blob: 0861551d8977482dd9b7327396c771d12b81b8b7 [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_ARM64_MACRO_ASSEMBLER_ARM64_INL_H_
#define V8_ARM64_MACRO_ASSEMBLER_ARM64_INL_H_
#include <ctype.h>
#include "src/globals.h"
#include "src/arm64/assembler-arm64-inl.h"
#include "src/arm64/assembler-arm64.h"
#include "src/arm64/instrument-arm64.h"
#include "src/base/bits.h"
#include "src/macro-assembler.h"
namespace v8 {
namespace internal {
MemOperand FieldMemOperand(Register object, int offset) {
return MemOperand(object, offset - kHeapObjectTag);
}
MemOperand UntagSmiFieldMemOperand(Register object, int offset) {
return UntagSmiMemOperand(object, offset - kHeapObjectTag);
}
MemOperand UntagSmiMemOperand(Register object, int offset) {
// Assumes that Smis are shifted by 32 bits and little endianness.
STATIC_ASSERT(kSmiShift == 32);
return MemOperand(object, offset + (kSmiShift / kBitsPerByte));
}
void TurboAssembler::And(const Register& rd, const Register& rn,
const Operand& operand) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
LogicalMacro(rd, rn, operand, AND);
}
void TurboAssembler::Ands(const Register& rd, const Register& rn,
const Operand& operand) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
LogicalMacro(rd, rn, operand, ANDS);
}
void TurboAssembler::Tst(const Register& rn, const Operand& operand) {
DCHECK(allow_macro_instructions());
LogicalMacro(AppropriateZeroRegFor(rn), rn, operand, ANDS);
}
void TurboAssembler::Bic(const Register& rd, const Register& rn,
const Operand& operand) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
LogicalMacro(rd, rn, operand, BIC);
}
void MacroAssembler::Bics(const Register& rd,
const Register& rn,
const Operand& operand) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
LogicalMacro(rd, rn, operand, BICS);
}
void TurboAssembler::Orr(const Register& rd, const Register& rn,
const Operand& operand) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
LogicalMacro(rd, rn, operand, ORR);
}
void TurboAssembler::Orn(const Register& rd, const Register& rn,
const Operand& operand) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
LogicalMacro(rd, rn, operand, ORN);
}
void TurboAssembler::Eor(const Register& rd, const Register& rn,
const Operand& operand) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
LogicalMacro(rd, rn, operand, EOR);
}
void TurboAssembler::Eon(const Register& rd, const Register& rn,
const Operand& operand) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
LogicalMacro(rd, rn, operand, EON);
}
void TurboAssembler::Ccmp(const Register& rn, const Operand& operand,
StatusFlags nzcv, Condition cond) {
DCHECK(allow_macro_instructions());
if (operand.IsImmediate() && (operand.ImmediateValue() < 0)) {
ConditionalCompareMacro(rn, -operand.ImmediateValue(), nzcv, cond, CCMN);
} else {
ConditionalCompareMacro(rn, operand, nzcv, cond, CCMP);
}
}
void MacroAssembler::Ccmn(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond) {
DCHECK(allow_macro_instructions());
if (operand.IsImmediate() && (operand.ImmediateValue() < 0)) {
ConditionalCompareMacro(rn, -operand.ImmediateValue(), nzcv, cond, CCMP);
} else {
ConditionalCompareMacro(rn, operand, nzcv, cond, CCMN);
}
}
void TurboAssembler::Add(const Register& rd, const Register& rn,
const Operand& operand) {
DCHECK(allow_macro_instructions());
if (operand.IsImmediate() && (operand.ImmediateValue() < 0) &&
IsImmAddSub(-operand.ImmediateValue())) {
AddSubMacro(rd, rn, -operand.ImmediateValue(), LeaveFlags, SUB);
} else {
AddSubMacro(rd, rn, operand, LeaveFlags, ADD);
}
}
void TurboAssembler::Adds(const Register& rd, const Register& rn,
const Operand& operand) {
DCHECK(allow_macro_instructions());
if (operand.IsImmediate() && (operand.ImmediateValue() < 0) &&
IsImmAddSub(-operand.ImmediateValue())) {
AddSubMacro(rd, rn, -operand.ImmediateValue(), SetFlags, SUB);
} else {
AddSubMacro(rd, rn, operand, SetFlags, ADD);
}
}
void TurboAssembler::Sub(const Register& rd, const Register& rn,
const Operand& operand) {
DCHECK(allow_macro_instructions());
if (operand.IsImmediate() && (operand.ImmediateValue() < 0) &&
IsImmAddSub(-operand.ImmediateValue())) {
AddSubMacro(rd, rn, -operand.ImmediateValue(), LeaveFlags, ADD);
} else {
AddSubMacro(rd, rn, operand, LeaveFlags, SUB);
}
}
void TurboAssembler::Subs(const Register& rd, const Register& rn,
const Operand& operand) {
DCHECK(allow_macro_instructions());
if (operand.IsImmediate() && (operand.ImmediateValue() < 0) &&
IsImmAddSub(-operand.ImmediateValue())) {
AddSubMacro(rd, rn, -operand.ImmediateValue(), SetFlags, ADD);
} else {
AddSubMacro(rd, rn, operand, SetFlags, SUB);
}
}
void TurboAssembler::Cmn(const Register& rn, const Operand& operand) {
DCHECK(allow_macro_instructions());
Adds(AppropriateZeroRegFor(rn), rn, operand);
}
void TurboAssembler::Cmp(const Register& rn, const Operand& operand) {
DCHECK(allow_macro_instructions());
Subs(AppropriateZeroRegFor(rn), rn, operand);
}
