(), fCount)) { |
| return false; |
| } |
| if (SkToBool(flags & kHasColorSpace_GSF)) { |
| sk_sp<SkData> data = buffer.readByteArrayAsData(); |
| fColorSpace = SkColorSpace::Deserialize(data->data(), data->size()); |
| } else { |
| fColorSpace = nullptr; |
| } |
| if (SkToBool(flags & kHasPosition_GSF)) { |
| if (!buffer.readScalarArray(mutablePos(), fCount)) { |
| return false; |
| } |
| } else { |
| fPos = nullptr; |
| } |
| if (SkToBool(flags & kHasLocalMatrix_GSF)) { |
| fLocalMatrix = &fLocalMatrixStorage; |
| buffer.readMatrix(&fLocalMatrixStorage); |
| } else { |
| fLocalMatrix = nullptr; |
| } |
| return buffer.isValid(); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////////////////// |
| |
| SkGradientShaderBase::SkGradientShaderBase(const Descriptor& desc, const SkMatrix& ptsToUnit) |
| : INHERITED(desc.fLocalMatrix) |
| , fPtsToUnit(ptsToUnit) |
| { |
| fPtsToUnit.getType(); // Precache so reads are threadsafe. |
| SkASSERT(desc.fCount > 1); |
| |
| fGradFlags = static_cast<uint8_t>(desc.fGradFlags); |
| |
| SkASSERT((unsigned)desc.fTileMode < SkShader::kTileModeCount); |
| SkASSERT(SkShader::kTileModeCount == SK_ARRAY_COUNT(gTileProcs)); |
| fTileMode = desc.fTileMode; |
| fTileProc = gTileProcs[desc.fTileMode]; |
| |
| /* Note: we let the caller skip the first and/or last position. |
| i.e. pos[0] = 0.3, pos[1] = 0.7 |
| In these cases, we insert dummy entries to ensure that the final data |
| will be bracketed by [0, 1]. |
| i.e. our_pos[0] = 0, our_pos[1] = 0.3, our_pos[2] = 0.7, our_pos[3] = 1 |
| |
| Thus colorCount (the caller's value, and fColorCount (our value) may |
| differ by up to 2. In the above example: |
| colorCount = 2 |
| fColorCount = 4 |
| */ |
| fColorCount = desc.fCount; |
| // check if we need to add in dummy start and/or end position/colors |
| bool dummyFirst = false; |
| bool dummyLast = false; |
| if (desc.fPos) { |
| dummyFirst = desc.fPos[0] != 0; |
| dummyLast = desc.fPos[desc.fCount - 1] != SK_Scalar1; |
| fColorCount += dummyFirst + dummyLast; |
| } |
| |
| if (fColorCount > kColorStorageCount) { |
| size_t size = sizeof(SkColor) + sizeof(SkColor4f) + sizeof(Rec); |
| if (desc.fPos) { |
| size += sizeof(SkScalar); |
| } |
| fOrigColors = reinterpret_cast<SkColor*>(sk_malloc_throw(size * fColorCount)); |
| } |
| else { |
| fOrigColors = fStorage; |
| } |
| |
| fOrigColors4f = (SkColor4f*)(fOrigColors + fColorCount); |
| |
| // Now copy over the colors, adding the dummies as needed |
| SkColor4f* origColors = fOrigColors4f; |
| if (dummyFirst) { |
| *origColors++ = desc.fColors[0]; |
| } |
| memcpy(origColors, desc.fColors, desc.fCount * sizeof(SkColor4f)); |
| if (dummyLast) { |
| origColors += desc.fCount; |
| *origColors = desc.fColors[desc.fCount - 1]; |
| } |
| |
| // Convert our SkColor4f colors to SkColor as well. Note that this is incorrect if the |
| // source colors are not in sRGB gamut. We would need to do a gamut transformation, but |
| // SkColorSpaceXform can't do that (yet). GrColorSpaceXform can, but we may not have GPU |
| // support compiled in here. For the common case (sRGB colors), this does the right thing. |
| for (int i = 0; i < fColorCount; ++i) { |
| fOrigColors[i] = fOrigColors4f[i].toSkColor(); |
| } |
| |
| if (!desc.fColorSpace) { |
| // This happens if we were constructed from SkColors, so our colors are really sRGB |
| fColorSpace = SkColorSpace::MakeSRGBLinear(); |
| } else { |
| // The color space refers to the float colors, so it must be linear gamma |
| SkASSERT(desc.fColorSpace->gammaIsLinear()); |
| fColorSpace = desc.fColorSpace; |
| } |
| |
| if (desc.fPos && fColorCount) { |
| fOrigPos = (SkScalar*)(fOrigColors4f + fColorCount); |
| fRecs = (Rec*)(fOrigPos + fColorCount); |
| } else { |
| fOrigPos = nullptr; |
| fRecs = (Rec*)(fOrigColors4f + fColorCount); |
| } |
| |
| if (fColorCount > 2) { |
| Rec* recs = fRecs; |
| recs->fPos = 0; |
| // recs->fScale = 0; // unused; |
| recs += 1; |
| if (desc.fPos) { |
| SkScalar* origPosPtr = fOrigPos; |
| *origPosPtr++ = 0; |
| |
| /* We need to convert the user's array of relative positions into |
| fixed-point positions and scale factors. We need these results |
| to be strictly monotonic (no two values equal or out of order). |
| Hence this complex loop that just jams a zero for the scale |
| value if it sees a segment out of order, and it assures that |
| we start at 0 and end at 1.0 |
| */ |
| SkScalar prev = 0; |
| int startIndex = dummyFirst ? 0 : 1; |
| int count = desc.fCount + dummyLast; |
| for (int i = startIndex; i < count; i++) { |
| // force the last value to be 1.0 |
| SkScalar curr; |
| if (i == desc.fCount) { // we're really at the dummyLast |
| curr = 1; |
| } else { |
| curr = SkScalarPin(desc.fPos[i], 0, 1); |
| } |
| *origPosPtr++ = curr; |
| |
| recs->fPos = SkScalarToFixed(curr); |
| SkFixed diff = SkScalarToFixed(curr - prev); |
| if (diff > 0) { |
| recs->fScale = (1 << 24) / diff; |
| } else { |
| recs->fScale = 0; // ignore this segment |
| } |
| // get ready for the next value |
| prev = curr; |
| recs += 1; |
| } |
| } else { // assume even distribution |
| fOrigPos = nullptr; |
| |
| SkFixed dp = SK_Fixed1 / (desc.fCount - 1); |
| SkFixed p = dp; |
| SkFixed scale = (desc.fCount - 1) << 8; // (1 << 24) / dp |
| for (int i = 1; i < desc.fCount - 1; i++) { |
| recs->fPos = p; |
| recs->fScale = scale; |
| recs += 1; |
| p += dp; |
| } |
| recs->fPos = SK_Fixed1; |
| recs->fScale = scale; |
| } |
| } else if (desc.fPos) { |
| SkASSERT(2 == fColorCount); |
| fOrigPos[0] = SkScalarPin(desc.fPos[0], 0, 1); |
| fOrigPos[1] = SkScalarPin(desc.fPos[1], fOrigPos[0], 1); |
| if (0 == fOrigPos[0] && 1 == fOrigPos[1]) { |
| fOrigPos = nullptr; |
| } |
| } |
| this->initCommon(); |
| } |
| |
| SkGradientShaderBase::~SkGradientShaderBase() { |
| if (fOrigColors != fStorage) { |
| sk_free(fOrigColors); |
| } |
| } |
| |
| void SkGradientShaderBase::initCommon() { |
| unsigned colorAlpha = 0xFF; |
| for (int i = 0; i < fColorCount; i++) { |
| colorAlpha &= SkColorGetA(fOrigColors[i]); |
| } |
| fColorsAreOpaque = colorAlpha == 0xFF; |
| } |
| |
| void SkGradientShaderBase::flatten(SkWriteBuffer& buffer) const { |
| Descriptor desc; |
| desc.fColors = fOrigColors4f; |
| desc.fColorSpace = fColorSpace; |
| desc.fPos = fOrigPos; |
| desc.fCount = fColorCount; |
| desc.fTileMode = fTileMode; |
| desc.fGradFlags = fGradFlags; |
| |
| const SkMatrix& m = this->getLocalMatrix(); |
| desc.fLocalMatrix = m.isIdentity() ? nullptr : &m; |
| desc.flatten(buffer); |
| } |
| |
| void SkGradientShaderBase::FlipGradientColors(SkColor* colorDst, Rec* recDst, |
| SkColor* colorSrc, Rec* recSrc, |
| int count) { |
| SkAutoSTArray<8, SkColor> colorsTemp(count); |
| for (int i = 0; i < count; ++i) { |
| int offset = count - i - 1; |
| colorsTemp[i] = colorSrc[offset]; |
| } |
| if (count > 2) { |
| SkAutoSTArray<8, Rec> recsTemp(count); |
| for (int i = 0; i < count; ++i) { |
| int offset = count - i - 1; |
| recsTemp[i].fPos = SK_Fixed1 - recSrc[offset].fPos; |
| recsTemp[i].fScale = recSrc[offset].fScale; |
| } |
| memcpy(recDst, recsTemp.get(), count * sizeof(Rec)); |
| } |
| memcpy(colorDst, colorsTemp.get(), count * sizeof(SkColor)); |
| } |
| |
| static void add_stop_color(SkJumper_GradientCtx* ctx, size_t stop, SkPM4f Fs, SkPM4f Bs) { |
| (ctx->fs[0])[stop] = Fs.r(); |
| (ctx->fs[1])[stop] = Fs.g(); |
| (ctx->fs[2])[stop] = Fs.b(); |
| (ctx->fs[3])[stop] = Fs.a(); |
| (ctx->bs[0])[stop] = Bs.r(); |
| (ctx->bs[1])[stop] = Bs.g(); |
| (ctx->bs[2])[stop] = Bs.b(); |
| (ctx->bs[3])[stop] = Bs.a(); |
| } |
| |
| static void add_const_color(SkJumper_GradientCtx* ctx, size_t stop, SkPM4f color) { |
| add_stop_color(ctx, stop, SkPM4f::FromPremulRGBA(0,0,0,0), color); |
| } |
| |
| // Calculate a factor F and a bias B so that color = F*t + B when t is in range of |
| // the stop. Assume that the distance between stops is 1/gapCount. |
| static void init_stop_evenly( |
