blob: a031884e1f70f2a9235a2c423dd854bc89d62000 [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#if V8_TARGET_ARCH_ARM64
#include "src/arm64/assembler-arm64.h"
#include "src/arm64/assembler-arm64-inl.h"
#include "src/base/bits.h"
#include "src/base/cpu.h"
#include "src/code-stubs.h"
#include "src/frame-constants.h"
#include "src/register-configuration.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// CpuFeatures implementation.
void CpuFeatures::ProbeImpl(bool cross_compile) {
// AArch64 has no configuration options, no further probing is required.
supported_ = 0;
// Only use statically determined features for cross compile (snapshot).
if (cross_compile) return;
// We used to probe for coherent cache support, but on older CPUs it
// causes crashes (crbug.com/524337), and newer CPUs don't even have
// the feature any more.
}
void CpuFeatures::PrintTarget() { }
void CpuFeatures::PrintFeatures() {}
// -----------------------------------------------------------------------------
// CPURegList utilities.
CPURegister CPURegList::PopLowestIndex() {
DCHECK(IsValid());
if (IsEmpty()) {
return NoCPUReg;
}
int index = CountTrailingZeros(list_, kRegListSizeInBits);
DCHECK((1 << index) & list_);
Remove(index);
return CPURegister::Create(index, size_, type_);
}
CPURegister CPURegList::PopHighestIndex() {
DCHECK(IsValid());
if (IsEmpty()) {
return NoCPUReg;
}
int index = CountLeadingZeros(list_, kRegListSizeInBits);
index = kRegListSizeInBits - 1 - index;
DCHECK((1 << index) & list_);
Remove(index);
return CPURegister::Create(index, size_, type_);
}
void CPURegList::RemoveCalleeSaved() {
if (type() == CPURegister::kRegister) {
Remove(GetCalleeSaved(RegisterSizeInBits()));
} else if (type() == CPURegister::kVRegister) {
Remove(GetCalleeSavedV(RegisterSizeInBits()));
} else {
DCHECK_EQ(type(), CPURegister::kNoRegister);
DCHECK(IsEmpty());
// The list must already be empty, so do nothing.
}
}
CPURegList CPURegList::GetCalleeSaved(int size) {
return CPURegList(CPURegister::kRegister, size, 19, 29);
}
CPURegList CPURegList::GetCalleeSavedV(int size) {
return CPURegList(CPURegister::kVRegister, size, 8, 15);
}
CPURegList CPURegList::GetCallerSaved(int size) {
// Registers x0-x18 and lr (x30) are caller-saved.
CPURegList list = CPURegList(CPURegister::kRegister, size, 0, 18);
list.Combine(lr);
return list;
}
CPURegList CPURegList::GetCallerSavedV(int size) {
// Registers d0-d7 and d16-d31 are caller-saved.
CPURegList list = CPURegList(CPURegister::kVRegister, size, 0, 7);
list.Combine(CPURegList(CPURegister::kVRegister, size, 16, 31));
return list;
}
// This function defines the list of registers which are associated with a
// safepoint slot. Safepoint register slots are saved contiguously on the stack.
// MacroAssembler::SafepointRegisterStackIndex handles mapping from register
// code to index in the safepoint register slots. Any change here can affect
// this mapping.
CPURegList CPURegList::GetSafepointSavedRegisters() {
CPURegList list = CPURegList::GetCalleeSaved();
list.Combine(
CPURegList(CPURegister::kRegister, kXRegSizeInBits, kJSCallerSaved));
// Note that unfortunately we can't use symbolic names for registers and have
// to directly use register codes. This is because this function is used to
// initialize some static variables and we can't rely on register variables
// to be initialized due to static initialization order issues in C++.
// Drop ip0 and ip1 (i.e. x16 and x17), as they should not be expected to be
// preserved outside of the macro assembler.
list.Remove(16);
list.Remove(17);
// Add x18 to the safepoint list, as although it's not in kJSCallerSaved, it
// is a caller-saved register according to the procedure call standard.
list.Combine(18);
// Add the link register (x30) to the safepoint list.
list.Combine(30);
return list;
}
// -----------------------------------------------------------------------------
// Implementation of RelocInfo
const int RelocInfo::kApplyMask = 1 << RelocInfo::INTERNAL_REFERENCE;
bool RelocInfo::IsCodedSpecially() {
// The deserializer needs to know whether a pointer is specially coded. Being
// specially coded on ARM64 means that it is a movz/movk sequence. We don't
// generate those for relocatable pointers.
return false;
}
bool RelocInfo::IsInConstantPool() {
Instruction* instr = reinterpret_cast<Instruction*>(pc_);
return instr->IsLdrLiteralX();
}
Address RelocInfo::embedded_address() const {
return Memory::Address_at(Assembler::target_pointer_address_at(pc_));
}
uint32_t RelocInfo::embedded_size() const {
return Memory::uint32_at(Assembler::target_pointer_address_at(pc_));
}
void RelocInfo::set_embedded_address(Isolate* isolate, Address address,
ICacheFlushMode flush_mode) {
Assembler::set_target_address_at(isolate, pc_, constant_pool_, address,
flush_mode);
}
void RelocInfo::set_embedded_size(Isolate* isolate, uint32_t size,
ICacheFlushMode flush_mode) {
Memory::uint32_at(Assembler::target_pointer_address_at(pc_)) = size;
// No icache flushing needed, see comment in set_target_address_at.
}
void RelocInfo::set_js_to_wasm_address(Isolate* isolate, Address address,
ICacheFlushMode icache_flush_mode) {
DCHECK_EQ(rmode_, JS_TO_WASM_CALL);
set_embedded_address(isolate, address, icache_flush_mode);
}
Address RelocInfo::js_to_wasm_address() const {
DCHECK_EQ(rmode_, JS_TO_WASM_CALL);
return embedded_address();
}
bool AreAliased(const CPURegister& reg1, const CPURegister& reg2,
const CPURegister& reg3, const CPURegister& reg4,
const CPURegister& reg5, const CPURegister& reg6,
const CPURegister& reg7, const CPURegister& reg8) {
int number_of_valid_regs = 0;
int number_of_valid_fpregs = 0;
RegList unique_regs = 0;
RegList unique_fpregs = 0;
const CPURegister regs[] = {reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8};
for (unsigned i = 0; i < arraysize(regs); i++) {
if (regs[i].IsRegister()) {
number_of_valid_regs++;
unique_regs |= regs[i].bit();
} else if (regs[i].IsVRegister()) {
number_of_valid_fpregs++;
unique_fpregs |= regs[i].bit();
} else {
DCHECK(!regs[i].IsValid());
}
}
int number_of_unique_regs =
CountSetBits(unique_regs, sizeof(unique_regs) * kBitsPerByte);
int number_of_unique_fpregs =
CountSetBits(unique_fpregs, sizeof(unique_fpregs) * kBitsPerByte);
DCHECK(number_of_valid_regs >= number_of_unique_regs);
DCHECK(number_of_valid_fpregs >= number_of_unique_fpregs);
return (number_of_valid_regs != number_of_unique_regs) ||
(number_of_valid_fpregs != number_of_unique_fpregs);
}
bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2,
const CPURegister& reg3, const CPURegister& reg4,
const CPURegister& reg5, const CPURegister& reg6,
const CPURegister& reg7, const CPURegister& reg8) {
DCHECK(reg1.IsValid());
bool match = true;
match &= !reg2.IsValid() || reg2.IsSameSizeAndType(reg1);
match &= !reg3.IsValid() || reg3.IsSameSizeAndType(reg1);
match &= !reg4.IsValid() || reg4.IsSameSizeAndType(reg1);
match &= !reg5.IsValid() || reg5.IsSameSizeAndType(reg1);
match &= !reg6.IsValid() || reg6.IsSameSizeAndType(reg1);
match &= !reg7.IsValid() || reg7.IsSameSizeAndType(reg1);
match &= !reg8.IsValid() || reg8.IsSameSizeAndType(reg1);
return match;
}
bool AreSameFormat(const VRegister& reg1, const VRegister& reg2,
const VRegister& reg3, const VRegister& reg4) {
DCHECK(reg1.IsValid());
return (!reg2.IsValid() || reg2.IsSameFormat(reg1)) &&
(!reg3.IsValid() || reg3.IsSameFormat(reg1)) &&
(!reg4.IsValid() || reg4.IsSameFormat(reg1));
}
bool AreConsecutive(const VRegister& reg1, const VRegister& reg2,
const VRegister& reg3, const VRegister& reg4) {
DCHECK(reg1.IsValid());
if (!reg2.IsValid()) {
DCHECK(!reg3.IsValid() && !reg4.IsValid());
return true;
} else if (reg2.code() != ((reg1.code() + 1) % kNumberOfVRegisters)) {
return false;
}
if (!reg3.IsValid()) {
DCHECK(!reg4.IsValid());
return true;
} else if (reg3.code() != ((reg2.code() + 1) % kNumberOfVRegisters)) {
return false;
}
if (!reg4.IsValid()) {
return true;
} else if (reg4.code() != ((reg3.code() + 1) % kNumberOfVRegisters)) {
return false;
}
return true;
}
void Immediate::InitializeHandle(Handle<HeapObject> handle) {
value_ = reinterpret_cast<intptr_t>(handle.address());
rmode_ = RelocInfo::EMBEDDED_OBJECT;
}
bool Operand::NeedsRelocation(const Assembler* assembler) const {
RelocInfo::Mode rmode = immediate_.rmode();
if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
return assembler->serializer_enabled();
}
return !RelocInfo::IsNone(rmode);
}
bool ConstPool::AddSharedEntry(SharedEntryMap& entry_map, uint64_t data,
int offset) {
auto existing = entry_map.find(data);
if (existing == entry_map.end()) {
entry_map[data] = static_cast<int>(entries_.size());
entries_.push_back(std::make_pair(data, std::vector<int>(1, offset)));
return true;
}
int index = existing->second;
entries_[index].second.push_back(offset);
return false;
}
// Constant Pool.
