| // Copyright 2013 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #if V8_TARGET_ARCH_ARM64 |
| |
| #include "src/api-arguments.h" |
| #include "src/arm64/assembler-arm64-inl.h" |
| #include "src/arm64/macro-assembler-arm64-inl.h" |
| #include "src/bootstrapper.h" |
| #include "src/code-stubs.h" |
| #include "src/counters.h" |
| #include "src/frame-constants.h" |
| #include "src/frames.h" |
| #include "src/heap/heap-inl.h" |
| #include "src/ic/ic.h" |
| #include "src/ic/stub-cache.h" |
| #include "src/isolate.h" |
| #include "src/objects/regexp-match-info.h" |
| #include "src/regexp/jsregexp.h" |
| #include "src/regexp/regexp-macro-assembler.h" |
| #include "src/runtime/runtime.h" |
| |
| #include "src/arm64/code-stubs-arm64.h" // Cannot be the first include. |
| |
| namespace v8 { |
| namespace internal { |
| |
| #define __ ACCESS_MASM(masm) |
| |
| void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) { |
| __ Mov(x5, Operand(x0, LSL, kPointerSizeLog2)); |
| __ Str(x1, MemOperand(__ StackPointer(), x5)); |
| __ Push(x1, x2); |
| __ Add(x0, x0, Operand(3)); |
| __ TailCallRuntime(Runtime::kNewArray); |
| } |
| |
| |
| void DoubleToIStub::Generate(MacroAssembler* masm) { |
| Label done; |
| Register result = destination(); |
| |
| DCHECK(result.Is64Bits()); |
| |
| UseScratchRegisterScope temps(masm); |
| Register scratch1 = temps.AcquireX(); |
| Register scratch2 = temps.AcquireX(); |
| DoubleRegister double_scratch = temps.AcquireD(); |
| |
| __ Peek(double_scratch, 0); |
| // Try to convert with a FPU convert instruction. This handles all |
| // non-saturating cases. |
| __ TryConvertDoubleToInt64(result, double_scratch, &done); |
| __ Fmov(result, double_scratch); |
| |
| // If we reach here we need to manually convert the input to an int32. |
| |
| // Extract the exponent. |
| Register exponent = scratch1; |
| __ Ubfx(exponent, result, HeapNumber::kMantissaBits, |
| HeapNumber::kExponentBits); |
| |
| // It the exponent is >= 84 (kMantissaBits + 32), the result is always 0 since |
| // the mantissa gets shifted completely out of the int32_t result. |
| __ Cmp(exponent, HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 32); |
| __ CzeroX(result, ge); |
| __ B(ge, &done); |
| |
| // The Fcvtzs sequence handles all cases except where the conversion causes |
| // signed overflow in the int64_t target. Since we've already handled |
| // exponents >= 84, we can guarantee that 63 <= exponent < 84. |
| |
| if (masm->emit_debug_code()) { |
| __ Cmp(exponent, HeapNumber::kExponentBias + 63); |
| // Exponents less than this should have been handled by the Fcvt case. |
| __ Check(ge, AbortReason::kUnexpectedValue); |
| } |
| |
| // Isolate the mantissa bits, and set the implicit '1'. |
| Register mantissa = scratch2; |
| __ Ubfx(mantissa, result, 0, HeapNumber::kMantissaBits); |
| __ Orr(mantissa, mantissa, 1UL << HeapNumber::kMantissaBits); |
| |
| // Negate the mantissa if necessary. |
| __ Tst(result, kXSignMask); |
| __ Cneg(mantissa, mantissa, ne); |
| |
| // Shift the mantissa bits in the correct place. We know that we have to shift |
| // it left here, because exponent >= 63 >= kMantissaBits. |
| __ Sub(exponent, exponent, |
| HeapNumber::kExponentBias + HeapNumber::kMantissaBits); |
| __ Lsl(result, mantissa, exponent); |
| |
| __ Bind(&done); |
| __ Ret(); |
| } |
| |
| |
| void MathPowStub::Generate(MacroAssembler* masm) { |
| // Stack on entry: |
| // sp[0]: Exponent (as a tagged value). |
| // sp[1]: Base (as a tagged value). |
| // |
| // The (tagged) result will be returned in x0, as a heap number. |
| |
| Register exponent_tagged = MathPowTaggedDescriptor::exponent(); |
| DCHECK(exponent_tagged.is(x11)); |
| Register exponent_integer = MathPowIntegerDescriptor::exponent(); |
| DCHECK(exponent_integer.is(x12)); |
| Register saved_lr = x19; |
| VRegister result_double = d0; |
| VRegister base_double = d0; |
| VRegister exponent_double = d1; |
| VRegister base_double_copy = d2; |
| VRegister scratch1_double = d6; |
| VRegister scratch0_double = d7; |
| |
| // A fast-path for integer exponents. |
| Label exponent_is_smi, exponent_is_integer; |
| // Allocate a heap number for the result, and return it. |
| Label done; |
| |
| // Unpack the inputs. |
| if (exponent_type() == TAGGED) { |
| __ JumpIfSmi(exponent_tagged, &exponent_is_smi); |
| __ Ldr(exponent_double, |
| FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset)); |
| } |
| |
| // Handle double (heap number) exponents. |
| if (exponent_type() != INTEGER) { |
| // Detect integer exponents stored as doubles and handle those in the |
| // integer fast-path. |
| __ TryRepresentDoubleAsInt64(exponent_integer, exponent_double, |
| scratch0_double, &exponent_is_integer); |
| |
| { |
| AllowExternalCallThatCantCauseGC scope(masm); |
| __ Mov(saved_lr, lr); |
| __ CallCFunction( |
| ExternalReference::power_double_double_function(isolate()), 0, 2); |
| __ Mov(lr, saved_lr); |
| __ B(&done); |
| } |
| |
| // Handle SMI exponents. |
| __ Bind(&exponent_is_smi); |
| // x10 base_tagged The tagged base (input). |
| // x11 exponent_tagged The tagged exponent (input). |
| // d1 base_double The base as a double. |
| __ SmiUntag(exponent_integer, exponent_tagged); |
| } |
| |
| __ Bind(&exponent_is_integer); |
| // x10 base_tagged The tagged base (input). |
| // x11 exponent_tagged The tagged exponent (input). |
| // x12 exponent_integer The exponent as an integer. |
| // d1 base_double The base as a double. |
| |
| // Find abs(exponent). For negative exponents, we can find the inverse later. |
| Register exponent_abs = x13; |
| __ Cmp(exponent_integer, 0); |
| __ Cneg(exponent_abs, exponent_integer, mi); |
| // x13 exponent_abs The value of abs(exponent_integer). |
| |
| // Repeatedly multiply to calculate the power. |
| // result = 1.0; |
| // For each bit n (exponent_integer{n}) { |
| // if (exponent_integer{n}) { |
| // result *= base; |
| // } |
| // base *= base; |
| // if (remaining bits in exponent_integer are all zero) { |
| // break; |
| // } |
| // } |
| Label power_loop, power_loop_entry, power_loop_exit; |
| __ Fmov(scratch1_double, base_double); |
| __ Fmov(base_double_copy, base_double); |
| __ Fmov(result_double, 1.0); |
| __ B(&power_loop_entry); |
| |
| __ Bind(&power_loop); |
| __ Fmul(scratch1_double, scratch1_double, scratch1_double); |