| SkJumper_GradientCtx* ctx, float gapCount, size_t stop, SkPM4f c_l, SkPM4f c_r) { |
| // Clankium's GCC 4.9 targeting ARMv7 is barfing when we use Sk4f math here, so go scalar... |
| SkPM4f Fs = {{ |
| (c_r.r() - c_l.r()) * gapCount, |
| (c_r.g() - c_l.g()) * gapCount, |
| (c_r.b() - c_l.b()) * gapCount, |
| (c_r.a() - c_l.a()) * gapCount, |
| }}; |
| SkPM4f Bs = {{ |
| c_l.r() - Fs.r()*(stop/gapCount), |
| c_l.g() - Fs.g()*(stop/gapCount), |
| c_l.b() - Fs.b()*(stop/gapCount), |
| c_l.a() - Fs.a()*(stop/gapCount), |
| }}; |
| add_stop_color(ctx, stop, Fs, Bs); |
| } |
| |
| // For each stop we calculate a bias B and a scale factor F, such that |
| // for any t between stops n and n+1, the color we want is B[n] + F[n]*t. |
| static void init_stop_pos( |
| SkJumper_GradientCtx* ctx, size_t stop, float t_l, float t_r, SkPM4f c_l, SkPM4f c_r) { |
| // See note about Clankium's old compiler in init_stop_evenly(). |
| SkPM4f Fs = {{ |
| (c_r.r() - c_l.r()) / (t_r - t_l), |
| (c_r.g() - c_l.g()) / (t_r - t_l), |
| (c_r.b() - c_l.b()) / (t_r - t_l), |
| (c_r.a() - c_l.a()) / (t_r - t_l), |
| }}; |
| SkPM4f Bs = {{ |
| c_l.r() - Fs.r()*t_l, |
| c_l.g() - Fs.g()*t_l, |
| c_l.b() - Fs.b()*t_l, |
| c_l.a() - Fs.a()*t_l, |
| }}; |
| ctx->ts[stop] = t_l; |
| add_stop_color(ctx, stop, Fs, Bs); |
| } |
| |
| bool SkGradientShaderBase::onAppendStages(SkRasterPipeline* p, |
| SkColorSpace* dstCS, |
| SkArenaAlloc* alloc, |
| const SkMatrix& ctm, |
| const SkPaint& paint, |
| const SkMatrix* localM) const { |
| SkMatrix matrix; |
| if (!this->computeTotalInverse(ctm, localM, &matrix)) { |
| return false; |
| } |
| |
| SkRasterPipeline_<256> tPipeline; |
| SkRasterPipeline_<256> postPipeline; |
| if (!this->adjustMatrixAndAppendStages(alloc, &matrix, &tPipeline, &postPipeline)) { |
| return false; |
| } |
| |
| p->append(SkRasterPipeline::seed_shader); |
| p->append_matrix(alloc, matrix); |
| p->extend(tPipeline); |
| |
| switch(fTileMode) { |
| case kMirror_TileMode: p->append(SkRasterPipeline::mirror_x_1); break; |
| case kRepeat_TileMode: p->append(SkRasterPipeline::repeat_x_1); break; |
| case kClamp_TileMode: |
| if (!fOrigPos) { |
| // We clamp only when the stops are evenly spaced. |
| // If not, there may be hard stops, and clamping ruins hard stops at 0 and/or 1. |
| // In that case, we must make sure we're using the general "gradient" stage, |
| // which is the only stage that will correctly handle unclamped t. |
| p->append(SkRasterPipeline::clamp_x_1); |
| } |
| } |
| |
| const bool premulGrad = fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag; |
| auto prepareColor = [premulGrad, dstCS, this](int i) { |
| SkColor4f c = this->getXformedColor(i, dstCS); |
| return premulGrad ? c.premul() |
| : SkPM4f::From4f(Sk4f::Load(&c)); |
| }; |
| |
| // The two-stop case with stops at 0 and 1. |
| if (fColorCount == 2 && fOrigPos == nullptr) { |
| const SkPM4f c_l = prepareColor(0), |
| c_r = prepareColor(1); |
| |
| // See F and B below. |
| auto* f_and_b = alloc->makeArrayDefault<SkPM4f>(2); |
| f_and_b[0] = SkPM4f::From4f(c_r.to4f() - c_l.to4f()); |
| f_and_b[1] = c_l; |
| |
| p->append(SkRasterPipeline::evenly_spaced_2_stop_gradient, f_and_b); |
| } else { |
| auto* ctx = alloc->make<SkJumper_GradientCtx>(); |
| |
| // Note: In order to handle clamps in search, the search assumes a stop conceptully placed |
| // at -inf. Therefore, the max number of stops is fColorCount+1. |
| for (int i = 0; i < 4; i++) { |
| // Allocate at least at for the AVX2 gather from a YMM register. |
| ctx->fs[i] = alloc->makeArray<float>(std::max(fColorCount+1, 8)); |
| ctx->bs[i] = alloc->makeArray<float>(std::max(fColorCount+1, 8)); |
| } |
| |
| if (fOrigPos == nullptr) { |
| // Handle evenly distributed stops. |
| |
| size_t stopCount = fColorCount; |
| float gapCount = stopCount - 1; |
| |
| SkPM4f c_l = prepareColor(0); |
| for (size_t i = 0; i < stopCount - 1; i++) { |
| SkPM4f c_r = prepareColor(i + 1); |
| init_stop_evenly(ctx, gapCount, i, c_l, c_r); |
| c_l = c_r; |
| } |
| add_const_color(ctx, stopCount - 1, c_l); |
| |
| ctx->stopCount = stopCount; |
| p->append(SkRasterPipeline::evenly_spaced_gradient, ctx); |
| } else { |
| // Handle arbitrary stops. |
| |
| ctx->ts = alloc->makeArray<float>(fColorCount+1); |
| |
| // Remove the dummy stops inserted by SkGradientShaderBase::SkGradientShaderBase |
| // because they are naturally handled by the search method. |
| int firstStop; |
| int lastStop; |
| if (fColorCount > 2) { |
| firstStop = fOrigColors4f[0] != fOrigColors4f[1] ? 0 : 1; |
| lastStop = fOrigColors4f[fColorCount - 2] != fOrigColors4f[fColorCount - 1] |
| ? fColorCount - 1 : fColorCount - 2; |
| } else { |
| firstStop = 0; |
| lastStop = 1; |
| } |
| |
| size_t stopCount = 0; |
| float t_l = fOrigPos[firstStop]; |
| SkPM4f c_l = prepareColor(firstStop); |
| add_const_color(ctx, stopCount++, c_l); |
| // N.B. lastStop is the index of the last stop, not one after. |
| for (int i = firstStop; i < lastStop; i++) { |
| float t_r = fOrigPos[i + 1]; |
| SkPM4f c_r = prepareColor(i + 1); |
| if (t_l < t_r) { |
| init_stop_pos(ctx, stopCount, t_l, t_r, c_l, c_r); |
| stopCount += 1; |
| } |
| t_l = t_r; |
| c_l = c_r; |
| } |
| |
| ctx->ts[stopCount] = t_l; |
| add_const_color(ctx, stopCount++, c_l); |
| |
| ctx->stopCount = stopCount; |
| p->append(SkRasterPipeline::gradient, ctx); |
| } |
| } |
| |
| if (!premulGrad && !this->colorsAreOpaque()) { |
| p->append(SkRasterPipeline::premul); |
| } |
| |
| p->extend(postPipeline); |
| |
| return true; |
| } |
| |
| |
| bool SkGradientShaderBase::isOpaque() const { |
| return fColorsAreOpaque; |
| } |
| |
| static unsigned rounded_divide(unsigned numer, unsigned denom) { |
| return (numer + (denom >> 1)) / denom; |
| } |
| |
| bool SkGradientShaderBase::onAsLuminanceColor(SkColor* lum) const { |
| // we just compute an average color. |
| // possibly we could weight this based on the proportional width for each color |
| // assuming they are not evenly distributed in the fPos array. |
| int r = 0; |
| int g = 0; |
| int b = 0; |
| const int n = fColorCount; |
| for (int i = 0; i < n; ++i) { |
| SkColor c = fOrigColors[i]; |
| r += SkColorGetR(c); |
| g += SkColorGetG(c); |
| b += SkColorGetB(c); |
| } |
| *lum = SkColorSetRGB(rounded_divide(r, n), rounded_divide(g, n), rounded_divide(b, n)); |
| return true; |
| } |
| |
| SkGradientShaderBase::GradientShaderBaseContext::GradientShaderBaseContext( |
| const SkGradientShaderBase& shader, const ContextRec& rec) |
| : INHERITED(shader, rec) |
| #ifdef SK_SUPPORT_LEGACY_GRADIENT_DITHERING |
| , fDither(true) |
| #else |
| , fDither(rec.fPaint->isDither()) |
| #endif |
| , fCache(shader.refCache(getPaintAlpha(), fDither)) |
| { |
| const SkMatrix& inverse = this->getTotalInverse(); |
| |
| fDstToIndex.setConcat(shader.fPtsToUnit, inverse); |
| SkASSERT(!fDstToIndex.hasPerspective()); |
| |
| fDstToIndexProc = fDstToIndex.getMapXYProc(); |
| |
| // now convert our colors in to PMColors |
| unsigned paintAlpha = this->getPaintAlpha(); |
| |
| fFlags = this->INHERITED::getFlags(); |
| if (shader.fColorsAreOpaque && paintAlpha == 0xFF) { |
| fFlags |= kOpaqueAlpha_Flag; |
| } |
| } |
| |
| bool SkGradientShaderBase::GradientShaderBaseContext::isValid() const { |
| return fDstToIndex.isFinite(); |
| } |
| |
| SkGradientShaderBase::GradientShaderCache::GradientShaderCache( |
| U8CPU alpha, bool dither, const SkGradientShaderBase& shader) |
| : fCacheAlpha(alpha) |
| , fCacheDither(dither) |
| , fShader(shader) |
| { |
| // Only initialize the cache in getCache32. |
| fCache32 = nullptr; |
| } |
| |
| SkGradientShaderBase::GradientShaderCache::~GradientShaderCache() {} |
| |
| /* |
| * r,g,b used to be SkFixed, but on gcc (4.2.1 mac and 4.6.3 goobuntu) in |
| * release builds, we saw a compiler error where the 0xFF parameter in |
| * SkPackARGB32() was being totally ignored whenever it was called with |
| * a non-zero add (e.g. 0x8000). |