bool ConstPool::RecordEntry(intptr_t data, RelocInfo::Mode mode) {
DCHECK(mode != RelocInfo::COMMENT && mode != RelocInfo::CONST_POOL &&
mode != RelocInfo::VENEER_POOL &&
mode != RelocInfo::DEOPT_SCRIPT_OFFSET &&
mode != RelocInfo::DEOPT_INLINING_ID &&
mode != RelocInfo::DEOPT_REASON && mode != RelocInfo::DEOPT_ID);
bool write_reloc_info = true;
uint64_t raw_data = static_cast<uint64_t>(data);
int offset = assm_->pc_offset();
if (IsEmpty()) {
first_use_ = offset;
}
if (CanBeShared(mode)) {
write_reloc_info = AddSharedEntry(shared_entries_, raw_data, offset);
} else if (mode == RelocInfo::CODE_TARGET &&
assm_->IsCodeTargetSharingAllowed() && raw_data != 0) {
// A zero data value is a placeholder and must not be shared.
write_reloc_info = AddSharedEntry(handle_to_index_map_, raw_data, offset);
} else {
entries_.push_back(std::make_pair(raw_data, std::vector<int>(1, offset)));
}
if (EntryCount() > Assembler::kApproxMaxPoolEntryCount) {
// Request constant pool emission after the next instruction.
assm_->SetNextConstPoolCheckIn(1);
}
return write_reloc_info;
}
int ConstPool::DistanceToFirstUse() {
DCHECK_GE(first_use_, 0);
return assm_->pc_offset() - first_use_;
}
int ConstPool::MaxPcOffset() {
// There are no pending entries in the pool so we can never get out of
// range.
if (IsEmpty()) return kMaxInt;
// Entries are not necessarily emitted in the order they are added so in the
// worst case the first constant pool use will be accessing the last entry.
return first_use_ + kMaxLoadLiteralRange - WorstCaseSize();
}
int ConstPool::WorstCaseSize() {
if (IsEmpty()) return 0;
// Max size prologue:
// b over
// ldr xzr, #pool_size
// blr xzr
// nop
// All entries are 64-bit for now.
return 4 * kInstructionSize + EntryCount() * kPointerSize;
}
int ConstPool::SizeIfEmittedAtCurrentPc(bool require_jump) {
if (IsEmpty()) return 0;
// Prologue is:
// b over ;; if require_jump
// ldr xzr, #pool_size
// blr xzr
// nop ;; if not 64-bit aligned
int prologue_size = require_jump ? kInstructionSize : 0;
prologue_size += 2 * kInstructionSize;
prologue_size += IsAligned(assm_->pc_offset() + prologue_size, 8) ?
0 : kInstructionSize;
// All entries are 64-bit for now.
return prologue_size + EntryCount() * kPointerSize;
}
void ConstPool::Emit(bool require_jump) {
DCHECK(!assm_->is_const_pool_blocked());
// Prevent recursive pool emission and protect from veneer pools.
Assembler::BlockPoolsScope block_pools(assm_);
int size = SizeIfEmittedAtCurrentPc(require_jump);
Label size_check;
assm_->bind(&size_check);
assm_->RecordConstPool(size);
// Emit the constant pool. It is preceded by an optional branch if
// require_jump and a header which will:
// 1) Encode the size of the constant pool, for use by the disassembler.
// 2) Terminate the program, to try to prevent execution from accidentally
// flowing into the constant pool.
// 3) align the pool entries to 64-bit.
// The header is therefore made of up to three arm64 instructions:
// ldr xzr, #<size of the constant pool in 32-bit words>
// blr xzr
// nop
//
// If executed, the header will likely segfault and lr will point to the
// instruction following the offending blr.
// TODO(all): Make the alignment part less fragile. Currently code is
// allocated as a byte array so there are no guarantees the alignment will
// be preserved on compaction. Currently it works as allocation seems to be
// 64-bit aligned.
// Emit branch if required
Label after_pool;
if (require_jump) {
assm_->b(&after_pool);
}
// Emit the header.
assm_->RecordComment("[ Constant Pool");
EmitMarker();
EmitGuard();
assm_->Align(8);
// Emit constant pool entries.
// TODO(all): currently each relocated constant is 64 bits, consider adding
// support for 32-bit entries.
EmitEntries();
assm_->RecordComment("]");
if (after_pool.is_linked()) {
assm_->bind(&after_pool);
}
DCHECK(assm_->SizeOfCodeGeneratedSince(&size_check) ==
static_cast<unsigned>(size));
}
void ConstPool::Clear() {
shared_entries_.clear();
handle_to_index_map_.clear();
entries_.clear();
first_use_ = -1;
}
bool ConstPool::CanBeShared(RelocInfo::Mode mode) {
// Constant pool currently does not support 32-bit entries.
DCHECK(mode != RelocInfo::NONE32);
return RelocInfo::IsNone(mode) ||
(mode >= RelocInfo::FIRST_SHAREABLE_RELOC_MODE);
}
void ConstPool::EmitMarker() {
// A constant pool size is expressed in number of 32-bits words.
// Currently all entries are 64-bit.
// + 1 is for the crash guard.
// + 0/1 for alignment.
int word_count = EntryCount() * 2 + 1 +
(IsAligned(assm_->pc_offset(), 8) ? 0 : 1);
assm_->Emit(LDR_x_lit |
Assembler::ImmLLiteral(word_count) |
Assembler::Rt(xzr));
}
MemOperand::PairResult MemOperand::AreConsistentForPair(
const MemOperand& operandA,
const MemOperand& operandB,
int access_size_log2) {
DCHECK_GE(access_size_log2, 0);
DCHECK_LE(access_size_log2, 3);
// Step one: check that they share the same base, that the mode is Offset
// and that the offset is a multiple of access size.
if (!operandA.base().Is(operandB.base()) ||
(operandA.addrmode() != Offset) ||
(operandB.addrmode() != Offset) ||
((operandA.offset() & ((1 << access_size_log2) - 1)) != 0)) {
return kNotPair;
}
// Step two: check that the offsets are contiguous and that the range
// is OK for ldp/stp.
if ((operandB.offset() == operandA.offset() + (1 << access_size_log2)) &&
is_int7(operandA.offset() >> access_size_log2)) {
return kPairAB;
}
if ((operandA.offset() == operandB.offset() + (1 << access_size_log2)) &&
is_int7(operandB.offset() >> access_size_log2)) {
return kPairBA;
}
return kNotPair;
}
void ConstPool::EmitGuard() {
#ifdef DEBUG
Instruction* instr = reinterpret_cast<Instruction*>(assm_->pc());
DCHECK(instr->preceding()->IsLdrLiteralX() &&
instr->preceding()->Rt() == xzr.code());
#endif
assm_->EmitPoolGuard();
}
void ConstPool::EmitEntries() {
DCHECK(IsAligned(assm_->pc_offset(), 8));
// Emit entries.
for (const auto& entry : entries_) {
for (const auto& pc : entry.second) {
Instruction* instr = assm_->InstructionAt(pc);
// Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
DCHECK(instr->IsLdrLiteral() && instr->ImmLLiteral() == 0);
instr->SetImmPCOffsetTarget(assm_->isolate_data(), assm_->pc());
}
assm_->dc64(entry.first);
}
Clear();
}
// Assembler
Assembler::Assembler(IsolateData isolate_data, void* buffer, int buffer_size)
: AssemblerBase(isolate_data, buffer, buffer_size),
constpool_(this),
unresolved_branches_() {
const_pool_blocked_nesting_ = 0;
veneer_pool_blocked_nesting_ = 0;
code_target_sharing_blocked_nesting_ = 0;
Reset();
}
Assembler::~Assembler() {
DCHECK(constpool_.IsEmpty());
DCHECK_EQ(const_pool_blocked_nesting_, 0);
DCHECK_EQ(veneer_pool_blocked_nesting_, 0);
DCHECK_EQ(code_target_sharing_blocked_nesting_, 0);
}
void Assembler::Reset() {
#ifdef DEBUG
DCHECK((pc_ >= buffer_) && (pc_ < buffer_ + buffer_size_));
DCHECK_EQ(const_pool_blocked_nesting_, 0);
DCHECK_EQ(veneer_pool_blocked_nesting_, 0);
DCHECK_EQ(code_target_sharing_blocked_nesting_, 0);
DCHECK(unresolved_branches_.empty());
memset(buffer_, 0, pc_ - buffer_);
#endif
pc_ = buffer_;
reloc_info_writer.Reposition(reinterpret_cast<byte*>(buffer_ + buffer_size_),
reinterpret_cast<byte*>(pc_));
constpool_.Clear();
next_constant_pool_check_ = 0;
next_veneer_pool_check_ = kMaxInt;
no_const_pool_before_ = 0;
}
void Assembler::AllocateAndInstallRequestedHeapObjects(Isolate* isolate) {
for (auto& request : heap_object_requests_) {
Handle<HeapObject> object;
switch (request.kind()) {
case HeapObjectRequest::kHeapNumber:
object = isolate->factory()->NewHeapNumber(request.heap_number(),
IMMUTABLE, TENURED);
break;
case HeapObjectRequest::kCodeStub:
request.code_stub()->set_isolate(isolate);
object = request.code_stub()->GetCode();
break;
}
Address pc = buffer_ + request.offset();
Memory::Address_at(target_pointer_address_at(pc)) = object.address();
}
}
void Assembler::GetCode(Isolate* isolate, CodeDesc* desc) {
// Emit constant pool if necessary.
