blob: f355971e43b9bbab9e4430cec8a8239243d7fbe0 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkTwoPointConicalGradient.h"
#include "SkRasterPipeline.h"
#include "../../jumper/SkJumper.h"
SkTwoPointConicalGradient::SkTwoPointConicalGradient(
const SkPoint& start, SkScalar startRadius,
const SkPoint& end, SkScalar endRadius,
bool flippedGrad, const Descriptor& desc)
: SkGradientShaderBase(desc, SkMatrix::I())
, fCenter1(start)
, fCenter2(end)
, fRadius1(startRadius)
, fRadius2(endRadius)
, fFlippedGrad(flippedGrad)
{
// this is degenerate, and should be caught by our caller
SkASSERT(fCenter1 != fCenter2 || fRadius1 != fRadius2);
}
bool SkTwoPointConicalGradient::isOpaque() const {
// Because areas outside the cone are left untouched, we cannot treat the
// shader as opaque even if the gradient itself is opaque.
// TODO(junov): Compute whether the cone fills the plane crbug.com/222380
return false;
}
// Returns the original non-sorted version of the gradient
SkShader::GradientType SkTwoPointConicalGradient::asAGradient(
GradientInfo* info) const {
if (info) {
commonAsAGradient(info, fFlippedGrad);
info->fPoint[0] = fCenter1;
info->fPoint[1] = fCenter2;
info->fRadius[0] = fRadius1;
info->fRadius[1] = fRadius2;
if (fFlippedGrad) {
SkTSwap(info->fPoint[0], info->fPoint[1]);
SkTSwap(info->fRadius[0], info->fRadius[1]);
}
}
return kConical_GradientType;
}
sk_sp<SkFlattenable> SkTwoPointConicalGradient::CreateProc(SkReadBuffer& buffer) {
DescriptorScope desc;
if (!desc.unflatten(buffer)) {
return nullptr;
}
SkPoint c1 = buffer.readPoint();
SkPoint c2 = buffer.readPoint();
SkScalar r1 = buffer.readScalar();
SkScalar r2 = buffer.readScalar();
if (buffer.readBool()) { // flipped
SkTSwap(c1, c2);
SkTSwap(r1, r2);
SkColor4f* colors = desc.mutableColors();
SkScalar* pos = desc.mutablePos();
const int last = desc.fCount - 1;
const int half = desc.fCount >> 1;
for (int i = 0; i < half; ++i) {
SkTSwap(colors[i], colors[last - i]);
if (pos) {
SkScalar tmp = pos[i];
pos[i] = SK_Scalar1 - pos[last - i];
pos[last - i] = SK_Scalar1 - tmp;
}
}
if (pos) {
if (desc.fCount & 1) {
pos[half] = SK_Scalar1 - pos[half];
}
}
}
return SkGradientShader::MakeTwoPointConical(c1, r1, c2, r2, desc.fColors,
std::move(desc.fColorSpace), desc.fPos,
desc.fCount, desc.fTileMode, desc.fGradFlags,
desc.fLocalMatrix);
}
void SkTwoPointConicalGradient::flatten(SkWriteBuffer& buffer) const {
this->INHERITED::flatten(buffer);
buffer.writePoint(fCenter1);
buffer.writePoint(fCenter2);
buffer.writeScalar(fRadius1);
buffer.writeScalar(fRadius2);
buffer.writeBool(fFlippedGrad);
}
#if SK_SUPPORT_GPU
#include "SkGr.h"
#include "SkTwoPointConicalGradient_gpu.h"
sk_sp<GrFragmentProcessor> SkTwoPointConicalGradient::asFragmentProcessor(
const AsFPArgs& args) const {
SkASSERT(args.fContext);
SkASSERT(fPtsToUnit.isIdentity());
sk_sp<GrColorSpaceXform> colorSpaceXform = GrColorSpaceXform::Make(fColorSpace.get(),
args.fDstColorSpace);
sk_sp<GrFragmentProcessor> inner(Gr2PtConicalGradientEffect::Make(
GrGradientEffect::CreateArgs(args.fContext, this, args.fLocalMatrix, fTileMode,
std::move(colorSpaceXform), SkToBool(args.fDstColorSpace))));
if (!inner) {
return nullptr;
}
return GrFragmentProcessor::MulOutputByInputAlpha(std::move(inner));
}
#endif
sk_sp<SkShader> SkTwoPointConicalGradient::onMakeColorSpace(SkColorSpaceXformer* xformer) const {
SkSTArray<8, SkColor> origColorsStorage(fColorCount);
SkSTArray<8, SkScalar> origPosStorage(fColorCount);
SkSTArray<8, SkColor> xformedColorsStorage(fColorCount);
SkColor* origColors = origColorsStorage.begin();
SkScalar* origPos = fOrigPos ? origPosStorage.begin() : nullptr;
SkColor* xformedColors = xformedColorsStorage.begin();
// Flip if necessary
SkPoint center1 = fFlippedGrad ? fCenter2 : fCenter1;
SkPoint center2 = fFlippedGrad ? fCenter1 : fCenter2;
SkScalar radius1 = fFlippedGrad ? fRadius2 : fRadius1;
SkScalar radius2 = fFlippedGrad ? fRadius1 : fRadius2;