| * |
| * We found two work-arounds: |
| * 1. change r,g,b to unsigned (or just one of them) |
| * 2. change SkPackARGB32 to + its (a << SK_A32_SHIFT) value instead |
| * of using | |
| * |
| * We chose #1 just because it was more localized. |
| * See http://code.google.com/p/skia/issues/detail?id=1113 |
| * |
| * The type SkUFixed encapsulate this need for unsigned, but logically Fixed. |
| */ |
| typedef uint32_t SkUFixed; |
| |
| void SkGradientShaderBase::GradientShaderCache::Build32bitCache( |
| SkPMColor cache[], SkColor c0, SkColor c1, |
| int count, U8CPU paintAlpha, uint32_t gradFlags, bool dither) { |
| SkASSERT(count > 1); |
| |
| // need to apply paintAlpha to our two endpoints |
| uint32_t a0 = SkMulDiv255Round(SkColorGetA(c0), paintAlpha); |
| uint32_t a1 = SkMulDiv255Round(SkColorGetA(c1), paintAlpha); |
| |
| |
| const bool interpInPremul = SkToBool(gradFlags & |
| SkGradientShader::kInterpolateColorsInPremul_Flag); |
| |
| uint32_t r0 = SkColorGetR(c0); |
| uint32_t g0 = SkColorGetG(c0); |
| uint32_t b0 = SkColorGetB(c0); |
| |
| uint32_t r1 = SkColorGetR(c1); |
| uint32_t g1 = SkColorGetG(c1); |
| uint32_t b1 = SkColorGetB(c1); |
| |
| if (interpInPremul) { |
| r0 = SkMulDiv255Round(r0, a0); |
| g0 = SkMulDiv255Round(g0, a0); |
| b0 = SkMulDiv255Round(b0, a0); |
| |
| r1 = SkMulDiv255Round(r1, a1); |
| g1 = SkMulDiv255Round(g1, a1); |
| b1 = SkMulDiv255Round(b1, a1); |
| } |
| |
| SkFixed da = SkIntToFixed(a1 - a0) / (count - 1); |
| SkFixed dr = SkIntToFixed(r1 - r0) / (count - 1); |
| SkFixed dg = SkIntToFixed(g1 - g0) / (count - 1); |
| SkFixed db = SkIntToFixed(b1 - b0) / (count - 1); |
| |
| /* We pre-add 1/8 to avoid having to add this to our [0] value each time |
| in the loop. Without this, the bias for each would be |
| 0x2000 0xA000 0xE000 0x6000 |
| With this trick, we can add 0 for the first (no-op) and just adjust the |
| others. |
| */ |
| const SkUFixed bias0 = dither ? 0x2000 : 0x8000; |
| const SkUFixed bias1 = dither ? 0x8000 : 0; |
| const SkUFixed bias2 = dither ? 0xC000 : 0; |
| const SkUFixed bias3 = dither ? 0x4000 : 0; |
| |
| SkUFixed a = SkIntToFixed(a0) + bias0; |
| SkUFixed r = SkIntToFixed(r0) + bias0; |
| SkUFixed g = SkIntToFixed(g0) + bias0; |
| SkUFixed b = SkIntToFixed(b0) + bias0; |
| |
| /* |
| * Our dither-cell (spatially) is |
| * 0 2 |
| * 3 1 |
| * Where |
| * [0] -> [-1/8 ... 1/8 ) values near 0 |
| * [1] -> [ 1/8 ... 3/8 ) values near 1/4 |
| * [2] -> [ 3/8 ... 5/8 ) values near 1/2 |
| * [3] -> [ 5/8 ... 7/8 ) values near 3/4 |
| */ |
| |
| if (0xFF == a0 && 0 == da) { |
| do { |
| cache[kCache32Count*0] = SkPackARGB32(0xFF, (r + 0 ) >> 16, |
| (g + 0 ) >> 16, |
| (b + 0 ) >> 16); |
| cache[kCache32Count*1] = SkPackARGB32(0xFF, (r + bias1) >> 16, |
| (g + bias1) >> 16, |
| (b + bias1) >> 16); |
| cache[kCache32Count*2] = SkPackARGB32(0xFF, (r + bias2) >> 16, |
| (g + bias2) >> 16, |
| (b + bias2) >> 16); |
| cache[kCache32Count*3] = SkPackARGB32(0xFF, (r + bias3) >> 16, |
| (g + bias3) >> 16, |
| (b + bias3) >> 16); |
| cache += 1; |
| r += dr; |
| g += dg; |
| b += db; |
| } while (--count != 0); |
| } else if (interpInPremul) { |
| do { |
| cache[kCache32Count*0] = SkPackARGB32((a + 0 ) >> 16, |
| (r + 0 ) >> 16, |
| (g + 0 ) >> 16, |
| (b + 0 ) >> 16); |
| cache[kCache32Count*1] = SkPackARGB32((a + bias1) >> 16, |
| (r + bias1) >> 16, |
| (g + bias1) >> 16, |
| (b + bias1) >> 16); |
| cache[kCache32Count*2] = SkPackARGB32((a + bias2) >> 16, |
| (r + bias2) >> 16, |
| (g + bias2) >> 16, |
| (b + bias2) >> 16); |
| cache[kCache32Count*3] = SkPackARGB32((a + bias3) >> 16, |
| (r + bias3) >> 16, |
| (g + bias3) >> 16, |
| (b + bias3) >> 16); |
| cache += 1; |
| a += da; |
| r += dr; |
| g += dg; |
| b += db; |
| } while (--count != 0); |
| } else { // interpolate in unpreml space |
| do { |
| cache[kCache32Count*0] = SkPremultiplyARGBInline((a + 0 ) >> 16, |
| (r + 0 ) >> 16, |
| (g + 0 ) >> 16, |
| (b + 0 ) >> 16); |
| cache[kCache32Count*1] = SkPremultiplyARGBInline((a + bias1) >> 16, |
| (r + bias1) >> 16, |
| (g + bias1) >> 16, |
| (b + bias1) >> 16); |
| cache[kCache32Count*2] = SkPremultiplyARGBInline((a + bias2) >> 16, |
| (r + bias2) >> 16, |
| (g + bias2) >> 16, |
| (b + bias2) >> 16); |
| cache[kCache32Count*3] = SkPremultiplyARGBInline((a + bias3) >> 16, |
| (r + bias3) >> 16, |
| (g + bias3) >> 16, |
| (b + bias3) >> 16); |
| cache += 1; |
| a += da; |
| r += dr; |
| g += dg; |
| b += db; |
| } while (--count != 0); |
| } |
| } |
| |
| static inline int SkFixedToFFFF(SkFixed x) { |
| SkASSERT((unsigned)x <= SK_Fixed1); |
| return x - (x >> 16); |
| } |
| |
| const SkPMColor* SkGradientShaderBase::GradientShaderCache::getCache32() { |
| fCache32InitOnce(SkGradientShaderBase::GradientShaderCache::initCache32, this); |
| SkASSERT(fCache32); |
| return fCache32; |
| } |
| |
| void SkGradientShaderBase::GradientShaderCache::initCache32(GradientShaderCache* cache) { |
| const int kNumberOfDitherRows = 4; |
| const SkImageInfo info = SkImageInfo::MakeN32Premul(kCache32Count, kNumberOfDitherRows); |
| |
| SkASSERT(nullptr == cache->fCache32PixelRef); |
| cache->fCache32PixelRef = SkMallocPixelRef::MakeAllocate(info, 0); |
| cache->fCache32 = (SkPMColor*)cache->fCache32PixelRef->pixels(); |
| if (cache->fShader.fColorCount == 2) { |
| Build32bitCache(cache->fCache32, cache->fShader.fOrigColors[0], |
| cache->fShader.fOrigColors[1], kCache32Count, cache->fCacheAlpha, |
| cache->fShader.fGradFlags, cache->fCacheDither); |
| } else { |
| Rec* rec = cache->fShader.fRecs; |
| int prevIndex = 0; |
| for (int i = 1; i < cache->fShader.fColorCount; i++) { |
| int nextIndex = SkFixedToFFFF(rec[i].fPos) >> kCache32Shift; |
| SkASSERT(nextIndex < kCache32Count); |
| |
| if (nextIndex > prevIndex) |
| Build32bitCache(cache->fCache32 + prevIndex, cache->fShader.fOrigColors[i-1], |
| cache->fShader.fOrigColors[i], nextIndex - prevIndex + 1, |
| cache->fCacheAlpha, cache->fShader.fGradFlags, cache->fCacheDither); |
| prevIndex = nextIndex; |
| } |
| } |
| } |
| |
| void SkGradientShaderBase::initLinearBitmap(SkBitmap* bitmap) const { |
| const bool interpInPremul = SkToBool(fGradFlags & |
| SkGradientShader::kInterpolateColorsInPremul_Flag); |
| SkHalf* pixelsF16 = reinterpret_cast<SkHalf*>(bitmap->getPixels()); |
| uint32_t* pixelsS32 = reinterpret_cast<uint32_t*>(bitmap->getPixels()); |
| |
| typedef std::function<void(const Sk4f&, int)> pixelWriteFn_t; |
| |
| pixelWriteFn_t writeF16Pixel = [&](const Sk4f& x, int index) { |
| Sk4h c = SkFloatToHalf_finite_ftz(x); |
| pixelsF16[4*index+0] = c[0]; |
| pixelsF16[4*index+1] = c[1]; |
| pixelsF16[4*index+2] = c[2]; |
| pixelsF16[4*index+3] = c[3]; |
| }; |
| pixelWriteFn_t writeS32Pixel = [&](const Sk4f& c, int index) { |
| pixelsS32[index] = Sk4f_toS32(c); |
| }; |
| |
| pixelWriteFn_t writeSizedPixel = |
| (kRGBA_F16_SkColorType == bitmap->colorType()) ? writeF16Pixel : writeS32Pixel; |
| pixelWriteFn_t writeUnpremulPixel = [&](const Sk4f& c, int index) { |
| writeSizedPixel(c * Sk4f(c[3], c[3], c[3], 1.0f), index); |
| }; |
| |
| pixelWriteFn_t writePixel = interpInPremul ? writeSizedPixel : writeUnpremulPixel; |
| |
| int prevIndex = 0; |
| for (int i = 1; i < fColorCount; i++) { |
| int nextIndex = (fColorCount == 2) ? (kCache32Count - 1) |
| : SkFixedToFFFF(fRecs[i].fPos) >> kCache32Shift; |
| SkASSERT(nextIndex < kCache32Count); |
| |
| if (nextIndex > prevIndex) { |
| Sk4f c0 = Sk4f::Load(fOrigColors4f[i - 1].vec()); |
| Sk4f c1 = Sk4f::Load(fOrigColors4f[i].vec()); |
| if (interpInPremul) { |
| c0 = c0 * Sk4f(c0[3], c0[3], c0[3], 1.0f); |
| c1 = c1 * Sk4f(c1[3], c1[3], c1[3], 1.0f); |
| } |
| |
| Sk4f step = Sk4f(1.0f / static_cast<float>(nextIndex - prevIndex)); |
| Sk4f delta = (c1 - c0) * step; |
| |
| for (int curIndex = prevIndex; curIndex <= nextIndex; ++curIndex) { |
| writePixel(c0, curIndex); |
| c0 += delta; |
| } |
| } |
| prevIndex = nextIndex; |
| } |