CheckConstPool(true, false);
DCHECK(constpool_.IsEmpty());
AllocateAndInstallRequestedHeapObjects(isolate);
// Set up code descriptor.
if (desc) {
desc->buffer = reinterpret_cast<byte*>(buffer_);
desc->buffer_size = buffer_size_;
desc->instr_size = pc_offset();
desc->reloc_size =
static_cast<int>((reinterpret_cast<byte*>(buffer_) + buffer_size_) -
reloc_info_writer.pos());
desc->origin = this;
desc->constant_pool_size = 0;
desc->unwinding_info_size = 0;
desc->unwinding_info = nullptr;
}
}
void Assembler::Align(int m) {
DCHECK(m >= 4 && base::bits::IsPowerOfTwo(m));
while ((pc_offset() & (m - 1)) != 0) {
nop();
}
}
void Assembler::CheckLabelLinkChain(Label const * label) {
#ifdef DEBUG
if (label->is_linked()) {
static const int kMaxLinksToCheck = 64; // Avoid O(n2) behaviour.
int links_checked = 0;
int64_t linkoffset = label->pos();
bool end_of_chain = false;
while (!end_of_chain) {
if (++links_checked > kMaxLinksToCheck) break;
Instruction * link = InstructionAt(linkoffset);
int64_t linkpcoffset = link->ImmPCOffset();
int64_t prevlinkoffset = linkoffset + linkpcoffset;
end_of_chain = (linkoffset == prevlinkoffset);
linkoffset = linkoffset + linkpcoffset;
}
}
#endif
}
void Assembler::RemoveBranchFromLabelLinkChain(Instruction* branch,
Label* label,
Instruction* label_veneer) {
DCHECK(label->is_linked());
CheckLabelLinkChain(label);
Instruction* link = InstructionAt(label->pos());
Instruction* prev_link = link;
Instruction* next_link;
bool end_of_chain = false;
while (link != branch && !end_of_chain) {
next_link = link->ImmPCOffsetTarget();
end_of_chain = (link == next_link);
prev_link = link;
link = next_link;
}
DCHECK(branch == link);
next_link = branch->ImmPCOffsetTarget();
if (branch == prev_link) {
// The branch is the first instruction in the chain.
if (branch == next_link) {
// It is also the last instruction in the chain, so it is the only branch
// currently referring to this label.
label->Unuse();
} else {
label->link_to(
static_cast<int>(reinterpret_cast<byte*>(next_link) - buffer_));
}
} else if (branch == next_link) {
// The branch is the last (but not also the first) instruction in the chain.
prev_link->SetImmPCOffsetTarget(isolate_data(), prev_link);
} else {
// The branch is in the middle of the chain.
if (prev_link->IsTargetInImmPCOffsetRange(next_link)) {
prev_link->SetImmPCOffsetTarget(isolate_data(), next_link);
} else if (label_veneer != nullptr) {
// Use the veneer for all previous links in the chain.
prev_link->SetImmPCOffsetTarget(isolate_data(), prev_link);
end_of_chain = false;
link = next_link;
while (!end_of_chain) {
next_link = link->ImmPCOffsetTarget();
end_of_chain = (link == next_link);
link->SetImmPCOffsetTarget(isolate_data(), label_veneer);
link = next_link;
}
} else {
// The assert below will fire.
// Some other work could be attempted to fix up the chain, but it would be
// rather complicated. If we crash here, we may want to consider using an
// other mechanism than a chain of branches.
//
// Note that this situation currently should not happen, as we always call
// this function with a veneer to the target label.
// However this could happen with a MacroAssembler in the following state:
// [previous code]
// B(label);
// [20KB code]
// Tbz(label); // First tbz. Pointing to unconditional branch.
// [20KB code]
// Tbz(label); // Second tbz. Pointing to the first tbz.
// [more code]
// and this function is called to remove the first tbz from the label link
// chain. Since tbz has a range of +-32KB, the second tbz cannot point to
// the unconditional branch.
CHECK(prev_link->IsTargetInImmPCOffsetRange(next_link));
UNREACHABLE();
}
}
CheckLabelLinkChain(label);
}
void Assembler::bind(Label* label) {
// Bind label to the address at pc_. All instructions (most likely branches)
// that are linked to this label will be updated to point to the newly-bound
// label.
DCHECK(!label->is_near_linked());
DCHECK(!label->is_bound());
DeleteUnresolvedBranchInfoForLabel(label);
// If the label is linked, the link chain looks something like this:
//
// |--I----I-------I-------L
// |---------------------->| pc_offset
// |-------------->| linkoffset = label->pos()
// |<------| link->ImmPCOffset()
// |------>| prevlinkoffset = linkoffset + link->ImmPCOffset()
//
// On each iteration, the last link is updated and then removed from the
// chain until only one remains. At that point, the label is bound.
//
// If the label is not linked, no preparation is required before binding.
while (label->is_linked()) {
int linkoffset = label->pos();
Instruction* link = InstructionAt(linkoffset);
int prevlinkoffset = linkoffset + static_cast<int>(link->ImmPCOffset());
CheckLabelLinkChain(label);
DCHECK_GE(linkoffset, 0);
DCHECK(linkoffset < pc_offset());
DCHECK((linkoffset > prevlinkoffset) ||
(linkoffset - prevlinkoffset == kStartOfLabelLinkChain));
DCHECK_GE(prevlinkoffset, 0);
// Update the link to point to the label.
if (link->IsUnresolvedInternalReference()) {
// Internal references do not get patched to an instruction but directly
// to an address.
internal_reference_positions_.push_back(linkoffset);
PatchingAssembler patcher(isolate_data(), reinterpret_cast<byte*>(link),
2);
patcher.dc64(reinterpret_cast<uintptr_t>(pc_));
} else {
link->SetImmPCOffsetTarget(isolate_data(),
reinterpret_cast<Instruction*>(pc_));
}
// Link the label to the previous link in the chain.
if (linkoffset - prevlinkoffset == kStartOfLabelLinkChain) {
// We hit kStartOfLabelLinkChain, so the chain is fully processed.
label->Unuse();
} else {
// Update the label for the next iteration.
label->link_to(prevlinkoffset);
}
}
label->bind_to(pc_offset());
DCHECK(label->is_bound());
DCHECK(!label->is_linked());
}
int Assembler::LinkAndGetByteOffsetTo(Label* label) {
DCHECK_EQ(sizeof(*pc_), 1);
CheckLabelLinkChain(label);
int offset;
if (label->is_bound()) {
// The label is bound, so it does not need to be updated. Referring
// instructions must link directly to the label as they will not be
// updated.
//
// In this case, label->pos() returns the offset of the label from the
// start of the buffer.
//
// Note that offset can be zero for self-referential instructions. (This
// could be useful for ADR, for example.)
offset = label->pos() - pc_offset();
DCHECK_LE(offset, 0);
} else {
if (label->is_linked()) {
// The label is linked, so the referring instruction should be added onto
// the end of the label's link chain.
//
// In this case, label->pos() returns the offset of the last linked
// instruction from the start of the buffer.
offset = label->pos() - pc_offset();
DCHECK_NE(offset, kStartOfLabelLinkChain);
// Note that the offset here needs to be PC-relative only so that the
// first instruction in a buffer can link to an unbound label. Otherwise,
// the offset would be 0 for this case, and 0 is reserved for
// kStartOfLabelLinkChain.
} else {
// The label is unused, so it now becomes linked and the referring
// instruction is at the start of the new link chain.
offset = kStartOfLabelLinkChain;
}
// The instruction at pc is now the last link in the label's chain.
label->link_to(pc_offset());
}
return offset;
}
void Assembler::DeleteUnresolvedBranchInfoForLabelTraverse(Label* label) {
DCHECK(label->is_linked());
CheckLabelLinkChain(label);
int link_offset = label->pos();
int link_pcoffset;
bool end_of_chain = false;
while (!end_of_chain) {
Instruction * link = InstructionAt(link_offset);
link_pcoffset = static_cast<int>(link->ImmPCOffset());
// ADR instructions are not handled by veneers.
if (link->IsImmBranch()) {
int max_reachable_pc =
static_cast<int>(InstructionOffset(link) +
Instruction::ImmBranchRange(link->BranchType()));
typedef std::multimap<int, FarBranchInfo>::iterator unresolved_info_it;
std::pair<unresolved_info_it, unresolved_info_it> range;
range = unresolved_branches_.equal_range(max_reachable_pc);
unresolved_info_it it;
for (it = range.first; it != range.second; ++it) {
if (it->second.pc_offset_ == link_offset) {
unresolved_branches_.erase(it);
break;
}
}
}
end_of_chain = (link_pcoffset == 0);
link_offset = link_offset + link_pcoffset;
}
}
void Assembler::DeleteUnresolvedBranchInfoForLabel(Label* label) {
if (unresolved_branches_.empty()) {
DCHECK_EQ(next_veneer_pool_check_, kMaxInt);
return;
}
if (label->is_linked()) {
// Branches to this label will be resolved when the label is bound, normally
// just after all the associated info has been deleted.
DeleteUnresolvedBranchInfoForLabelTraverse(label);
}
if (unresolved_branches_.empty()) {
next_veneer_pool_check_ = kMaxInt;
} else {
next_veneer_pool_check_ =
unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
}
}
void Assembler::StartBlockConstPool() {
if (const_pool_blocked_nesting_++ == 0) {
// Prevent constant pool checks happening by setting the next check to
// the biggest possible offset.
next_constant_pool_check_ = kMaxInt;
}
}
void Assembler::EndBlockConstPool() {
if (--const_pool_blocked_nesting_ == 0) {
// Check the constant pool hasn't been blocked for too long.
DCHECK(pc_offset() < constpool_.MaxPcOffset());
// Two cases:
// * no_const_pool_before_ >= next_constant_pool_check_ and the emission is
// still blocked
// * no_const_pool_before_ < next_constant_pool_check_ and the next emit
// will trigger a check.
next_constant_pool_check_ = no_const_pool_before_;
}
}
bool Assembler::is_const_pool_blocked() const {
return (const_pool_blocked_nesting_ > 0) ||
(pc_offset() < no_const_pool_before_);
}
bool Assembler::IsConstantPoolAt(Instruction* instr) {
// The constant pool marker is made of two instructions. These instructions
// will never be emitted by the JIT, so checking for the first one is enough:
// 0: ldr xzr, #<size of pool>
bool result = instr->IsLdrLiteralX() && (instr->Rt() == kZeroRegCode);
// It is still worth asserting the marker is complete.
// 4: blr xzr
DCHECK(!result || (instr->following()->IsBranchAndLinkToRegister() &&
instr->following()->Rn() == kZeroRegCode));
return result;
}
int Assembler::ConstantPoolSizeAt(Instruction* instr) {
#ifdef USE_SIMULATOR
// Assembler::debug() embeds constants directly into the instruction stream.
// Although this is not a genuine constant pool, treat it like one to avoid
// disassembling the constants.
if ((instr->Mask(ExceptionMask) == HLT) &&
(instr->ImmException() == kImmExceptionIsDebug)) {
const char* message =
reinterpret_cast<const char*>(
instr->InstructionAtOffset(kDebugMessageOffset));
int size = static_cast<int>(kDebugMessageOffset + strlen(message) + 1);
return RoundUp(size, kInstructionSize) / kInstructionSize;
}
// Same for printf support, see MacroAssembler::CallPrintf().
if ((instr->Mask(ExceptionMask) == HLT) &&
(instr->ImmException() == kImmExceptionIsPrintf)) {
return kPrintfLength / kInstructionSize;
}
#endif
if (IsConstantPoolAt(instr)) {
return instr->ImmLLiteral();
} else {
return -1;
}
}
void Assembler::EmitPoolGuard() {
// We must generate only one instruction as this is used in scopes that
// control the size of the code generated.