| __ Lsr(exponent_abs, exponent_abs, 1); |
| __ Cbz(exponent_abs, &power_loop_exit); |
| |
| __ Bind(&power_loop_entry); |
| __ Tbz(exponent_abs, 0, &power_loop); |
| __ Fmul(result_double, result_double, scratch1_double); |
| __ B(&power_loop); |
| |
| __ Bind(&power_loop_exit); |
| |
| // If the exponent was positive, result_double holds the result. |
| __ Tbz(exponent_integer, kXSignBit, &done); |
| |
| // The exponent was negative, so find the inverse. |
| __ Fmov(scratch0_double, 1.0); |
| __ Fdiv(result_double, scratch0_double, result_double); |
| // ECMA-262 only requires Math.pow to return an 'implementation-dependent |
| // approximation' of base^exponent. However, mjsunit/math-pow uses Math.pow |
| // to calculate the subnormal value 2^-1074. This method of calculating |
| // negative powers doesn't work because 2^1074 overflows to infinity. To |
| // catch this corner-case, we bail out if the result was 0. (This can only |
| // occur if the divisor is infinity or the base is zero.) |
| __ Fcmp(result_double, 0.0); |
| __ B(&done, ne); |
| |
| AllowExternalCallThatCantCauseGC scope(masm); |
| __ Mov(saved_lr, lr); |
| __ Fmov(base_double, base_double_copy); |
| __ Scvtf(exponent_double, exponent_integer); |
| __ CallCFunction(ExternalReference::power_double_double_function(isolate()), |
| 0, 2); |
| __ Mov(lr, saved_lr); |
| __ Bind(&done); |
| __ Ret(); |
| } |
| |
| void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { |
| // It is important that the following stubs are generated in this order |
| // because pregenerated stubs can only call other pregenerated stubs. |
| CEntryStub::GenerateAheadOfTime(isolate); |
| CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate); |
| StoreFastElementStub::GenerateAheadOfTime(isolate); |
| } |
| |
| |
| void CodeStub::GenerateFPStubs(Isolate* isolate) { |
| // Floating-point code doesn't get special handling in ARM64, so there's |
| // nothing to do here. |
| USE(isolate); |
| } |
| |
| Movability CEntryStub::NeedsImmovableCode() { |
| // CEntryStub stores the return address on the stack before calling into |
| // C++ code. In some cases, the VM accesses this address, but it is not used |
| // when the C++ code returns to the stub because LR holds the return address |
| // in AAPCS64. If the stub is moved (perhaps during a GC), we could end up |
| // returning to dead code. |
| // TODO(jbramley): Whilst this is the only analysis that makes sense, I can't |
| // find any comment to confirm this, and I don't hit any crashes whatever |
| // this function returns. The anaylsis should be properly confirmed. |
| return kImmovable; |
| } |
| |
| |
| void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { |
| CEntryStub stub(isolate, 1, kDontSaveFPRegs); |
| stub.GetCode(); |
| CEntryStub stub_fp(isolate, 1, kSaveFPRegs); |
| stub_fp.GetCode(); |
| } |
| |
| |
| void CEntryStub::Generate(MacroAssembler* masm) { |
| // The Abort mechanism relies on CallRuntime, which in turn relies on |
| // CEntryStub, so until this stub has been generated, we have to use a |
| // fall-back Abort mechanism. |
| // |
| // Note that this stub must be generated before any use of Abort. |
| MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm); |
| |
| ASM_LOCATION("CEntryStub::Generate entry"); |
| ProfileEntryHookStub::MaybeCallEntryHook(masm); |
| |
| // Register parameters: |
| // x0: argc (including receiver, untagged) |
| // x1: target |
| // If argv_in_register(): |
| // x11: argv (pointer to first argument) |
| // |
| // The stack on entry holds the arguments and the receiver, with the receiver |
| // at the highest address: |
| // |
| // sp]argc-1]: receiver |
| // sp[argc-2]: arg[argc-2] |
| // ... ... |
| // sp[1]: arg[1] |
| // sp[0]: arg[0] |
| // |
| // The arguments are in reverse order, so that arg[argc-2] is actually the |
| // first argument to the target function and arg[0] is the last. |
| const Register& argc_input = x0; |
| const Register& target_input = x1; |
| |
| // Calculate argv, argc and the target address, and store them in |
| // callee-saved registers so we can retry the call without having to reload |
| // these arguments. |
| // TODO(jbramley): If the first call attempt succeeds in the common case (as |
| // it should), then we might be better off putting these parameters directly |
| // into their argument registers, rather than using callee-saved registers and |
| // preserving them on the stack. |
| const Register& argv = x21; |
| const Register& argc = x22; |
| const Register& target = x23; |
| |
| // Derive argv from the stack pointer so that it points to the first argument |
| // (arg[argc-2]), or just below the receiver in case there are no arguments. |
| // - Adjust for the arg[] array. |
| Register temp_argv = x11; |
| if (!argv_in_register()) { |
| __ SlotAddress(temp_argv, x0); |
| // - Adjust for the receiver. |
| __ Sub(temp_argv, temp_argv, 1 * kPointerSize); |
| } |
| |
| // Reserve three slots to preserve x21-x23 callee-saved registers. |
| int extra_stack_space = 3; |
| // Enter the exit frame. |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ EnterExitFrame( |
| save_doubles(), x10, extra_stack_space, |
| is_builtin_exit() ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); |
| DCHECK(csp.Is(__ StackPointer())); |
| |
| // Poke callee-saved registers into reserved space. |
| __ Poke(argv, 1 * kPointerSize); |
| __ Poke(argc, 2 * kPointerSize); |
| __ Poke(target, 3 * kPointerSize); |
| |
| // We normally only keep tagged values in callee-saved registers, as they |
| // could be pushed onto the stack by called stubs and functions, and on the |
| // stack they can confuse the GC. However, we're only calling C functions |
| // which can push arbitrary data onto the stack anyway, and so the GC won't |
| // examine that part of the stack. |
| __ Mov(argc, argc_input); |
| __ Mov(target, target_input); |
| __ Mov(argv, temp_argv); |
| |
| // x21 : argv |
| // x22 : argc |
| // x23 : call target |
| // |
| // The stack (on entry) holds the arguments and the receiver, with the |
| // receiver at the highest address: |
| // |
| // argv[8]: receiver |
| // argv -> argv[0]: arg[argc-2] |
| // ... ... |
| // argv[...]: arg[1] |
| // argv[...]: arg[0] |
| // |
| // Immediately below (after) this is the exit frame, as constructed by |
| // EnterExitFrame: |