void TurboAssembler::Neg(const Register& rd, const Operand& operand) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
if (operand.IsImmediate()) {
Mov(rd, -operand.ImmediateValue());
} else {
Sub(rd, AppropriateZeroRegFor(rd), operand);
}
}
void TurboAssembler::Negs(const Register& rd, const Operand& operand) {
DCHECK(allow_macro_instructions());
Subs(rd, AppropriateZeroRegFor(rd), operand);
}
void TurboAssembler::Adc(const Register& rd, const Register& rn,
const Operand& operand) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
AddSubWithCarryMacro(rd, rn, operand, LeaveFlags, ADC);
}
void MacroAssembler::Adcs(const Register& rd,
const Register& rn,
const Operand& operand) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
AddSubWithCarryMacro(rd, rn, operand, SetFlags, ADC);
}
void MacroAssembler::Sbc(const Register& rd,
const Register& rn,
const Operand& operand) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
AddSubWithCarryMacro(rd, rn, operand, LeaveFlags, SBC);
}
void MacroAssembler::Sbcs(const Register& rd,
const Register& rn,
const Operand& operand) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
AddSubWithCarryMacro(rd, rn, operand, SetFlags, SBC);
}
void MacroAssembler::Ngc(const Register& rd,
const Operand& operand) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
Register zr = AppropriateZeroRegFor(rd);
Sbc(rd, zr, operand);
}
void MacroAssembler::Ngcs(const Register& rd,
const Operand& operand) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
Register zr = AppropriateZeroRegFor(rd);
Sbcs(rd, zr, operand);
}
void TurboAssembler::Mvn(const Register& rd, uint64_t imm) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
Mov(rd, ~imm);
}
#define DEFINE_FUNCTION(FN, REGTYPE, REG, OP) \
void TurboAssembler::FN(const REGTYPE REG, const MemOperand& addr) { \
DCHECK(allow_macro_instructions()); \
LoadStoreMacro(REG, addr, OP); \
}
LS_MACRO_LIST(DEFINE_FUNCTION)
#undef DEFINE_FUNCTION
#define DEFINE_FUNCTION(FN, REGTYPE, REG, REG2, OP) \
void TurboAssembler::FN(const REGTYPE REG, const REGTYPE REG2, \
const MemOperand& addr) { \
DCHECK(allow_macro_instructions()); \
LoadStorePairMacro(REG, REG2, addr, OP); \
}
LSPAIR_MACRO_LIST(DEFINE_FUNCTION)
#undef DEFINE_FUNCTION
#define DECLARE_FUNCTION(FN, OP) \
void TurboAssembler::FN(const Register& rt, const Register& rn) { \
DCHECK(allow_macro_instructions()); \
OP(rt, rn); \
}
LDA_STL_MACRO_LIST(DECLARE_FUNCTION)
#undef DECLARE_FUNCTION
#define DECLARE_FUNCTION(FN, OP) \
void MacroAssembler::FN(const Register& rs, const Register& rt, \
const Register& rn) { \
DCHECK(allow_macro_instructions()); \
OP(rs, rt, rn); \
}
STLX_MACRO_LIST(DECLARE_FUNCTION)
#undef DECLARE_FUNCTION
void TurboAssembler::Asr(const Register& rd, const Register& rn,
unsigned shift) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
asr(rd, rn, shift);
}
void TurboAssembler::Asr(const Register& rd, const Register& rn,
const Register& rm) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
asrv(rd, rn, rm);
}
void TurboAssembler::B(Label* label) {
b(label);
CheckVeneerPool(false, false);
}
void TurboAssembler::B(Condition cond, Label* label) {
DCHECK(allow_macro_instructions());
B(label, cond);
}
void TurboAssembler::Bfi(const Register& rd, const Register& rn, unsigned lsb,
unsigned width) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
bfi(rd, rn, lsb, width);
}
void MacroAssembler::Bfxil(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
bfxil(rd, rn, lsb, width);
}
void TurboAssembler::Bind(Label* label) {
DCHECK(allow_macro_instructions());
bind(label);
}
void TurboAssembler::Bl(Label* label) {
DCHECK(allow_macro_instructions());
bl(label);
}
void TurboAssembler::Blr(const Register& xn) {
DCHECK(allow_macro_instructions());
DCHECK(!xn.IsZero());
blr(xn);
}
void TurboAssembler::Br(const Register& xn) {
DCHECK(allow_macro_instructions());
DCHECK(!xn.IsZero());
br(xn);
}
void TurboAssembler::Brk(int code) {
DCHECK(allow_macro_instructions());
brk(code);
}
void MacroAssembler::Cinc(const Register& rd,
const Register& rn,
Condition cond) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
DCHECK((cond != al) && (cond != nv));
cinc(rd, rn, cond);
}
void MacroAssembler::Cinv(const Register& rd,
const Register& rn,
Condition cond) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
DCHECK((cond != al) && (cond != nv));
cinv(rd, rn, cond);
}
void TurboAssembler::Cls(const Register& rd, const Register& rn) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
cls(rd, rn);
}
void TurboAssembler::Clz(const Register& rd, const Register& rn) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
clz(rd, rn);
}
void TurboAssembler::Cneg(const Register& rd, const Register& rn,
Condition cond) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
DCHECK((cond != al) && (cond != nv));
cneg(rd, rn, cond);
}
// Conditionally zero the destination register. Only X registers are supported
// due to the truncation side-effect when used on W registers.