Emit(BLR | Rn(xzr));
}
void Assembler::StartBlockVeneerPool() {
++veneer_pool_blocked_nesting_;
}
void Assembler::EndBlockVeneerPool() {
if (--veneer_pool_blocked_nesting_ == 0) {
// Check the veneer pool hasn't been blocked for too long.
DCHECK(unresolved_branches_.empty() ||
(pc_offset() < unresolved_branches_first_limit()));
}
}
void Assembler::br(const Register& xn) {
DCHECK(xn.Is64Bits());
Emit(BR | Rn(xn));
}
void Assembler::blr(const Register& xn) {
DCHECK(xn.Is64Bits());
// The pattern 'blr xzr' is used as a guard to detect when execution falls
// through the constant pool. It should not be emitted.
DCHECK(!xn.Is(xzr));
Emit(BLR | Rn(xn));
}
void Assembler::ret(const Register& xn) {
DCHECK(xn.Is64Bits());
Emit(RET | Rn(xn));
}
void Assembler::b(int imm26) {
Emit(B | ImmUncondBranch(imm26));
}
void Assembler::b(Label* label) {
b(LinkAndGetInstructionOffsetTo(label));
}
void Assembler::b(int imm19, Condition cond) {
Emit(B_cond | ImmCondBranch(imm19) | cond);
}
void Assembler::b(Label* label, Condition cond) {
b(LinkAndGetInstructionOffsetTo(label), cond);
}
void Assembler::bl(int imm26) {
Emit(BL | ImmUncondBranch(imm26));
}
void Assembler::bl(Label* label) {
bl(LinkAndGetInstructionOffsetTo(label));
}
void Assembler::cbz(const Register& rt,
int imm19) {
Emit(SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt));
}
void Assembler::cbz(const Register& rt,
Label* label) {
cbz(rt, LinkAndGetInstructionOffsetTo(label));
}
void Assembler::cbnz(const Register& rt,
int imm19) {
Emit(SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt));
}
void Assembler::cbnz(const Register& rt,
Label* label) {
cbnz(rt, LinkAndGetInstructionOffsetTo(label));
}
void Assembler::tbz(const Register& rt,
unsigned bit_pos,
int imm14) {
DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
Emit(TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
}
void Assembler::tbz(const Register& rt,
unsigned bit_pos,
Label* label) {
tbz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
}
void Assembler::tbnz(const Register& rt,
unsigned bit_pos,
int imm14) {
DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
Emit(TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
}
void Assembler::tbnz(const Register& rt,
unsigned bit_pos,
Label* label) {
tbnz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
}
void Assembler::adr(const Register& rd, int imm21) {
DCHECK(rd.Is64Bits());
Emit(ADR | ImmPCRelAddress(imm21) | Rd(rd));
}
void Assembler::adr(const Register& rd, Label* label) {
adr(rd, LinkAndGetByteOffsetTo(label));
}
void Assembler::add(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSub(rd, rn, operand, LeaveFlags, ADD);
}
void Assembler::adds(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSub(rd, rn, operand, SetFlags, ADD);
}
void Assembler::cmn(const Register& rn,
const Operand& operand) {
Register zr = AppropriateZeroRegFor(rn);
adds(zr, rn, operand);
}
void Assembler::sub(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSub(rd, rn, operand, LeaveFlags, SUB);
}
void Assembler::subs(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSub(rd, rn, operand, SetFlags, SUB);
}
void Assembler::cmp(const Register& rn, const Operand& operand) {
Register zr = AppropriateZeroRegFor(rn);
subs(zr, rn, operand);
}
void Assembler::neg(const Register& rd, const Operand& operand) {
Register zr = AppropriateZeroRegFor(rd);
sub(rd, zr, operand);
}
void Assembler::negs(const Register& rd, const Operand& operand) {
Register zr = AppropriateZeroRegFor(rd);
subs(rd, zr, operand);
}
void Assembler::adc(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSubWithCarry(rd, rn, operand, LeaveFlags, ADC);
}
void Assembler::adcs(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSubWithCarry(rd, rn, operand, SetFlags, ADC);
}
void Assembler::sbc(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSubWithCarry(rd, rn, operand, LeaveFlags, SBC);
}
void Assembler::sbcs(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSubWithCarry(rd, rn, operand, SetFlags, SBC);
}
void Assembler::ngc(const Register& rd, const Operand& operand) {
Register zr = AppropriateZeroRegFor(rd);
sbc(rd, zr, operand);
}
void Assembler::ngcs(const Register& rd, const Operand& operand) {
Register zr = AppropriateZeroRegFor(rd);
sbcs(rd, zr, operand);
}
// Logical instructions.
void Assembler::and_(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, AND);
}
void Assembler::ands(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, ANDS);
}
void Assembler::tst(const Register& rn,
const Operand& operand) {
ands(AppropriateZeroRegFor(rn), rn, operand);
}
void Assembler::bic(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, BIC);
}
void Assembler::bics(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, BICS);
}
void Assembler::orr(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, ORR);
}
void Assembler::orn(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, ORN);
}
void Assembler::eor(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, EOR);
}
void Assembler::eon(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, EON);
}
void Assembler::lslv(const Register& rd,
const Register& rn,
const Register& rm) {
DCHECK(rd.SizeInBits() == rn.SizeInBits());
DCHECK(rd.SizeInBits() == rm.SizeInBits());
Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd));
}
void Assembler::lsrv(const Register& rd,
const Register& rn,
const Register& rm) {
DCHECK(rd.SizeInBits() == rn.SizeInBits());
DCHECK(rd.SizeInBits() == rm.SizeInBits());
Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd));
}
void Assembler::asrv(const Register& rd,
const Register& rn,
const Register& rm) {
DCHECK(rd.SizeInBits() == rn.SizeInBits());
DCHECK(rd.SizeInBits() == rm.SizeInBits());
Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd));
}
void Assembler::rorv(const Register& rd,
const Register& rn,
const Register& rm) {
DCHECK(rd.SizeInBits() == rn.SizeInBits());
DCHECK(rd.SizeInBits() == rm.SizeInBits());
Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd));
}
// Bitfield operations.
void Assembler::bfm(const Register& rd, const Register& rn, int immr,
int imms) {
DCHECK(rd.SizeInBits() == rn.SizeInBits());
Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
Emit(SF(rd) | BFM | N |
ImmR(immr, rd.SizeInBits()) |
ImmS(imms, rn.SizeInBits()) |
Rn(rn) | Rd(rd));
}
void Assembler::sbfm(const Register& rd, const Register& rn, int immr,
int imms) {
DCHECK(rd.Is64Bits() || rn.Is32Bits());
Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
Emit(SF(rd) | SBFM | N |
ImmR(immr, rd.SizeInBits()) |
ImmS(imms, rn.SizeInBits()) |
Rn(rn) | Rd(rd));
}
void Assembler::ubfm(const Register& rd, const Register& rn, int immr,
int imms) {
DCHECK(rd.SizeInBits() == rn.SizeInBits());
Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
Emit(SF(rd) | UBFM | N |
ImmR(immr, rd.SizeInBits()) |
ImmS(imms, rn.SizeInBits()) |
Rn(rn) | Rd(rd));
}
void Assembler::extr(const Register& rd, const Register& rn, const Register& rm,
int lsb) {
DCHECK(rd.SizeInBits() == rn.SizeInBits());
DCHECK(rd.SizeInBits() == rm.SizeInBits());
Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
Emit(SF(rd) | EXTR | N | Rm(rm) |
ImmS(lsb, rn.SizeInBits()) | Rn(rn) | Rd(rd));
}
void Assembler::csel(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond) {
ConditionalSelect(rd, rn, rm, cond, CSEL);
}
void Assembler::csinc(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond) {
ConditionalSelect(rd, rn, rm, cond, CSINC);
}
void Assembler::csinv(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond) {
ConditionalSelect(rd, rn, rm, cond, CSINV);
}
void Assembler::csneg(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond) {
ConditionalSelect(rd, rn, rm, cond, CSNEG);
}
void Assembler::cset(const Register &rd, Condition cond) {
DCHECK((cond != al) && (cond != nv));
Register zr = AppropriateZeroRegFor(rd);
csinc(rd, zr, zr, NegateCondition(cond));
}
void Assembler::csetm(const Register &rd, Condition cond) {
DCHECK((cond != al) && (cond != nv));
Register zr = AppropriateZeroRegFor(rd);
csinv(rd, zr, zr, NegateCondition(cond));
}
void Assembler::cinc(const Register &rd, const Register &rn, Condition cond) {
DCHECK((cond != al) && (cond != nv));
csinc(rd, rn, rn, NegateCondition(cond));
}
void Assembler::cinv(const Register &rd, const Register &rn, Condition cond) {
DCHECK((cond != al) && (cond != nv));
csinv(rd, rn, rn, NegateCondition(cond));
}
void Assembler::cneg(const Register &rd, const Register &rn, Condition cond) {
DCHECK((cond != al) && (cond != nv));
csneg(rd, rn, rn, NegateCondition(cond));
}
void Assembler::ConditionalSelect(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond,
ConditionalSelectOp op) {
DCHECK(rd.SizeInBits() == rn.SizeInBits());
DCHECK(rd.SizeInBits() == rm.SizeInBits());
Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd));
}
void Assembler::ccmn(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond) {
ConditionalCompare(rn, operand, nzcv, cond, CCMN);
}
void Assembler::ccmp(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond) {
ConditionalCompare(rn, operand, nzcv, cond, CCMP);
}
void Assembler::DataProcessing3Source(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra,
DataProcessing3SourceOp op) {
Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd));
}
void Assembler::mul(const Register& rd,
const Register& rn,
const Register& rm) {
DCHECK(AreSameSizeAndType(rd, rn, rm));
Register zr = AppropriateZeroRegFor(rn);
DataProcessing3Source(rd, rn, rm, zr, MADD);
}
void Assembler::madd(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
DCHECK(AreSameSizeAndType(rd, rn, rm, ra));
DataProcessing3Source(rd, rn, rm, ra, MADD);
}
void Assembler::mneg(const Register& rd,
const Register& rn,
const Register& rm) {
DCHECK(AreSameSizeAndType(rd, rn, rm));
Register zr = AppropriateZeroRegFor(rn);
DataProcessing3Source(rd, rn, rm, zr, MSUB);
}
void Assembler::msub(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
DCHECK(AreSameSizeAndType(rd, rn, rm, ra));
DataProcessing3Source(rd, rn, rm, ra, MSUB);
}
void Assembler::smaddl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
DCHECK(rd.Is64Bits() && ra.Is64Bits());
DCHECK(rn.Is32Bits() && rm.Is32Bits());
DataProcessing3Source(rd, rn, rm, ra, SMADDL_x);
}
void Assembler::smsubl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
DCHECK(rd.Is64Bits() && ra.Is64Bits());
DCHECK(rn.Is32Bits() && rm.Is32Bits());
DataProcessing3Source(rd, rn, rm, ra, SMSUBL_x);
}
void Assembler::umaddl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
DCHECK(rd.Is64Bits() && ra.Is64Bits());
DCHECK(rn.Is32Bits() && rm.Is32Bits());
DataProcessing3Source(rd, rn, rm, ra, UMADDL_x);
}
void Assembler::umsubl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
DCHECK(rd.Is64Bits() && ra.Is64Bits());
DCHECK(rn.Is32Bits() && rm.Is32Bits());
DataProcessing3Source(rd, rn, rm, ra, UMSUBL_x);
}
void Assembler::smull(const Register& rd,
const Register& rn,
const Register& rm) {
DCHECK(rd.Is64Bits());
DCHECK(rn.Is32Bits() && rm.Is32Bits());
DataProcessing3Source(rd, rn, rm, xzr, SMADDL_x);
}
void Assembler::smulh(const Register& rd,
const Register& rn,
const Register& rm) {
DCHECK(AreSameSizeAndType(rd, rn, rm));
DataProcessing3Source(rd, rn, rm, xzr, SMULH_x);
}
void Assembler::sdiv(const Register& rd,
const Register& rn,
const Register& rm) {
DCHECK(rd.SizeInBits() == rn.SizeInBits());
DCHECK(rd.SizeInBits() == rm.SizeInBits());
Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd));
}
void Assembler::udiv(const Register& rd,
const Register& rn,
const Register& rm) {
DCHECK(rd.SizeInBits() == rn.SizeInBits());
DCHECK(rd.SizeInBits() == rm.SizeInBits());
Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd));
}
void Assembler::rbit(const Register& rd,
const Register& rn) {
DataProcessing1Source(rd, rn, RBIT);
}
void Assembler::rev16(const Register& rd,
const Register& rn) {
DataProcessing1Source(rd, rn, REV16);
}
void Assembler::rev32(const Register& rd,
const Register& rn) {
DCHECK(rd.Is64Bits());
DataProcessing1Source(rd, rn, REV);
}
void Assembler::rev(const Register& rd,
const Register& rn) {
DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w);
}
void Assembler::clz(const Register& rd,
const Register& rn) {
DataProcessing1Source(rd, rn, CLZ);
}
void Assembler::cls(const Register& rd,
const Register& rn) {
DataProcessing1Source(rd, rn, CLS);
}
void Assembler::ldp(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& src) {
LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2));
}
void Assembler::stp(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& dst) {
LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2));
}
void Assembler::ldpsw(const Register& rt,
const Register& rt2,
const MemOperand& src) {
DCHECK(rt.Is64Bits());
LoadStorePair(rt, rt2, src, LDPSW_x);
}
void Assembler::LoadStorePair(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& addr,
LoadStorePairOp op) {
// 'rt' and 'rt2' can only be aliased for stores.