| SkASSERT(prevIndex == kCache32Count - 1); |
| } |
| |
| /* |
| * The gradient holds a cache for the most recent value of alpha. Successive |
| * callers with the same alpha value will share the same cache. |
| */ |
| sk_sp<SkGradientShaderBase::GradientShaderCache> SkGradientShaderBase::refCache(U8CPU alpha, |
| bool dither) const { |
| SkAutoMutexAcquire ama(fCacheMutex); |
| if (!fCache || fCache->getAlpha() != alpha || fCache->getDither() != dither) { |
| fCache.reset(new GradientShaderCache(alpha, dither, *this)); |
| } |
| // Increment the ref counter inside the mutex to ensure the returned pointer is still valid. |
| // Otherwise, the pointer may have been overwritten on a different thread before the object's |
| // ref count was incremented. |
| return fCache; |
| } |
| |
| SkColor4f SkGradientShaderBase::getXformedColor(size_t i, SkColorSpace* dstCS) const { |
| return dstCS ? to_colorspace(fOrigColors4f[i], fColorSpace.get(), dstCS) |
| : SkColor4f_from_SkColor(fOrigColors[i], nullptr); |
| } |
| |
| SK_DECLARE_STATIC_MUTEX(gGradientCacheMutex); |
| /* |
| * Because our caller might rebuild the same (logically the same) gradient |
| * over and over, we'd like to return exactly the same "bitmap" if possible, |
| * allowing the client to utilize a cache of our bitmap (e.g. with a GPU). |
| * To do that, we maintain a private cache of built-bitmaps, based on our |
| * colors and positions. Note: we don't try to flatten the fMapper, so if one |
| * is present, we skip the cache for now. |
| */ |
| void SkGradientShaderBase::getGradientTableBitmap(SkBitmap* bitmap, |
| GradientBitmapType bitmapType) const { |
| // our caller assumes no external alpha, so we ensure that our cache is built with 0xFF |
| sk_sp<GradientShaderCache> cache(this->refCache(0xFF, true)); |
| |
| // build our key: [numColors + colors[] + {positions[]} + flags + colorType ] |
| int count = 1 + fColorCount + 1 + 1; |
| if (fColorCount > 2) { |
| count += fColorCount - 1; // fRecs[].fPos |
| } |
| |
| SkAutoSTMalloc<16, int32_t> storage(count); |
| int32_t* buffer = storage.get(); |
| |
| *buffer++ = fColorCount; |
| memcpy(buffer, fOrigColors, fColorCount * sizeof(SkColor)); |
| buffer += fColorCount; |
| if (fColorCount > 2) { |
| for (int i = 1; i < fColorCount; i++) { |
| *buffer++ = fRecs[i].fPos; |
| } |
| } |
| *buffer++ = fGradFlags; |
| *buffer++ = static_cast<int32_t>(bitmapType); |
| SkASSERT(buffer - storage.get() == count); |
| |
| /////////////////////////////////// |
| |
| static SkGradientBitmapCache* gCache; |
| // each cache cost 1K or 2K of RAM, since each bitmap will be 1x256 at either 32bpp or 64bpp |
| static const int MAX_NUM_CACHED_GRADIENT_BITMAPS = 32; |
| SkAutoMutexAcquire ama(gGradientCacheMutex); |
| |
| if (nullptr == gCache) { |
| gCache = new SkGradientBitmapCache(MAX_NUM_CACHED_GRADIENT_BITMAPS); |
| } |
| size_t size = count * sizeof(int32_t); |
| |
| if (!gCache->find(storage.get(), size, bitmap)) { |
| if (GradientBitmapType::kLegacy == bitmapType) { |
| // force our cache32pixelref to be built |
| (void)cache->getCache32(); |
| bitmap->setInfo(SkImageInfo::MakeN32Premul(kCache32Count, 1)); |
| bitmap->setPixelRef(sk_ref_sp(cache->getCache32PixelRef()), 0, 0); |
| } else { |
| // For these cases we use the bitmap cache, but not the GradientShaderCache. So just |
| // allocate and populate the bitmap's data directly. |
| |
| SkImageInfo info; |
| switch (bitmapType) { |
| case GradientBitmapType::kSRGB: |
| info = SkImageInfo::Make(kCache32Count, 1, kRGBA_8888_SkColorType, |
| kPremul_SkAlphaType, |
| SkColorSpace::MakeSRGB()); |
| break; |
| case GradientBitmapType::kHalfFloat: |
| info = SkImageInfo::Make( |
| kCache32Count, 1, kRGBA_F16_SkColorType, kPremul_SkAlphaType, |
| SkColorSpace::MakeSRGBLinear()); |
| break; |
| default: |
| SkFAIL("Unexpected bitmap type"); |
| return; |
| } |
| bitmap->allocPixels(info); |
| this->initLinearBitmap(bitmap); |
| } |
| gCache->add(storage.get(), size, *bitmap); |
| } |
| } |
| |
| void SkGradientShaderBase::commonAsAGradient(GradientInfo* info, bool flipGrad) const { |
| if (info) { |
| if (info->fColorCount >= fColorCount) { |
| SkColor* colorLoc; |
| Rec* recLoc; |
| SkAutoSTArray<8, SkColor> colorStorage; |
| SkAutoSTArray<8, Rec> recStorage; |
| if (flipGrad && (info->fColors || info->fColorOffsets)) { |
| colorStorage.reset(fColorCount); |
| recStorage.reset(fColorCount); |
| colorLoc = colorStorage.get(); |
| recLoc = recStorage.get(); |
| FlipGradientColors(colorLoc, recLoc, fOrigColors, fRecs, fColorCount); |
| } else { |
| colorLoc = fOrigColors; |
| recLoc = fRecs; |
| } |
| if (info->fColors) { |
| memcpy(info->fColors, colorLoc, fColorCount * sizeof(SkColor)); |
| } |
| if (info->fColorOffsets) { |
| if (fColorCount == 2) { |
| info->fColorOffsets[0] = 0; |
| info->fColorOffsets[1] = SK_Scalar1; |
| } else if (fColorCount > 2) { |
| for (int i = 0; i < fColorCount; ++i) { |
| info->fColorOffsets[i] = SkFixedToScalar(recLoc[i].fPos); |
| } |
| } |
| } |
| } |
| info->fColorCount = fColorCount; |
| info->fTileMode = fTileMode; |
| info->fGradientFlags = fGradFlags; |
| } |
| } |
| |
| #ifndef SK_IGNORE_TO_STRING |
| void SkGradientShaderBase::toString(SkString* str) const { |
| |
| str->appendf("%d colors: ", fColorCount); |
| |
| for (int i = 0; i < fColorCount; ++i) { |
| str->appendHex(fOrigColors[i], 8); |
| if (i < fColorCount-1) { |
| str->append(", "); |
| } |
| } |
| |
| if (fColorCount > 2) { |
| str->append(" points: ("); |
| for (int i = 0; i < fColorCount; ++i) { |
| str->appendScalar(SkFixedToScalar(fRecs[i].fPos)); |
| if (i < fColorCount-1) { |
| str->append(", "); |
| } |
| } |
| str->append(")"); |
| } |
| |
| static const char* gTileModeName[SkShader::kTileModeCount] = { |
| "clamp", "repeat", "mirror" |
| }; |
| |
| str->append(" "); |
| str->append(gTileModeName[fTileMode]); |
| |
| this->INHERITED::toString(str); |
| } |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // Return true if these parameters are valid/legal/safe to construct a gradient |
| // |
| static bool valid_grad(const SkColor4f colors[], const SkScalar pos[], int count, |
| unsigned tileMode) { |
| return nullptr != colors && count >= 1 && tileMode < (unsigned)SkShader::kTileModeCount; |
| } |
| |
| static void desc_init(SkGradientShaderBase::Descriptor* desc, |
| const SkColor4f colors[], sk_sp<SkColorSpace> colorSpace, |
| const SkScalar pos[], int colorCount, |
| SkShader::TileMode mode, uint32_t flags, const SkMatrix* localMatrix) { |
| SkASSERT(colorCount > 1); |
| |
| desc->fColors = colors; |
| desc->fColorSpace = std::move(colorSpace); |
| desc->fPos = pos; |
| desc->fCount = colorCount; |
| desc->fTileMode = mode; |
| desc->fGradFlags = flags; |
| desc->fLocalMatrix = localMatrix; |
| } |
| |
| // assumes colors is SkColor4f* and pos is SkScalar* |
| #define EXPAND_1_COLOR(count) \ |
| SkColor4f tmp[2]; \ |
| do { \ |
| if (1 == count) { \ |
| tmp[0] = tmp[1] = colors[0]; \ |
| colors = tmp; \ |
| pos = nullptr; \ |
| count = 2; \ |
| } \ |
| } while (0) |
| |
| struct ColorStopOptimizer { |
| ColorStopOptimizer(const SkColor4f* colors, const SkScalar* pos, |
| int count, SkShader::TileMode mode) |
| : fColors(colors) |
| , fPos(pos) |
| , fCount(count) { |
| |
| if (!pos || count != 3) { |
| return; |
| } |
| |
| if (SkScalarNearlyEqual(pos[0], 0.0f) && |
| SkScalarNearlyEqual(pos[1], 0.0f) && |
| SkScalarNearlyEqual(pos[2], 1.0f)) { |
| |
| if (SkShader::kRepeat_TileMode == mode || |
| SkShader::kMirror_TileMode == mode || |
| colors[0] == colors[1]) { |
| |
| // Ignore the leftmost color/pos. |
| fColors += 1; |
| fPos += 1; |
| fCount = 2; |
| } |
| } else if (SkScalarNearlyEqual(pos[0], 0.0f) && |
| SkScalarNearlyEqual(pos[1], 1.0f) && |
| SkScalarNearlyEqual(pos[2], 1.0f)) { |
| |
| if (SkShader::kRepeat_TileMode == mode || |
| SkShader::kMirror_TileMode == mode || |
| colors[1] == colors[2]) { |
| |
| // Ignore the rightmost color/pos. |