void MacroAssembler::CzeroX(const Register& rd,
Condition cond) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsSP() && rd.Is64Bits());
DCHECK((cond != al) && (cond != nv));
csel(rd, xzr, rd, cond);
}
// Conditionally move a value into the destination register. Only X registers
// are supported due to the truncation side-effect when used on W registers.
void MacroAssembler::CmovX(const Register& rd,
const Register& rn,
Condition cond) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsSP());
DCHECK(rd.Is64Bits() && rn.Is64Bits());
DCHECK((cond != al) && (cond != nv));
if (!rd.is(rn)) {
csel(rd, rn, rd, cond);
}
}
void TurboAssembler::Cset(const Register& rd, Condition cond) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
DCHECK((cond != al) && (cond != nv));
cset(rd, cond);
}
void MacroAssembler::Csetm(const Register& rd, Condition cond) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
DCHECK((cond != al) && (cond != nv));
csetm(rd, cond);
}
void TurboAssembler::Csinc(const Register& rd, const Register& rn,
const Register& rm, Condition cond) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
DCHECK((cond != al) && (cond != nv));
csinc(rd, rn, rm, cond);
}
void MacroAssembler::Csinv(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
DCHECK((cond != al) && (cond != nv));
csinv(rd, rn, rm, cond);
}
void MacroAssembler::Csneg(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
DCHECK((cond != al) && (cond != nv));
csneg(rd, rn, rm, cond);
}
void MacroAssembler::Dmb(BarrierDomain domain, BarrierType type) {
DCHECK(allow_macro_instructions());
dmb(domain, type);
}
void MacroAssembler::Dsb(BarrierDomain domain, BarrierType type) {
DCHECK(allow_macro_instructions());
dsb(domain, type);
}
void TurboAssembler::Debug(const char* message, uint32_t code, Instr params) {
DCHECK(allow_macro_instructions());
debug(message, code, params);
}
void MacroAssembler::Extr(const Register& rd,
const Register& rn,
const Register& rm,
unsigned lsb) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
extr(rd, rn, rm, lsb);
}
void TurboAssembler::Fabs(const VRegister& fd, const VRegister& fn) {
DCHECK(allow_macro_instructions());
fabs(fd, fn);
}
void TurboAssembler::Fadd(const VRegister& fd, const VRegister& fn,
const VRegister& fm) {
DCHECK(allow_macro_instructions());
fadd(fd, fn, fm);
}
void TurboAssembler::Fccmp(const VRegister& fn, const VRegister& fm,
StatusFlags nzcv, Condition cond) {
DCHECK(allow_macro_instructions());
DCHECK((cond != al) && (cond != nv));
fccmp(fn, fm, nzcv, cond);
}
void TurboAssembler::Fcmp(const VRegister& fn, const VRegister& fm) {
DCHECK(allow_macro_instructions());
fcmp(fn, fm);
}
void TurboAssembler::Fcmp(const VRegister& fn, double value) {
DCHECK(allow_macro_instructions());
if (value != 0.0) {
UseScratchRegisterScope temps(this);
VRegister tmp = temps.AcquireSameSizeAs(fn);
Fmov(tmp, value);
fcmp(fn, tmp);
} else {
fcmp(fn, value);
}
}
void MacroAssembler::Fcsel(const VRegister& fd, const VRegister& fn,
const VRegister& fm, Condition cond) {
DCHECK(allow_macro_instructions());
DCHECK((cond != al) && (cond != nv));
fcsel(fd, fn, fm, cond);
}
void TurboAssembler::Fcvt(const VRegister& fd, const VRegister& fn) {
DCHECK(allow_macro_instructions());
fcvt(fd, fn);
}
void TurboAssembler::Fcvtas(const Register& rd, const VRegister& fn) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
fcvtas(rd, fn);
}
void TurboAssembler::Fcvtau(const Register& rd, const VRegister& fn) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