DCHECK(((op & LoadStorePairLBit) == 0) || !rt.Is(rt2));
DCHECK(AreSameSizeAndType(rt, rt2));
DCHECK(IsImmLSPair(addr.offset(), CalcLSPairDataSize(op)));
int offset = static_cast<int>(addr.offset());
Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) |
ImmLSPair(offset, CalcLSPairDataSize(op));
Instr addrmodeop;
if (addr.IsImmediateOffset()) {
addrmodeop = LoadStorePairOffsetFixed;
} else {
// Pre-index and post-index modes.
DCHECK(!rt.Is(addr.base()));
DCHECK(!rt2.Is(addr.base()));
DCHECK_NE(addr.offset(), 0);
if (addr.IsPreIndex()) {
addrmodeop = LoadStorePairPreIndexFixed;
} else {
DCHECK(addr.IsPostIndex());
addrmodeop = LoadStorePairPostIndexFixed;
}
}
Emit(addrmodeop | memop);
}
// Memory instructions.
void Assembler::ldrb(const Register& rt, const MemOperand& src) {
LoadStore(rt, src, LDRB_w);
}
void Assembler::strb(const Register& rt, const MemOperand& dst) {
LoadStore(rt, dst, STRB_w);
}
void Assembler::ldrsb(const Register& rt, const MemOperand& src) {
LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w);
}
void Assembler::ldrh(const Register& rt, const MemOperand& src) {
LoadStore(rt, src, LDRH_w);
}
void Assembler::strh(const Register& rt, const MemOperand& dst) {
LoadStore(rt, dst, STRH_w);
}
void Assembler::ldrsh(const Register& rt, const MemOperand& src) {
LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w);
}
void Assembler::ldr(const CPURegister& rt, const MemOperand& src) {
LoadStore(rt, src, LoadOpFor(rt));
}
void Assembler::str(const CPURegister& rt, const MemOperand& src) {
LoadStore(rt, src, StoreOpFor(rt));
}
void Assembler::ldrsw(const Register& rt, const MemOperand& src) {
DCHECK(rt.Is64Bits());
LoadStore(rt, src, LDRSW_x);
}
void Assembler::ldr_pcrel(const CPURegister& rt, int imm19) {
// The pattern 'ldr xzr, #offset' is used to indicate the beginning of a
// constant pool. It should not be emitted.
DCHECK(!rt.IsZero());
Emit(LoadLiteralOpFor(rt) | ImmLLiteral(imm19) | Rt(rt));
}
Operand Operand::EmbeddedNumber(double number) {
int32_t smi;
if (DoubleToSmiInteger(number, &smi)) {
return Operand(Immediate(Smi::FromInt(smi)));
}
Operand result(0, RelocInfo::EMBEDDED_OBJECT);
result.heap_object_request_.emplace(number);
DCHECK(result.IsHeapObjectRequest());
return result;
}
Operand Operand::EmbeddedCode(CodeStub* stub) {
Operand result(0, RelocInfo::CODE_TARGET);
result.heap_object_request_.emplace(stub);
DCHECK(result.IsHeapObjectRequest());
return result;
}
void Assembler::ldr(const CPURegister& rt, const Operand& operand) {
if (operand.IsHeapObjectRequest()) {
RequestHeapObject(operand.heap_object_request());
ldr(rt, operand.immediate_for_heap_object_request());
} else {
ldr(rt, operand.immediate());
}
}
void Assembler::ldr(const CPURegister& rt, const Immediate& imm) {
// Currently we only support 64-bit literals.
DCHECK(rt.Is64Bits());
RecordRelocInfo(imm.rmode(), imm.value());
BlockConstPoolFor(1);
// The load will be patched when the constpool is emitted, patching code
// expect a load literal with offset 0.
ldr_pcrel(rt, 0);
}
void Assembler::ldar(const Register& rt, const Register& rn) {
DCHECK(rn.Is64Bits());
LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? LDAR_w : LDAR_x;
Emit(op | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt));
}
void Assembler::ldaxr(const Register& rt, const Register& rn) {
DCHECK(rn.Is64Bits());
LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? LDAXR_w : LDAXR_x;
Emit(op | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt));
}
void Assembler::stlr(const Register& rt, const Register& rn) {
DCHECK(rn.Is64Bits());
LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? STLR_w : STLR_x;
Emit(op | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt));
}
void Assembler::stlxr(const Register& rs, const Register& rt,
const Register& rn) {
DCHECK(rs.Is32Bits());
DCHECK(rn.Is64Bits());
DCHECK(!rs.Is(rt) && !rs.Is(rn));
LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? STLXR_w : STLXR_x;
Emit(op | Rs(rs) | Rt2(x31) | RnSP(rn) | Rt(rt));
}
void Assembler::ldarb(const Register& rt, const Register& rn) {
DCHECK(rt.Is32Bits());
DCHECK(rn.Is64Bits());
Emit(LDAR_b | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt));
}
void Assembler::ldaxrb(const Register& rt, const Register& rn) {
DCHECK(rt.Is32Bits());
DCHECK(rn.Is64Bits());
Emit(LDAXR_b | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt));
}
void Assembler::stlrb(const Register& rt, const Register& rn) {
DCHECK(rt.Is32Bits());
DCHECK(rn.Is64Bits());
Emit(STLR_b | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt));
}
void Assembler::stlxrb(const Register& rs, const Register& rt,
const Register& rn) {
DCHECK(rs.Is32Bits());
DCHECK(rt.Is32Bits());
DCHECK(rn.Is64Bits());
DCHECK(!rs.Is(rt) && !rs.Is(rn));
Emit(STLXR_b | Rs(rs) | Rt2(x31) | RnSP(rn) | Rt(rt));
}
void Assembler::ldarh(const Register& rt, const Register& rn) {
DCHECK(rt.Is32Bits());
DCHECK(rn.Is64Bits());
Emit(LDAR_h | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt));
}
void Assembler::ldaxrh(const Register& rt, const Register& rn) {
DCHECK(rt.Is32Bits());
DCHECK(rn.Is64Bits());
Emit(LDAXR_h | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt));
}
void Assembler::stlrh(const Register& rt, const Register& rn) {
DCHECK(rt.Is32Bits());
DCHECK(rn.Is64Bits());
Emit(STLR_h | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt));
}
void Assembler::stlxrh(const Register& rs, const Register& rt,
const Register& rn) {
DCHECK(rs.Is32Bits());
DCHECK(rt.Is32Bits());
DCHECK(rn.Is64Bits());
DCHECK(!rs.Is(rt) && !rs.Is(rn));
Emit(STLXR_h | Rs(rs) | Rt2(x31) | RnSP(rn) | Rt(rt));
}
void Assembler::NEON3DifferentL(const VRegister& vd, const VRegister& vn,
const VRegister& vm, NEON3DifferentOp vop) {
DCHECK(AreSameFormat(vn, vm));
DCHECK((vn.Is1H() && vd.Is1S()) || (vn.Is1S() && vd.Is1D()) ||
(vn.Is8B() && vd.Is8H()) || (vn.Is4H() && vd.Is4S()) ||
(vn.Is2S() && vd.Is2D()) || (vn.Is16B() && vd.Is8H()) ||
(vn.Is8H() && vd.Is4S()) || (vn.Is4S() && vd.Is2D()));
Instr format, op = vop;
if (vd.IsScalar()) {
op |= NEON_Q | NEONScalar;
format = SFormat(vn);
} else {
format = VFormat(vn);
}
Emit(format | op | Rm(vm) | Rn(vn) | Rd(vd));
}
void Assembler::NEON3DifferentW(const VRegister& vd, const VRegister& vn,
const VRegister& vm, NEON3DifferentOp vop) {
DCHECK(AreSameFormat(vd, vn));
DCHECK((vm.Is8B() && vd.Is8H()) || (vm.Is4H() && vd.Is4S()) ||
(vm.Is2S() && vd.Is2D()) || (vm.Is16B() && vd.Is8H()) ||
(vm.Is8H() && vd.Is4S()) || (vm.Is4S() && vd.Is2D()));
Emit(VFormat(vm) | vop | Rm(vm) | Rn(vn) | Rd(vd));
}
void Assembler::NEON3DifferentHN(const VRegister& vd, const VRegister& vn,
const VRegister& vm, NEON3DifferentOp vop) {
DCHECK(AreSameFormat(vm, vn));
DCHECK((vd.Is8B() && vn.Is8H()) || (vd.Is4H() && vn.Is4S()) ||
(vd.Is2S() && vn.Is2D()) || (vd.Is16B() && vn.Is8H()) ||