| // fp[8]: CallerPC (lr) |
| // fp -> fp[0]: CallerFP (old fp) |
| // fp[-8]: Space reserved for SPOffset. |
| // fp[-16]: CodeObject() |
| // csp[...]: Saved doubles, if saved_doubles is true. |
| // csp[32]: Alignment padding, if necessary. |
| // csp[24]: Preserved x23 (used for target). |
| // csp[16]: Preserved x22 (used for argc). |
| // csp[8]: Preserved x21 (used for argv). |
| // csp -> csp[0]: Space reserved for the return address. |
| // |
| // After a successful call, the exit frame, preserved registers (x21-x23) and |
| // the arguments (including the receiver) are dropped or popped as |
| // appropriate. The stub then returns. |
| // |
| // After an unsuccessful call, the exit frame and suchlike are left |
| // untouched, and the stub either throws an exception by jumping to one of |
| // the exception_returned label. |
| |
| DCHECK(csp.Is(__ StackPointer())); |
| |
| // Prepare AAPCS64 arguments to pass to the builtin. |
| __ Mov(x0, argc); |
| __ Mov(x1, argv); |
| __ Mov(x2, ExternalReference::isolate_address(isolate())); |
| |
| Label return_location; |
| __ Adr(x12, &return_location); |
| __ Poke(x12, 0); |
| |
| if (__ emit_debug_code()) { |
| // Verify that the slot below fp[kSPOffset]-8 points to the return location |
| // (currently in x12). |
| UseScratchRegisterScope temps(masm); |
| Register temp = temps.AcquireX(); |
| __ Ldr(temp, MemOperand(fp, ExitFrameConstants::kSPOffset)); |
| __ Ldr(temp, MemOperand(temp, -static_cast<int64_t>(kXRegSize))); |
| __ Cmp(temp, x12); |
| __ Check(eq, AbortReason::kReturnAddressNotFoundInFrame); |
| } |
| |
| // Call the builtin. |
| __ Blr(target); |
| __ Bind(&return_location); |
| |
| // Result returned in x0 or x1:x0 - do not destroy these registers! |
| |
| // x0 result0 The return code from the call. |
| // x1 result1 For calls which return ObjectPair. |
| // x21 argv |
| // x22 argc |
| // x23 target |
| const Register& result = x0; |
| |
| // Check result for exception sentinel. |
| Label exception_returned; |
| __ CompareRoot(result, Heap::kExceptionRootIndex); |
| __ B(eq, &exception_returned); |
| |
| // The call succeeded, so unwind the stack and return. |
| |
| // Restore callee-saved registers x21-x23. |
| __ Mov(x11, argc); |
| |
| __ Peek(argv, 1 * kPointerSize); |
| __ Peek(argc, 2 * kPointerSize); |
| __ Peek(target, 3 * kPointerSize); |
| |
| __ LeaveExitFrame(save_doubles(), x10, x9); |
| if (!argv_in_register()) { |
| // Drop the remaining stack slots and return from the stub. |
| __ DropArguments(x11); |
| } |
| __ AssertFPCRState(); |
| __ Ret(); |
| |
| // Handling of exception. |
| __ Bind(&exception_returned); |
| |
| ExternalReference pending_handler_context_address( |
| IsolateAddressId::kPendingHandlerContextAddress, isolate()); |
| ExternalReference pending_handler_entrypoint_address( |
| IsolateAddressId::kPendingHandlerEntrypointAddress, isolate()); |
| ExternalReference pending_handler_fp_address( |
| IsolateAddressId::kPendingHandlerFPAddress, isolate()); |
| ExternalReference pending_handler_sp_address( |
| IsolateAddressId::kPendingHandlerSPAddress, isolate()); |
| |
| // Ask the runtime for help to determine the handler. This will set x0 to |
| // contain the current pending exception, don't clobber it. |
| ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler, |
| isolate()); |
| DCHECK(csp.Is(masm->StackPointer())); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ Mov(x0, 0); // argc. |
| __ Mov(x1, 0); // argv. |
| __ Mov(x2, ExternalReference::isolate_address(isolate())); |
| __ CallCFunction(find_handler, 3); |
| } |
| |
| // Retrieve the handler context, SP and FP. |
| __ Mov(cp, Operand(pending_handler_context_address)); |
| __ Ldr(cp, MemOperand(cp)); |
| { |
| UseScratchRegisterScope temps(masm); |
| Register scratch = temps.AcquireX(); |
| __ Mov(scratch, Operand(pending_handler_sp_address)); |
| __ Ldr(scratch, MemOperand(scratch)); |
| __ Mov(csp, scratch); |
| } |
| __ Mov(fp, Operand(pending_handler_fp_address)); |
| __ Ldr(fp, MemOperand(fp)); |
| |
| // If the handler is a JS frame, restore the context to the frame. Note that |
| // the context will be set to (cp == 0) for non-JS frames. |
| Label not_js_frame; |
| __ Cbz(cp, ¬_js_frame); |
| __ Str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| __ Bind(¬_js_frame); |
| |
| // Compute the handler entry address and jump to it. |
| __ Mov(x10, Operand(pending_handler_entrypoint_address)); |
| __ Ldr(x10, MemOperand(x10)); |
| __ Br(x10); |
| } |
| |
| // This is the entry point from C++. 5 arguments are provided in x0-x4. |
| // See use of the JSEntryFunction for example in src/execution.cc. |
| // Input: |
| // x0: code entry. |
| // x1: function. |
| // x2: receiver. |
| // x3: argc. |
| // x4: argv. |
| // Output: |
| // x0: result. |
| void JSEntryStub::Generate(MacroAssembler* masm) { |
| Register code_entry = x0; |
| |
| // Enable instruction instrumentation. This only works on the simulator, and |
| // will have no effect on the model or real hardware. |
| __ EnableInstrumentation(); |
| |
| Label invoke, handler_entry, exit; |
| |
| __ PushCalleeSavedRegisters(); |
| |
| ProfileEntryHookStub::MaybeCallEntryHook(masm); |
| |
| // Set up the reserved register for 0.0. |
| __ Fmov(fp_zero, 0.0); |
| |
| // Initialize the root array register |
| __ InitializeRootRegister(); |
| |
| // Build an entry frame (see layout below). |
| StackFrame::Type marker = type(); |
| int64_t bad_frame_pointer = -1L; // Bad frame pointer to fail if it is used. |
| __ Mov(x13, bad_frame_pointer); |
| __ Mov(x12, StackFrame::TypeToMarker(marker)); |
| __ Mov(x11, ExternalReference(IsolateAddressId::kCEntryFPAddress, isolate())); |
| __ Ldr(x10, MemOperand(x11)); |
| |
| __ Push(x13, x12, xzr, x10); |
| // Set up fp. |
| __ Sub(fp, __ StackPointer(), EntryFrameConstants::kCallerFPOffset); |
| |
| // Push the JS entry frame marker. Also set js_entry_sp if this is the |
| // outermost JS call. |
| Label non_outermost_js, done; |
| ExternalReference js_entry_sp(IsolateAddressId::kJSEntrySPAddress, isolate()); |
| __ Mov(x10, ExternalReference(js_entry_sp)); |
| __ Ldr(x11, MemOperand(x10)); |
| |
| // Select between the inner and outermost frame marker, based on the JS entry |
| // sp. We assert that the inner marker is zero, so we can use xzr to save a |
| // move instruction. |