fcvtau(rd, fn);
}
void TurboAssembler::Fcvtms(const Register& rd, const VRegister& fn) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
fcvtms(rd, fn);
}
void TurboAssembler::Fcvtmu(const Register& rd, const VRegister& fn) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
fcvtmu(rd, fn);
}
void TurboAssembler::Fcvtns(const Register& rd, const VRegister& fn) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
fcvtns(rd, fn);
}
void TurboAssembler::Fcvtnu(const Register& rd, const VRegister& fn) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
fcvtnu(rd, fn);
}
void TurboAssembler::Fcvtzs(const Register& rd, const VRegister& fn) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
fcvtzs(rd, fn);
}
void TurboAssembler::Fcvtzu(const Register& rd, const VRegister& fn) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
fcvtzu(rd, fn);
}
void TurboAssembler::Fdiv(const VRegister& fd, const VRegister& fn,
const VRegister& fm) {
DCHECK(allow_macro_instructions());
fdiv(fd, fn, fm);
}
void MacroAssembler::Fmadd(const VRegister& fd, const VRegister& fn,
const VRegister& fm, const VRegister& fa) {
DCHECK(allow_macro_instructions());
fmadd(fd, fn, fm, fa);
}
void TurboAssembler::Fmax(const VRegister& fd, const VRegister& fn,
const VRegister& fm) {
DCHECK(allow_macro_instructions());
fmax(fd, fn, fm);
}
void MacroAssembler::Fmaxnm(const VRegister& fd, const VRegister& fn,
const VRegister& fm) {
DCHECK(allow_macro_instructions());
fmaxnm(fd, fn, fm);
}
void TurboAssembler::Fmin(const VRegister& fd, const VRegister& fn,
const VRegister& fm) {
DCHECK(allow_macro_instructions());
fmin(fd, fn, fm);
}
void MacroAssembler::Fminnm(const VRegister& fd, const VRegister& fn,
const VRegister& fm) {
DCHECK(allow_macro_instructions());
fminnm(fd, fn, fm);
}
void TurboAssembler::Fmov(VRegister fd, VRegister fn) {
DCHECK(allow_macro_instructions());
// Only emit an instruction if fd and fn are different, and they are both D
// registers. fmov(s0, s0) is not a no-op because it clears the top word of
// d0. Technically, fmov(d0, d0) is not a no-op either because it clears the
// top of q0, but VRegister does not currently support Q registers.
if (!fd.Is(fn) || !fd.Is64Bits()) {
fmov(fd, fn);
}
}
void TurboAssembler::Fmov(VRegister fd, Register rn) {
DCHECK(allow_macro_instructions());
fmov(fd, rn);
}
void TurboAssembler::Fmov(VRegister vd, double imm) {
DCHECK(allow_macro_instructions());
if (vd.Is1S() || vd.Is2S() || vd.Is4S()) {
Fmov(vd, static_cast<float>(imm));
return;
}
DCHECK(vd.Is1D() || vd.Is2D());
if (IsImmFP64(imm)) {
fmov(vd, imm);
} else {
uint64_t bits = bit_cast<uint64_t>(imm);
if (vd.IsScalar()) {
if (bits == 0) {
fmov(vd, xzr);
} else {
Ldr(vd, imm);
}
} else {
// TODO(all): consider NEON support for load literal.
Movi(vd, bits);
}
}
}
void TurboAssembler::Fmov(VRegister vd, float imm) {
DCHECK(allow_macro_instructions());
if (vd.Is1D() || vd.Is2D()) {
Fmov(vd, static_cast<double>(imm));
return;
}
DCHECK(vd.Is1S() || vd.Is2S() || vd.Is4S());
if (IsImmFP32(imm)) {
fmov(vd, imm);
} else {
uint32_t bits = bit_cast<uint32_t>(imm);
if (vd.IsScalar()) {
if (bits == 0) {
fmov(vd, wzr);
} else {
UseScratchRegisterScope temps(this);
Register tmp = temps.AcquireW();
// TODO(all): Use Assembler::ldr(const VRegister& ft, float imm).
Mov(tmp, bit_cast<uint32_t>(imm));
Fmov(vd, tmp);
}
} else {
// TODO(all): consider NEON support for load literal.