(vd.Is8H() && vn.Is4S()) || (vd.Is4S() && vn.Is2D()));
Emit(VFormat(vd) | vop | Rm(vm) | Rn(vn) | Rd(vd));
}
#define NEON_3DIFF_LONG_LIST(V) \
V(pmull, NEON_PMULL, vn.IsVector() && vn.Is8B()) \
V(pmull2, NEON_PMULL2, vn.IsVector() && vn.Is16B()) \
V(saddl, NEON_SADDL, vn.IsVector() && vn.IsD()) \
V(saddl2, NEON_SADDL2, vn.IsVector() && vn.IsQ()) \
V(sabal, NEON_SABAL, vn.IsVector() && vn.IsD()) \
V(sabal2, NEON_SABAL2, vn.IsVector() && vn.IsQ()) \
V(uabal, NEON_UABAL, vn.IsVector() && vn.IsD()) \
V(uabal2, NEON_UABAL2, vn.IsVector() && vn.IsQ()) \
V(sabdl, NEON_SABDL, vn.IsVector() && vn.IsD()) \
V(sabdl2, NEON_SABDL2, vn.IsVector() && vn.IsQ()) \
V(uabdl, NEON_UABDL, vn.IsVector() && vn.IsD()) \
V(uabdl2, NEON_UABDL2, vn.IsVector() && vn.IsQ()) \
V(smlal, NEON_SMLAL, vn.IsVector() && vn.IsD()) \
V(smlal2, NEON_SMLAL2, vn.IsVector() && vn.IsQ()) \
V(umlal, NEON_UMLAL, vn.IsVector() && vn.IsD()) \
V(umlal2, NEON_UMLAL2, vn.IsVector() && vn.IsQ()) \
V(smlsl, NEON_SMLSL, vn.IsVector() && vn.IsD()) \
V(smlsl2, NEON_SMLSL2, vn.IsVector() && vn.IsQ()) \
V(umlsl, NEON_UMLSL, vn.IsVector() && vn.IsD()) \
V(umlsl2, NEON_UMLSL2, vn.IsVector() && vn.IsQ()) \
V(smull, NEON_SMULL, vn.IsVector() && vn.IsD()) \
V(smull2, NEON_SMULL2, vn.IsVector() && vn.IsQ()) \
V(umull, NEON_UMULL, vn.IsVector() && vn.IsD()) \
V(umull2, NEON_UMULL2, vn.IsVector() && vn.IsQ()) \
V(ssubl, NEON_SSUBL, vn.IsVector() && vn.IsD()) \
V(ssubl2, NEON_SSUBL2, vn.IsVector() && vn.IsQ()) \
V(uaddl, NEON_UADDL, vn.IsVector() && vn.IsD()) \
V(uaddl2, NEON_UADDL2, vn.IsVector() && vn.IsQ()) \
V(usubl, NEON_USUBL, vn.IsVector() && vn.IsD()) \
V(usubl2, NEON_USUBL2, vn.IsVector() && vn.IsQ()) \
V(sqdmlal, NEON_SQDMLAL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \
V(sqdmlal2, NEON_SQDMLAL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \
V(sqdmlsl, NEON_SQDMLSL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \
V(sqdmlsl2, NEON_SQDMLSL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \
V(sqdmull, NEON_SQDMULL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \
V(sqdmull2, NEON_SQDMULL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S())
#define DEFINE_ASM_FUNC(FN, OP, AS) \
void Assembler::FN(const VRegister& vd, const VRegister& vn, \
const VRegister& vm) { \
DCHECK(AS); \
NEON3DifferentL(vd, vn, vm, OP); \
}
NEON_3DIFF_LONG_LIST(DEFINE_ASM_FUNC)
#undef DEFINE_ASM_FUNC
#define NEON_3DIFF_HN_LIST(V) \
V(addhn, NEON_ADDHN, vd.IsD()) \
V(addhn2, NEON_ADDHN2, vd.IsQ()) \
V(raddhn, NEON_RADDHN, vd.IsD()) \
V(raddhn2, NEON_RADDHN2, vd.IsQ()) \
V(subhn, NEON_SUBHN, vd.IsD()) \
V(subhn2, NEON_SUBHN2, vd.IsQ()) \
V(rsubhn, NEON_RSUBHN, vd.IsD()) \
V(rsubhn2, NEON_RSUBHN2, vd.IsQ())
#define DEFINE_ASM_FUNC(FN, OP, AS) \
void Assembler::FN(const VRegister& vd, const VRegister& vn, \
const VRegister& vm) { \
DCHECK(AS); \
NEON3DifferentHN(vd, vn, vm, OP); \
}
NEON_3DIFF_HN_LIST(DEFINE_ASM_FUNC)
#undef DEFINE_ASM_FUNC
void Assembler::NEONPerm(const VRegister& vd, const VRegister& vn,
const VRegister& vm, NEONPermOp op) {
DCHECK(AreSameFormat(vd, vn, vm));
DCHECK(!vd.Is1D());
Emit(VFormat(vd) | op | Rm(vm) | Rn(vn) | Rd(vd));
}
void Assembler::trn1(const VRegister& vd, const VRegister& vn,
const VRegister& vm) {
NEONPerm(vd, vn, vm, NEON_TRN1);
}
void Assembler::trn2(const VRegister& vd, const VRegister& vn,
const VRegister& vm) {
NEONPerm(vd, vn, vm, NEON_TRN2);
}
void Assembler::uzp1(const VRegister& vd, const VRegister& vn,
const VRegister& vm) {
NEONPerm(vd, vn, vm, NEON_UZP1);
}
void Assembler::uzp2(const VRegister& vd, const VRegister& vn,
const VRegister& vm) {
NEONPerm(vd, vn, vm, NEON_UZP2);
}
void Assembler::zip1(const VRegister& vd, const VRegister& vn,
const VRegister& vm) {
NEONPerm(vd, vn, vm, NEON_ZIP1);
}
void Assembler::zip2(const VRegister& vd, const VRegister& vn,
const VRegister& vm) {
NEONPerm(vd, vn, vm, NEON_ZIP2);
}
void Assembler::NEONShiftImmediate(const VRegister& vd, const VRegister& vn,
NEONShiftImmediateOp op, int immh_immb) {
DCHECK(AreSameFormat(vd, vn));
Instr q, scalar;
if (vn.IsScalar()) {
q = NEON_Q;
scalar = NEONScalar;
} else {
q = vd.IsD() ? 0 : NEON_Q;
scalar = 0;
}
Emit(q | op | scalar | immh_immb | Rn(vn) | Rd(vd));
}
void Assembler::NEONShiftLeftImmediate(const VRegister& vd, const VRegister& vn,
int shift, NEONShiftImmediateOp op) {
int laneSizeInBits = vn.LaneSizeInBits();
DCHECK((shift >= 0) && (shift < laneSizeInBits));
NEONShiftImmediate(vd, vn, op, (laneSizeInBits + shift) << 16);
}
void Assembler::NEONShiftRightImmediate(const VRegister& vd,
const VRegister& vn, int shift,
NEONShiftImmediateOp op) {
int laneSizeInBits = vn.LaneSizeInBits();
DCHECK((shift >= 1) && (shift <= laneSizeInBits));
NEONShiftImmediate(vd, vn, op, ((2 * laneSizeInBits) - shift) << 16);
}
void Assembler::NEONShiftImmediateL(const VRegister& vd, const VRegister& vn,
int shift, NEONShiftImmediateOp op) {
int laneSizeInBits = vn.LaneSizeInBits();
DCHECK((shift >= 0) && (shift < laneSizeInBits));
int immh_immb = (laneSizeInBits + shift) << 16;
DCHECK((vn.Is8B() && vd.Is8H()) || (vn.Is4H() && vd.Is4S()) ||
(vn.Is2S() && vd.Is2D()) || (vn.Is16B() && vd.Is8H()) ||
(vn.Is8H() && vd.Is4S()) || (vn.Is4S() && vd.Is2D()));
Instr q;
q = vn.IsD() ? 0 : NEON_Q;
Emit(q | op | immh_immb | Rn(vn) | Rd(vd));
}
void Assembler::NEONShiftImmediateN(const VRegister& vd, const VRegister& vn,
int shift, NEONShiftImmediateOp op) {
Instr q, scalar;
int laneSizeInBits = vd.LaneSizeInBits();
DCHECK((shift >= 1) && (shift <= laneSizeInBits));
int immh_immb = (2 * laneSizeInBits - shift) << 16;
if (vn.IsScalar()) {
DCHECK((vd.Is1B() && vn.Is1H()) || (vd.Is1H() && vn.Is1S()) ||
(vd.Is1S() && vn.Is1D()));
q = NEON_Q;
scalar = NEONScalar;
} else {
DCHECK((vd.Is8B() && vn.Is8H()) || (vd.Is4H() && vn.Is4S()) ||
(vd.Is2S() && vn.Is2D()) || (vd.Is16B() && vn.Is8H()) ||
(vd.Is8H() && vn.Is4S()) || (vd.Is4S() && vn.Is2D()));
scalar = 0;
q = vd.IsD() ? 0 : NEON_Q;
}
Emit(q | op | scalar | immh_immb | Rn(vn) | Rd(vd));
}
void Assembler::shl(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vd.IsVector() || vd.Is1D());
NEONShiftLeftImmediate(vd, vn, shift, NEON_SHL);
}
void Assembler::sli(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vd.IsVector() || vd.Is1D());
NEONShiftLeftImmediate(vd, vn, shift, NEON_SLI);
}
void Assembler::sqshl(const VRegister& vd, const VRegister& vn, int shift) {
NEONShiftLeftImmediate(vd, vn, shift, NEON_SQSHL_imm);
}
void Assembler::sqshlu(const VRegister& vd, const VRegister& vn, int shift) {
NEONShiftLeftImmediate(vd, vn, shift, NEON_SQSHLU);
}
void Assembler::uqshl(const VRegister& vd, const VRegister& vn, int shift) {
NEONShiftLeftImmediate(vd, vn, shift, NEON_UQSHL_imm);
}
void Assembler::sshll(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vn.IsD());
NEONShiftImmediateL(vd, vn, shift, NEON_SSHLL);
}