| DCHECK_EQ(StackFrame::INNER_JSENTRY_FRAME, 0); |
| __ Cmp(x11, 0); // If x11 is zero, this is the outermost frame. |
| __ Csel(x12, xzr, StackFrame::OUTERMOST_JSENTRY_FRAME, ne); |
| __ B(ne, &done); |
| __ Str(fp, MemOperand(x10)); |
| |
| __ Bind(&done); |
| __ Push(x12, padreg); |
| |
| // The frame set up looks like this: |
| // sp[0] : padding. |
| // sp[1] : JS entry frame marker. |
| // sp[2] : C entry FP. |
| // sp[3] : stack frame marker. |
| // sp[4] : stack frame marker. |
| // sp[5] : bad frame pointer 0xFFF...FF <- fp points here. |
| |
| // Jump to a faked try block that does the invoke, with a faked catch |
| // block that sets the pending exception. |
| __ B(&invoke); |
| |
| // Prevent the constant pool from being emitted between the record of the |
| // handler_entry position and the first instruction of the sequence here. |
| // There is no risk because Assembler::Emit() emits the instruction before |
| // checking for constant pool emission, but we do not want to depend on |
| // that. |
| { |
| Assembler::BlockPoolsScope block_pools(masm); |
| __ bind(&handler_entry); |
| handler_offset_ = handler_entry.pos(); |
| // Caught exception: Store result (exception) in the pending exception |
| // field in the JSEnv and return a failure sentinel. Coming in here the |
| // fp will be invalid because the PushTryHandler below sets it to 0 to |
| // signal the existence of the JSEntry frame. |
| __ Mov(x10, Operand(ExternalReference( |
| IsolateAddressId::kPendingExceptionAddress, isolate()))); |
| } |
| __ Str(code_entry, MemOperand(x10)); |
| __ LoadRoot(x0, Heap::kExceptionRootIndex); |
| __ B(&exit); |
| |
| // Invoke: Link this frame into the handler chain. |
| __ Bind(&invoke); |
| |
| // Push new stack handler. |
| static_assert(StackHandlerConstants::kSize == 2 * kPointerSize, |
| "Unexpected offset for StackHandlerConstants::kSize"); |
| static_assert(StackHandlerConstants::kNextOffset == 0 * kPointerSize, |
| "Unexpected offset for StackHandlerConstants::kNextOffset"); |
| |
| // Link the current handler as the next handler. |
| __ Mov(x11, ExternalReference(IsolateAddressId::kHandlerAddress, isolate())); |
| __ Ldr(x10, MemOperand(x11)); |
| __ Push(padreg, x10); |
| |
| // Set this new handler as the current one. |
| { |
| UseScratchRegisterScope temps(masm); |
| Register scratch = temps.AcquireX(); |
| __ Mov(scratch, __ StackPointer()); |
| __ Str(scratch, MemOperand(x11)); |
| } |
| |
| // If an exception not caught by another handler occurs, this handler |
| // returns control to the code after the B(&invoke) above, which |
| // restores all callee-saved registers (including cp and fp) to their |
| // saved values before returning a failure to C. |
| |
| // Invoke the function by calling through the JS entry trampoline builtin. |
| // Notice that we cannot store a reference to the trampoline code directly in |
| // this stub, because runtime stubs are not traversed when doing GC. |
| |
| // Expected registers by Builtins::JSEntryTrampoline |
| // x0: code entry. |
| // x1: function. |
| // x2: receiver. |
| // x3: argc. |
| // x4: argv. |
| __ Call(EntryTrampoline(), RelocInfo::CODE_TARGET); |
| |
| // Pop the stack handler and unlink this frame from the handler chain. |
| static_assert(StackHandlerConstants::kNextOffset == 0 * kPointerSize, |
| "Unexpected offset for StackHandlerConstants::kNextOffset"); |
| __ Pop(x10, padreg); |
| __ Mov(x11, ExternalReference(IsolateAddressId::kHandlerAddress, isolate())); |
| __ Drop(StackHandlerConstants::kSlotCount - 2); |
| __ Str(x10, MemOperand(x11)); |
| |
| __ Bind(&exit); |
| // x0 holds the result. |
| // The stack pointer points to the top of the entry frame pushed on entry from |
| // C++ (at the beginning of this stub): |
| // sp[0] : padding. |
| // sp[1] : JS entry frame marker. |
| // sp[2] : C entry FP. |
| // sp[3] : stack frame marker. |
| // sp[4] : stack frame marker. |
| // sp[5] : bad frame pointer 0xFFF...FF <- fp points here. |
| |
| // Check if the current stack frame is marked as the outermost JS frame. |
| Label non_outermost_js_2; |
| { |
| Register c_entry_fp = x11; |
| __ PeekPair(x10, c_entry_fp, 1 * kPointerSize); |
| __ Cmp(x10, StackFrame::OUTERMOST_JSENTRY_FRAME); |
| __ B(ne, &non_outermost_js_2); |
| __ Mov(x12, ExternalReference(js_entry_sp)); |
| __ Str(xzr, MemOperand(x12)); |
| __ Bind(&non_outermost_js_2); |
| |
| // Restore the top frame descriptors from the stack. |
| __ Mov(x12, |
| ExternalReference(IsolateAddressId::kCEntryFPAddress, isolate())); |
| __ Str(c_entry_fp, MemOperand(x12)); |
| } |
| |
| // Reset the stack to the callee saved registers. |
| static_assert(EntryFrameConstants::kFixedFrameSize % (2 * kPointerSize) == 0, |
| "Size of entry frame is not a multiple of 16 bytes"); |
| __ Drop(EntryFrameConstants::kFixedFrameSize / kPointerSize); |
| // Restore the callee-saved registers and return. |
| __ PopCalleeSavedRegisters(); |
| __ Ret(); |
| } |
| |
| // The entry hook is a Push (stp) instruction, followed by a call. |
| static const unsigned int kProfileEntryHookCallSize = |
| (1 * kInstructionSize) + Assembler::kCallSizeWithRelocation; |
| |
| void ProfileEntryHookStub::MaybeCallEntryHookDelayed(TurboAssembler* tasm, |
| Zone* zone) { |
| if (tasm->isolate()->function_entry_hook() != nullptr) { |
| Assembler::BlockConstPoolScope no_const_pools(tasm); |
| DontEmitDebugCodeScope no_debug_code(tasm); |
| Label entry_hook_call_start; |
| tasm->Bind(&entry_hook_call_start); |
| tasm->Push(padreg, lr); |
| tasm->CallStubDelayed(new (zone) ProfileEntryHookStub(nullptr)); |
| DCHECK_EQ(tasm->SizeOfCodeGeneratedSince(&entry_hook_call_start), |
| kProfileEntryHookCallSize); |
| tasm->Pop(lr, padreg); |
| } |
| } |
| |
| void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { |
| if (masm->isolate()->function_entry_hook() != nullptr) { |
| ProfileEntryHookStub stub(masm->isolate()); |
| Assembler::BlockConstPoolScope no_const_pools(masm); |
| DontEmitDebugCodeScope no_debug_code(masm); |
| Label entry_hook_call_start; |
| __ Bind(&entry_hook_call_start); |
| __ Push(padreg, lr); |
| __ CallStub(&stub); |
| DCHECK_EQ(masm->SizeOfCodeGeneratedSince(&entry_hook_call_start), |
| kProfileEntryHookCallSize); |
| __ Pop(lr, padreg); |
| } |
| } |
| |
| |
| void ProfileEntryHookStub::Generate(MacroAssembler* masm) { |
| MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm); |
| |
| // Save all kCallerSaved registers (including lr), since this can be called |
| // from anywhere. |
| // TODO(jbramley): What about FP registers? |
| __ PushCPURegList(kCallerSaved); |
| DCHECK(kCallerSaved.IncludesAliasOf(lr)); |
| const int kNumSavedRegs = kCallerSaved.Count(); |
| DCHECK_EQ(kNumSavedRegs % 2, 0); |
| |
| // Compute the function's address as the first argument. |
| __ Sub(x0, lr, kProfileEntryHookCallSize); |
| |
| #if V8_HOST_ARCH_ARM64 |
| uintptr_t entry_hook = |
| reinterpret_cast<uintptr_t>(isolate()->function_entry_hook()); |
| __ Mov(x10, entry_hook); |
| #else |
| // Under the simulator we need to indirect the entry hook through a trampoline |
| // function at a known address. |
| ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline)); |
| __ Mov(x10, Operand(ExternalReference(&dispatcher, |
| ExternalReference::BUILTIN_CALL, |
| isolate()))); |
| // It additionally takes an isolate as a third parameter |
| __ Mov(x2, ExternalReference::isolate_address(isolate())); |
| #endif |
| |
| // The caller's return address is above the saved temporaries. |
| // Grab its location for the second argument to the hook. |
| __ SlotAddress(x1, kNumSavedRegs); |
| |
| { |
| // Create a dummy frame, as CallCFunction requires this. |
| FrameScope frame(masm, StackFrame::MANUAL); |
| __ CallCFunction(x10, 2, 0); |
| } |
| |
| __ PopCPURegList(kCallerSaved); |
| __ Ret(); |
| } |
| |
| |
| void DirectCEntryStub::Generate(MacroAssembler* masm) { |
| // Put return address on the stack (accessible to GC through exit frame pc). |
| __ Poke(lr, 0); |
| // Call the C++ function. |
| __ Blr(x10); |
| // Return to calling code. |
| __ Peek(lr, 0); |
| __ AssertFPCRState(); |
| __ Ret(); |
| } |
| |
| void DirectCEntryStub::GenerateCall(MacroAssembler* masm, |
| Register target) { |
| // Make sure the caller configured the stack pointer (see comment in |
| // DirectCEntryStub::Generate). |
| DCHECK(csp.Is(__ StackPointer())); |
| |
| intptr_t code = |
| reinterpret_cast<intptr_t>(GetCode().location()); |
| __ Mov(lr, Operand(code, RelocInfo::CODE_TARGET)); |
| __ Mov(x10, target); |
| // Branch to the stub. |
| __ Blr(lr); |
| } |
| |
| template<class T> |
| static void CreateArrayDispatch(MacroAssembler* masm, |
| AllocationSiteOverrideMode mode) { |
| ASM_LOCATION("CreateArrayDispatch"); |
| if (mode == DISABLE_ALLOCATION_SITES) { |
| T stub(masm->isolate(), GetInitialFastElementsKind(), mode); |
| __ TailCallStub(&stub); |
| |
| } else if (mode == DONT_OVERRIDE) { |
| Register kind = x3; |
| int last_index = |
| GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); |
| for (int i = 0; i <= last_index; ++i) { |
| Label next; |
| ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i); |
| // TODO(jbramley): Is this the best way to handle this? Can we make the |
| // tail calls conditional, rather than hopping over each one? |
| __ CompareAndBranch(kind, candidate_kind, ne, &next); |
| T stub(masm->isolate(), candidate_kind); |
| __ TailCallStub(&stub); |
| __ Bind(&next); |
| } |
| |
| // If we reached this point there is a problem. |
| __ Abort(AbortReason::kUnexpectedElementsKindInArrayConstructor); |
| |
| } else { |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| // TODO(jbramley): If this needs to be a special case, make it a proper template |
| // specialization, and not a separate function. |
| static void CreateArrayDispatchOneArgument(MacroAssembler* masm, |
| AllocationSiteOverrideMode mode) { |
| ASM_LOCATION("CreateArrayDispatchOneArgument"); |
| // x0 - argc |
| // x1 - constructor? |
| // x2 - allocation site (if mode != DISABLE_ALLOCATION_SITES) |
| // x3 - kind (if mode != DISABLE_ALLOCATION_SITES) |
| // sp[0] - last argument |
| |
| Register allocation_site = x2; |
| Register kind = x3; |
| |
| STATIC_ASSERT(PACKED_SMI_ELEMENTS == 0); |
| STATIC_ASSERT(HOLEY_SMI_ELEMENTS == 1); |
| STATIC_ASSERT(PACKED_ELEMENTS == 2); |
| STATIC_ASSERT(HOLEY_ELEMENTS == 3); |
| STATIC_ASSERT(PACKED_DOUBLE_ELEMENTS == 4); |
| STATIC_ASSERT(HOLEY_DOUBLE_ELEMENTS == 5); |
| |
| if (mode == DISABLE_ALLOCATION_SITES) { |
| ElementsKind initial = GetInitialFastElementsKind(); |
| ElementsKind holey_initial = GetHoleyElementsKind(initial); |
| |
| ArraySingleArgumentConstructorStub stub_holey(masm->isolate(), |
| holey_initial, |
| DISABLE_ALLOCATION_SITES); |
| __ TailCallStub(&stub_holey); |
| } else if (mode == DONT_OVERRIDE) { |
| // Is the low bit set? If so, the array is holey. |
| Label normal_sequence; |
| __ Tbnz(kind, 0, &normal_sequence); |
| |
| // We are going to create a holey array, but our kind is non-holey. |
| // Fix kind and retry (only if we have an allocation site in the slot). |
| __ Orr(kind, kind, 1); |
| |
| if (FLAG_debug_code) { |
| __ Ldr(x10, FieldMemOperand(allocation_site, 0)); |
| __ JumpIfNotRoot(x10, Heap::kAllocationSiteMapRootIndex, |
| &normal_sequence); |
| __ Assert(eq, AbortReason::kExpectedAllocationSite); |
| } |
| |
| // Save the resulting elements kind in type info. We can't just store 'kind' |
| // in the AllocationSite::transition_info field because elements kind is |
| // restricted to a portion of the field; upper bits need to be left alone. |
| STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); |
| __ Ldr(x11, |
| FieldMemOperand(allocation_site, |
| AllocationSite::kTransitionInfoOrBoilerplateOffset)); |
| __ Add(x11, x11, Smi::FromInt(kFastElementsKindPackedToHoley)); |
| __ Str(x11, |
| FieldMemOperand(allocation_site, |
| AllocationSite::kTransitionInfoOrBoilerplateOffset)); |
| |
| __ Bind(&normal_sequence); |
| int last_index = |
| GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); |
| for (int i = 0; i <= last_index; ++i) { |
| Label next; |
| ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i); |
| __ CompareAndBranch(kind, candidate_kind, ne, &next); |
| ArraySingleArgumentConstructorStub stub(masm->isolate(), candidate_kind); |
| __ TailCallStub(&stub); |
| __ Bind(&next); |
| } |
| |
| // If we reached this point there is a problem. |
| __ Abort(AbortReason::kUnexpectedElementsKindInArrayConstructor); |
| } else { |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| template<class T> |
| static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { |
| int to_index = |
| GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); |
| for (int i = 0; i <= to_index; ++i) { |
| ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); |
| T stub(isolate, kind); |
| stub.GetCode(); |
| if (AllocationSite::ShouldTrack(kind)) { |
| T stub1(isolate, kind, DISABLE_ALLOCATION_SITES); |
| stub1.GetCode(); |
| } |
| } |
| } |
| |
| void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) { |
| ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>( |
| isolate); |
| ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>( |
| isolate); |
| ArrayNArgumentsConstructorStub stub(isolate); |
| stub.GetCode(); |
| ElementsKind kinds[2] = {PACKED_ELEMENTS, HOLEY_ELEMENTS}; |
| for (int i = 0; i < 2; i++) { |
| // For internal arrays we only need a few things |
| InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]); |
| stubh1.GetCode(); |
| InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]); |
| stubh2.GetCode(); |
| } |
| } |
| |
| |
| void ArrayConstructorStub::GenerateDispatchToArrayStub( |
| MacroAssembler* masm, |
| AllocationSiteOverrideMode mode) { |
| Register argc = x0; |
| Label zero_case, n_case; |
| __ Cbz(argc, &zero_case); |
| __ Cmp(argc, 1); |
| __ B(ne, &n_case); |
| |
| // One argument. |
| CreateArrayDispatchOneArgument(masm, mode); |
| |
| __ Bind(&zero_case); |
| // No arguments. |
| CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); |
| |
| __ Bind(&n_case); |
| // N arguments. |
| ArrayNArgumentsConstructorStub stub(masm->isolate()); |
| __ TailCallStub(&stub); |
| } |
| |
| |
| void ArrayConstructorStub::Generate(MacroAssembler* masm) { |
| ASM_LOCATION("ArrayConstructorStub::Generate"); |
| // ----------- S t a t e ------------- |
| // -- x0 : argc (only if argument_count() is ANY or MORE_THAN_ONE) |
| // -- x1 : constructor |
| // -- x2 : AllocationSite or undefined |
| // -- x3 : new target |
| // -- sp[0] : last argument |
| // ----------------------------------- |
| Register constructor = x1; |
| Register allocation_site = x2; |
| Register new_target = x3; |
| |
| if (FLAG_debug_code) { |
| // The array construct code is only set for the global and natives |
| // builtin Array functions which always have maps. |
| |
| Label unexpected_map, map_ok; |
| // Initial map for the builtin Array function should be a map. |
| __ Ldr(x10, FieldMemOperand(constructor, |
| JSFunction::kPrototypeOrInitialMapOffset)); |
| // Will both indicate a nullptr and a Smi. |
| __ JumpIfSmi(x10, &unexpected_map); |
| __ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok); |
| __ Bind(&unexpected_map); |
| __ Abort(AbortReason::kUnexpectedInitialMapForArrayFunction); |
| __ Bind(&map_ok); |
| |
| // We should either have undefined in the allocation_site register or a |
| // valid AllocationSite. |
| __ AssertUndefinedOrAllocationSite(allocation_site); |
| } |
| |
| // Enter the context of the Array function. |
| __ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset)); |
| |
| Label subclassing; |
| __ Cmp(new_target, constructor); |
| __ B(ne, &subclassing); |
| |
| Register kind = x3; |
| Label no_info; |
| // Get the elements kind and case on that. |
| __ JumpIfRoot(allocation_site, Heap::kUndefinedValueRootIndex, &no_info); |
| |
| __ Ldrsw(kind, UntagSmiFieldMemOperand( |
| allocation_site, |
| AllocationSite::kTransitionInfoOrBoilerplateOffset)); |
| __ And(kind, kind, AllocationSite::ElementsKindBits::kMask); |
| GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); |
| |
| __ Bind(&no_info); |
| GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); |
| |
| // Subclassing support. |
| __ Bind(&subclassing); |
| __ Poke(constructor, Operand(x0, LSL, kPointerSizeLog2)); |
| __ Add(x0, x0, Operand(3)); |
| __ Push(new_target, allocation_site); |
| __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate())); |
| } |
| |
| |
| void InternalArrayConstructorStub::GenerateCase( |
| MacroAssembler* masm, ElementsKind kind) { |
| Label zero_case, n_case; |
| Register argc = x0; |
| |
| __ Cbz(argc, &zero_case); |
| __ CompareAndBranch(argc, 1, ne, &n_case); |
| |
| // One argument. |
| if (IsFastPackedElementsKind(kind)) { |
| Label packed_case; |
| |
| // We might need to create a holey array; look at the first argument. |
| __ Peek(x10, 0); |
| __ Cbz(x10, &packed_case); |
| |
| InternalArraySingleArgumentConstructorStub |
| stub1_holey(isolate(), GetHoleyElementsKind(kind)); |
| __ TailCallStub(&stub1_holey); |
| |
| __ Bind(&packed_case); |
| } |
| InternalArraySingleArgumentConstructorStub stub1(isolate(), kind); |
| __ TailCallStub(&stub1); |
| |
| __ Bind(&zero_case); |
| // No arguments. |
| InternalArrayNoArgumentConstructorStub stub0(isolate(), kind); |
| __ TailCallStub(&stub0); |
| |
| __ Bind(&n_case); |
| // N arguments. |
| ArrayNArgumentsConstructorStub stubN(isolate()); |
| __ TailCallStub(&stubN); |
| } |
| |
| |
| void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- x0 : argc |
| // -- x1 : constructor |
| // -- sp[0] : return address |
| // -- sp[4] : last argument |
| // ----------------------------------- |
| |
| Register constructor = x1; |
| |
| if (FLAG_debug_code) { |
| // The array construct code is only set for the global and natives |
| // builtin Array functions which always have maps. |
| |
| Label unexpected_map, map_ok; |
| // Initial map for the builtin Array function should be a map. |
| __ Ldr(x10, FieldMemOperand(constructor, |
| JSFunction::kPrototypeOrInitialMapOffset)); |
| // Will both indicate a nullptr and a Smi. |
| __ JumpIfSmi(x10, &unexpected_map); |
| __ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok); |
| __ Bind(&unexpected_map); |
| __ Abort(AbortReason::kUnexpectedInitialMapForArrayFunction); |
| __ Bind(&map_ok); |
| } |
| |
| Register kind = w3; |
| // Figure out the right elements kind |
| __ Ldr(x10, FieldMemOperand(constructor, |
| JSFunction::kPrototypeOrInitialMapOffset)); |
| |
| // Retrieve elements_kind from map. |
| __ LoadElementsKindFromMap(kind, x10); |
| |
| if (FLAG_debug_code) { |
| Label done; |
| __ Cmp(x3, PACKED_ELEMENTS); |
| __ Ccmp(x3, HOLEY_ELEMENTS, ZFlag, ne); |
| __ Assert( |
| eq, |
| AbortReason::kInvalidElementsKindForInternalArrayOrInternalPackedArray); |
| } |
| |
| Label fast_elements_case; |
| __ CompareAndBranch(kind, PACKED_ELEMENTS, eq, &fast_elements_case); |
| GenerateCase(masm, HOLEY_ELEMENTS); |