Movi(vd, bits);
}
}
}
void TurboAssembler::Fmov(Register rd, VRegister fn) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
fmov(rd, fn);
}
void MacroAssembler::Fmsub(const VRegister& fd, const VRegister& fn,
const VRegister& fm, const VRegister& fa) {
DCHECK(allow_macro_instructions());
fmsub(fd, fn, fm, fa);
}
void TurboAssembler::Fmul(const VRegister& fd, const VRegister& fn,
const VRegister& fm) {
DCHECK(allow_macro_instructions());
fmul(fd, fn, fm);
}
void MacroAssembler::Fnmadd(const VRegister& fd, const VRegister& fn,
const VRegister& fm, const VRegister& fa) {
DCHECK(allow_macro_instructions());
fnmadd(fd, fn, fm, fa);
}
void MacroAssembler::Fnmsub(const VRegister& fd, const VRegister& fn,
const VRegister& fm, const VRegister& fa) {
DCHECK(allow_macro_instructions());
fnmsub(fd, fn, fm, fa);
}
void TurboAssembler::Fsub(const VRegister& fd, const VRegister& fn,
const VRegister& fm) {
DCHECK(allow_macro_instructions());
fsub(fd, fn, fm);
}
void MacroAssembler::Hint(SystemHint code) {
DCHECK(allow_macro_instructions());
hint(code);
}
void MacroAssembler::Hlt(int code) {
DCHECK(allow_macro_instructions());
hlt(code);
}
void MacroAssembler::Isb() {
DCHECK(allow_macro_instructions());
isb();
}
void TurboAssembler::Ldr(const CPURegister& rt, const Operand& operand) {
DCHECK(allow_macro_instructions());
ldr(rt, operand);
}
void TurboAssembler::Ldr(const CPURegister& rt, double imm) {
DCHECK(allow_macro_instructions());
DCHECK(rt.Is64Bits());
ldr(rt, Immediate(bit_cast<uint64_t>(imm)));
}
void TurboAssembler::Lsl(const Register& rd, const Register& rn,
unsigned shift) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
lsl(rd, rn, shift);
}
void TurboAssembler::Lsl(const Register& rd, const Register& rn,
const Register& rm) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
lslv(rd, rn, rm);
}
void TurboAssembler::Lsr(const Register& rd, const Register& rn,
unsigned shift) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
lsr(rd, rn, shift);
}
void TurboAssembler::Lsr(const Register& rd, const Register& rn,
const Register& rm) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
lsrv(rd, rn, rm);
}
void TurboAssembler::Madd(const Register& rd, const Register& rn,
const Register& rm, const Register& ra) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
madd(rd, rn, rm, ra);
}
void TurboAssembler::Mneg(const Register& rd, const Register& rn,
const Register& rm) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
mneg(rd, rn, rm);
}
void TurboAssembler::Mov(const Register& rd, const Register& rn) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
// Emit a register move only if the registers are distinct, or if they are
// not X registers. Note that mov(w0, w0) is not a no-op because it clears
// the top word of x0.
if (!rd.Is(rn) || !rd.Is64Bits()) {
Assembler::mov(rd, rn);
}
}
void MacroAssembler::Movk(const Register& rd, uint64_t imm, int shift) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
movk(rd, imm, shift);
}
void TurboAssembler::Mrs(const Register& rt, SystemRegister sysreg) {
DCHECK(allow_macro_instructions());
DCHECK(!rt.IsZero());
mrs(rt, sysreg);
}
void MacroAssembler::Msr(SystemRegister sysreg, const Register& rt) {
DCHECK(allow_macro_instructions());
msr(sysreg, rt);
}
void TurboAssembler::Msub(const Register& rd, const Register& rn,
const Register& rm, const Register& ra) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
msub(rd, rn, rm, ra);
}
void TurboAssembler::Mul(const Register& rd, const Register& rn,
const Register& rm) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
mul(rd, rn, rm);
}
void TurboAssembler::Rbit(const Register& rd, const Register& rn) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
rbit(rd, rn);
}
void TurboAssembler::Ret(const Register& xn) {
DCHECK(allow_macro_instructions());
DCHECK(!xn.IsZero());
ret(xn);
CheckVeneerPool(false, false);
}
void MacroAssembler::Rev(const Register& rd, const Register& rn) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
rev(rd, rn);
}
void TurboAssembler::Rev16(const Register& rd, const Register& rn) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
rev16(rd, rn);
}
void TurboAssembler::Rev32(const Register& rd, const Register& rn) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
rev32(rd, rn);
}
void TurboAssembler::Ror(const Register& rd, const Register& rs,
unsigned shift) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
ror(rd, rs, shift);
}
void TurboAssembler::Ror(const Register& rd, const Register& rn,
const Register& rm) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
rorv(rd, rn, rm);
}
void MacroAssembler::Sbfiz(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
sbfiz(rd, rn, lsb, width);
}
void TurboAssembler::Sbfx(const Register& rd, const Register& rn, unsigned lsb,
unsigned width) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
sbfx(rd, rn, lsb, width);
}
void TurboAssembler::Scvtf(const VRegister& fd, const Register& rn,
unsigned fbits) {
DCHECK(allow_macro_instructions());
scvtf(fd, rn, fbits);
}
void TurboAssembler::Sdiv(const Register& rd, const Register& rn,
const Register& rm) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
sdiv(rd, rn, rm);
}
void MacroAssembler::Smaddl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