void Assembler::sshll2(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vn.IsQ());
NEONShiftImmediateL(vd, vn, shift, NEON_SSHLL);
}
void Assembler::sxtl(const VRegister& vd, const VRegister& vn) {
sshll(vd, vn, 0);
}
void Assembler::sxtl2(const VRegister& vd, const VRegister& vn) {
sshll2(vd, vn, 0);
}
void Assembler::ushll(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vn.IsD());
NEONShiftImmediateL(vd, vn, shift, NEON_USHLL);
}
void Assembler::ushll2(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vn.IsQ());
NEONShiftImmediateL(vd, vn, shift, NEON_USHLL);
}
void Assembler::uxtl(const VRegister& vd, const VRegister& vn) {
ushll(vd, vn, 0);
}
void Assembler::uxtl2(const VRegister& vd, const VRegister& vn) {
ushll2(vd, vn, 0);
}
void Assembler::sri(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vd.IsVector() || vd.Is1D());
NEONShiftRightImmediate(vd, vn, shift, NEON_SRI);
}
void Assembler::sshr(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vd.IsVector() || vd.Is1D());
NEONShiftRightImmediate(vd, vn, shift, NEON_SSHR);
}
void Assembler::ushr(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vd.IsVector() || vd.Is1D());
NEONShiftRightImmediate(vd, vn, shift, NEON_USHR);
}
void Assembler::srshr(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vd.IsVector() || vd.Is1D());
NEONShiftRightImmediate(vd, vn, shift, NEON_SRSHR);
}
void Assembler::urshr(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vd.IsVector() || vd.Is1D());
NEONShiftRightImmediate(vd, vn, shift, NEON_URSHR);
}
void Assembler::ssra(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vd.IsVector() || vd.Is1D());
NEONShiftRightImmediate(vd, vn, shift, NEON_SSRA);
}
void Assembler::usra(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vd.IsVector() || vd.Is1D());
NEONShiftRightImmediate(vd, vn, shift, NEON_USRA);
}
void Assembler::srsra(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vd.IsVector() || vd.Is1D());
NEONShiftRightImmediate(vd, vn, shift, NEON_SRSRA);
}
void Assembler::ursra(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vd.IsVector() || vd.Is1D());
NEONShiftRightImmediate(vd, vn, shift, NEON_URSRA);
}
void Assembler::shrn(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vn.IsVector() && vd.IsD());
NEONShiftImmediateN(vd, vn, shift, NEON_SHRN);
}
void Assembler::shrn2(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vn.IsVector() && vd.IsQ());
NEONShiftImmediateN(vd, vn, shift, NEON_SHRN);
}
void Assembler::rshrn(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vn.IsVector() && vd.IsD());
NEONShiftImmediateN(vd, vn, shift, NEON_RSHRN);
}
void Assembler::rshrn2(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vn.IsVector() && vd.IsQ());
NEONShiftImmediateN(vd, vn, shift, NEON_RSHRN);
}
void Assembler::sqshrn(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRN);
}
void Assembler::sqshrn2(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vn.IsVector() && vd.IsQ());
NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRN);
}
void Assembler::sqrshrn(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRN);
}
void Assembler::sqrshrn2(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vn.IsVector() && vd.IsQ());
NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRN);
}
void Assembler::sqshrun(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRUN);
}
void Assembler::sqshrun2(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vn.IsVector() && vd.IsQ());
NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRUN);
}
void Assembler::sqrshrun(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRUN);
}
void Assembler::sqrshrun2(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vn.IsVector() && vd.IsQ());
NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRUN);
}
void Assembler::uqshrn(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
NEONShiftImmediateN(vd, vn, shift, NEON_UQSHRN);
}
void Assembler::uqshrn2(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vn.IsVector() && vd.IsQ());
NEONShiftImmediateN(vd, vn, shift, NEON_UQSHRN);
}
void Assembler::uqrshrn(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
NEONShiftImmediateN(vd, vn, shift, NEON_UQRSHRN);
}
void Assembler::uqrshrn2(const VRegister& vd, const VRegister& vn, int shift) {
DCHECK(vn.IsVector() && vd.IsQ());
NEONShiftImmediateN(vd, vn, shift, NEON_UQRSHRN);
}
void Assembler::uaddw(const VRegister& vd, const VRegister& vn,
const VRegister& vm) {
DCHECK(vm.IsD());
NEON3DifferentW(vd, vn, vm, NEON_UADDW);
}
void Assembler::uaddw2(const VRegister& vd, const VRegister& vn,
const VRegister& vm) {
DCHECK(vm.IsQ());
NEON3DifferentW(vd, vn, vm, NEON_UADDW2);
}
void Assembler::saddw(const VRegister& vd, const VRegister& vn,
const VRegister& vm) {
DCHECK(vm.IsD());
NEON3DifferentW(vd, vn, vm, NEON_SADDW);
}
void Assembler::saddw2(const VRegister& vd, const VRegister& vn,
const VRegister& vm) {
DCHECK(vm.IsQ());
NEON3DifferentW(vd, vn, vm, NEON_SADDW2);
}
void Assembler::usubw(const VRegister& vd, const VRegister& vn,
const VRegister& vm) {
DCHECK(vm.IsD());
NEON3DifferentW(vd, vn, vm, NEON_USUBW);
}
void Assembler::usubw2(const VRegister& vd, const VRegister& vn,
const VRegister& vm) {
DCHECK(vm.IsQ());
NEON3DifferentW(vd, vn, vm, NEON_USUBW2);
}
void Assembler::ssubw(const VRegister& vd, const VRegister& vn,
const VRegister& vm) {
DCHECK(vm.IsD());
NEON3DifferentW(vd, vn, vm, NEON_SSUBW);
}
void Assembler::ssubw2(const VRegister& vd, const VRegister& vn,
const VRegister& vm) {
DCHECK(vm.IsQ());
NEON3DifferentW(vd, vn, vm, NEON_SSUBW2);
}
void Assembler::mov(const Register& rd, const Register& rm) {
// Moves involving the stack pointer are encoded as add immediate with
// second operand of zero. Otherwise, orr with first operand zr is
// used.
if (rd.IsSP() || rm.IsSP()) {
add(rd, rm, 0);
} else {
orr(rd, AppropriateZeroRegFor(rd), rm);
}
}
void Assembler::ins(const VRegister& vd, int vd_index, const Register& rn) {
// We support vd arguments of the form vd.VxT() or vd.T(), where x is the
// number of lanes, and T is b, h, s or d.
int lane_size = vd.LaneSizeInBytes();
NEONFormatField format;
switch (lane_size) {
case 1:
format = NEON_16B;
DCHECK(rn.IsW());
break;
case 2:
format = NEON_8H;
DCHECK(rn.IsW());
break;
case 4:
format = NEON_4S;
DCHECK(rn.IsW());
break;
default:
DCHECK_EQ(lane_size, 8);
DCHECK(rn.IsX());
format = NEON_2D;
break;
}
DCHECK((0 <= vd_index) &&
(vd_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
Emit(NEON_INS_GENERAL | ImmNEON5(format, vd_index) | Rn(rn) | Rd(vd));
}
void Assembler::mov(const Register& rd, const VRegister& vn, int vn_index) {
DCHECK_GE(vn.SizeInBytes(), 4);
umov(rd, vn, vn_index);
}
void Assembler::smov(const Register& rd, const VRegister& vn, int vn_index) {
// We support vn arguments of the form vn.VxT() or vn.T(), where x is the
// number of lanes, and T is b, h, s.