| fCount = 2; |
| } |
| } |
| } |
| |
| const SkColor4f* fColors; |
| const SkScalar* fPos; |
| int fCount; |
| }; |
| |
| struct ColorConverter { |
| ColorConverter(const SkColor* colors, int count) { |
| for (int i = 0; i < count; ++i) { |
| fColors4f.push_back(SkColor4f::FromColor(colors[i])); |
| } |
| } |
| |
| SkSTArray<2, SkColor4f, true> fColors4f; |
| }; |
| |
| sk_sp<SkShader> SkGradientShader::MakeLinear(const SkPoint pts[2], |
| const SkColor colors[], |
| const SkScalar pos[], int colorCount, |
| SkShader::TileMode mode, |
| uint32_t flags, |
| const SkMatrix* localMatrix) { |
| ColorConverter converter(colors, colorCount); |
| return MakeLinear(pts, converter.fColors4f.begin(), nullptr, pos, colorCount, mode, flags, |
| localMatrix); |
| } |
| |
| sk_sp<SkShader> SkGradientShader::MakeLinear(const SkPoint pts[2], |
| const SkColor4f colors[], |
| sk_sp<SkColorSpace> colorSpace, |
| const SkScalar pos[], int colorCount, |
| SkShader::TileMode mode, |
| uint32_t flags, |
| const SkMatrix* localMatrix) { |
| if (!pts || !SkScalarIsFinite((pts[1] - pts[0]).length())) { |
| return nullptr; |
| } |
| if (!valid_grad(colors, pos, colorCount, mode)) { |
| return nullptr; |
| } |
| if (1 == colorCount) { |
| return SkShader::MakeColorShader(colors[0], std::move(colorSpace)); |
| } |
| if (localMatrix && !localMatrix->invert(nullptr)) { |
| return nullptr; |
| } |
| |
| ColorStopOptimizer opt(colors, pos, colorCount, mode); |
| |
| SkGradientShaderBase::Descriptor desc; |
| desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags, |
| localMatrix); |
| return sk_make_sp<SkLinearGradient>(pts, desc); |
| } |
| |
| sk_sp<SkShader> SkGradientShader::MakeRadial(const SkPoint& center, SkScalar radius, |
| const SkColor colors[], |
| const SkScalar pos[], int colorCount, |
| SkShader::TileMode mode, |
| uint32_t flags, |
| const SkMatrix* localMatrix) { |
| ColorConverter converter(colors, colorCount); |
| return MakeRadial(center, radius, converter.fColors4f.begin(), nullptr, pos, colorCount, mode, |
| flags, localMatrix); |
| } |
| |
| sk_sp<SkShader> SkGradientShader::MakeRadial(const SkPoint& center, SkScalar radius, |
| const SkColor4f colors[], |
| sk_sp<SkColorSpace> colorSpace, |
| const SkScalar pos[], int colorCount, |
| SkShader::TileMode mode, |
| uint32_t flags, |
| const SkMatrix* localMatrix) { |
| if (radius <= 0) { |
| return nullptr; |
| } |
| if (!valid_grad(colors, pos, colorCount, mode)) { |
| return nullptr; |
| } |
| if (1 == colorCount) { |
| return SkShader::MakeColorShader(colors[0], std::move(colorSpace)); |
| } |
| if (localMatrix && !localMatrix->invert(nullptr)) { |
| return nullptr; |
| } |
| |
| ColorStopOptimizer opt(colors, pos, colorCount, mode); |
| |
| SkGradientShaderBase::Descriptor desc; |
| desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags, |
| localMatrix); |
| return sk_make_sp<SkRadialGradient>(center, radius, desc); |
| } |
| |
| sk_sp<SkShader> SkGradientShader::MakeTwoPointConical(const SkPoint& start, |
| SkScalar startRadius, |
| const SkPoint& end, |
| SkScalar endRadius, |
| const SkColor colors[], |
| const SkScalar pos[], |
| int colorCount, |
| SkShader::TileMode mode, |
| uint32_t flags, |
| const SkMatrix* localMatrix) { |
| ColorConverter converter(colors, colorCount); |
| return MakeTwoPointConical(start, startRadius, end, endRadius, converter.fColors4f.begin(), |
| nullptr, pos, colorCount, mode, flags, localMatrix); |
| } |
| |
| sk_sp<SkShader> SkGradientShader::MakeTwoPointConical(const SkPoint& start, |
| SkScalar startRadius, |
| const SkPoint& end, |
| SkScalar endRadius, |
| const SkColor4f colors[], |
| sk_sp<SkColorSpace> colorSpace, |
| const SkScalar pos[], |
| int colorCount, |
| SkShader::TileMode mode, |
| uint32_t flags, |
| const SkMatrix* localMatrix) { |
| if (startRadius < 0 || endRadius < 0) { |
| return nullptr; |
| } |
| if (SkScalarNearlyZero((start - end).length()) && SkScalarNearlyZero(startRadius)) { |
| // We can treat this gradient as radial, which is faster. |
| return MakeRadial(start, endRadius, colors, std::move(colorSpace), pos, colorCount, |
| mode, flags, localMatrix); |
| } |
| if (!valid_grad(colors, pos, colorCount, mode)) { |
| return nullptr; |
| } |
| if (startRadius == endRadius) { |
| if (start == end || startRadius == 0) { |
| return SkShader::MakeEmptyShader(); |
| } |
| } |
| if (localMatrix && !localMatrix->invert(nullptr)) { |
| return nullptr; |
| } |
| EXPAND_1_COLOR(colorCount); |
| |
| ColorStopOptimizer opt(colors, pos, colorCount, mode); |
| |
| bool flipGradient = startRadius > endRadius; |
| |
| SkGradientShaderBase::Descriptor desc; |
| |
| if (!flipGradient) { |
| desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags, |
| localMatrix); |
| return sk_make_sp<SkTwoPointConicalGradient>(start, startRadius, end, endRadius, |
| flipGradient, desc); |
| } else { |
| SkAutoSTArray<8, SkColor4f> colorsNew(opt.fCount); |
| SkAutoSTArray<8, SkScalar> posNew(opt.fCount); |
| for (int i = 0; i < opt.fCount; ++i) { |
| colorsNew[i] = opt.fColors[opt.fCount - i - 1]; |
| } |
| |
| if (pos) { |
| for (int i = 0; i < opt.fCount; ++i) { |
| posNew[i] = 1 - opt.fPos[opt.fCount - i - 1]; |
| } |
| desc_init(&desc, colorsNew.get(), std::move(colorSpace), posNew.get(), opt.fCount, mode, |
| flags, localMatrix); |
| } else { |
| desc_init(&desc, colorsNew.get(), std::move(colorSpace), nullptr, opt.fCount, mode, |
| flags, localMatrix); |
| } |
| |
| return sk_make_sp<SkTwoPointConicalGradient>(end, endRadius, start, startRadius, |
| flipGradient, desc); |
| } |
| } |
| |
| sk_sp<SkShader> SkGradientShader::MakeSweep(SkScalar cx, SkScalar cy, |
| const SkColor colors[], |
| const SkScalar pos[], |
| int colorCount, |
| uint32_t flags, |
| const SkMatrix* localMatrix) { |
| ColorConverter converter(colors, colorCount); |
| return MakeSweep(cx, cy, converter.fColors4f.begin(), nullptr, pos, colorCount, flags, |
| localMatrix); |
| } |
| |
| sk_sp<SkShader> SkGradientShader::MakeSweep(SkScalar cx, SkScalar cy, |
| const SkColor4f colors[], |
| sk_sp<SkColorSpace> colorSpace, |
| const SkScalar pos[], |
| int colorCount, |
| uint32_t flags, |
| const SkMatrix* localMatrix) { |
| if (!valid_grad(colors, pos, colorCount, SkShader::kClamp_TileMode)) { |
| return nullptr; |
| } |
| if (1 == colorCount) { |
| return SkShader::MakeColorShader(colors[0], std::move(colorSpace)); |
| } |
| if (localMatrix && !localMatrix->invert(nullptr)) { |
| return nullptr; |
| } |
| |
| auto mode = SkShader::kClamp_TileMode; |
| |
| ColorStopOptimizer opt(colors, pos, colorCount, mode); |
| |
| SkGradientShaderBase::Descriptor desc; |
| desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags, |
| localMatrix); |
| return sk_make_sp<SkSweepGradient>(cx, cy, desc); |
| } |
| |
| SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkGradientShader) |
| SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkLinearGradient) |
| SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkRadialGradient) |
| SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkSweepGradient) |
| SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkTwoPointConicalGradient) |
| SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #if SK_SUPPORT_GPU |
| |
| #include "GrContext.h" |
| #include "GrShaderCaps.h" |
| #include "GrTextureStripAtlas.h" |
| #include "gl/GrGLContext.h" |
| #include "glsl/GrGLSLColorSpaceXformHelper.h" |
| #include "glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "glsl/GrGLSLProgramDataManager.h" |
| #include "glsl/GrGLSLUniformHandler.h" |
| #include "SkGr.h" |
| |
| static inline bool close_to_one_half(const SkFixed& val) { |
| return SkScalarNearlyEqual(SkFixedToScalar(val), SK_ScalarHalf); |
| } |
| |
| static inline int color_type_to_color_count(GrGradientEffect::ColorType colorType) { |
| switch (colorType) { |
| #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS |
| case GrGradientEffect::kSingleHardStop_ColorType: |