smaddl(rd, rn, rm, ra);
}
void MacroAssembler::Smsubl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
smsubl(rd, rn, rm, ra);
}
void TurboAssembler::Smull(const Register& rd, const Register& rn,
const Register& rm) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
smull(rd, rn, rm);
}
void MacroAssembler::Smulh(const Register& rd,
const Register& rn,
const Register& rm) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
smulh(rd, rn, rm);
}
void TurboAssembler::Umull(const Register& rd, const Register& rn,
const Register& rm) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
umaddl(rd, rn, rm, xzr);
}
void TurboAssembler::Sxtb(const Register& rd, const Register& rn) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
sxtb(rd, rn);
}
void TurboAssembler::Sxth(const Register& rd, const Register& rn) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
sxth(rd, rn);
}
void TurboAssembler::Sxtw(const Register& rd, const Register& rn) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
sxtw(rd, rn);
}
void TurboAssembler::Ubfiz(const Register& rd, const Register& rn, unsigned lsb,
unsigned width) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
ubfiz(rd, rn, lsb, width);
}
void TurboAssembler::Ubfx(const Register& rd, const Register& rn, unsigned lsb,
unsigned width) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
ubfx(rd, rn, lsb, width);
}
void TurboAssembler::Ucvtf(const VRegister& fd, const Register& rn,
unsigned fbits) {
DCHECK(allow_macro_instructions());
ucvtf(fd, rn, fbits);
}
void TurboAssembler::Udiv(const Register& rd, const Register& rn,
const Register& rm) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
udiv(rd, rn, rm);
}
void MacroAssembler::Umaddl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
umaddl(rd, rn, rm, ra);
}
void MacroAssembler::Umsubl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
umsubl(rd, rn, rm, ra);
}
void TurboAssembler::Uxtb(const Register& rd, const Register& rn) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
uxtb(rd, rn);
}
void TurboAssembler::Uxth(const Register& rd, const Register& rn) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
uxth(rd, rn);
}
void TurboAssembler::Uxtw(const Register& rd, const Register& rn) {
DCHECK(allow_macro_instructions());
DCHECK(!rd.IsZero());
uxtw(rd, rn);
}
void MacroAssembler::AlignAndSetCSPForFrame() {
int sp_alignment = ActivationFrameAlignment();
// AAPCS64 mandates at least 16-byte alignment.
DCHECK_GE(sp_alignment, 16);
DCHECK(base::bits::IsPowerOfTwo(sp_alignment));
Bic(csp, StackPointer(), sp_alignment - 1);
}
void TurboAssembler::BumpSystemStackPointer(const Operand& space) {
DCHECK(!csp.Is(StackPointer()));
if (!TmpList()->IsEmpty()) {
Sub(csp, StackPointer(), space);
} else {
// TODO(jbramley): Several callers rely on this not using scratch
// registers, so we use the assembler directly here. However, this means
// that large immediate values of 'space' cannot be handled cleanly. (Only
// 24-bits immediates or values of 'space' that can be encoded in one
// instruction are accepted.) Once we implement our flexible scratch
// register idea, we could greatly simplify this function.
InstructionAccurateScope scope(this);
DCHECK(space.IsImmediate());
// Align to 16 bytes.
uint64_t imm = RoundUp(space.ImmediateValue(), 0x10);
DCHECK(is_uint24(imm));
Register source = StackPointer();
if (CpuFeatures::IsSupported(ALWAYS_ALIGN_CSP)) {
bic(csp, source, 0xf);
source = csp;
}
if (!is_uint12(imm)) {
int64_t imm_top_12_bits = imm >> 12;
sub(csp, source, imm_top_12_bits << 12);
source = csp;
imm -= imm_top_12_bits << 12;
}
if (imm > 0) {
sub(csp, source, imm);
}
}
AssertStackConsistency();
}
void TurboAssembler::SyncSystemStackPointer() {
DCHECK(emit_debug_code());
DCHECK(!csp.Is(StackPointer()));
{ InstructionAccurateScope scope(this);
mov(csp, StackPointer());
}
AssertStackConsistency();
}
void TurboAssembler::InitializeRootRegister() {
ExternalReference roots_array_start =
ExternalReference::roots_array_start(isolate());
Mov(root, Operand(roots_array_start));
}
void MacroAssembler::SmiTag(Register dst, Register src) {
STATIC_ASSERT(kXRegSizeInBits ==
static_cast<unsigned>(kSmiShift + kSmiValueSize));
DCHECK(dst.Is64Bits() && src.Is64Bits());
Lsl(dst, src, kSmiShift);
}
void MacroAssembler::SmiTag(Register smi) { SmiTag(smi, smi); }
void TurboAssembler::SmiUntag(Register dst, Register src) {
STATIC_ASSERT(kXRegSizeInBits ==
static_cast<unsigned>(kSmiShift + kSmiValueSize));
DCHECK(dst.Is64Bits() && src.Is64Bits());
if (FLAG_enable_slow_asserts) {
AssertSmi(src);
}
Asr(dst, src, kSmiShift);
}
void TurboAssembler::SmiUntag(Register smi) { SmiUntag(smi, smi); }
void MacroAssembler::SmiUntagToDouble(VRegister dst, Register src) {
DCHECK(dst.Is64Bits() && src.Is64Bits());
if (FLAG_enable_slow_asserts) {
AssertSmi(src);
}
Scvtf(dst, src, kSmiShift);
}
void MacroAssembler::SmiUntagToFloat(VRegister dst, Register src) {
DCHECK(dst.Is32Bits() && src.Is64Bits());
if (FLAG_enable_slow_asserts) {
AssertSmi(src);
}
Scvtf(dst, src, kSmiShift);
}
void TurboAssembler::JumpIfSmi(Register value, Label* smi_label,
Label* not_smi_label) {
STATIC_ASSERT((kSmiTagSize == 1) && (kSmiTag == 0));
// Check if the tag bit is set.