for (int i = 0; i < fColorCount; i++) {
origColors[i] = fFlippedGrad ? fOrigColors[fColorCount - i - 1] : fOrigColors[i];
if (origPos) {
origPos[i] = fFlippedGrad ? 1.0f - fOrigPos[fColorCount - i - 1] : fOrigPos[i];
}
}
xformer->apply(xformedColors, origColors, fColorCount);
return SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2, xformedColors,
origPos, fColorCount, fTileMode, fGradFlags,
&this->getLocalMatrix());
}
#ifndef SK_IGNORE_TO_STRING
void SkTwoPointConicalGradient::toString(SkString* str) const {
str->append("SkTwoPointConicalGradient: (");
str->append("center1: (");
str->appendScalar(fCenter1.fX);
str->append(", ");
str->appendScalar(fCenter1.fY);
str->append(") radius1: ");
str->appendScalar(fRadius1);
str->append(" ");
str->append("center2: (");
str->appendScalar(fCenter2.fX);
str->append(", ");
str->appendScalar(fCenter2.fY);
str->append(") radius2: ");
str->appendScalar(fRadius2);
str->append(" ");
this->INHERITED::toString(str);
str->append(")");
}
#endif
bool SkTwoPointConicalGradient::adjustMatrixAndAppendStages(SkArenaAlloc* alloc,
SkMatrix* matrix,
SkRasterPipeline* p,
SkRasterPipeline* postPipeline) const {
const auto dCenter = (fCenter1 - fCenter2).length();
const auto dRadius = fRadius2 - fRadius1;
SkASSERT(dRadius >= 0);
// When the two circles are concentric, we can pretend we're radial (with a tiny *twist).
if (SkScalarNearlyZero(dCenter)) {
matrix->postTranslate(-fCenter1.fX, -fCenter1.fY);
matrix->postScale(1 / fRadius2, 1 / fRadius2);
p->append(SkRasterPipeline::xy_to_radius);
// Tiny twist: radial computes a t for [0, r2], but we want a t for [r1, r2].
auto scale = fRadius2 / dRadius;
auto bias = -fRadius1 / dRadius;
p->append_matrix(alloc, SkMatrix::Concat(SkMatrix::MakeTrans(bias, 0),
SkMatrix::MakeScale(scale, 1)));
return true;
}
// To simplify the stage math, we transform the universe (translate/scale/rotate)
// such that fCenter1 -> (0, 0) and fCenter2 -> (1, 0).
SkMatrix map_to_unit_vector;
const SkPoint centers[2] = { fCenter1, fCenter2 };
const SkPoint unitvec[2] = { {0, 0}, {1, 0} };
if (!map_to_unit_vector.setPolyToPoly(centers, unitvec, 2)) {
return false;
}
matrix->postConcat(map_to_unit_vector);
// Since we've squashed the centers into a unit vector, we must also scale
// all the coefficient variables by (1 / dCenter).
const auto coeffA = 1 - dRadius * dRadius / (dCenter * dCenter);
auto* ctx = alloc->make<SkJumper_2PtConicalCtx>();
ctx->fCoeffA = coeffA;
ctx->fInvCoeffA = 1 / coeffA;
ctx->fR0 = fRadius1 / dCenter;
ctx->fDR = dRadius / dCenter;
// Is the solver guaranteed to not produce degenerates?
bool isWellBehaved = true;
if (SkScalarNearlyZero(coeffA)) {
// The focal point is on the edge of the end circle.
p->append(SkRasterPipeline::xy_to_2pt_conical_linear, ctx);
isWellBehaved = false;
} else {
if (dCenter + fRadius1 > fRadius2) {
// The focal point is outside the end circle.
// We want the larger root, per spec:
// "For all values of ω where r(ω) > 0, starting with the value of ω nearest
// to positive infinity and ending with the value of ω nearest to negative
// infinity, draw the circumference of the circle with radius r(ω) at position
// (x(ω), y(ω)), with the color at ω, but only painting on the parts of the
// bitmap that have not yet been painted on by earlier circles in this step for
// this rendering of the gradient."
// (https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-createradialgradient)
p->append(fFlippedGrad ? SkRasterPipeline::xy_to_2pt_conical_quadratic_min
: SkRasterPipeline::xy_to_2pt_conical_quadratic_max, ctx);
isWellBehaved = false;
} else {
// The focal point is inside (well-behaved case).
p->append(SkRasterPipeline::xy_to_2pt_conical_quadratic_max, ctx);
}
}
if (!isWellBehaved) {
p->append(SkRasterPipeline::mask_2pt_conical_degenerates, ctx);
postPipeline->append(SkRasterPipeline::apply_vector_mask, &ctx->fMask);
}
return true;
}