| return 4; |
| case GrGradientEffect::kHardStopLeftEdged_ColorType: |
| case GrGradientEffect::kHardStopRightEdged_ColorType: |
| return 3; |
| #endif |
| case GrGradientEffect::kTwo_ColorType: |
| return 2; |
| case GrGradientEffect::kThree_ColorType: |
| return 3; |
| case GrGradientEffect::kTexture_ColorType: |
| return 0; |
| } |
| |
| SkDEBUGFAIL("Unhandled ColorType in color_type_to_color_count()"); |
| return -1; |
| } |
| |
| GrGradientEffect::ColorType GrGradientEffect::determineColorType( |
| const SkGradientShaderBase& shader) { |
| #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS |
| if (shader.fOrigPos) { |
| if (4 == shader.fColorCount) { |
| if (SkScalarNearlyEqual(shader.fOrigPos[0], 0.0f) && |
| SkScalarNearlyEqual(shader.fOrigPos[1], shader.fOrigPos[2]) && |
| SkScalarNearlyEqual(shader.fOrigPos[3], 1.0f)) { |
| |
| return kSingleHardStop_ColorType; |
| } |
| } else if (3 == shader.fColorCount) { |
| if (SkScalarNearlyEqual(shader.fOrigPos[0], 0.0f) && |
| SkScalarNearlyEqual(shader.fOrigPos[1], 0.0f) && |
| SkScalarNearlyEqual(shader.fOrigPos[2], 1.0f)) { |
| |
| return kHardStopLeftEdged_ColorType; |
| } else if (SkScalarNearlyEqual(shader.fOrigPos[0], 0.0f) && |
| SkScalarNearlyEqual(shader.fOrigPos[1], 1.0f) && |
| SkScalarNearlyEqual(shader.fOrigPos[2], 1.0f)) { |
| |
| return kHardStopRightEdged_ColorType; |
| } |
| } |
| } |
| #endif |
| |
| if (SkShader::kClamp_TileMode == shader.getTileMode()) { |
| if (2 == shader.fColorCount) { |
| return kTwo_ColorType; |
| } else if (3 == shader.fColorCount && |
| close_to_one_half(shader.getRecs()[1].fPos)) { |
| return kThree_ColorType; |
| } |
| } |
| |
| return kTexture_ColorType; |
| } |
| |
| void GrGradientEffect::GLSLProcessor::emitUniforms(GrGLSLUniformHandler* uniformHandler, |
| const GrGradientEffect& ge) { |
| if (int colorCount = color_type_to_color_count(ge.getColorType())) { |
| fColorsUni = uniformHandler->addUniformArray(kFragment_GrShaderFlag, |
| kVec4f_GrSLType, |
| kDefault_GrSLPrecision, |
| "Colors", |
| colorCount); |
| if (ge.fColorType == kSingleHardStop_ColorType) { |
| fHardStopT = uniformHandler->addUniform(kFragment_GrShaderFlag, kFloat_GrSLType, |
| kDefault_GrSLPrecision, "HardStopT"); |
| } |
| } else { |
| fFSYUni = uniformHandler->addUniform(kFragment_GrShaderFlag, |
| kFloat_GrSLType, kDefault_GrSLPrecision, |
| "GradientYCoordFS"); |
| } |
| } |
| |
| static inline void set_after_interp_color_uni_array( |
| const GrGLSLProgramDataManager& pdman, |
| const GrGLSLProgramDataManager::UniformHandle uni, |
| const SkTDArray<SkColor4f>& colors, |
| const GrColorSpaceXform* colorSpaceXform) { |
| int count = colors.count(); |
| if (colorSpaceXform) { |
| constexpr int kSmallCount = 10; |
| SkAutoSTArray<4 * kSmallCount, float> vals(4 * count); |
| |
| for (int i = 0; i < count; i++) { |
| colorSpaceXform->srcToDst().mapScalars(colors[i].vec(), &vals[4 * i]); |
| } |
| |
| pdman.set4fv(uni, count, vals.get()); |
| } else { |
| pdman.set4fv(uni, count, (float*)&colors[0]); |
| } |
| } |
| |
| static inline void set_before_interp_color_uni_array( |
| const GrGLSLProgramDataManager& pdman, |
| const GrGLSLProgramDataManager::UniformHandle uni, |
| const SkTDArray<SkColor4f>& colors, |
| const GrColorSpaceXform* colorSpaceXform) { |
| int count = colors.count(); |
| constexpr int kSmallCount = 10; |
| SkAutoSTArray<4 * kSmallCount, float> vals(4 * count); |
| |
| for (int i = 0; i < count; i++) { |
| float a = colors[i].fA; |
| vals[4 * i + 0] = colors[i].fR * a; |
| vals[4 * i + 1] = colors[i].fG * a; |
| vals[4 * i + 2] = colors[i].fB * a; |
| vals[4 * i + 3] = a; |
| } |
| |
| if (colorSpaceXform) { |
| for (int i = 0; i < count; i++) { |
| colorSpaceXform->srcToDst().mapScalars(&vals[4 * i]); |
| } |
| } |
| |
| pdman.set4fv(uni, count, vals.get()); |
| } |
| |
| static inline void set_after_interp_color_uni_array(const GrGLSLProgramDataManager& pdman, |
| const GrGLSLProgramDataManager::UniformHandle uni, |
| const SkTDArray<SkColor>& colors) { |
| int count = colors.count(); |
| constexpr int kSmallCount = 10; |
| |
| SkAutoSTArray<4*kSmallCount, float> vals(4*count); |
| |
| for (int i = 0; i < colors.count(); i++) { |
| // RGBA |
| vals[4*i + 0] = SkColorGetR(colors[i]) / 255.f; |
| vals[4*i + 1] = SkColorGetG(colors[i]) / 255.f; |
| vals[4*i + 2] = SkColorGetB(colors[i]) / 255.f; |
| vals[4*i + 3] = SkColorGetA(colors[i]) / 255.f; |
| } |
| |
| pdman.set4fv(uni, colors.count(), vals.get()); |
| } |
| |
| static inline void set_before_interp_color_uni_array(const GrGLSLProgramDataManager& pdman, |
| const GrGLSLProgramDataManager::UniformHandle uni, |
| const SkTDArray<SkColor>& colors) { |
| int count = colors.count(); |
| constexpr int kSmallCount = 10; |
| |
| SkAutoSTArray<4*kSmallCount, float> vals(4*count); |
| |
| for (int i = 0; i < count; i++) { |
| float a = SkColorGetA(colors[i]) / 255.f; |
| float aDiv255 = a / 255.f; |
| |
| // RGBA |
| vals[4*i + 0] = SkColorGetR(colors[i]) * aDiv255; |
| vals[4*i + 1] = SkColorGetG(colors[i]) * aDiv255; |
| vals[4*i + 2] = SkColorGetB(colors[i]) * aDiv255; |
| vals[4*i + 3] = a; |
| } |
| |
| pdman.set4fv(uni, count, vals.get()); |
| } |
| |
| void GrGradientEffect::GLSLProcessor::onSetData(const GrGLSLProgramDataManager& pdman, |
| const GrFragmentProcessor& processor) { |
| const GrGradientEffect& e = processor.cast<GrGradientEffect>(); |
| |
| switch (e.getColorType()) { |
| #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS |
| case GrGradientEffect::kSingleHardStop_ColorType: |
| pdman.set1f(fHardStopT, e.fPositions[1]); |
| // fall through |
| case GrGradientEffect::kHardStopLeftEdged_ColorType: |
| case GrGradientEffect::kHardStopRightEdged_ColorType: |
| #endif |
| case GrGradientEffect::kTwo_ColorType: |
| case GrGradientEffect::kThree_ColorType: { |
| if (e.fColors4f.count() > 0) { |
| // Gamma-correct / color-space aware |
| if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) { |
| set_before_interp_color_uni_array(pdman, fColorsUni, e.fColors4f, |
| e.fColorSpaceXform.get()); |
| } else { |
| set_after_interp_color_uni_array(pdman, fColorsUni, e.fColors4f, |
| e.fColorSpaceXform.get()); |
| } |
| } else { |
| // Legacy mode. Would be nice if we had converted the 8-bit colors to float earlier |
| if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) { |
| set_before_interp_color_uni_array(pdman, fColorsUni, e.fColors); |
| } else { |
| set_after_interp_color_uni_array(pdman, fColorsUni, e.fColors); |
| } |
| } |
| |
| break; |
| } |
| |
| case GrGradientEffect::kTexture_ColorType: { |
| SkScalar yCoord = e.getYCoord(); |
| if (yCoord != fCachedYCoord) { |
| pdman.set1f(fFSYUni, yCoord); |
| fCachedYCoord = yCoord; |
| } |
| if (SkToBool(e.fColorSpaceXform)) { |
| fColorSpaceHelper.setData(pdman, e.fColorSpaceXform.get()); |
| } |
| break; |
| } |
| } |
| } |
| |
| uint32_t GrGradientEffect::GLSLProcessor::GenBaseGradientKey(const GrProcessor& processor) { |
| const GrGradientEffect& e = processor.cast<GrGradientEffect>(); |
| |
| uint32_t key = 0; |
| |
| if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) { |
| key |= kPremulBeforeInterpKey; |
| } |
| |
| if (GrGradientEffect::kTwo_ColorType == e.getColorType()) { |
| key |= kTwoColorKey; |
| } else if (GrGradientEffect::kThree_ColorType == e.getColorType()) { |
| key |= kThreeColorKey; |
| } |
| #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS |
| else if (GrGradientEffect::kSingleHardStop_ColorType == e.getColorType()) { |
| key |= kHardStopCenteredKey; |
| } else if (GrGradientEffect::kHardStopLeftEdged_ColorType == e.getColorType()) { |
| key |= kHardStopZeroZeroOneKey; |
| } else if (GrGradientEffect::kHardStopRightEdged_ColorType == e.getColorType()) { |
| key |= kHardStopZeroOneOneKey; |
| } |
| |
| if (SkShader::TileMode::kClamp_TileMode == e.fTileMode) { |
| key |= kClampTileMode; |
| } else if (SkShader::TileMode::kRepeat_TileMode == e.fTileMode) { |