if (smi_label) {
Tbz(value, 0, smi_label);
if (not_smi_label) {
B(not_smi_label);
}
} else {
DCHECK(not_smi_label);
Tbnz(value, 0, not_smi_label);
}
}
void MacroAssembler::JumpIfNotSmi(Register value, Label* not_smi_label) {
JumpIfSmi(value, nullptr, not_smi_label);
}
void MacroAssembler::JumpIfBothSmi(Register value1,
Register value2,
Label* both_smi_label,
Label* not_smi_label) {
STATIC_ASSERT((kSmiTagSize == 1) && (kSmiTag == 0));
UseScratchRegisterScope temps(this);
Register tmp = temps.AcquireX();
// Check if both tag bits are clear.
Orr(tmp, value1, value2);
JumpIfSmi(tmp, both_smi_label, not_smi_label);
}
void MacroAssembler::JumpIfEitherSmi(Register value1,
Register value2,
Label* either_smi_label,
Label* not_smi_label) {
STATIC_ASSERT((kSmiTagSize == 1) && (kSmiTag == 0));
UseScratchRegisterScope temps(this);
Register tmp = temps.AcquireX();
// Check if either tag bit is clear.
And(tmp, value1, value2);
JumpIfSmi(tmp, either_smi_label, not_smi_label);
}
void MacroAssembler::JumpIfEitherNotSmi(Register value1,
Register value2,
Label* not_smi_label) {
JumpIfBothSmi(value1, value2, nullptr, not_smi_label);
}
void MacroAssembler::JumpIfBothNotSmi(Register value1,
Register value2,
Label* not_smi_label) {
JumpIfEitherSmi(value1, value2, nullptr, not_smi_label);
}
void MacroAssembler::ObjectTag(Register tagged_obj, Register obj) {
STATIC_ASSERT(kHeapObjectTag == 1);
if (emit_debug_code()) {
Label ok;
Tbz(obj, 0, &ok);
Abort(AbortReason::kObjectTagged);
Bind(&ok);
}
Orr(tagged_obj, obj, kHeapObjectTag);
}
void MacroAssembler::ObjectUntag(Register untagged_obj, Register obj) {
STATIC_ASSERT(kHeapObjectTag == 1);
if (emit_debug_code()) {
Label ok;
Tbnz(obj, 0, &ok);
Abort(AbortReason::kObjectNotTagged);
Bind(&ok);
}
Bic(untagged_obj, obj, kHeapObjectTag);
}
void TurboAssembler::jmp(Label* L) { B(L); }
void TurboAssembler::Push(Handle<HeapObject> handle) {
UseScratchRegisterScope temps(this);
Register tmp = temps.AcquireX();
Mov(tmp, Operand(handle));
// This is only used in test-heap.cc, for generating code that is not
// executed. Push a padding slot together with the handle here, to
// satisfy the alignment requirement.
Push(padreg, tmp);
}
void TurboAssembler::Push(Smi* smi) {
UseScratchRegisterScope temps(this);
Register tmp = temps.AcquireX();
Mov(tmp, Operand(smi));
Push(tmp);
}
void TurboAssembler::Claim(int64_t count, uint64_t unit_size) {
DCHECK_GE(count, 0);
uint64_t size = count * unit_size;
if (size == 0) {
return;
}
if (csp.Is(StackPointer())) {
DCHECK_EQ(size % 16, 0);
} else {
BumpSystemStackPointer(size);
}
Sub(StackPointer(), StackPointer(), size);
}
void TurboAssembler::Claim(const Register& count, uint64_t unit_size) {
if (unit_size == 0) return;
DCHECK(base::bits::IsPowerOfTwo(unit_size));
const int shift = CountTrailingZeros(unit_size, kXRegSizeInBits);
const Operand size(count, LSL, shift);
if (size.IsZero()) {
return;
}
AssertPositiveOrZero(count);
if (!csp.Is(StackPointer())) {
BumpSystemStackPointer(size);
}
Sub(StackPointer(), StackPointer(), size);
}
void MacroAssembler::ClaimBySMI(const Register& count_smi, uint64_t unit_size) {
DCHECK(unit_size == 0 || base::bits::IsPowerOfTwo(unit_size));
const int shift = CountTrailingZeros(unit_size, kXRegSizeInBits) - kSmiShift;
const Operand size(count_smi,
(shift >= 0) ? (LSL) : (LSR),
(shift >= 0) ? (shift) : (-shift));
if (size.IsZero()) {
return;
}
if (!csp.Is(StackPointer())) {
BumpSystemStackPointer(size);
}
Sub(StackPointer(), StackPointer(), size);
}
void TurboAssembler::Drop(int64_t count, uint64_t unit_size) {
DCHECK_GE(count, 0);
uint64_t size = count * unit_size;
if (size == 0) {
return;
}
Add(StackPointer(), StackPointer(), size);
if (csp.Is(StackPointer())) {
DCHECK_EQ(size % 16, 0);
} else if (emit_debug_code()) {
// It is safe to leave csp where it is when unwinding the JavaScript stack,
// but if we keep it matching StackPointer, the simulator can detect memory
// accesses in the now-free part of the stack.