| |
| __ Bind(&fast_elements_case); |
| GenerateCase(masm, PACKED_ELEMENTS); |
| } |
| |
| // The number of register that CallApiFunctionAndReturn will need to save on |
| // the stack. The space for these registers need to be allocated in the |
| // ExitFrame before calling CallApiFunctionAndReturn. |
| static const int kCallApiFunctionSpillSpace = 4; |
| |
| |
| static int AddressOffset(ExternalReference ref0, ExternalReference ref1) { |
| return static_cast<int>(ref0.address() - ref1.address()); |
| } |
| |
| // Calls an API function. Allocates HandleScope, extracts returned value |
| // from handle and propagates exceptions. |
| // 'stack_space' is the space to be unwound on exit (includes the call JS |
| // arguments space and the additional space allocated for the fast call). |
| // 'spill_offset' is the offset from the stack pointer where |
| // CallApiFunctionAndReturn can spill registers. |
| static void CallApiFunctionAndReturn(MacroAssembler* masm, |
| Register function_address, |
| ExternalReference thunk_ref, |
| int stack_space, int spill_offset, |
| MemOperand return_value_operand) { |
| ASM_LOCATION("CallApiFunctionAndReturn"); |
| Isolate* isolate = masm->isolate(); |
| ExternalReference next_address = |
| ExternalReference::handle_scope_next_address(isolate); |
| const int kNextOffset = 0; |
| const int kLimitOffset = AddressOffset( |
| ExternalReference::handle_scope_limit_address(isolate), next_address); |
| const int kLevelOffset = AddressOffset( |
| ExternalReference::handle_scope_level_address(isolate), next_address); |
| |
| DCHECK(function_address.is(x1) || function_address.is(x2)); |
| |
| Label profiler_disabled; |
| Label end_profiler_check; |
| __ Mov(x10, ExternalReference::is_profiling_address(isolate)); |
| __ Ldrb(w10, MemOperand(x10)); |
| __ Cbz(w10, &profiler_disabled); |
| __ Mov(x3, thunk_ref); |
| __ B(&end_profiler_check); |
| |
| __ Bind(&profiler_disabled); |
| __ Mov(x3, function_address); |
| __ Bind(&end_profiler_check); |
| |
| // Save the callee-save registers we are going to use. |
| // TODO(all): Is this necessary? ARM doesn't do it. |
| STATIC_ASSERT(kCallApiFunctionSpillSpace == 4); |
| __ Poke(x19, (spill_offset + 0) * kXRegSize); |
| __ Poke(x20, (spill_offset + 1) * kXRegSize); |
| __ Poke(x21, (spill_offset + 2) * kXRegSize); |
| __ Poke(x22, (spill_offset + 3) * kXRegSize); |
| |
| // Allocate HandleScope in callee-save registers. |
| // We will need to restore the HandleScope after the call to the API function, |
| // by allocating it in callee-save registers they will be preserved by C code. |
| Register handle_scope_base = x22; |
| Register next_address_reg = x19; |
| Register limit_reg = x20; |
| Register level_reg = w21; |
| |
| __ Mov(handle_scope_base, next_address); |
| __ Ldr(next_address_reg, MemOperand(handle_scope_base, kNextOffset)); |
| __ Ldr(limit_reg, MemOperand(handle_scope_base, kLimitOffset)); |
| __ Ldr(level_reg, MemOperand(handle_scope_base, kLevelOffset)); |
| __ Add(level_reg, level_reg, 1); |
| __ Str(level_reg, MemOperand(handle_scope_base, kLevelOffset)); |
| |
| if (FLAG_log_timer_events) { |
| FrameScope frame(masm, StackFrame::MANUAL); |
| __ PushSafepointRegisters(); |
| __ Mov(x0, ExternalReference::isolate_address(isolate)); |
| __ CallCFunction(ExternalReference::log_enter_external_function(isolate), |
| 1); |
| __ PopSafepointRegisters(); |
| } |
| |
| // Native call returns to the DirectCEntry stub which redirects to the |
| // return address pushed on stack (could have moved after GC). |
| // DirectCEntry stub itself is generated early and never moves. |
| DirectCEntryStub stub(isolate); |
| stub.GenerateCall(masm, x3); |
| |
| if (FLAG_log_timer_events) { |
| FrameScope frame(masm, StackFrame::MANUAL); |
| __ PushSafepointRegisters(); |
| __ Mov(x0, ExternalReference::isolate_address(isolate)); |
| __ CallCFunction(ExternalReference::log_leave_external_function(isolate), |
| 1); |
| __ PopSafepointRegisters(); |
| } |
| |
| Label promote_scheduled_exception; |
| Label delete_allocated_handles; |
| Label leave_exit_frame; |
| Label return_value_loaded; |
| |
| // Load value from ReturnValue. |
| __ Ldr(x0, return_value_operand); |
| __ Bind(&return_value_loaded); |
| // No more valid handles (the result handle was the last one). Restore |
| // previous handle scope. |
| __ Str(next_address_reg, MemOperand(handle_scope_base, kNextOffset)); |
| if (__ emit_debug_code()) { |
| __ Ldr(w1, MemOperand(handle_scope_base, kLevelOffset)); |
| __ Cmp(w1, level_reg); |
| __ Check(eq, AbortReason::kUnexpectedLevelAfterReturnFromApiCall); |
| } |
| __ Sub(level_reg, level_reg, 1); |
| __ Str(level_reg, MemOperand(handle_scope_base, kLevelOffset)); |
| __ Ldr(x1, MemOperand(handle_scope_base, kLimitOffset)); |
| __ Cmp(limit_reg, x1); |
| __ B(ne, &delete_allocated_handles); |
| |
| // Leave the API exit frame. |
| __ Bind(&leave_exit_frame); |
| // Restore callee-saved registers. |
| __ Peek(x19, (spill_offset + 0) * kXRegSize); |
| __ Peek(x20, (spill_offset + 1) * kXRegSize); |
| __ Peek(x21, (spill_offset + 2) * kXRegSize); |
| __ Peek(x22, (spill_offset + 3) * kXRegSize); |
| |
| __ LeaveExitFrame(false, x1, x5); |
| |
| // Check if the function scheduled an exception. |
| __ Mov(x5, ExternalReference::scheduled_exception_address(isolate)); |
| __ Ldr(x5, MemOperand(x5)); |
| __ JumpIfNotRoot(x5, Heap::kTheHoleValueRootIndex, |
| &promote_scheduled_exception); |
| |
| __ DropSlots(stack_space); |
| __ Ret(); |
| |
| // Re-throw by promoting a scheduled exception. |
| __ Bind(&promote_scheduled_exception); |
| __ TailCallRuntime(Runtime::kPromoteScheduledException); |
| |
| // HandleScope limit has changed. Delete allocated extensions. |
| __ Bind(&delete_allocated_handles); |
| __ Str(limit_reg, MemOperand(handle_scope_base, kLimitOffset)); |
| // Save the return value in a callee-save register. |
| Register saved_result = x19; |
| __ Mov(saved_result, x0); |
| __ Mov(x0, ExternalReference::isolate_address(isolate)); |
| __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate), |
| 1); |
| __ Mov(x0, saved_result); |
| __ B(&leave_exit_frame); |
| } |
| |
| void CallApiCallbackStub::Generate(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- x4 : call_data |
| // -- x2 : holder |
| // -- x1 : api_function_address |
| // -- cp : context |