int lane_size = vn.LaneSizeInBytes();
NEONFormatField format;
Instr q = 0;
switch (lane_size) {
case 1:
format = NEON_16B;
break;
case 2:
format = NEON_8H;
break;
default:
DCHECK_EQ(lane_size, 4);
DCHECK(rd.IsX());
format = NEON_4S;
break;
}
q = rd.IsW() ? 0 : NEON_Q;
DCHECK((0 <= vn_index) &&
(vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
Emit(q | NEON_SMOV | ImmNEON5(format, vn_index) | Rn(vn) | Rd(rd));
}
void Assembler::cls(const VRegister& vd, const VRegister& vn) {
DCHECK(AreSameFormat(vd, vn));
DCHECK(!vd.Is1D() && !vd.Is2D());
Emit(VFormat(vn) | NEON_CLS | Rn(vn) | Rd(vd));
}
void Assembler::clz(const VRegister& vd, const VRegister& vn) {
DCHECK(AreSameFormat(vd, vn));
DCHECK(!vd.Is1D() && !vd.Is2D());
Emit(VFormat(vn) | NEON_CLZ | Rn(vn) | Rd(vd));
}
void Assembler::cnt(const VRegister& vd, const VRegister& vn) {
DCHECK(AreSameFormat(vd, vn));
DCHECK(vd.Is8B() || vd.Is16B());
Emit(VFormat(vn) | NEON_CNT | Rn(vn) | Rd(vd));
}
void Assembler::rev16(const VRegister& vd, const VRegister& vn) {
DCHECK(AreSameFormat(vd, vn));
DCHECK(vd.Is8B() || vd.Is16B());
Emit(VFormat(vn) | NEON_REV16 | Rn(vn) | Rd(vd));
}
void Assembler::rev32(const VRegister& vd, const VRegister& vn) {
DCHECK(AreSameFormat(vd, vn));
DCHECK(vd.Is8B() || vd.Is16B() || vd.Is4H() || vd.Is8H());
Emit(VFormat(vn) | NEON_REV32 | Rn(vn) | Rd(vd));
}
void Assembler::rev64(const VRegister& vd, const VRegister& vn) {
DCHECK(AreSameFormat(vd, vn));
DCHECK(!vd.Is1D() && !vd.Is2D());
Emit(VFormat(vn) | NEON_REV64 | Rn(vn) | Rd(vd));
}
void Assembler::ursqrte(const VRegister& vd, const VRegister& vn) {
DCHECK(AreSameFormat(vd, vn));
DCHECK(vd.Is2S() || vd.Is4S());
Emit(VFormat(vn) | NEON_URSQRTE | Rn(vn) | Rd(vd));
}
void Assembler::urecpe(const VRegister& vd, const VRegister& vn) {
DCHECK(AreSameFormat(vd, vn));
DCHECK(vd.Is2S() || vd.Is4S());
Emit(VFormat(vn) | NEON_URECPE | Rn(vn) | Rd(vd));
}
void Assembler::NEONAddlp(const VRegister& vd, const VRegister& vn,
NEON2RegMiscOp op) {
DCHECK((op == NEON_SADDLP) || (op == NEON_UADDLP) || (op == NEON_SADALP) ||
(op == NEON_UADALP));
DCHECK((vn.Is8B() && vd.Is4H()) || (vn.Is4H() && vd.Is2S()) ||
(vn.Is2S() && vd.Is1D()) || (vn.Is16B() && vd.Is8H()) ||
(vn.Is8H() && vd.Is4S()) || (vn.Is4S() && vd.Is2D()));
Emit(VFormat(vn) | op | Rn(vn) | Rd(vd));
}
void Assembler::saddlp(const VRegister& vd, const VRegister& vn) {
NEONAddlp(vd, vn, NEON_SADDLP);
}
void Assembler::uaddlp(const VRegister& vd, const VRegister& vn) {
NEONAddlp(vd, vn, NEON_UADDLP);
}
void Assembler::sadalp(const VRegister& vd, const VRegister& vn) {
NEONAddlp(vd, vn, NEON_SADALP);
}
void Assembler::uadalp(const VRegister& vd, const VRegister& vn) {
NEONAddlp(vd, vn, NEON_UADALP);
}
void Assembler::NEONAcrossLanesL(const VRegister& vd, const VRegister& vn,
NEONAcrossLanesOp op) {
DCHECK((vn.Is8B() && vd.Is1H()) || (vn.Is16B() && vd.Is1H()) ||
(vn.Is4H() && vd.Is1S()) || (vn.Is8H() && vd.Is1S()) ||
(vn.Is4S() && vd.Is1D()));
Emit(VFormat(vn) | op | Rn(vn) | Rd(vd));
}
void Assembler::saddlv(const VRegister& vd, const VRegister& vn) {
NEONAcrossLanesL(vd, vn, NEON_SADDLV);
}
void Assembler::uaddlv(const VRegister& vd, const VRegister& vn) {
NEONAcrossLanesL(vd, vn, NEON_UADDLV);
}
void Assembler::NEONAcrossLanes(const VRegister& vd, const VRegister& vn,
NEONAcrossLanesOp op) {
DCHECK((vn.Is8B() && vd.Is1B()) || (vn.Is16B() && vd.Is1B()) ||
(vn.Is4H() && vd.Is1H()) || (vn.Is8H() && vd.Is1H()) ||
(vn.Is4S() && vd.Is1S()));
if ((op & NEONAcrossLanesFPFMask) == NEONAcrossLanesFPFixed) {
Emit(FPFormat(vn) | op | Rn(vn) | Rd(vd));
} else {
Emit(VFormat(vn) | op | Rn(vn) | Rd(vd));
}
}
#define NEON_ACROSSLANES_LIST(V) \
V(fmaxv, NEON_FMAXV, vd.Is1S()) \
V(fminv, NEON_FMINV, vd.Is1S()) \
V(fmaxnmv, NEON_FMAXNMV, vd.Is1S()) \
V(fminnmv, NEON_FMINNMV, vd.Is1S()) \
V(addv, NEON_ADDV, true) \
V(smaxv, NEON_SMAXV, true) \
V(sminv, NEON_SMINV, true) \
V(umaxv, NEON_UMAXV, true) \
V(uminv, NEON_UMINV, true)
#define DEFINE_ASM_FUNC(FN, OP, AS) \
void Assembler::FN(const VRegister& vd, const VRegister& vn) { \
DCHECK(AS); \
NEONAcrossLanes(vd, vn, OP); \
}
NEON_ACROSSLANES_LIST(DEFINE_ASM_FUNC)
#undef DEFINE_ASM_FUNC
void Assembler::mov(const VRegister& vd, int vd_index, const Register& rn) {
ins(vd, vd_index, rn);
}
void Assembler::umov(const Register& rd, const VRegister& vn, int vn_index) {
// We support vn arguments of the form vn.VxT() or vn.T(), where x is the
// number of lanes, and T is b, h, s or d.
int lane_size = vn.LaneSizeInBytes();
NEONFormatField format;
Instr q = 0;
switch (lane_size) {
case 1:
format = NEON_16B;
DCHECK(rd.IsW());
break;
case 2:
format = NEON_8H;
DCHECK(rd.IsW());
break;
case 4:
format = NEON_4S;
DCHECK(rd.IsW());
break;
default:
DCHECK_EQ(lane_size, 8);
DCHECK(rd.IsX());
format = NEON_2D;
q = NEON_Q;
break;
}
DCHECK((0 <= vn_index) &&
(vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
Emit(q | NEON_UMOV | ImmNEON5(format, vn_index) | Rn(vn) | Rd(rd));
}
void Assembler::mov(const VRegister& vd, const VRegister& vn, int vn_index) {
DCHECK(vd.IsScalar());
dup(vd, vn, vn_index);
}
void Assembler::dup(const VRegister& vd, const Register& rn) {
DCHECK(!vd.Is1D());
DCHECK_EQ(vd.Is2D(), rn.IsX());
Instr q = vd.IsD() ? 0 : NEON_Q;
Emit(q | NEON_DUP_GENERAL | ImmNEON5(VFormat(vd), 0) | Rn(rn) | Rd(vd));
}
void Assembler::ins(const VRegister& vd, int vd_index, const VRegister& vn,
int vn_index) {
DCHECK(AreSameFormat(vd, vn));
// We support vd arguments of the form vd.VxT() or vd.T(), where x is the
// number of lanes, and T is b, h, s or d.
int lane_size = vd.LaneSizeInBytes();
NEONFormatField format;
switch (lane_size) {
case 1:
format = NEON_16B;
break;
case 2:
format = NEON_8H;
break;
case 4:
format = NEON_4S;
break;
default:
DCHECK_EQ(lane_size, 8);
format = NEON_2D;
break;
}
DCHECK((0 <= vd_index) &&
(vd_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
DCHECK((0 <= vn_index) &&
(vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
Emit(NEON_INS_ELEMENT | ImmNEON5(format, vd_index) |
ImmNEON4(format, vn_index) | Rn(vn) | Rd(vd));
}
void Assembler::NEONTable(const VRegister& vd, const VRegister& vn,
const VRegister& vm, NEONTableOp op) {
DCHECK(vd.Is16B() || vd.Is8B());
DCHECK(vn.Is16B());
DCHECK(AreSameFormat(vd, vm));
Emit(op | (vd.IsQ() ? NEON_Q : 0) | Rm(vm) | Rn(vn) | Rd(vd));
}
void Assembler::tbl(const VRegister& vd, const VRegister& vn,
const VRegister& vm) {
NEONTable(vd, vn, vm, NEON_TBL_1v);
}
void Assembler::tbl(const VRegister& vd, const VRegister& vn,
const VRegister& vn2, const VRegister& vm) {
USE(vn2);
DCHECK(AreSameFormat(vn, vn2));
DCHECK(AreConsecutive(vn, vn2));
NEONTable(vd, vn, vm, NEON_TBL_2v);
}
void Assembler::tbl(const VRegister& vd, const VRegister& vn,
const VRegister& vn2, const VRegister& vn3,
const VRegister& vm) {
USE(vn2);
USE(vn3);
DCHECK(AreSameFormat(vn, vn2, vn3));
DCHECK(AreConsecutive(vn, vn2, vn3));
NEONTable(vd, vn, vm, NEON_TBL_3v);
}
void Assembler::tbl(const VRegister& vd, const VRegister& vn,
const VRegister& vn2, const VRegister& vn3,
const VRegister& vn4, const VRegister& vm) {
USE(vn2);
USE(vn3);
USE(vn4);
DCHECK(AreSameFormat(vn, vn2, vn3, vn4));
DCHECK(AreConsecutive(vn, vn2, vn3, vn4));
NEONTable(vd, vn, vm, NEON_TBL_4v);
}
void Assembler::tbx(const VRegister& vd, const VRegister& vn,
const VRegister& vm) {
NEONTable(vd, vn, vm, NEON_TBX_1v);
}
void Assembler::tbx(const VRegister& vd, const VRegister& vn,
const VRegister& vn2, const VRegister& vm) {
USE(vn2);
DCHECK(AreSameFormat(vn, vn2));
DCHECK(AreConsecutive(vn, vn2));
NEONTable(vd, vn, vm, NEON_TBX_2v);
}
void Assembler::tbx(const VRegister& vd, const VRegister& vn,
const VRegister& vn2, const VRegister& vn3,
const VRegister& vm) {
USE(vn2);
USE(vn3);
DCHECK(AreSameFormat(vn, vn2, vn3));
DCHECK(AreConsecutive(vn, vn2, vn3));
NEONTable(vd, vn, vm, NEON_TBX_3v);
}
void Assembler::tbx(const VRegister& vd, const VRegister& vn,
const VRegister& vn2, const VRegister& vn3,
const VRegister& vn4, const VRegister& vm) {
USE(vn2);
USE(vn3);
USE(vn4);
DCHECK(AreSameFormat(vn, vn2, vn3, vn4));
DCHECK(AreConsecutive(vn, vn2, vn3, vn4));
NEONTable(vd, vn, vm, NEON_TBX_4v);
}
void Assembler::mov(const VRegister& vd, int vd_index, const VRegister& vn,
int vn_index) {
ins(vd, vd_index, vn, vn_index);
}
void Assembler::mvn(const Register& rd, const Operand& operand) {
orn(rd, AppropriateZeroRegFor(rd), operand);
}
void Assembler::mrs(const Register& rt, SystemRegister sysreg) {
DCHECK(rt.Is64Bits());
Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt));
}
void Assembler::msr(SystemRegister sysreg, const Register& rt) {
DCHECK(rt.Is64Bits