SyncSystemStackPointer();
}
}
void TurboAssembler::Drop(const Register& count, uint64_t unit_size) {
if (unit_size == 0) return;
DCHECK(base::bits::IsPowerOfTwo(unit_size));
const int shift = CountTrailingZeros(unit_size, kXRegSizeInBits);
const Operand size(count, LSL, shift);
if (size.IsZero()) {
return;
}
AssertPositiveOrZero(count);
Add(StackPointer(), StackPointer(), size);
if (!csp.Is(StackPointer()) && emit_debug_code()) {
// It is safe to leave csp where it is when unwinding the JavaScript stack,
// but if we keep it matching StackPointer, the simulator can detect memory
// accesses in the now-free part of the stack.
SyncSystemStackPointer();
}
}
void TurboAssembler::DropArguments(const Register& count,
ArgumentsCountMode mode) {
int extra_slots = 1; // Padding slot.
if (mode == kCountExcludesReceiver) {
// Add a slot for the receiver.
++extra_slots;
}
UseScratchRegisterScope temps(this);
Register tmp = temps.AcquireX();
Add(tmp, count, extra_slots);
Bic(tmp, tmp, 1);
Drop(tmp, kXRegSize);
}
void TurboAssembler::DropArguments(int64_t count, ArgumentsCountMode mode) {
if (mode == kCountExcludesReceiver) {
// Add a slot for the receiver.
++count;
}
Drop(RoundUp(count, 2), kXRegSize);
}
void TurboAssembler::DropSlots(int64_t count) {
Drop(RoundUp(count, 2), kXRegSize);
}
void TurboAssembler::PushArgument(const Register& arg) { Push(padreg, arg); }
void MacroAssembler::DropBySMI(const Register& count_smi, uint64_t unit_size) {
DCHECK(unit_size == 0 || base::bits::IsPowerOfTwo(unit_size));
const int shift = CountTrailingZeros(unit_size, kXRegSizeInBits) - kSmiShift;
const Operand size(count_smi,
(shift >= 0) ? (LSL) : (LSR),
(shift >= 0) ? (shift) : (-shift));
if (size.IsZero()) {
return;
}
Add(StackPointer(), StackPointer(), size);
if (!csp.Is(StackPointer()) && emit_debug_code()) {
// It is safe to leave csp where it is when unwinding the JavaScript stack,
// but if we keep it matching StackPointer, the simulator can detect memory
// accesses in the now-free part of the stack.
SyncSystemStackPointer();
}
}
void MacroAssembler::CompareAndBranch(const Register& lhs,
const Operand& rhs,
Condition cond,
Label* label) {
if (rhs.IsImmediate() && (rhs.ImmediateValue() == 0) &&
((cond == eq) || (cond == ne))) {
if (cond == eq) {
Cbz(lhs, label);
} else {
Cbnz(lhs, label);
}
} else {
Cmp(lhs, rhs);
B(cond, label);
}
}
void TurboAssembler::TestAndBranchIfAnySet(const Register& reg,
const uint64_t bit_pattern,
Label* label) {
int bits = reg.SizeInBits();
DCHECK_GT(CountSetBits(bit_pattern, bits), 0);
if (CountSetBits(bit_pattern, bits) == 1) {
Tbnz(reg, MaskToBit(bit_pattern), label);
} else {
Tst(reg, bit_pattern);
B(ne, label);
}
}
void TurboAssembler::TestAndBranchIfAllClear(const Register& reg,
const uint64_t bit_pattern,
Label* label) {
int bits = reg.SizeInBits();
DCHECK_GT(CountSetBits(bit_pattern, bits), 0);
if (CountSetBits(bit_pattern, bits) == 1) {
Tbz(reg, MaskToBit(bit_pattern), label);
} else {
Tst(reg, bit_pattern);
B(eq, label);
}
}
void MacroAssembler::InlineData(uint64_t data) {
DCHECK(is_uint16(data));
InstructionAccurateScope scope(this, 1);
movz(xzr, data);
}
void MacroAssembler::EnableInstrumentation() {
InstructionAccurateScope scope(this, 1);
movn(xzr, InstrumentStateEnable);
}
void MacroAssembler::DisableInstrumentation() {
InstructionAccurateScope scope(this, 1);
movn(xzr, InstrumentStateDisable);
}
void MacroAssembler::AnnotateInstrumentation(const char* marker_name) {
DCHECK_EQ(strlen(marker_name), 2);
// We allow only printable characters in the marker names. Unprintable
// characters are reserved for controlling features of the instrumentation.
DCHECK(isprint(marker_name[0]) && isprint(marker_name[1]));
InstructionAccurateScope scope(this, 1);
movn(xzr, (marker_name[1] << 8) | marker_name[0]);
}
} // namespace internal
} // namespace v8
#endif // V8_ARM64_MACRO_ASSEMBLER_ARM64_INL_H_