| // -- |
| // -- sp[0] : last argument |
| // -- ... |
| // -- sp[(argc - 1) * 8] : first argument |
| // -- sp[argc * 8] : receiver |
| // ----------------------------------- |
| |
| Register call_data = x4; |
| Register holder = x2; |
| Register api_function_address = x1; |
| |
| typedef FunctionCallbackArguments FCA; |
| |
| STATIC_ASSERT(FCA::kArgsLength == 6); |
| STATIC_ASSERT(FCA::kNewTargetIndex == 5); |
| STATIC_ASSERT(FCA::kDataIndex == 4); |
| STATIC_ASSERT(FCA::kReturnValueOffset == 3); |
| STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); |
| STATIC_ASSERT(FCA::kIsolateIndex == 1); |
| STATIC_ASSERT(FCA::kHolderIndex == 0); |
| |
| Register undef = x7; |
| __ LoadRoot(undef, Heap::kUndefinedValueRootIndex); |
| |
| // Push new target, call data. |
| __ Push(undef, call_data); |
| |
| Register isolate_reg = x5; |
| __ Mov(isolate_reg, ExternalReference::isolate_address(masm->isolate())); |
| |
| // FunctionCallbackArguments: |
| // return value, return value default, isolate, holder. |
| __ Push(undef, undef, isolate_reg, holder); |
| |
| // Prepare arguments. |
| Register args = x6; |
| __ Mov(args, masm->StackPointer()); |
| |
| // Allocate the v8::Arguments structure in the arguments' space, since it's |
| // not controlled by GC. |
| const int kApiStackSpace = 3; |
| |
| // Allocate space so that CallApiFunctionAndReturn can store some scratch |
| // registers on the stack. |
| const int kCallApiFunctionSpillSpace = 4; |
| |
| FrameScope frame_scope(masm, StackFrame::MANUAL); |
| __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace); |
| |
| DCHECK(!AreAliased(x0, api_function_address)); |
| // x0 = FunctionCallbackInfo& |
| // Arguments is after the return address. |
| __ SlotAddress(x0, 1); |
| // FunctionCallbackInfo::implicit_args_ and FunctionCallbackInfo::values_ |
| __ Add(x10, args, Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize)); |
| __ Stp(args, x10, MemOperand(x0, 0 * kPointerSize)); |
| // FunctionCallbackInfo::length_ = argc |
| __ Mov(x10, argc()); |
| __ Str(x10, MemOperand(x0, 2 * kPointerSize)); |
| |
| ExternalReference thunk_ref = |
| ExternalReference::invoke_function_callback(masm->isolate()); |
| |
| AllowExternalCallThatCantCauseGC scope(masm); |
| // Stores return the first js argument |
| int return_value_offset = 2 + FCA::kReturnValueOffset; |
| MemOperand return_value_operand(fp, return_value_offset * kPointerSize); |
| // The number of arguments might be odd, but will be padded when calling the |
| // stub. We do not round up stack_space to account for odd argc here, this |
| // will be done in CallApiFunctionAndReturn. |
| const int stack_space = (argc() + 1) + FCA::kArgsLength; |
| |
| // The current frame needs to be aligned. |
| DCHECK_EQ((stack_space - (argc() + 1)) % 2, 0); |
| const int spill_offset = 1 + kApiStackSpace; |
| CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space, |
| spill_offset, return_value_operand); |
| } |
| |
| |
| void CallApiGetterStub::Generate(MacroAssembler* masm) { |
| STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0); |
| STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1); |
| STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2); |
| STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3); |
| STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4); |
| STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5); |
| STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6); |
| STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7); |
| |
| Register receiver = ApiGetterDescriptor::ReceiverRegister(); |
| Register holder = ApiGetterDescriptor::HolderRegister(); |
| Register callback = ApiGetterDescriptor::CallbackRegister(); |
| Register data = x4; |
| Register undef = x5; |
| Register isolate_address = x6; |
| Register name = x7; |
| DCHECK(!AreAliased(receiver, holder, callback, data, undef, isolate_address, |
| name)); |
| |
| __ Ldr(data, FieldMemOperand(callback, AccessorInfo::kDataOffset)); |
| __ LoadRoot(undef, Heap::kUndefinedValueRootIndex); |
| __ Mov(isolate_address, |
| Operand(ExternalReference::isolate_address(isolate()))); |
| __ Ldr(name, FieldMemOperand(callback, AccessorInfo::kNameOffset)); |
| |
| // PropertyCallbackArguments: |
| // receiver, data, return value, return value default, isolate, holder, |
| // should_throw_on_error |
| // These are followed by the property name, which is also pushed below the |
| // exit frame to make the GC aware of it. |
| __ Push(receiver, data, undef, undef, isolate_address, holder, xzr, name); |
| |
| // v8::PropertyCallbackInfo::args_ array and name handle. |
| static const int kStackUnwindSpace = |
| PropertyCallbackArguments::kArgsLength + 1; |
| static_assert(kStackUnwindSpace % 2 == 0, |
| "slots must be a multiple of 2 for stack pointer alignment"); |
| |
| // Load address of v8::PropertyAccessorInfo::args_ array and name handle. |
| __ Mov(x0, masm->StackPointer()); // x0 = Handle<Name> |
| __ Add(x1, x0, 1 * kPointerSize); // x1 = v8::PCI::args_ |
| |
| const int kApiStackSpace = 1; |
| |
| // Allocate space so that CallApiFunctionAndReturn can store some scratch |
| // registers on the stack. |
| const int kCallApiFunctionSpillSpace = 4; |
| |
| FrameScope frame_scope(masm, StackFrame::MANUAL); |
| __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace); |
| |
| // Create v8::PropertyCallbackInfo object on the stack and initialize |
| // it's args_ field. |
| __ Poke(x1, 1 * kPointerSize); |
| __ SlotAddress(x1, 1); |
| // x1 = v8::PropertyCallbackInfo& |
| |
| ExternalReference thunk_ref = |
| ExternalReference::invoke_accessor_getter_callback(isolate()); |
| |
| Register api_function_address = x2; |
| Register js_getter = x4; |
| __ Ldr(js_getter, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset)); |
| __ Ldr(api_function_address, |
| FieldMemOperand(js_getter, Foreign::kForeignAddressOffset)); |
| |
| const int spill_offset = 1 + kApiStackSpace; |
| // +3 is to skip prolog, return address and name handle. |
| MemOperand return_value_operand( |
| fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize); |
| CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, |
| kStackUnwindSpace, spill_offset, |
| return_value_operand); |
| } |
| |
| #undef __ |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_TARGET_ARCH_ARM64 |