| key |= kRepeatTileMode; |
| } else { |
| key |= kMirrorTileMode; |
| } |
| #endif |
| |
| key |= GrColorSpaceXform::XformKey(e.fColorSpaceXform.get()) << kReservedBits; |
| |
| return key; |
| } |
| |
| void GrGradientEffect::GLSLProcessor::emitColor(GrGLSLFPFragmentBuilder* fragBuilder, |
| GrGLSLUniformHandler* uniformHandler, |
| const GrShaderCaps* shaderCaps, |
| const GrGradientEffect& ge, |
| const char* gradientTValue, |
| const char* outputColor, |
| const char* inputColor, |
| const TextureSamplers& texSamplers) { |
| switch (ge.getColorType()) { |
| #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS |
| case kSingleHardStop_ColorType: { |
| const char* t = gradientTValue; |
| const char* colors = uniformHandler->getUniformCStr(fColorsUni); |
| const char* stopT = uniformHandler->getUniformCStr(fHardStopT); |
| |
| fragBuilder->codeAppendf("float clamp_t = clamp(%s, 0.0, 1.0);", t); |
| |
| // Account for tile mode |
| if (SkShader::kRepeat_TileMode == ge.fTileMode) { |
| fragBuilder->codeAppendf("clamp_t = fract(%s);", t); |
| } else if (SkShader::kMirror_TileMode == ge.fTileMode) { |
| fragBuilder->codeAppendf("if (%s < 0.0 || %s > 1.0) {", t, t); |
| fragBuilder->codeAppendf(" if (mod(floor(%s), 2.0) == 0.0) {", t); |
| fragBuilder->codeAppendf(" clamp_t = fract(%s);", t); |
| fragBuilder->codeAppendf(" } else {"); |
| fragBuilder->codeAppendf(" clamp_t = 1.0 - fract(%s);", t); |
| fragBuilder->codeAppendf(" }"); |
| fragBuilder->codeAppendf("}"); |
| } |
| |
| // Calculate color |
| fragBuilder->codeAppend ("vec4 start, end;"); |
| fragBuilder->codeAppend ("float relative_t;"); |
| fragBuilder->codeAppendf("if (clamp_t < %s) {", stopT); |
| fragBuilder->codeAppendf(" start = %s[0];", colors); |
| fragBuilder->codeAppendf(" end = %s[1];", colors); |
| fragBuilder->codeAppendf(" relative_t = clamp_t / %s;", stopT); |
| fragBuilder->codeAppend ("} else {"); |
| fragBuilder->codeAppendf(" start = %s[2];", colors); |
| fragBuilder->codeAppendf(" end = %s[3];", colors); |
| fragBuilder->codeAppendf(" relative_t = (clamp_t - %s) / (1 - %s);", stopT, stopT); |
| fragBuilder->codeAppend ("}"); |
| fragBuilder->codeAppend ("vec4 colorTemp = mix(start, end, relative_t);"); |
| |
| if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) { |
| fragBuilder->codeAppend("colorTemp.rgb *= colorTemp.a;"); |
| } |
| if (ge.fColorSpaceXform) { |
| fragBuilder->codeAppend("colorTemp.rgb = clamp(colorTemp.rgb, 0, colorTemp.a);"); |
| } |
| fragBuilder->codeAppendf("%s = %s * colorTemp;", outputColor, inputColor); |
| |
| break; |
| } |
| |
| case kHardStopLeftEdged_ColorType: { |
| const char* t = gradientTValue; |
| const char* colors = uniformHandler->getUniformCStr(fColorsUni); |
| |
| fragBuilder->codeAppendf("float clamp_t = clamp(%s, 0.0, 1.0);", t); |
| |
| // Account for tile mode |
| if (SkShader::kRepeat_TileMode == ge.fTileMode) { |
| fragBuilder->codeAppendf("clamp_t = fract(%s);", t); |
| } else if (SkShader::kMirror_TileMode == ge.fTileMode) { |
| fragBuilder->codeAppendf("if (%s < 0.0 || %s > 1.0) {", t, t); |
| fragBuilder->codeAppendf(" if (mod(floor(%s), 2.0) == 0.0) {", t); |
| fragBuilder->codeAppendf(" clamp_t = fract(%s);", t); |
| fragBuilder->codeAppendf(" } else {"); |
| fragBuilder->codeAppendf(" clamp_t = 1.0 - fract(%s);", t); |
| fragBuilder->codeAppendf(" }"); |
| fragBuilder->codeAppendf("}"); |
| } |
| |
| fragBuilder->codeAppendf("vec4 colorTemp = mix(%s[1], %s[2], clamp_t);", colors, |
| colors); |
| if (SkShader::kClamp_TileMode == ge.fTileMode) { |
| fragBuilder->codeAppendf("if (%s < 0.0) {", t); |
| fragBuilder->codeAppendf(" colorTemp = %s[0];", colors); |
| fragBuilder->codeAppendf("}"); |
| } |
| |
| if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) { |
| fragBuilder->codeAppend("colorTemp.rgb *= colorTemp.a;"); |
| } |
| if (ge.fColorSpaceXform) { |
| fragBuilder->codeAppend("colorTemp.rgb = clamp(colorTemp.rgb, 0, colorTemp.a);"); |
| } |
| fragBuilder->codeAppendf("%s = %s * colorTemp;", outputColor, inputColor); |
| |
| break; |
| } |
| |
| case kHardStopRightEdged_ColorType: { |
| const char* t = gradientTValue; |
| const char* colors = uniformHandler->getUniformCStr(fColorsUni); |
| |
| fragBuilder->codeAppendf("float clamp_t = clamp(%s, 0.0, 1.0);", t); |
| |
| // Account for tile mode |
| if (SkShader::kRepeat_TileMode == ge.fTileMode) { |
| fragBuilder->codeAppendf("clamp_t = fract(%s);", t); |
| } else if (SkShader::kMirror_TileMode == ge.fTileMode) { |
| fragBuilder->codeAppendf("if (%s < 0.0 || %s > 1.0) {", t, t); |
| fragBuilder->codeAppendf(" if (mod(floor(%s), 2.0) == 0.0) {", t); |
| fragBuilder->codeAppendf(" clamp_t = fract(%s);", t); |
| fragBuilder->codeAppendf(" } else {"); |
| fragBuilder->codeAppendf(" clamp_t = 1.0 - fract(%s);", t); |
| fragBuilder->codeAppendf(" }"); |
| fragBuilder->codeAppendf("}"); |
| } |
| |
| fragBuilder->codeAppendf("vec4 colorTemp = mix(%s[0], %s[1], clamp_t);", colors, |
| colors); |
| if (SkShader::kClamp_TileMode == ge.fTileMode) { |
| fragBuilder->codeAppendf("if (%s > 1.0) {", t); |
| fragBuilder->codeAppendf(" colorTemp = %s[2];", colors); |
| fragBuilder->codeAppendf("}"); |
| } |
| |
| if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) { |
| fragBuilder->codeAppend("colorTemp.rgb *= colorTemp.a;"); |
| } |
| if (ge.fColorSpaceXform) { |
| fragBuilder->codeAppend("colorTemp.rgb = clamp(colorTemp.rgb, 0, colorTemp.a);"); |
| } |
| fragBuilder->codeAppendf("%s = %s * colorTemp;", outputColor, inputColor); |
| |
| break; |
| } |
| #endif |
| |
| case kTwo_ColorType: { |
| const char* t = gradientTValue; |
| const char* colors = uniformHandler->getUniformCStr(fColorsUni); |
| |
| fragBuilder->codeAppendf("vec4 colorTemp = mix(%s[0], %s[1], clamp(%s, 0.0, 1.0));", |
| colors, colors, t); |
| |
| // We could skip this step if both colors are known to be opaque. Two |
| // considerations: |
| // The gradient SkShader reporting opaque is more restrictive than necessary in the two |
| // pt case. Make sure the key reflects this optimization (and note that it can use the |
| // same shader as thekBeforeIterp case). This same optimization applies to the 3 color |
| // case below. |
| if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) { |
| fragBuilder->codeAppend("colorTemp.rgb *= colorTemp.a;"); |
| } |
| if (ge.fColorSpaceXform) { |
| fragBuilder->codeAppend("colorTemp.rgb = clamp(colorTemp.rgb, 0, colorTemp.a);"); |
| } |
| |
| fragBuilder->codeAppendf("%s = %s * colorTemp;", outputColor, inputColor); |
| |
| break; |
| } |
| |
| case kThree_ColorType: { |
| const char* t = gradientTValue; |
| const char* colors = uniformHandler->getUniformCStr(fColorsUni); |
| |
| fragBuilder->codeAppendf("float oneMinus2t = 1.0 - (2.0 * %s);", t); |
| fragBuilder->codeAppendf("vec4 colorTemp = clamp(oneMinus2t, 0.0, 1.0) * %s[0];", |
| colors); |
| if (!shaderCaps->canUseMinAndAbsTogether()) { |
| // The Tegra3 compiler will sometimes never return if we have |
| // min(abs(oneMinus2t), 1.0), or do the abs first in a separate expression. |
| fragBuilder->codeAppendf("float minAbs = abs(oneMinus2t);"); |
| fragBuilder->codeAppendf("minAbs = minAbs > 1.0 ? 1.0 : minAbs;"); |
| fragBuilder->codeAppendf("colorTemp += (1.0 - minAbs) * %s[1];", colors); |
| } else { |
| fragBuilder->codeAppendf("colorTemp += (1.0 - min(abs(oneMinus2t), 1.0)) * %s[1];", |
| colors); |
| } |
| fragBuilder->codeAppendf("colorTemp += clamp(-oneMinus2t, 0.0, 1.0) * %s[2];", colors); |
| |
| if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) { |
| fragBuilder->codeAppend("colorTemp.rgb *= colorTemp.a;"); |
| } |
| if (ge.fColorSpaceXform) { |
| fragBuilder->codeAppend("colorTemp.rgb = clamp(colorTemp.rgb, 0, colorTemp.a);"); |
| } |
| |
| fragBuilder->codeAppendf("%s = %s * colorTemp;", outputColor, inputColor); |
| |
| break; |
| } |
| |
| case kTexture_ColorType: { |
| fColorSpaceHelper.emitCode(uniformHandler, ge.fColorSpaceXform.get()); |
| |
| const char* fsyuni = uniformHandler->getUniformCStr(fFSYUni); |
| |
| fragBuilder->codeAppendf("vec2 coord = vec2(%s, %s);", gradientTValue, fsyuni); |
| fragBuilder->codeAppendf("%s = ", outputColor); |
| fragBuilder->appendTextureLookupAndModulate(inputColor, texSamplers[0], "coord", |
| kVec2f_GrSLType, &fColorSpaceHelper); |
| fragBuilder->codeAppend(";"); |
| |
| break; |
| } |
| } |
| } |
| |
| ///////////////////////////////////////////////////////////////////// |
| |
| inline GrFragmentProcessor::OptimizationFlags GrGradientEffect::OptFlags(bool isOpaque) { |
| return isOpaque |
| ? kPreservesOpaqueInput_OptimizationFlag | |
| kCompatibleWithCoverageAsAlpha_OptimizationFlag |
| : kCompatibleWithCoverageAsAlpha_OptimizationFlag; |
| } |
| |
| GrGradientEffect::GrGradientEffect(const CreateArgs& args, bool isOpaque) |
| : INHERITED(OptFlags(isOpaque)) { |
| const SkGradientShaderBase& shader(*args.fShader); |
| |
| fIsOpaque = shader.isOpaque(); |
| |
| fColorType = this->determineColorType(shader); |
| fColorSpaceXform = std::move(args.fColorSpaceXform); |
| |
| if (kTexture_ColorType != fColorType) { |
| SkASSERT(shader.fOrigColors && shader.fOrigColors4f); |
| if (args.fGammaCorrect) { |
| fColors4f = SkTDArray<SkColor4f>(shader.fOrigColors4f, shader.fColorCount); |
| } else { |
| fColors = SkTDArray<SkColor>(shader.fOrigColors, shader.fColorCount); |
| } |
| |
| #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS |
| if (shader.fOrigPos) { |
| fPositions = SkTDArray<SkScalar>(shader.fOrigPos, shader.fColorCount); |
| } |
| #endif |
| } |
| |
| #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS |
| fTileMode = args.fTileMode; |
| #endif |
| |
| switch (fColorType) { |
| // The two and three color specializations do not currently support tiling. |
| case kTwo_ColorType: |
| case kThree_ColorType: |
| #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS |
| case kHardStopLeftEdged_ColorType: |
| case kHardStopRightEdged_ColorType: |
| case kSingleHardStop_ColorType: |
| #endif |
| fRow = -1; |
| |
| if (SkGradientShader::kInterpolateColorsInPremul_Flag & shader.getGradFlags()) { |
| fPremulType = kBeforeInterp_PremulType; |
| } else { |
| fPremulType = kAfterInterp_PremulType; |
| } |
| |
| fCoordTransform.reset(*args.fMatrix); |
| |
| break; |
| case kTexture_ColorType: |
| // doesn't matter how this is set, just be consistent because it is part of the |
| // effect key. |
| fPremulType = kBeforeInterp_PremulType; |
| |
| SkGradientShaderBase::GradientBitmapType bitmapType = |
| SkGradientShaderBase::GradientBitmapType::kLegacy; |
| if (args.fGammaCorrect) { |
| // Try to use F16 if we can |
| if (args.fContext->caps()->isConfigTexturable(kRGBA_half_GrPixelConfig)) { |
| bitmapType = SkGradientShaderBase::GradientBitmapType::kHalfFloat; |
| } else if (args.fContext->caps()->isConfigTexturable(kSRGBA_8888_GrPixelConfig)) { |
| bitmapType = SkGradientShaderBase::GradientBitmapType::kSRGB; |
| } else { |
| // This can happen, but only if someone explicitly creates an unsupported |
| // (eg sRGB) surface. Just fall back to legacy behavior. |
| } |
| } |
| |
| SkBitmap bitmap; |
| shader.getGradientTableBitmap(&bitmap, bitmapType); |
| SkASSERT(1 == bitmap.height() && SkIsPow2(bitmap.width())); |
| |
| |
| GrTextureStripAtlas::Desc desc; |
| desc.fWidth = bitmap.width(); |
| desc.fHeight = 32; |
| desc.fRowHeight = bitmap.height(); |
| desc.fContext = args.fContext; |
| desc.fConfig = SkImageInfo2GrPixelConfig(bitmap.info(), *args.fContext->caps()); |
| fAtlas = GrTextureStripAtlas::GetAtlas(desc); |
| SkASSERT(fAtlas); |
| |
| // We always filter the gradient table. Each table is one row of a texture, always |
| // y-clamp. |
| GrSamplerParams params; |
| params.setFilterMode(GrSamplerParams::kBilerp_FilterMode); |
| params.setTileModeX(args.fTileMode); |
| |
| fRow = fAtlas->lockRow(bitmap); |
| if (-1 != fRow) { |
| fYCoord = fAtlas->getYOffset(fRow)+SK_ScalarHalf*fAtlas->getNormalizedTexelHeight(); |
| // This is 1/2 places where auto-normalization is disabled |
| fCoordTransform.reset(*args.fMatrix, fAtlas->asTextureProxyRef().get(), false); |
| fTextureSampler.reset(fAtlas->asTextureProxyRef(), params); |
| } else { |
| // In this instance we know the params are: |
| // clampY, bilerp |
| // and the proxy is: |
| // exact fit, power of two in both dimensions |
| // Only the x-tileMode is unknown. However, given all the other knowns we know |
| // that GrMakeCachedBitmapProxy is sufficient (i.e., it won't need to be |
| // extracted to a subset or mipmapped). |
| sk_sp<GrTextureProxy> proxy = GrMakeCachedBitmapProxy( |
| args.fContext->resourceProvider(), |
| bitmap); |
| if (!proxy) { |
| SkDebugf("Gradient won't draw. Could not create texture."); |
| return; |
| } |
| // This is 2/2 places where auto-normalization is disabled |
| fCoordTransform.reset(*args.fMatrix, proxy.get(), false); |
| fTextureSampler.reset(std::move(proxy), params); |
| fYCoord = SK_ScalarHalf; |
| } |
| |
| this->addTextureSampler(&fTextureSampler); |
| |
| break; |
| } |
| |
| this->addCoordTransform(&fCoordTransform); |
| } |
| |
| GrGradientEffect::~GrGradientEffect() { |
| if (this->useAtlas()) { |
| fAtlas->unlockRow(fRow); |
| } |
| } |
| |
| bool GrGradientEffect::onIsEqual(const GrFragmentProcessor& processor) const { |
| const GrGradientEffect& ge = processor.cast<GrGradientEffect>(); |
| |
| if (this->fColorType != ge.getColorType()) { |
| return false; |
| } |
| SkASSERT(this->useAtlas() == ge.useAtlas()); |
| if (kTexture_ColorType == fColorType) { |
| if (fYCoord != ge.getYCoord()) { |
| return false; |
| } |
| } else { |
| if (kSingleHardStop_ColorType == fColorType) { |
| if (!SkScalarNearlyEqual(ge.fPositions[1], fPositions[1])) { |
| return false; |
| } |
| } |
| if (this->getPremulType() != ge.getPremulType() || |
| this->fColors.count() != ge.fColors.count() || |
| this->fColors4f.count() != ge.fColors4f.count()) { |
| return false; |
| } |
| |
| for (int i = 0; i < this->fColors.count(); i++) { |
| if (*this->getColors(i) != *ge.getColors(i)) { |
| return false; |
| } |
| } |
| for (int i = 0; i < this->fColors4f.count(); i++) { |
| if (*this->getColors4f(i) != *ge.getColors4f(i)) { |
| return false; |
| } |
| } |
| } |
| return GrColorSpaceXform::Equals(this->fColorSpaceXform.get(), ge.fColorSpaceXform.get()); |
| } |
| |
| #if GR_TEST_UTILS |
| GrGradientEffect::RandomGradientParams::RandomGradientParams(SkRandom* random) { |
| // Set color count to min of 2 so that we don't trigger the const color optimization and make |
| // a non-gradient processor. |
| fColorCount = random->nextRangeU(2, kMaxRandomGradientColors); |
| fUseColors4f = random->nextBool(); |
| |
| // if one color, omit stops, otherwise randomly decide whether or not to |
| if (fColorCount == 1 || (fColorCount >= 2 && random->nextBool())) { |
| fStops = nullptr; |
| } else { |
| fStops = fStopStorage; |
| } |
| |
| // if using SkColor4f, attach a random (possibly null) color space (with linear gamma) |
| if (fUseColors4f) { |
| fColorSpace = GrTest::TestColorSpace(random); |
| if (fColorSpace) { |
| SkASSERT(SkColorSpace_Base::Type::kXYZ == as_CSB(fColorSpace)->type()); |
| fColorSpace = static_cast<SkColorSpace_XYZ*>(fColorSpace.get())->makeLinearGamma(); |
| } |
| } |
| |
| SkScalar stop = 0.f; |
| for (int i = 0; i < fColorCount; ++i) { |
| if (fUseColors4f) { |
| fColors4f[i].fR = random->nextUScalar1(); |
| fColors4f[i].fG = random->nextUScalar1(); |
| fColors4f[i].fB = random->nextUScalar1(); |
| fColors4f[i].fA = random->nextUScalar1(); |
| } else { |
| fColors[i] = random->nextU(); |
| } |
| if (fStops) { |
| fStops[i] = stop; |
| stop = i < fColorCount - 1 ? stop + random->nextUScalar1() * (1.f - stop) : 1.f; |
| } |
| } |
| fTileMode = static_cast<SkShader::TileMode>(random->nextULessThan(SkShader::kTileModeCount)); |
| } |
| #endif |
| |
| #endif |